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Abstract

Local in time weak solutions to the 3D Navier-Stokes are constructed for a class of
initial data in L2

loc. In contrast to other constructions (e.g. [23, 18, 22]), the initial data
is not required to be uniformly locally square integrable and, in particular, can exhibit
growth in a local L2 sense. This class of initial data includes vector fields in the critical
Morrey space and discretely self-similar vector fields in L2

loc.

1 Introduction

Let u be the velocity field associated with a viscous incompressible fluid and p the associated
pressure. The Navier-Stokes equations describe the evolution of u and p [6, 12, 27, 23, 24,
30, 31]. In particular, we have

∂tu−∆u+ u · ∇u+∇p = 0,

∇ · u = 0,
(1.1)

in the sense of distributions. The system (1.1) is set on R3 × (0, T ) where T > 0 can be
+∞. Also, u evolves from a prescribed, divergence-free initial data u0 : R3 → R3.

In the classical paper [25], J. Leray constructed global-in-time weak solutions to (1.1)
on R4

+ = R3 × (0,∞) for any divergence-free vector field u0 ∈ L2(R3). Leray’s solution u
satisfies the following properties:

1. u ∈ L∞(0,∞;L2(R3)) ∩ L2(0,∞; Ḣ1(R3)) ∩ Cw(0, T ;L2),

2. u satisfies the weak form of (1.1),∫∫ (
−u · ∂tζ +∇u : ∇ζ + (u · ∇)u · ζ

)
= 0, ζ ∈ C∞c (R4

+;R3) s.t. div ζ = 0,
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3. u(t)→ u0 in L2(R3) as t→ 0+,

4. u satisfies the global energy inequality : For all t > 0,∫
R3

|u(x, t)|2 dx+ 2

∫ t

0

∫
R3

|∇u(x, t)|2 dx ds ≤
∫
R3

|u0(x)|2 dx.

In his book [23], Lemarié-Rieusset introduced a local analogue of Leray weak solutions
evolving from locally integrable data u0 ∈ L2

uloc. Here, Lquloc, for 1 ≤ q ≤ ∞, is the space of
functions on R3 with finite norm

‖u0‖Lquloc := sup
x∈R3

‖u0‖Lq(B(x,1)) <∞.

We also denote
Eq = ClLquloc

(C∞0 (R3)),

the closure of C∞0 (R3) in the Lquloc-norm.
The following definition is motivated by those found in [16, 18, 23]. Note that Q∗ is a

slightly larger set than Q so that Q ⊂ Q∗ and Q∗∗ is a slightly larger set than Q∗ so that
Q∗ ⊂ Q∗∗ (see Section 2).

Definition 1.1 (Local energy solutions). A vector field u ∈ L2
loc(R3×[0, T )) is a local energy

solution to (1.1) with divergence-free initial data u0 ∈ L2
loc(R3) if the following conditions

hold:

1. u ∈ L∞(0, T ;L2
loc) ∩ L2

loc(R3 × [0, T ]),

2. for some p ∈ L3/2
loc (R3 × (0, T )), the pair (u, p) is a distributional solution to (1.1),

3. for all compact subsets K of R3 we have u(t)→ u0 in L2(K) as t→ 0+,

4. u is suitable in the sense of Caffarelli-Kohn-Nirenberg, i.e., for all cylinders Q com-
pactly supported in R3 × (0, T ) and all non-negative φ ∈ C∞0 (Q), we have the local
energy inequality

2

∫∫
|∇u|2φdx dt ≤

∫∫
|u|2(∂tφ+ ∆φ) dx dt+

∫∫
(|u|2 + 2p)(u · ∇φ) dx dt, (1.2)

5. the function t 7→
∫
u(x, t) ·w(x) dx is continuous on [0, T ) for any compactly supported

w ∈ L2(R3),

6. for every cube Q ⊂ R3, there exists pQ(t) ∈ L3/2(0, T ) such that for x ∈ Q∗ and
0 < t < T ,

p(x, t)− pQ(t) = −1

3
δijf(x) + p.v.

