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Abstract
Local in time weak solutions to the 3D Navier-Stokes are constructed for a class of

initial data in L .. In contrast to other constructions (e.g. [23, 18, 22]), the initial data

is not required to be uniformly locally square integrable and, in particular, can exhibit
growth in a local L? sense. This class of initial data includes vector fields in the critical
Morrey space and discretely self-similar vector fields in L2 .

1 Introduction

Let u be the velocity field associated with a viscous incompressible fluid and p the associated
pressure. The Navier-Stokes equations describe the evolution of u and p [6, 12, 27, 23, 24,
30, 31]. In particular, we have

O — Au+u-Vu+ Vp =0,

1.1
V-u=0, (1.1)

in the sense of distributions. The system (1.1) is set on R? x (0,7") where T' > 0 can be
+00. Also, u evolves from a prescribed, divergence-free initial data ug: R? — R3.

In the classical paper [25], J. Leray constructed global-in-time weak solutions to (1.1)
on RY = R? x (0,00) for any divergence-free vector field ug € L?(R3). Leray’s solution u
satisfies the following properties:

1. uw e L®(0,00; L2(R3)) N L2(0, 0c0; H'(R?)) N Cy (0, T; L?),

2. u satisfies the weak form of (1.1),

//(_U-atC+Vu:VC—i—(u-V)u-C) =0, ¢ € CX(RL;R?) s.t. div( =0,
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3. u(t) = ug in L2(R3) as t — 0T,

4. u satisfies the global energy inequality: For all t > 0,
t
lu(z,t)|? dz + 2/ / \Vu(z,t)|> de ds < / lup(x)|? dz.
R3 0o JR3 R3

In his book [23], Lemarié-Rieusset introduced a local analogue of Leray weak solutions
evolving from locally integrable data ug € Lﬁloc. Here, Lfﬂo o for 1 < ¢ < oo, is the space of
functions on R? with finite norm

||U0HL310C i= sup ||uolla(B(z,1)) < 00
z€R3

We also denote
B =Clya (CF(RY),

the closure of C§°(R?) in the L% -norm.
The following definition is motivated by those found in [16, 18, 23]. Note that Q* is a
slightly larger set than @ so that @ C Q* and Q** is a slightly larger set than Q* so that

Q* C Q** (see Section 2).

Definition 1.1 (Local energy solutions). A vector fieldu € L2 (R3x[0,T)) is a local energy

solution to (1.1) with divergence-free initial data ug € L2 (R?) if the following conditions
hold:
1. we L>®(0,T; L3 )N L2

loc loc

(R? x [0, T7),

3/2
loc

2. for some p € Ly’ “(R3 x (0,T)), the pair (u,p) is a distributional solution to (1.1),
3. for all compact subsets K of R3 we have u(t) — ug in L*>(K) ast — 0%,

4. u is suitable in the sense of Caffarelli-Kohn-Nirenberg, i.e., for all cylinders Q com-
pactly supported in R® x (0,T) and all non-negative ¢ € C§°(Q), we have the local
energy inequality

2//\vuy2¢da;dt§ //|u]2(8t¢+A¢) dxdt+//(yu\2+2p)(u.v¢) dxdt, (1.2)

5. the function t — [ u(z,t)-w(x)dz is continuous on [0,T) for any compactly supported
w € L2(R3),

6. for every cube Q@ C R3, there exists po(t) € L3/2(0,T) such that for x € Q* and
0<t<T,

P 0) ~palt) = ~gou @) o | Kl )ty (0,9) dy

+ / (K3 (z — ) — Kiy(q — 1) iy, $)us (9, 5)) dy,
ygQ**

where xq is the center of Q and K;j(y) = 8;0;(4r|y|)~ .



This differs from the usual definitions of local Leray solutions (e.g. in [23, 18, 28, 16]) and
local energy solutions (e.g. in [17, 5]) because we are not assuming the data or the solutions
are uniformly locally square integrable. In particular, we neither assume ug € Lﬁloc nor
that u satisfies

R?
esssup sup / lu(z,t)|* dz + sup / / \Vu(z,t)|* dr dt < oo
BR(:E()) 0 BR(IO)

0<t<R? zocR3 zo€ER3

for any R > 0. When referencing local Leray solutions, we mean local energy solutions
that, additionally, satisfy these assumptions. These modifications reflect the main goal of
this paper, which is to construct local energy solutions for initial data that is not uniformly
locally square integrable.

Other interesting classes of solutions can be found in [21, 8, 31], e.g. very weak solutions
or weak solutions in a class inspired by the BMO~! space of Koch-Tataru [19]. However,
the local energy class is particularly useful in that it is very general but retains enough struc-
ture to make progress on theoretical problems such as regularity and uniqueness. Several
examples identified in [26] concerning this usefulness are the following:

e Local Leray solutions satisfy the local energy inequality of Caffarelli, Kohn, and Niren-
berg. Consequently, partial regularity results based on that of Caffarelli, Kohn, and
Nirenberg [7] are available for local Leray solutions. Additionally, the local energy
inequality allows for the analysis of dynamics, e.g. the turbulence theory of Dascaliuc
and Gruji¢ [9].

e Local Leray solutions appear as the limit when re-scaling solutions near a possible
singularity. Since the energy is a supercritical quantity, it blows up in the scaling
limit, even though the limiting solution still solves the Navier-Stokes equations. The
local energy, however, does not blow up, and the resulting solution belongs to the
local Leray class.

e Local Leray solutions make sense in several critical infinite energy spaces such as the
Lebesgue space L2, the Lorentz space L3, and the Morrey space M2, all of which
embed in Lﬁloc but not in L?. Critical spaces are spaces for which the norm of u
is scaling invariant. These spaces are borderline cases for many important questions
like regularity and uniqueness. For example, L>(0,T; L3) is a regularity class for
Leray solutions [10], but this is unknown for L°°(0,T; L3), even though L3 is only
marginally larger than L3. Local Leray solutions played a key role in [15] and there is
compelling evidence that they play an important role in establishing non-uniqueness of
solutions in the Leray class [14, 13]. See also [5] which examines local energy solutions
and their existence, regularity and uniqueness properties for data in Morrey spaces.

