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ABSTRACT

This work extends Receiver Operating Characteristic (ROC) curve to the situation where some cases,

falling in an intermediate ”indeterminacy zone” of the predictor, are not classified. It addresses two

challenges: definition of sensitivity and specificity bounds for this case; and summarization of the

large number of possibilities arising from different choices of indeterminacy zones.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Receiver Operating Characteristic (ROC) curves help with

the visual assessment of the performance of classifiers. Fawcett

(2006) reviews the field and points out that “ROC graphs are

commonly used in medical decision making, and in recent years

have been used increasingly in machine learning and data min-

ing research”.

I consider here the basic case of binary classification using a

continuous score, such as a classification probability, or a quan-

titative biomarker. Traditionally, classification is simply imple-

mented by a cutoff dichotomizing the score. In more recent

applications, classification may includes an intermediate area

of indeterminacy, which I will call gray zone.

For a famous example, Parker et al. (2009) present the

PAM50 risk predictor of breast cancers, which provides a con-

tinuous risk score. In clinical applications, this score is most

often split into three categories: low, intermediate and high.

Women in the low and high categories are directed to specific

clinical strategies. Women in the intermediate category are

considered on a case by case basis by their clinicians. From

an algorithmic standpoint, the intermediate group is not classi-

fied. Similarly, machine learning algorithms for classification

of pathology and radiology images may allow for certain areas

to be routed to further human examination. In these cases in-

determinacy helps with practical implementation, by handling
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safe cases algorithmically and complex ones by human inter-

vention.

Here I describe an algorithm for visualizing bounds on sensi-

tivity/specificity pairs, for short grayROC, to assess the perfor-

mance range of classifiers allowing for a region of indetermi-

nacy, or gray zone. I try to address two challenges. The first is

the definition of sensitivity and specificity bound when there is

indeterminacy. The second is the visual summarization of the

large number of possibilities arising from different choices of

gray zones.

2. Algorithm

Consider a validation study of n labeled subjects, with scores

xi, i = 1, . . . , n. Without loss, let the first n0 subjects (0 < n0 <

n) have label 0 and the remaining n1 have label 1. Also, low

levels of the score are taken to predict class 0. The proportion

of 1’s in the target population is π, and may differ from the

validation study proportion n1/n, for example if the design of

the validation study is a case-control.

A gray zone is defined by the interval (cL, cU). The extremes

are the lower and upper cutoff. Cases with score below cL are

classified as 0’s. Cases above cU are classified as 1’s. The rest

remain unclassified.

Users of the grayROC need to specify a maximum toler-

ated percentage of unclassified cases, γ, based on the trade-

offs present in the practical application at hand. Let g j be the

number of class j points falling in the gray zone. A gray zone

(cL, cU) satisfies the γ-constraint if the proportion of cases in

the gray zone is less than γ, that is if (g0 + g1)/n < γ. A
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gray zone (cL, cU) satisfies the target population γ-constraint if

((1 − π)g0 + πg1)/n < γ.

The grayROC algorithm is a model-free visualization. The

basic building blocks are bounds on the cumulative frequencies

associated with a given gray zone (cL, cU).

First, the most favorable bound on these frequencies is cal-

culated assuming perfect discrimination within the gray zone.

Imagine an oracle would take care of the points in the gray zone

on behalf of the classifier, by moving them to the extremes of

the gray zone so that they can be classified correctly. Formally,

define the starred scores as follows:

if xi ! (cL, cU) then x∗
i
= xi

if i ≤ n0, xi ∈ (cL, cU) then x∗
i
= cL

if i > n0, xi ∈ (cL, cU) then x∗
i
= cU .

Let IA be the indicator of the set A, and define the cumulative

frequencies:

F∗0(cL, cU) =

n0
∑

i=1

Ix∗
i
<(cL+cU )/2 (1)

F∗1(cL, cU) =

n
∑

i=n0+1

Ix∗
i
<(cL+cU )/2. (2)

Conversely, the least favorable frequencies are constructed

considering the worst case scenario for the points within the

gray zone. Imagine now that a saboteur may be in charge of

the points in the gray zone, by moving them to extremes of the

gray zone, so that they are all classified incorrectly. This would

result in the ”daggered” scores, defined as:

if xi ! (cL, cU) then x
†

i
= xi

if i ≤ n0, xi ∈ (cL, cU) then x
†

i
= cU

if i > n0, xi ∈ (cL, cU) then x
†

i
= cL.