∫
y∈Q∗∗

Kij(x− y)(ui(y, s)uj(y, s)) dy

+

∫
y/∈Q∗∗

(Kij(x− y)−Kij(xQ − y)(ui(y, s)uj(y, s)) dy,

where xQ is the center of Q and Kij(y) = ∂i∂j(4π|y|)−1.
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This differs from the usual definitions of local Leray solutions (e.g. in [23, 18, 28, 16]) and
local energy solutions (e.g. in [17, 5]) because we are not assuming the data or the solutions
are uniformly locally square integrable. In particular, we neither assume u0 ∈ L2

uloc nor
that u satisfies

ess sup
0≤t<R2

sup
x0∈R3

∫
BR(x0)

|u(x, t)|2 dx+ sup
x0∈R3

∫ R2

0

∫
BR(x0)

|∇u(x, t)|2 dx dt <∞

for any R > 0. When referencing local Leray solutions, we mean local energy solutions
that, additionally, satisfy these assumptions. These modifications reflect the main goal of
this paper, which is to construct local energy solutions for initial data that is not uniformly
locally square integrable.

Other interesting classes of solutions can be found in [21, 8, 31], e.g. very weak solutions
or weak solutions in a class inspired by the BMO−1 space of Koch-Tataru [19]. However,
the local energy class is particularly useful in that it is very general but retains enough struc-
ture to make progress on theoretical problems such as regularity and uniqueness. Several
examples identified in [26] concerning this usefulness are the following:

• Local Leray solutions satisfy the local energy inequality of Caffarelli, Kohn, and Niren-
berg. Consequently, partial regularity results based on that of Caffarelli, Kohn, and
Nirenberg [7] are available for local Leray solutions. Additionally, the local energy
inequality allows for the analysis of dynamics, e.g. the turbulence theory of Dascaliuc
and Grujić [9].

• Local Leray solutions appear as the limit when re-scaling solutions near a possible
singularity. Since the energy is a supercritical quantity, it blows up in the scaling
limit, even though the limiting solution still solves the Navier-Stokes equations. The
local energy, however, does not blow up, and the resulting solution belongs to the
local Leray class.

• Local Leray solutions make sense in several critical infinite energy spaces such as the
Lebesgue space L3, the Lorentz space L3,∞, and the Morrey space M2,1, all of which
embed in L2

uloc but not in L2. Critical spaces are spaces for which the norm of u
is scaling invariant. These spaces are borderline cases for many important questions
like regularity and uniqueness. For example, L∞(0, T ;L3) is a regularity class for
Leray solutions [10], but this is unknown for L∞(0, T ;L3

w), even though L3
w is only

marginally larger than L3. Local Leray solutions played a key role in [15] and there is
compelling evidence that they play an important role in establishing non-uniqueness of
solutions in the Leray class [14, 13]. See also [5] which examines local energy solutions
and their existence, regularity and uniqueness properties for data in Morrey spaces.

Local energy solutions are known to exist locally in time for initial data in L2
uloc(Ω)

where Ω is R3 [23, 24, 18, 22] or R3
+ [26]. Global existence is known provided the initial

data decays at spatial infinity in an appropriate sense, e.g. u0 ∈ E2 [23, 18] or u0 has
oscillation decay [22], or if the initial data is self-similar [24, 15, 4].

Our goal is to construct local-in-time suitable weak solutions for some L2
loc initial data

that is not uniformly locally square integrable. To accomplish this, we construct solutions
for data in weighted, adapted local energy spaces. These are built off of a specific cover of
R3 by cubes. Let S0 = {x : |xi| ≤ 2; i = 1, 2, 3} and let Rn = {x : |xi| < 2n; i = 1, 2, 3}.
Denote Sn = Rn+1 \Rn for n ∈ N \ {1} and S1 = R2 \ S0. Then |Sn| = 56 · 23n for n ∈ N.
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Figure 1: A two-dimensional illustration of S0, S1 and S2. The cross hatched region is S0,
the hatched region is S1 and the remaining region is S2. The subsequent shells are just
dyadic dilations of S2.