Local energy solutions are known to exist locally in time for initial data in L?ﬂoc(Q)
where  is R? [23, 24, 18, 22] or R3 [26]. Global existence is known provided the initial
data decays at spatial infinity in an appropriate sense, e.g. ug € E? [23, 18] or ug has
oscillation decay [22], or if the initial data is self-similar [24, 15, 4].

Our goal is to construct local-in-time suitable weak solutions for some L120 . initial data
that is not uniformly locally square integrable. To accomplish this, we construct solutions
for data in weighted, adapted local energy spaces. These are built off of a specific cover of
R3 by cubes. Let Sop = {z : |z;| < 2;i = 1,2,3} and let R, = {z : |2;] < 2"%;i = 1,2,3}.
Denote S, = Ry11 \ Ry for n € N\ {1} and S; = Ry \ Sp. Then |S,| = 56 - 23" for n € N.



Figure 1: A two-dimensional illustration of Sy, S1 and Ss. The cross hatched region is Sp,
the hatched region is S7 and the remaining region is S5. The subsequent shells are just
dyadic dilations of Ss.

Partition Sy into 64 cubes of side-length 1 and S,, into 56 cubes of side-length 2™. Then,

So is comprised of a 4 x 4 x 4 grid of cubes while each shell S,, boxes in U?:_OISO. Let C be

the collection of these cubes. Note that the number of cubes in U?;&Si grows linearly in n.
The main features of the collection C are the following:

(i) The side-length of a cube is proportional to its distance from the origin.

(ii) Adjacent cubes have comparable volume.
(iit) If |Q'| < |Q| then the distance between the centers of Q and Q' is ~ |Q|'/3.
(iv) The number of cubes Q' satisfying |Q’| < |Q| is bounded above by ~ |Q|Y/2.

For convenience we also refer to the collection of cubes in C contained in S, as S, and
accordingly write ) € S,,.

Our initial data space is an analogue of L2

uloc

but adapted to the cover C and weighted.

Definition 1.2. We say f € Mé”q if

1
17 s 2= sup —— / (@) de < .
METT hee Q193 g
Let ]\;[é)’q be the subset of MP? so that

1
W’/Qmopdw%() as |Q| — o0, Q € C.

Comments on Definition 1.2

1. We clearly have the embedding Mg’q C Mcz’q/ whenever ¢ < ¢/. Additionally, MCQ’q C

o

2,q'
M7? whenever ¢ < ¢'.



2. Recall that f is in the critical (with respect to the scaling of the Navier-Stokes equa-
tions) Morrey space M*! if

1 / 2
sup  ———— |7 dw < o0.
2o €ER3,r>0 |BT($0)|1/3 Br(wo)

Mg g clearly a much weaker space than M?! and does not assert any control (except
square integrability) at small scales.

3. Note that Mg’q c L? for all ¢, but Mg’q is not directly comparable to L2, when

loc uloc
q < 3. Indeed,
2,
f(x) = Z 2qk/2XBl(2k61)(x) € MC ! \ Lﬁloc?
keN
while g(z) = 1 € L2, \ M. On the other hand, L2, . C MZ".

4. The set L? is dense in ]\;[g’q. To see this, let ug € ]\ng’q and € > 0 be given. Then,
there exists N so that

||U0XR3\BN(0)”§45»4 <e€

Then, up(1 — XR3\BN(O)) € L? and
luo (1 = xro\ By (0) — 0l 20 (5 (o)) < €

Our main result concerns the local existence of solutions to the Navier-Stokes equations
with data in Mg’2.

Theorem 1.3. Assume ugy € M§2 is divergence-free. Let T = ¢~ min{1, HUOHX/;EQ}’ for a
C

sufficiently large constant ¢ > 0. Then, there exists u: R3x (0,T) — R and p: R3x(0,T) —
R so that (u,p) is a local energy solution to the Navier-Stokes equations and

1 T
esssup ||u(t)]|? 2.2 + su //VUZdLEdtSCUt 2 e,
0<mpll Ol L AT QI | luo(®)1[} 22

where C > 0 is a constant.

Comments on Theorem 1.3:

1. Existence of solutions with data in MCQ’q is related to the existence of self-similar and
discretely self-similar solutions with data in L120c- Recall that if there exists A > 1 so
that up(z) = Aug(Ax) for all z, then wug is said to be discretely self-similar, while wg is
self-similar if this holds for all A > 0.

In [24], Lemarié-Rieusset constructed self-similar solutions for self-similar initial data
in L2 . Later in [8], Chae and Wolf constructed discretely self-similar solutions for
discretely self-similar data in LIQO(:' These solutions were not shown to satisfy the local
energy inequality. In [4], the first author and Tsai constructed discretely self-similar
solutions for the same data as [8] satisfying the local energy inequality by extending

a construction in [3]. As mentioned in [4, Comment 4], discretely self-similar data in



2
uloc?

L2 . is not necessarily in L

class of data. Note that

1
o [ lw@Pdr<C [ Ju(w)P
QIY? Jo B /3(0)

after re-scaling the solution and changing variables. Thus any DSS data in L

so there was no general existence theory including this

2
loc

to Mcz’1 and, thus, also to Mgz So MgQ can be viewed as a natural class containing
all discretely self-similar L%OC initial data for which a local existence theory is now
available. Finding such a functional setting was a motivation for this paper.

belongs

2. Unlike other constructions of local energy solutions, Theorem 1.3 applies to some
initial data that is not uniformly locally square integrable. The example f(z) in the
third comment following Definition 1.2 illustrates this as it is not uniformly locally
square integrable but (after modifying it to make it divergence free) is a valid initial
data for Theorem 1.3.