Now define the cumulative frequencies:

F
†

0
(cL, cU) =

n0
∑

i=1

Ix
†

i
<(cL+cU )/2 (3)

F
†

1
(cL, cU) =

n
∑

i=n0+1

I
x
†

i
<(cL+cU )/2. (4)

We can form a large number of starred and daggered pairs of

cumulative frequencies satisfying the γ-constraint. The gray-

ROC algorithm simplifies the visualization of these pairs by

grouping them, and selecting a single higher and lower limit

within each group, as follows.

Consider the r observed unique ranked values of the

biomarker x(1), . . . x(r). These points will constitute the set

of possible values for the extremes (cL, cU) of the gray zone.

Now define the midpoints between two consecutive values as

c j = (x(r−1) + x(r))/2 for j = 2, . . . , r. For each c j, consider the

set of (cL, cU) pairs built by first adding the two neighboring

observed points on either side, then the next two and so forth.

This process continues as long as the gray zone satisfies the γ-

constraint. If one of the extremes of the distribution is reached,

the process continues on the other side. Among the resulting

intervals, the grayROC chooses the ”best” for visualization, de-

fined as follows. For each (cL, cU), it eliminates the cases in the

gray zone and then computes the area under the ROC curve

(AUC, Bradley (1997)) using the classified cases only. The

(cL, cU) pair maximizing the AUC so defined is (c∗
L
(c j), c

∗
U

(c j)).

The generating c j is not necessarily the midpoint of this inter-

val, but will be contained in it. If multiple gray zones are tied

in this maximization, the algorithm minimizes gray zone width

among optima. In this way, gray zones are not used in regions

where discrimination is not helped by not classifying cases.

Then, the upper limits are defined by the set of points

(

1 − F∗1(c∗L(c j), c
∗
U(c j)), 1 − F∗0(c∗L(c j), c

∗
U(c j))

)

(5)

as c j varies. Conversely, the lower limits are defined by the set

of points

(

1 − F
†

1
(c∗L(c j), c

∗
U(c j)), 1 − F

†

0
(c∗L(c j), c

∗
U(c j))

)

. (6)

for j = 2, . . . , r. To implement, define the degenerate gray

zones (x(i), x(i)) and (x(i), x(i+1)) as the empty set.

Fix y to be either 0 or 1. The sequences defined by

F∗y (c∗
L
(c j), c

∗
U

(c j)) and F
†
y (c∗

L
(c j), c

∗
U

(c j)) as j varies in 2, . . . , r

do not necessarily define proper cumulative distributions, as

they would in a standard ROC analysis. Rather the intent is

to provide bounds to the sensitivity / specificity pairs available

over a range of possible gray area strategies.

Starred and daggered curves are calculated using both classi-

fied and unclassified samples. The exclusion of the unclassified

samples only affects the calculation of (c∗
L
(c j), c

∗
U

(c j)).

In summary, the algorithm’s steps to produce the data needed

for plotting a grayROC graph are as follows:

Data: biomarker measurements and labels

Result: all cutoffs and cumulative frequencies pairs

compute set of candidate cutoff points;

compute midpoints of resulting partition;

for each midpoint do

while gray zone satisfies γ-constraint do

enlarge gray zone;

evaluate AUC on classified cases only;

end

choose smallest gray zone limits with largest AUC ;

compute starred & daggered cumulative frequencies ;

end

Algorithm 1: The grayROC procedure for computation of up-

per and lower limits in expressions (5) and (6).

I explored an alternative implementation where the lower and

upper limit of the gray area are used in turn to index the AUC

optimization, instead of the midpoints. Upper and lower limits

can produce markedly different results. Bounds are less stable

than the midpoints when sample sizes are small. Nonetheless,

this strategy provides a different view of the overlap in the tails,

and may turn out to be useful in some applications.