Partition S0 into 64 cubes of side-length 1 and Sn into 56 cubes of side-length 2n. Then,
S0 is comprised of a 4× 4× 4 grid of cubes while each shell Sn boxes in ∪n−1

i=0 S0. Let C be
the collection of these cubes. Note that the number of cubes in ∪n−1

i=0 Si grows linearly in n.
The main features of the collection C are the following:

(i) The side-length of a cube is proportional to its distance from the origin.

(ii) Adjacent cubes have comparable volume.

(iii) If |Q′| < |Q| then the distance between the centers of Q and Q′ is ∼ |Q|1/3.

(iv) The number of cubes Q′ satisfying |Q′| < |Q| is bounded above by ∼ |Q|1/3.

For convenience we also refer to the collection of cubes in C contained in Sn as Sn and
accordingly write Q ∈ Sn.

Our initial data space is an analogue of L2
uloc but adapted to the cover C and weighted.

Definition 1.2. We say f ∈Mp,q
C if

‖f‖p
Mp,q
C

:= sup
Q∈C

1

|Q|q/3

∫
Q
|f(x)|p dx <∞.

Let M̊p,q
C be the subset of Mp,q

C so that

1

|Q|q/3

∫
Q
|u0|p dx→ 0 as |Q| → ∞, Q ∈ C.

Comments on Definition 1.2

1. We clearly have the embedding M2,q
C ⊂ M2,q′

C whenever q < q′. Additionally, M2,q
C ⊂

M̊2,q′

C whenever q < q′.
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2. Recall that f is in the critical (with respect to the scaling of the Navier-Stokes equa-
tions) Morrey space M2,1 if

sup
x0∈R3,r>0

1

|Br(x0)|1/3

∫
Br(x0)

|f |2 dx <∞.

M2,1
C is clearly a much weaker space than M2,1 and does not assert any control (except

square integrability) at small scales.

3. Note that M2,q
C ⊂ L2

loc for all q, but M2,q
C is not directly comparable to L2

uloc when
q < 3. Indeed,

f(x) =
∑
k∈N

2qk/2χB1(2ke1)(x) ∈M2,q
C \ L

2
uloc,

while g(x) = 1 ∈ L2
uloc \M

2,q
C . On the other hand, L2

uloc ⊂M
2,3
C .

4. The set Lp is dense in M̊p,q
C . To see this, let u0 ∈ M̊p,q

C and ε > 0 be given. Then,
there exists N so that

‖u0χR3\BN (0)‖
p
Mp,q
C

< ε.

Then, u0(1− χR3\BN (0)) ∈ Lp and

‖u0(1− χR3\BN (0))− u0‖pLp(BN (0)) < ε.

Our main result concerns the local existence of solutions to the Navier-Stokes equations
with data in M̊2,2

C .

Theorem 1.3. Assume u0 ∈ M̊2,2
C is divergence-free. Let T = c−1 min{1, ‖u0‖−4

M2,2
C
}, for a

sufficiently large constant c > 0. Then, there exists u : R3×(0, T )→ R3 and p : R3×(0, T )→
R so that (u, p) is a local energy solution to the Navier-Stokes equations and

ess sup
0<t<T

‖u(t)‖2
M2,2
C

+ sup
Q∈C

1

|Q|2/3

∫ T

0

∫
Q
|∇u|2 dx dt ≤ C‖u0(t)‖2

M2,2
C
,

where C > 0 is a constant.

Comments on Theorem 1.3:

1. Existence of solutions with data in M2,q
C is related to the existence of self-similar and

discretely self-similar solutions with data in L2
loc. Recall that if there exists λ > 1 so

that u0(x) = λu0(λx) for all x, then u0 is said to be discretely self-similar, while u0 is
self-similar if this holds for all λ > 0.