3. The decay assumption on ug means that ug is a limit of L? functions ug in Mc2’2. This
is convenient for an approximation argument since solutions for the initial data ug
are well understood.

To eliminate the decay assumption, we would need a local existence theory for a
regularized problem and a local pressure expansion for this system. The solutions
to the regularized problem have no decay and are not necessarily bounded. Indeed,
e!®ug are not necessarily bounded for v € MCM. This complicates the analysis of
the pressure. Recently Kwon and Tsai introduced a new approximation scheme which
localizes the pressure but not the solution [22]. We expect this approach would allow
the assumption that ug € Mg ! to be weakened to Uug € MC2 . For the sake of simplicity
we do not pursue this here, but note it in case such an improvement is useful in a
future application.

4. Considering the scale of M2 spaces, Theorem 1.3 gives existence of solutions for
up € M?9 for ¢ < 2. It is worth noting that solutions with a priori bounds in the
M?1 class can also be constructed when ug € M?4 and q < 2, but the time scale
becomes T = ¢~ ! min{1, ||u0HX/;127q}. The proof is identical to that of Theorem 1.3.
It seems difficult to extend the results to ¢ > 2, which would be interesting because

Lﬁloc C M?3, and local existence is known in Lﬁloc. The reason that ¢ = 2 is an

endpoint case for our argument has to do with the treatment of the cubic term in the
a priori estimates in Section 3.

5. The decay of the initial data does not lend itself to the usual extension argument to
go from local to global existence in [23, 18, 22]. This is because, while the data is
decaying, it is doing so at progressively larger scales. Since it is not becoming small at
a single scale, the ensuing solution cannot be made small in the far-field at any fixed
time. Thus the splitting argument of [23, 18, 22] cannot be used and a new approach
is needed.

While this paper was under review and prior to the revision, Fernandez-Dalgo and
Lemarié-Rieusset posted the paper [11] on the arxiv in which they construct global solutions
in the framework of weighted spaces L%U7 where wy = (14 |z[)™7 with 0 < <2 and

2 2
fuoly, = [ JuoPur o) o
Y R3
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The largest space in this scale occurs when v = 2. This space is smaller than MC2 2, Namely,
one can check that

f(x) =Y x@)|QI (In|zql) /% € Mg*\ L3,
QeC

It is easy to adjust this example so that f is divergence-free. A global construction for data
in a related but non-comparable space (to that in [11]) appears in [5].

Also note an important existence result due to Basson in two spatial dimensions obtained
in [1], where the initial data is required to satisfy supg>; R™2 flﬂf\<R lug(z)|? dor < oo.

The paper is organized as follows. The main technical ingredients are the analysis of the
pressure which is carried out in Section 2 and new a priori bounds in the ]\452 ! setting which
are contained in Section 3. The compactness argument of [23, 18] puts these ingredients
together in Section 4 where we prove Theorem 1.3.

2 Pressure formula and its bound

The pressure estimates in [23] and [18] can be adapted to the Mg’q framework. In this
section we verify that the pressure formula converges when w is in a reasonable solution
class for data in Mg’q. First we introduce some notation. Denote

Gijf = RiR;f = —%@'jf(x) +P-V-/Kij(90—y)f(y) dy,

where R; denotes the i-th Riesz transform and

L —0ilyl” + 3yay;
Kij(y) = 0i0j—— = —u i
o) = Oyl = T 4P

For a given cube Q, let g € R3 be the center of Q. Fix @ € C. Let Q* be the union of Q
and all adjacent cubes in C, and let Q** be the same union but for Q*.
For z € Q*, let

G f(w) = —l%'f(fﬂ) + p-V~/ Kij(z —y) f(y) dy
+ / (Kij(x —y) — Kij(zq —y)) f(y) dy.
yEQ**

Our pressure expansion is: For Q € C and ¢ € (0,7T), there exists pg(t) € L32(0,T) such
that

ple,t) — po(t) = (GRuguy)(z,t), = €Q* (2.2)

where p is the pressure corresponding to a local energy solution u.

Above, the pressure formula needed to be modified in comparison with the usual Riesz
transform formula because f is not required to decay at spatial infinity. Note that this
is the typical modification of the singular integrals for spaces with no decay at infinity
[23, 24, 18, 16, 29]. When u € LP has compact support, GS agrees with G;; up to a
constant.



In this section, we bound p(z,t) — pg(t) when u is in a solution class associated to the
spaces MCQ’q. We assume for some 1" > 0 that

ar(u) = sup e}z < o0,

and

u) ;= su Vugd:cdt<oo

When T is clear we sometimes write o and B in place of ap and Bp. These assumptions

imply
3
y(u) := sup ——~ //u dx dt < 0.
) Qec |Q‘q/3 i

//]p po(t \3/2d:rdt

is bounded in terms of a(u) and 7(u) and powers of |Q|.

We now show that

Lemma 2.1. Assume u is a local energy solution to the Navier-Stokes equations on R® x
[0, T] with pressure p satisfying (2.2). Then, for Q € C,

1 T

<C sup |Q/|1/3/ / ul® dz dt + CT|Q|9*~/3a 3/2
QN0

Proof. For z € Q*, write p(z,t) — pg(t) as Inear(x,t) + Itar(x,t) where Ijear(x,t) is sum of
the first two terms on the right hand side of (2.1) and I, (z,t) is the last term.