3. Illustration

To illustrate the application and interpretation of the gray-

ROC, I consider a gene expression biomarker for the prediction
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Fig. 1. Dotplots of biomarker levels by class as observed (top) and in the

hypothetical scenarios used in the construction of the grayROC plot. The

gray zone is (2.8, 3.5). In the “oracle” scenario, class 1 points in the gray

zone are moved to the upper limit 3.5 while the class 0 points in the gray

zone are moved to 2.8. The reverse is true in the “saboteur” scenario.

of suboptimal (class 0) versus optimal (class 1) surgical de-

bulking in ovarian cancer patients. Data are available from the

CuratedOvarianData Bioconductor package by Ganzfried

et al. (2013). Clinical and biological background can be found

in Riester et al. (2014). The specific biomarker presented here

reflects the transcriptional level of the gene ZNF544, as mea-

sured using an Agilent microarray by Yoshihara et al. (2012).

Figure 1 shows the observed biomarker levels by class.

Higher level of expression are generally associated with opti-

mal debulking (class 1). Figure 1 also illustrates the type of

hypothetical scenarios that enter as building block in the con-

struction of the grayROC, to visually represent the definitions

of x∗ and x†.

Each of hypothetical scenarios in Figure 1 enter the optimiza-

tion used to find the c∗
U

(c j)’s. These in turn are used to form the

starred and daggered sensitvity and specificity bounds. Figure 2

shows segments connecting starred and daggered points corre-

sponding to the two bounds associated with the same c j. These

can be used to explore potential gray area strategies. Say one

is interested in a classifier with approximately 80% specificity

and 70% sensitivity. ZNF544 does not reach this performance.

The upper points inform us that if one were allowed to pass

20% of suitably chosen observations to the oracle, than ZNF544

could reach close to the desired sensitivity/specificity trade-off.

It also informs us that if the same observations were passed to

the saboteur, the sensitivity and specificity would drop close to

the diagonal line of no discrimination.

Figure 2 also shows, in the bottom panel, the region defined

by the starred points as the upper limit, and by the daggered

points as the lower limit. Points within the region are not easily
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Fig. 2. grayROC displays at maximum tolerated percentage of unclassified

cases, γ, of .2. The top panel shows segments connecting starred and dag-

gered points corresponding to the same c j. The segments collapse to a point

when the optimal gray area for the corresponding c j is empty. The bottom

panel shows, in addition, the area between the two curves defined by con-

necting the starred and daggered points. The thinner line corresponds to

the standard ROC curve.

interpretable in terms of the optimization of the previous sec-

tion. The shading is purely a visual aid.

Figure 3 shows grayROC visualizations corresponding to

four additional choices of γ.

Figure 2 also illustrates that the region defined by the upper

and lower limits in the grayROC algorithm is not necessarily

convex.
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Fig. 3. grayROC displays for ZNF544 at maximum tolerated percentage of

unclassified cases, γ, of .1 (top left) .15 (top right) .25 (bottom left) and .30

(bottom right.) The thinner line corresponds to the standard ROC curve.

2 4 6 8

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

Location of Gray Zone

P
ro

p
o
rt

io
n
 o

f 
P

o
in

ts
 i
n
 G

ra
y
 Z

o
n
e

2 4 6 8

0
1

2
3

4

Location of Gray Zone

S
iz

e
 o

f 
G

ra
y
 Z

o
n
e

Fig. 4. Proportion of points falling in the gray zone (left) and width of the

gray zone in the biomarker scale (right) as a function of c j at γ = .2.

If γ = 0 the grayROC region collapses to the standard ROC

line, also drawn in Figures 2 and 3.

In regions where the two class-specific distributions have lit-

tle overlap, say left of 2, there can be little or no advantage

in allowing for a gray zone. Conversely, where the density

of biomarker points in the two classes is similar, a gray zone

has the potential to improve the practical implementation of the

biomarker. Figure 4 depicts this trade-off by elucidating where

in the biomarker range the gray area is useful. Only in a narrow

range of values does the grayROC algorithm needs to make full

use of the 20% of data points allowed for the gray zone (top

panel).