In [24], Lemarié-Rieusset constructed self-similar solutions for self-similar initial data
in L2

loc. Later in [8], Chae and Wolf constructed discretely self-similar solutions for
discretely self-similar data in L2

loc. These solutions were not shown to satisfy the local
energy inequality. In [4], the first author and Tsai constructed discretely self-similar
solutions for the same data as [8] satisfying the local energy inequality by extending
a construction in [3]. As mentioned in [4, Comment 4], discretely self-similar data in
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L2
loc is not necessarily in L2

uloc, so there was no general existence theory including this
class of data. Note that

1

|Q|1/3

∫
Q
|u0(x)|2 dx ≤ C

∫
B√2(0)

|u0(y)|2 dy,

after re-scaling the solution and changing variables. Thus any DSS data in L2
loc belongs

to M2,1
C and, thus, also to M̊2,2

C . So M̊2,2
C can be viewed as a natural class containing

all discretely self-similar L2
loc initial data for which a local existence theory is now

available. Finding such a functional setting was a motivation for this paper.

2. Unlike other constructions of local energy solutions, Theorem 1.3 applies to some
initial data that is not uniformly locally square integrable. The example f(x) in the
third comment following Definition 1.2 illustrates this as it is not uniformly locally
square integrable but (after modifying it to make it divergence free) is a valid initial
data for Theorem 1.3.

3. The decay assumption on u0 means that u0 is a limit of L2 functions un0 in M2,2
C . This

is convenient for an approximation argument since solutions for the initial data un0
are well understood.

To eliminate the decay assumption, we would need a local existence theory for a
regularized problem and a local pressure expansion for this system. The solutions
to the regularized problem have no decay and are not necessarily bounded. Indeed,
et∆u0 are not necessarily bounded for u0 ∈ M2,2

C . This complicates the analysis of
the pressure. Recently Kwon and Tsai introduced a new approximation scheme which
localizes the pressure but not the solution [22]. We expect this approach would allow
the assumption that u0 ∈ M̊2,1

C to be weakened to u0 ∈M2,1
C . For the sake of simplicity

we do not pursue this here, but note it in case such an improvement is useful in a
future application.

4. Considering the scale of M2,q spaces, Theorem 1.3 gives existence of solutions for
u0 ∈ M2,q for q < 2. It is worth noting that solutions with a priori bounds in the
M2,q class can also be constructed when u0 ∈ M̊2,q and q < 2, but the time scale
becomes T = c−1 min{1, ‖u0‖−4

M2,q}. The proof is identical to that of Theorem 1.3.
It seems difficult to extend the results to q > 2, which would be interesting because
L2

uloc ⊂ M2,3, and local existence is known in L2
uloc. The reason that q = 2 is an

endpoint case for our argument has to do with the treatment of the cubic term in the
a priori estimates in Section 3.

5. The decay of the initial data does not lend itself to the usual extension argument to
go from local to global existence in [23, 18, 22]. This is because, while the data is
decaying, it is doing so at progressively larger scales. Since it is not becoming small at
a single scale, the ensuing solution cannot be made small in the far-field at any fixed
time. Thus the splitting argument of [23, 18, 22] cannot be used and a new approach
is needed.

While this paper was under review and prior to the revision, Fernandez-Dalgo and
Lemarié-Rieusset posted the paper [11] on the arxiv in which they construct global solutions
in the framework of weighted spaces L2

wγ where wγ = (1 + |x|)−γ with 0 < γ ≤ 2 and

‖u0‖2L2
wγ

:=

∫
R3

|u0|2wγ(x) dx.
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The largest space in this scale occurs when γ = 2. This space is smaller than M̊2,2
C . Namely,

one can check that

f(x) =
∑
Q∈C

χQ(x)|Q|−1/6(ln |xQ|)−1/2 ∈ M̊2,2
C \ L

2
w2
.

It is easy to adjust this example so that f is divergence-free. A global construction for data
in a related but non-comparable space (to that in [11]) appears in [5].

Also note an important existence result due to Basson in two spatial dimensions obtained
in [1], where the initial data is required to satisfy supR≥1R

−2
∫
|x|<R |u0(x)|2 dx <∞.

The paper is organized as follows. The main technical ingredients are the analysis of the
pressure which is carried out in Section 2 and new a priori bounds in the M2,q

C setting which
are contained in Section 3. The compactness argument of [23, 18] puts these ingredients
together in Section 4 where we prove Theorem 1.3.