The required estimate for Ij,eqy follows from the Calderén-Zygmund inequality and noting
that the argument for the boundedness is local. In particular,

1 T T 3/2 < c 4 3
W ) . ’ near‘ dx dt S W ) . ‘u’ dx dt.

Since |Q| ~ |Q'] for all @' C @** and there are a fixed number of such @’ (independent of
Q), we have

1 /T/ lu|® dz dt < C QI 1 /T lu|? da dt
— u|” dx dt < sup  ——— u|” dx
QI3 Jo - ong=p QY3 QY3 [y Jor

1 T
<C sup / lu|? dz dt.
ong#0 QTR Jo Jo

To estimate Ip,; note that when y ¢ Q** and = € Q*, we have

C|Q|Y/?
|z —y|*

|Kij(z —y) — Kij(zg —y)| <



This estimate (for balls instead of cubes) may be found in [18] and [16]. Thus, for z € Q*,

i8] < Cl [ luf? dy
RS\Q** | |
1
<cY |@W3/ — |4|ur2dy+c 3 |czrl/3/Q ol

Q'eCy Q'eCs

where C; is the collection of @ € C such that Q' N Q** = () and |Q'| < |Q| while Cy is
the collection of @’ € C such that @' N Q** = 0 and |Q'| > |Q|. Let n € N be such that
Q€ S, If |Q < |Q|, then Q" € S; for some j < n. Also, the number of cubes Q" such
that |Q'| < |Q| is bounded above by |Q|'/3. Furthermore, |Q|'/? ~ |zg — z¢/|. Also, if
Q'NQ™=0,ye @, and z € Q, then |z — y| ~ [vg — 7| Hence,

|Q 1/3 | 2d C |Q‘1/3 2d

Qe Qe

|Q!1/3/ 2 Q)93 2
<C sup lu|“dy = C sup / lu|? dy
i<iel 1@ Jor Q'<lql 1Q%/3 IQ’I‘J/3

1
< C|Q|¥/*2/3 sup / ul? dz.
<l Qec|Q3 Jor “
On the other hand,

Q1/3
ZIQ\1/3/| \4|“‘2dy_z 3 |_|‘4/Ql|u|2dx

X
Q'eCs m>n Q'€SmNCs lzQ — zqr

< ClQIY? Z ! ]u!Qda: QI sup ! \u!zda:
B 2000 e \Q’! a/3 — 2l Q'3

l
m>n eC

< 01Q/* sup / fu? da,
Qec |Q’|q/3 Q

and thus
o2 QI+ |Q22) | 4
\QW?’/ / ias (2, O dardt < C QL3 |Qovy
< CT|QI*3all?,
Therefore,
! ! 3/2
\62!1/3/0 /Q* Ip(z,t) — po(t)[*? dz dt
Q/ 1/3 , 2
= g ||Q\|1/3 |Q’|1/3/ / juf do dt + CT|QI*~ %03/
and the proof is concluded. -

Note that we have not shown that, for a given solution, the pressure satisfies the local
expansion (2.2), but rather that if the pressure satisfies the local expansion, then it is
bounded in the above sense.



3 A priori bounds

In order to approximate a solution in the local energy class by Leray solutions we need an
estimate for them in the Mg’q spaces.

Let ¢ be a radial smooth cutoff function such that ¢ = 1 in [~1/2,1/2]3, ¢ = 0 off of
[—3/4,3/4]% with ¢ non-increasing in |z|. For @ € C, let ¢¢g be the translation and dilation
of ¢ so that ¢ equals 1 on @ and vanishes off of Q*. Then, || pg ()| < C(N)/|QIN/3
where C' does not depend on ) and A is any multi-index. Denote

2
Q= esssup sup/ lu(zx, $)|“bg dz
0<s<t Qec |Q73 Jo ’ QT

Be = Qe ]Q\‘I/3/ / \Vul?pg da ds.

The following statement provides a priori estimates for the existence of suitable weak
solutions with data ug € Mcz’q

and

Theorem 3.1. Assume ug € MCZ’q, for 0 < q < 2, is divergence-free, and let (u,p) be a
local energy solution with initial data ug on R? x (0,T) where

1
T= len{l HUOHM“} (3.1)
for a sufficiently large universal constant C. Assume additionally that
ar + ﬁT < 00,

and oy and B are continuous in t. Then

2
s )+ o [ [ vt dzd < Clupe 62

It is important that Theorem 3.1 also applies to suitable Leray weak solutions as shown
at the end of this section.

Proof of Theorem 3.1. Assume u and p are as in the statement of Theorem 3.1. Fix Q € C.
The local energy inequality and the item 5 of Definition 1.1 give

t
5 [ lutw. 0P d0(@) dx—i—/ [ 1Vute.9)Poq(z) drds
/|ua: 0)2pg(x) dz + = / /\ux s)|*Apg(x) dz ds
+ / /(|u(a:, s)[u(z, s) - Vog(z) + 2p(w, s)u(z, s) - Vg (z)) dz ds.
2 Jo
Clearly,
1/t 9 Ct 9
- A .
2y Jutseneis < ey o

/1q/3 1
< (Ctesssup sup Q]

lu|? dz < C'tay,
0<s<t Qg0 |QP3 Q'3 Jo
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where we used ¢ < 2 and the fact that the smallest cubes in C have volume bounded away
from zero so that |Q'|%/3/|Q[*/? < C when Q' N Q* # 0.
For the cubic and pressure terms we have

/ /(HQU Vg (z )+pU-V¢Q(1:)> dx ds

t
<o . [+ o= pal*?) dads

’Q/’1/3 1 t X 1382
SO QB QI Jy Jo M1 drds + QI e

SCQ’ nglp¢@ ]Q’]1/3// ’u‘sdxds+ct‘Q’q/3 3/2

where we used Lemma 2.1 and ¢/2 — 1/3 < ¢/3.
Recall that for any cube @’ the Gagliardo-Nirenberg inequality implies

3/4 3/4 C 3/2
/ lul¥dz < C (/ \u|2dac> (/ |Vu\2d:v> + 57 </ |u|2d:v> :
Q/ Q/ Q/ |Q ‘ Q/

Hence, for any Q' € C,
1 ! 3
|Q’\1/3/0 /,|u] dx ds
< ctVY Q|23 ( ! ess sup \u\2dx)3/4 (1 /t |Vu|? da ds)
Q973 “o<s<t Joy Q193 Jo Jo
3/2
esssup [ |uf? da;)