Lastly, Figure 5 shows grayROCs for four additional genes,

chosen in part to illustrate less common features. Regions can

be disjoint, when stretches of non-empty gray areas are fol-

lowed by stretches of empty gray areas. Often this is associ-

ated with lack of monotonicity in the likelihood ratio of the two

conditional biomarker distributions.
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Fig. 5. grayROC displays at maximum tolerated percentage of unclassified

cases, γ, of .2 for the four genes indicated at the top of each panel. The

thinner line corresponds to the standard ROC curve.

ZNF487 exemplifies a biomarker with relatively good dis-

crimination. The upper bounds indicates that correct reclassi-

fication of as few as 20% of cases could lead to high discrim-

ination. This reclassification could be achieved by biomarkers

that prove effective in the gray zone for ZNF487. The lower

bound indicates that, if unclassified observations are handled

poorly, the performance suffers, but discrimination remains

above chance by a clear margin even with a gray area of 20%.

4. Discussion

I am not aware of a good visualization approach to exam-

ine classification algorithms that allow for an area of indetermi-

nacy. I hope the grayROC will prove of practical help.

A grayROC visualization depends on the specification of the

proportion γ of cases falling in the indeterminacy zone. The

grayROC is, by design, sensitive to γ. Also, the influence of γ

will differ in each dataset. In general, a plausible choice of γ

may reflect the trade-offs inherent to the practical implementa-

tion of the algorithm. A grayROC can help users quantify and

communicate the consequences of adopting a specific γ.

A full decision analytic approach (Raiffa and Schleifer

(1961)) for selecting upper and lower thresholds (and thus γ)

is feasible if one is able to quantify the utility associated with

classifications, as well as the utilities following assignment to

the gray zone. While the grayROC is not a method for optimally

selecting γ, it can assist if the decision can only be approached

informally. For example, if indeterminate cases need to exam-

ined by a costly human reader for accurate classification, dif-

ferent grayROC plots at varying γ can be used to informally

evaluate the trade-off between added accuracy and added cost.

The grayROC is helpful when all cases have a known binary

label but some are not classified. This differs from multi-class



5

ROC analysis (e.g. Hand and Till (2001)), where the number of

labels is greater than two. It also differs from semisupervised

analyses (Chapelle et al. (2006)), where some cases are not la-

beled. Lastly, it differs from systems where binary labels and/or

classifications are replaced by fuzzy set memberships.

Evangelista et al. (2005) consider ensemble methods for

classification. They visualize properties of the ensembles us-

ing a single ROC curve based on aggregating multiple classi-

fiers through fuzzy logic operators including T-conorms and T-

norms (Jang et al. (1997)). They term this approach ”fuzzy

ROC”. In related work Castanho et al. (2007) generalize tradi-

tional ROC analysis to evaluate a single fuzzy-rule-based sys-

tem, not necessarily arising through ensemble learning.

There are many valid alternatives to ROC curves for investi-

gating and visualizing the properties of a threshold-based clas-

sifier. These include Total Operating Characteristic (Pontius

and Si (2014)), Decision Curve Analysis (Vickers and Elkin

(2006)) and Detection Error Tradeoff, which plots the false

rejection rate versus the false acceptance rate (Martin et al.

(1997)). I hope that the ideas illustrated here may be helpful

in generalizing these methods to classifiers with indeterminacy

zones.

The grayROC is not a visualization of uncertainty about the

ROC curve in the standard statistical sense. Both the upper and

lower bound are themselves point estimates, and their variabil-

ity could be address by simple resampling approaches. Yet vi-

sualizing both the set and uncertainty about the set boundaries

could be challenging. Also, γ is expressed in terms of the (po-

tentially rescaled) proportion of cases in the validation study,

without consideration for uncertainty.

The oracle and saboteur scenarios are extreme. Variants

of this algorithm could be constructed by further specifying

bounds on the proportion of cases that could be correctly clas-

sify by a human if left in the gray area. Then instead of moving

all the gray area points to extremes, these known proportions

could be used to move only some of the points and achieve less

extreme bounds. These classification proportion could poten-

tially depend on the biomarker region.

From a statistical perspective, indeterminacy can also help

characterize regions of the score with poor discriminatory abil-

ity. Thus, compared to fully deterministic approaches, allowing

for indeterminacy may lead to a different evaluation of classi-

fiers and different approaches to biomarker discovery.
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