2 Pressure formula and its bound

The pressure estimates in [23] and [18] can be adapted to the M2,q
C framework. In this

section we verify that the pressure formula converges when u is in a reasonable solution
class for data in M2,q

C . First we introduce some notation. Denote

Gijf = RiRjf = −1

3
δijf(x) + p.v.

∫
Kij(x− y)f(y) dy,

where Ri denotes the i-th Riesz transform and

Kij(y) = ∂i∂j
1

4π|y|
=
−δij |y|2 + 3yiyj

4π|y|5
.

For a given cube Q, let xQ ∈ R3 be the center of Q. Fix Q ∈ C. Let Q∗ be the union of Q
and all adjacent cubes in C, and let Q∗∗ be the same union but for Q∗.

For x ∈ Q∗, let

GQijf(x) = −1

3
δijf(x) + p.v.

∫
y∈Q∗∗

Kij(x− y)f(y) dy

+

∫
y/∈Q∗∗

(
Kij(x− y)−Kij(xQ − y)

)
f(y) dy.

(2.1)

Our pressure expansion is: For Q ∈ C and t ∈ (0, T ), there exists pQ(t) ∈ L3/2(0, T ) such
that

p(x, t)− pQ(t) = (GQijuiuj)(x, t), x ∈ Q∗ (2.2)

where p is the pressure corresponding to a local energy solution u.
Above, the pressure formula needed to be modified in comparison with the usual Riesz

transform formula because f is not required to decay at spatial infinity. Note that this
is the typical modification of the singular integrals for spaces with no decay at infinity
[23, 24, 18, 16, 29]. When u ∈ Lp has compact support, GQij agrees with Gij up to a
constant.
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In this section, we bound p(x, t)− pQ(t) when u is in a solution class associated to the

spaces M2,q
C . We assume for some T > 0 that

αT (u) := sup
0<t<T

‖u(t)‖2
M2,q
C

<∞,

and

βT (u) := sup
Q∈C

1

|Q|q/3

∫ T

0

∫
Q
|∇u|2 dx dt <∞.

When T is clear we sometimes write α and β in place of αT and βT . These assumptions
imply

γ(u) := sup
Q∈C

1

|Q|q/3

∫ T

0

∫
Q
|u|3 dx dt <∞.

We now show that ∫ T

0

∫
Q∗
|p− pQ(t)|3/2 dx dt

is bounded in terms of α(u) and γ(u) and powers of |Q|.

Lemma 2.1. Assume u is a local energy solution to the Navier-Stokes equations on R3 ×
[0, T ] with pressure p satisfying (2.2). Then, for Q ∈ C,

1

|Q|1/3

∫ T

0

∫
Q∗
|p− pQ(t)|3/2 dx dt

≤ C sup
Q′∩Q∗∗ 6=∅

1

|Q′|1/3

∫ T

0

∫
Q′
|u|3 dx dt+ CT |Q|q/2−1/3α

3/2
T .

Proof. For x ∈ Q∗, write p(x, t)− pQ(t) as Inear(x, t) + Ifar(x, t) where Inear(x, t) is sum of
the first two terms on the right hand side of (2.1) and Ifar(x, t) is the last term.

The required estimate for Inear follows from the Calderón-Zygmund inequality and noting
that the argument for the boundedness is local. In particular,

1

|Q|1/3

∫ T

0

∫
Q∗
|Inear|3/2 dx dt ≤

C

|Q|1/3

∫ T

0

∫
Q∗∗
|u|3 dx dt.

Since |Q| ∼ |Q′| for all Q′ ⊂ Q∗∗ and there are a fixed number of such Q′ (independent of
Q), we have

1

|Q|1/3

∫ T

0

∫
Q∗∗
|u|3 dx dt ≤ C sup

Q′∩Q∗∗ 6=∅

|Q′|1/3

|Q|1/3
1

|Q′|1/3

∫ T

0

∫
Q′
|u|3 dx dt

≤ C sup
Q′∩Q∗∗ 6=∅

1

|Q′|1/3

∫ T

0

∫
Q′
|u|3 dx dt.