L Ctlo/[a/2-5/6 (
ol Q973 o<s<t Joy

< Ct1/4’Ql|q/271/3(at +,8t)3/27

3/4

where we used ¢ < C by (3.1) and the fact that the smallest cubes in C have volume bounded
away from 0 so that |Q'|~%/¢ < C|Q’|~'/3. At this point we have shown

t
/|u(:n,t)\2dx—|—/ / \Vu(z, s)|* dx ds
Q 0 J@Q

‘Q1’1/3 5
<Cta —i—Ct\qu/?’a?’/Q—i-C sup |u|® dz ds
t t Qne#0 QI 1Qf \1/3 Q

<Ctoy+ Ct|Q]q/3a?/2 +Ct sup QY23 (ay + Br)P2.
leQ**#@

So, again using the fact that the volumes of cubes in C are bounded away from zero and
dividing through by |Q|%/3 we obtain

W/Q‘U(x,twdaz—i—w/o /QVU(OC,S)!2dxds

3/2 1/4 Q'|4/2-1/3 3/2
<Ctoy+Cta,’” +Ct / sup 7/3(Oét+ﬁt) /
Q=0 Q7

< Ctay+ CtY* (o + B3/,

11



provided ¢ < 2 and noting that ¢ < C by (3.1). Therefore,
a + B < Ct(aw + Br) + CtY4 (o + By)*/%.

Since o + By = ap = HUUH§427Q and a¢ + ¢ is continuous in ¢, it follows that
C

ap + B < 2||U0||?\4§,1,

on some time interval [0,T") where T' is maximal, that is, ap + fr = 2”’”0”?\/[24]' Let
C

Ty = max{(2C) ", (C4ai/?)~41.

If T' < Ty, then ar < ag, which is impossible. Therefore, Ty < T, that is

1 / 2 1 o 2 2
esssup sup —= [ |u dx+sup/ / |Vul*dr dt < 2||ugll% 2,45
0<t<Ty QeC |Q’q/3 Q QeC |Q|q/3 0 Q MCZ !
and (3.2) is established. O

We also need for Theorem 3.1 to hold for suitable weak solutions in the Leray class. For
a definition of a suitable weak solution in the Leray class, see [31, Definition 3.1].

Lemma 3.2. Theorem 3.1 applies to suitable weak solutions in the Leray class.
Proof. Assume (u, p) is a suitable weak solution in the sense of [31, Definition 3.1]. Then, u

satisfies the items 1-5 in Definition 1.1. For item 6, which concerns the existence of pressure

note that
R2
lim / |u|? dz dt = 0,
|zo|—00 Jo Br(wo)

for any R > 0. Indeed, for a fixed R we have

R? R?
/ / lul? dz dt < / /\u|2dx < 00.
0 Br(zo) 0

Thus by the dominated convergence theorem

R? R?
lim / |u|? dx dt = / lim |u|? d dt = 0.
0 Br(zo) 0

|zo|—o0 |zo|—o0 Br(z0)
In [17] the above property is shown to imply the local pressure expansion for balls, which is

equivalent to our pressure expansion for cubes. Thus item 6 is satisfied. Hence, any suitable
weak solution in the sense of [31, Definition 3.1] is a local energy solution. Note also that

1 T
esssup ||u(t)]|? 2.4 + su / / Vul? dz dt
0<t<713|! O3 B ATTENA QI |

T

< Cesssup |[ul|2: +C [ |ul/3: dt < <.
o<t<T 0

12



It remains to show that a; + 5; is continuous in ¢. Our proof is based on the argument
in [20, Lemma 2]. Denote by Lo C [0,T) the set of Lebesgue points of the function
te [|u(x, s)Ppg(s) ds. We first show that

esssup/|u(a:,s)\2¢Q(:1;) da:+/0 /]Vu(x, s)|*¢q(x) dz ds (3.3)

0<s<t

is continuous in ¢ for every fixed Q). Since f(f [ IVu(z, s)|*¢pg(z) dz ds, is continuous in ¢, we
only need to show the continuity of the first term in (3.3). Using a sequence of functions of
the form ¢g ()1 (t), we obtain from (1.2)

[teePootarae+ [ [ 19utes) oot asds,
< [ ute, 1) Poo(o) de
+/ [u*(Drpq + Adg) dx dt
+ //(|u]2 +2p)(u-Vog)drdt, ti,ta€ Ly, 0<t; <ty<T.

Choosing t1 =t € Lg and t2 =t + h, we get

lim sup / lu(z,t + h)[*po(x) dx < /\u(m,t)|2¢Q(3:) dx, te Ly, (3.4)
h—s0+,t+heLg

while setting to =t € Lo and t; =t — h, we get

im i — h)|? > 2 : .
h—)(l)l-{?;%{;ﬁ@/’u(x’t h)|*og(x) dx > /\u(m,tﬂ og(x)dz, te Ly (3.5)

Since ess supgs<; [ |u(z, s)|>¢po(x) dx is non-decreasing in ¢, (3.4) and (3.5) imply continuity
of esssupgsoy [ [u(z, 8)[*¢po(x) dr as a function of ¢ for any fixed Q.

Next, we establish the continuity of oy. Fix ¢ € [0,T), and let ¢ > 0. Note that
esssupg< <7 ||u(s)||3 < oo. Thus, there exists m so that

1 / 9 €
esssup —= [ |u(z,s)|*dx < =, QeS, n>m.
0<s<T |Q[1/3 Q 2 "

We have two possibilities: Either

1
€ss sup sup ———=

) 3.6
0<s<t Qec |Q|1/3 (36)

N

/ lu(z, 8)[>pg d ds <
or there exists Qg € S, with n < m so that

1 / 2 1 2
esssupsup —= [ |u(x, s)|“¢g dx ds = esssup / w(x, s)|“po dz. 3.7
0<s<t Qec |Q|Y/3 [u(z, 5)"¢a 0<s<t |Qol1/3 Qo [u(z, s)"¢q (3.7)

Assume the first case, (3.6), holds. Then for each @ € Sy, where n < m, there exists g > 0
so that

1 2
esssupW/W(m,s) po(x)dr <e

0<s<T

13



whenever |t — 7| < dg. Then, using the first part of the proof,

<e

1 1
esssupW/]u(x,s)\2¢Q(x) dx—esssupw/\u(x,s)]zqﬁQ(x) dx

0<s<T 0<s<t

for all @ € S, where n <m and [t — 7| < dq. Letting § = mingeym s, ¢ gives

1 / 9 1
—= [ |u(zx,s)|"¢dg dx ds — esssup sup ——=
|a/3 (@, s)I"q 0<s<r Qec |Q9/3

e
€ss sup sup 5

<
0<s<t Qec |Q

[ 1t s)oq s
Q
fort — 7 < § by (3.6) and

1 / 9 3€
esssupsup —= [ |u(z, s)|*pg dxr < —.
o<s<r Qec |Q|9/3 Q Q 2

If the second case, (3.7), holds, then let S be the collection of @ € Unm:_ol Sy, so that

1
esssup sup —=——

1
O<o<t ‘Q’q/?)/‘U(x78)]2¢édwds>esssup
st QeC

0<s<t |Q’q/3

/Q uz, 5) 2 da.
Let 8" = U™}S, \ S. Let

e . 1 2
€ = min< —, min| esssupsup —— [ |u(x, s)|“¢d5 dxds
{2 Q€S< 0<s<t Qec |Q|a/3 /| (z.5) <

1 i)
— esssup ——= u(x, s dr | ¢.
0<S<IP ’Q‘q/3 /é’ ( )| ¢Q

For each Q € ', there exists g > 0 so that

1 / ) ¢
esssupsup —= [ |u(z, s)|“¢pg dxds + =
o<s<t Qec |Q|1/3 ? 2

1
> esssup —=

u(z, 8)?po dz
sssup o /Q uz, 5) g

1 €
zesssupsup/u:v,s 200 drds — =
0<s<t Qec |Q|1/3 fu(, s} 2

whenever |t — 7| < dg. On the other hand, for each @ € S, there exists g > 0 so that

1 9 1 9 €
[ < PR — —.
ess sup I /Q lu(z, s)|"¢pg dx < esssup sup e / lu(z, s)|“pg dx ds 5

0<s<T 0<s<t QeC
Hence,
s [ e s)Pogd 7 | e o)Pogds] <
esssup ——— u(x, s T — esssup ——— u(x, s r| <e
0<s<T \QWS Q @ 0<s<t ‘Q’q/iﬁ Q <

provided |t — 7| < mingyg 0.
The proof of the continuity of g; is similar, but simpler since there is no supremum over
the time interval in the definition of . ]
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4 Construction

4.1 Approximating the initial data

We begin with a lemma on approximation of functions in MC22 with those in L2.

Lemma 4.1. Assume f € M022 is divergence-free. For every e > 0 there exists a divergence-
free g € L* such that ||f — g|| ;22 <.
C

To make sure the approximation is divergence-free, we utilize Bogovskii’s map [2] (see
also [12, 31]) which we recall next.

Lemma 4.2. Let Q) be a bounded Lipschitz domain in R™, where 2 < n < oo. There is
a linear map U that maps a scalar f € L*(Q) with fo = 0 to a vector field v = Vf €

WOLZ(Q;R") and
divo= £, [ollyre < @2

The constant ¢(£2) depends on the size of 2 and, when 2 are shells of the form {z : 2" <
|z| < 27*1} it is of the form C2".

Proof of Lemma 4.1. Assume f € MC22 is divergence-free, and let € > 0. Assume n is large

enough so that || fXr3\ B, (0)ll 22 < €/C for some constant C' to be identified later. Let
C

7 = Z, € C®°(R3) satisfy Z(x) = 1if |x| < 2", Z(z) = 0 if |z| > 2"!, and assume it

is radial, and non-increasing for 2" < |z| < 2"*l. For every n, we may choose Z so that

|IVZ]||o < C27™ where C' is independent of n. Then,

V- (f2)=rf-VZ

because f is divergence-free. Note that

/f-vzcl:czo

because Z has compact support and f is divergence free. Denote by ® the image of —f-VZ
under the Bogovskii map with ¢ = 2 and domain A,, = {x : 2" < |z| < 2""'}. Then,
S Wol’Q(An) and

V- (Zf+®)=0.

Furthermore,

/ B2 do < 022"/ FRIVZ] dz < c/ 2 da.
An An An

Let g=Zf + ®.
Note that there exist only finitely many cubes Q" € C that intersect A,, and this number
is bounded independently of n. Hence,

@10 < su

1
2 2
P —== dl*dx < C/ ®|* dx,
onano Q1?3 Jor @ 22 J 4, 2]
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where we have also used the fact that if Q' intersects A, then |Q’| ~ 23". Thus,

1 1
— O dr < C— 2d
g | ofdr< O [ it

1
< CQW Z /Q' ’fXR3\BQn(0)|2 dx

Q'NAR#£0

1 2
<C Z W)/Ql|fXR3\BQn(O)| dx

Q'NA,F#0
< C‘|fXR3\BQn(O)|’i402,2 < C€.

Therefore,
IF = gz <1 = Zfll oo + @] 20 < Ce

and the proof is concluded. O

4.2 Proof of Theorem 1.3

Proof of Theorem 1.3. Let ug € MCQ,2 be divergence-free. By Lemma 4.1, for each n € N
there exists u? € L? so that ||ug — ul|| 122 < 1/2". By the classical theory, there exists a
global in time suitable weak solution u" gn the Leray class with the initial data ug and an
associated pressure p" (see e.g. [31, Chapter 3]), which satisfies the pressure expansion (2.2).