To estimate Ifar note that when y /∈ Q∗∗ and x ∈ Q∗, we have

|Kij(x− y)−Kij(xQ − y)| ≤ C|Q|1/3

|x− y|4
.
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This estimate (for balls instead of cubes) may be found in [18] and [16]. Thus, for x ∈ Q∗,

|Ifar(x, t)| ≤ C|Q|1/3
∫
R3\Q∗∗

1

|x− y|4
|u|2 dy

≤ C
∑
Q′∈C1

|Q|1/3
∫
Q′

1

|x− y|4
|u|2 dy + C

∑
Q′∈C2

|Q|1/3
∫
Q′

1

|x− y|4
|u|2 dy,

where C1 is the collection of Q′ ∈ C such that Q′ ∩ Q∗∗ = ∅ and |Q′| < |Q| while C2 is
the collection of Q′ ∈ C such that Q′ ∩ Q∗∗ = ∅ and |Q′| ≥ |Q|. Let n ∈ N be such that
Q ∈ Sn. If |Q′| < |Q|, then Q′ ∈ Sj for some j < n. Also, the number of cubes Q′ such
that |Q′| ≤ |Q| is bounded above by |Q|1/3. Furthermore, |Q|1/3 ∼ |xQ − xQ′ |. Also, if
Q′ ∩Q∗∗ = ∅, y ∈ Q′, and x ∈ Q, then |x− y| ∼ |xQ − x′Q|. Hence,

∑
Q′∈C1

|Q|1/3
∫
Q′

1

|x− y|4
|u|2 dy ≤ C

∑
Q′∈C1

|Q|1/3

|Q|4/3

∫
Q′
|u|2 dy

≤ C sup
|Q′|<|Q|

|Q|1/3

|Q|

∫
Q′
|u|2 dy = C sup

|Q′|<|Q|

|Q′|q/3

|Q|2/3
1

|Q′|q/3

∫
Q′
|u|2 dy

≤ C|Q|q/3−2/3 sup
Q′∈C

1

|Q′|q/3

∫
Q′
|u|2 dx.

On the other hand,∑
Q′∈C2

|Q|1/3
∫
Q′

1

|x− y|4
|u|2 dy =

∑
m≥n

∑
Q′∈Sm∩C2

|Q|1/3

|xQ − xQ′ |4

∫
Q′
|u|2 dx

≤ C|Q|1/3
∑
m≥n

1

2(4−q)m sup
Q′∈C

1

|Q′|q/3

∫
Q′
|u|2 dx ≤ C|Q|1/3

2(4−q)n sup
Q′∈C

1

|Q′|q/3

∫
Q′
|u|2 dx

≤ C|Q|q/3−1 sup
Q′∈C

1

|Q′|q/3

∫
Q′
|u|2 dx,

and thus

1

|Q|1/3

∫ T

0

∫
Q∗
|Ifar(x, t)|3/2 dx dt ≤ C

T (|Q|q/2−1 + |Q|q/2−3/2)

|Q|1/3
|Q|α3/2

T

≤ CT |Q|q/2−1/3α
3/2
T .

Therefore,

1

|Q|1/3

∫ T

0

∫
Q∗
|p(x, t)− pQ(t)|3/2 dx dt

≤ C sup
Q′∩Q∗∗ 6=∅

|Q′|1/3

|Q|1/3
1

|Q′|1/3

∫ T

0

∫
Q′
|u|3 dx dt+ CT |Q|q/2−1/3α

3/2
T ,

and the proof is concluded.

Note that we have not shown that, for a given solution, the pressure satisfies the local
expansion (2.2), but rather that if the pressure satisfies the local expansion, then it is
bounded in the above sense.
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3 A priori bounds

In order to approximate a solution in the local energy class by Leray solutions we need an
estimate for them in the M2,q

C spaces.
Let φ be a radial smooth cutoff function such that φ = 1 in [−1/2, 1/2]3, φ = 0 off of

[−3/4, 3/4]3 with φ non-increasing in |x|. For Q ∈ C, let φQ be the translation and dilation
of φ so that φQ equals 1 on Q and vanishes off of Q∗. Then, ‖∂λφQ(x)‖L∞ ≤ C(λ)/|Q||λ|/3
where C does not depend on Q and λ is any multi-index. Denote

αt = ess sup
0<s<t

sup
Q∈C

1

|Q|q/3

∫
Q
|u(x, s)|2φQ dx,

and

βt = sup
Q∈C

1

|Q|q/3

∫ t

0

∫
Q
|∇u|2φQ dx ds.