Let Qn = Unm<n.qres,, @ - We adopt the same convention when defining Q7 and Q}* as
when @) € C; namely, @) is the union of ), and all cubes in C adjacent to @), and Q" the
union of @)} and the cubes in C adjacent to Q7.

Define p™ recursively as follows:

o If z € Qo then p"(x) = Ggl(u?u;‘)(:c), where we use 0 instead of z¢g in (2.1).

o If z € Qpy1 then P (z) = GoF* (uPul) () + co, Where

Cnk = G (uful)(x) — G (uful) (2), @ € Qrp

is a constant (in ) chosen so that the definition is unambiguous. Note that
o= [ Ky dy
Qi \@i

It is easy to see that Vp™ = Vp" and therefore (u", p") is also a global-in-time local energy
solution to (1.1). We therefore redefine p" to be p". Defined in this way p™ still satisfies
the local pressure expansion for cubes in C.

By Lemma 3.2 we may apply Theorem 3.1 with ¢ = 2 to obtain a priori estimates for
u™ on the time interval [0,7") depending only on ||ugl| M2

We now construct a solution to (1.1) with the initial data wuo following the inductive
procedure from [18]. Fix k € N and denote by By the ball of radius 2% centered at the
origin. From Theorem 3.1 we have

T
sup / lu™(z,t)|* dx + / / (V" (x,t))? da dt < C(k,ug).
By 0o JBy,

o<t<T

16



It follows that

T
// w1073 da: dt < C'(k, up)
0 JB,

and
T
/ / \pn\g/dedtSC(k,uo),
0 JBu

where we used ¢, < C(k)Hu”H%Q(Qz* ) < C(k,up). Note that the constants change from
+1

line to line but depend only on k and wug. As in [18, p. 154], using (1.1), we additionally
have that for any w € C5°(Bar),

T T 1/3
/ / O - wdz dt < C(k,up) / / \Vwl|? dz dt ,
0 BQk 0 sz

HatunHXk S C(k7 UO);

where X}, is the dual space of L3(0,T; W3 (Byy)).
The preceding four estimates and compactness arguments imply that there exists a
sub-sequence {(u'",p'"™)} and a couple (u1, p1) such that

implying

ub™ Souy in L°°(0,T; L2 (By))
ub" —wuy in L*(0,T; H'(By))
ub™ — uy  in L3(0,T; L3(Bsy))
and
pb" —py in L¥?(0,T; L3*(By))

as n — 0.
We repeat this procedure for k = 2. Let {u*"} be a subsequence of {u!""} that converges
to a vector field ug on By x (0,7") in the sense

u?™ B uy in L°(0,T; L?(By))
ub™ — uy in L2(0,T; H'(By))
u®™ — uy in L3(0,T; L3(By)),

as n — oo. Additionally, there exists po so that
p>" =y in L¥2(0,T; L¥?(By)).

Iterating this argument we obtain a collection {u*"} and a sequence wuy, so that uy, is defined
on By, x (0,T) and

uFm By in L°(0,T; L2 (Byr))
uF" =y in L2(0,T; H'(By:))
Wb 5wy, in L3(0,T; L3 (By)),
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as n — oo for each k. Additionally, there exists pi so that
P =y in L¥(0,T; L (Bas)).

Let u® = y&F and p*) = pk* . Note that if n > m, then u, = u, on Bom and p, = py, on
Bom. Hence, we unambiguously define v and p by letting them equal u,, and p,, respectively
on Baon. Then,

u®) X in L0, T; L2,)
u®) —~ o in L2(0,T; HL,)
u® = in L3(0,T; L),

as k — oo. Also,

. 3/2
p® —p in L¥%(0,T; L)),

These convergence properties ensure that w and p satisfy (1.1) in the sense of distri-
butions. Furthermore, the convergence properties of u®) and p®) imply that the local
energy inequality, which is satisfied by all u®) and p®), is inherited by u and p. Also,
10w x, < C(k,up). Fix w € L?(Bqgk). Then the function

t»—)/B u(z,t) - w(x)de

is continuous in time because ||0;u| x, < C(k,up) and

T
esssup/ ]u\Qd:lH—/ / |Vu|? de dt < oo.
o<t<T ng+1 0 ng+1

That the limit u is in the correct local energy class follows from the local energy in-
equality. Indeed, let ¢g = 1 on @ and equal zero off of Q* be the usual non-negative
cut-off function. The local energy inequality, weak continuity in time, and the convergence
properties of u®) and p(k) give

/'“” )dx+//|Vua:s)| do(x) de ds
< [ oyt [ [ Avg(w) vas
oy ("Qu Voo(e) +pu-Voo(e) ) deds

2 ¢ (k) |2
/|u 2,0) | (z)dx + hm /|u2 | |Apg(x)| dx ds

k)3
+ lim / / ('“2‘ |v¢>@<:c>+rp<k>—p£§><t>|3/ﬁrv¢Q<x>\> dz ds

k—o0 0

for all ¢ > 0 where we used the fact that fot fp((;) (t)uF) - Voo dx dt = 0.
Dividing by |Q|?/® and using the estimates in Section 3 gives

2 2
esssup ——~— sup/ [ul dx—i—sup / / \Vu)|? da dt < C|lugl|? 21
0<t<Ty \Q|2/3 Qec \QP/?’ Me:
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We remark that the estimates of Section 2 cannot be applied directly to u and p at this
point because we do not have the local pressure expansion for p yet, and to establish it we
need the above estimate for u.
Convergence to the initial data in L
local energy inequality.
We finally establish the local pressure expansion. Define p recursively by

2

it o follows from the weak continuity in time and the

o If z € Qo then p(z) = Ggl(uluj)(x)
o If z € Qp41 then p(x) = ng“(uiuj)(a:) + ¢k, where

cr = Gg’“(uluj)(x) - Gg’““(uiuj)(a:) on Qpi1,

is a constant (in z) . Note that

cp = / Kij(—y)uiu; dy.
Qi1 \Qy"

Note that if @** C Qrs1 and k € N is minimal, then, for all x € @* and at a fixed ¢ (which
we suppress),

G (ugug)(x) — plx,t) — ck

v [ Kol pawdy v [ Ky w)dy

SO
+ / (Kij( — y) — Kij(2q — u)) (wig)(y) dy
YEQ**

- / (Kij(z — y) — Kij(—y)) (uiv;) (y) dy (4.1)
yEQ

*ok
k+1

__ / Kij(g — y)uiu;(y) dy
Qi \Q*

+ / (Kij(—y) — Kij(zq — y))uiu;(y) dy.
y¢Q

*k
k+1

Since xg € Qr+1, the last term converges absolutely whenever u € Mcm. Furthermore, the
right hand side above does not depend on x and so is a constant depending on ) and t. We
therefore have for (z,t) € Q* that

o t) = G (uiuy) (z,t) + pg (t), (4.2)

where pg(t) is defined by collecting the constants appearing above. It is easy to check that
the function p defined this way satisfies the analog of (4.2) for all cubes in R3, not just for
the cubes in C. It remains to show that p = p, as this will show that p satisfies the equation
(2.1) modulo a function of time, i.e. it satisfies the local pressure expansion.

We claim that

G2 uMul) = G2 (), (4.3)
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in L3/2(0,T; L*/?(Q)) for any cube Q € C, i.e.,

1
— 205w (@, ) + p.v. / Kij(x — ) () (y, 5) dy
3 yeQ**
Kii(x —vy) — Kii(zo — ®) TN (1) d
+p.v. **( Zj(w y) ’L](‘TQ y))(uz U’] )(y7 ) y
veQ (4.4)

1
— =505 (uiug)(z, 8) + p.v. / Kij(z — y)(uiug)(y, s) dy

o, / (Kij(z — ) — Kij(wg — ) (uig)(y, 1) dy.
yeQ**

Since u*) — w strongly in L3(0,T; L} ), we have 5”u( Julk) Sijuug in L3/2(0, T; L3/2(Q*)).

Also, using the Calderén-Zygmund theory, we have

(k
J
p.V./ Kij(z — y)(uiu;)(y) dy

1 k) (k
- gaijuiuj + p-V~/ Kij(x — y)(ug )UE' N)(y) dy

k) (k
—p. [ Ko =)o) - (@ul) ) dy -0,
in L*2(0,T; L3/%(Q*")).
Therefore, the first two terms on the left hand side of (4.4) converge to the corresponding

two on the right. To get the convergence of the remaining term, for R > 0 denote by Qr(0)
the cube centered at zero with side length R. Note that

/ s sl =) = Kig(aq =) () ) = (05" ) dy\

< / (Kij(x — ) — Kij(zq — ) (uiu)(y) — (u{ul) () dy
yEQR(0)N(Q**)°
4 / (Kij(o — y) — Kij(ag — ) (i) () — @Pu®) (1)) dy
yEQR(O)cm(Q**)c
= It IR

For the first term, we have

T T 3/2
k k
/0 /Q T2 de dt < C|Q) / (/Q e - o >u§>><y,t>\dy> at

T
C(Q, R)/ / ‘(uiuj)(y,t) — (ugk)ug-k))(y,t)‘?’/2 dy dt — 0.
0 JQr(0)
Let € > 0 be given. Then

1
|15 (x, 1) < C Z |Q|1/3/ ﬁ‘ wiug)(y,t) — (u(k)u(k )y, t |dy

QeCIQ /3> R

QY3 k) (k
<c |'Q,“4/3 / (i) () — () (9, )| dy.

Q'ec; |Q' 1/3>R
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Since all u®) and u are uniformly bounded in Mc2’2 in terms of ||ugl| 2.2, we have
C

0] < Cluol2e Y 12
2 \T, = ] MC24,2 ’Q/|2/3.
Q'eCIQ' >R
The sum above can be expanded over cubes in nested shells where the number of cubes in
each shell is bounded. We therefore have
C > 1
|15} (2, 1) < ﬁ|Q|1/3HUOH?WC2,2 > Jon
n=|logy(R)]

Clearly, we may choose R so that

T
//|12R(x,t)|3/2d:ndt§e.
0 JQ

Therefore, we have the convergence (4.3) in L*2(0,T; L3/?(Q)) for all Q € C. Now note
that p(*) also satisfies (4.1), i.e. for z € Q we can write
k) (k k
() = G (Pl (@ 1) + 9 (1),
where pg consists of the constants in (4.1) with u replaced by u®). We have shown that
p*) — p and Gg(uz(k)ugk)) — G?j(uin), both in L32(0,T;L3?(Q)). To show that p

satisfies the local pressure expansion, it is enough to show that p(g ) (t) = po(t) in L3/2(0,T).

Expanding pg(t)— pg ) (t) leads to several integrals over bounded regions and an integral over

unbounded regions. The integrals over bounded regions all converge to zero by convergence
properties of u®) to u. The remaining term is

E) (k
/( . )C(Ki'(*y) — Kij(zg — y))(ul( )ug ) _ u;ug)(y, t) dy,
k+1
and we need to explain why this vanishes as k — co . We have
1
1Kij(—y) = Kij(wq =9I S 1

for |y| large and so can treat this in an analogous way to IX. This gives convergence of the
sequence at every time t. Convergence in L3/ 2(0,T) follows by the dominated convergence
theorem. This proves that

p® (2,1) = G2 (@, 1) + p3) (1) = G (uiug) (@, ) + po(t)

in L3/2(0,T; L3/%(Q)), which implies p = Gg (ujuj) +po(t), i.e. p satisfies the local pressure
expansion for wu. O
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