The following statement provides a priori estimates for the existence of suitable weak
solutions with data u0 ∈M2,q

C .

Theorem 3.1. Assume u0 ∈ M2,q
C , for 0 ≤ q ≤ 2, is divergence-free, and let (u, p) be a

local energy solution with initial data u0 on R3 × (0, T ) where

T =
1

C
min

{
1, ‖u0‖−4

M2,q
C

}
(3.1)

for a sufficiently large universal constant C. Assume additionally that

αT + βT <∞,

and αt and βt are continuous in t. Then

sup
0<t<T

‖u(t)‖2
M2,q
C

+ sup
Q∈C

1

|Q|q/3

∫ T

0

∫
Q
|∇u|2 dx dt ≤ C‖u0(t)‖2

M2,q
C
. (3.2)

It is important that Theorem 3.1 also applies to suitable Leray weak solutions as shown
at the end of this section.

Proof of Theorem 3.1. Assume u and p are as in the statement of Theorem 3.1. Fix Q ∈ C.
The local energy inequality and the item 5 of Definition 1.1 give

1

2

∫
|u(x, t)|2φQ(x) dx+

∫ t

0

∫
|∇u(x, s)|2φQ(x) dx ds

≤ 1

2

∫
|u(x, 0)|2φQ(x) dx+

1

2

∫ t

0

∫
|u(x, s)|2∆φQ(x) dx ds

+
1

2

∫ t

0

∫ (
|u(x, s)|2u(x, s) · ∇φQ(x) + 2p(x, s)u(x, s) · ∇φQ(x)

)
dx ds.

Clearly,

1

2

∫ t

0

∫
|u|2∆φQ dx ds ≤

Ct

|Q|2/3
ess sup
0≤s≤t

sup
Q′∩Q∗ 6=∅

∫
Q′
|u|2 dx

≤ Ct ess sup
0≤s≤t

sup
Q′∩Q∗ 6=∅

|Q′|q/3

|Q|2/3
1

|Q′|q/3

∫
Q′
|u|2 dx ≤ C tαt,

10



where we used q ≤ 2 and the fact that the smallest cubes in C have volume bounded away
from zero so that |Q′|q/3/|Q|2/3 ≤ C when Q′ ∩Q∗ 6= ∅.

For the cubic and pressure terms we have∫ t

0

∫ (
|u|2

2
u · ∇φQ(x) + pu · ∇φQ(x)

)
dx ds

≤ 1

|Q|1/3

∫ t

0

∫
Q∗

(|u|3 + |p− pQ|3/2) dx ds

≤ C sup
Q′∩Q∗∗ 6=∅

|Q′|1/3

|Q|1/3
1

|Q′|1/3

∫ t

0

∫
Q′
|u|3 dx ds+ Ct|Q|q/3α3/2

t

≤ C sup
Q′∩Q∗∗ 6=∅

1

|Q′|1/3

∫ t

0

∫
Q′
|u|3 dx ds+ Ct|Q|q/3α3/2

t ,

where we used Lemma 2.1 and q/2− 1/3 ≤ q/3.
Recall that for any cube Q′ the Gagliardo-Nirenberg inequality implies∫

Q′
|u|3 dx ≤ C

(∫
Q′
|u|2 dx

)3/4(∫
Q′
|∇u|2 dx

)3/4

+
C

|Q′|1/2

(∫
Q′
|u|2 dx

)3/2

.

Hence, for any Q′ ∈ C,

1

|Q′|1/3

∫ t

0

∫
Q′
|u|3 dx ds

≤ Ct1/4|Q′|q/2−1/3

(
1

|Q′|q/3
ess sup
0≤s≤t

∫
Q′
|u|2 dx

)3/4( 1

|Q′|q/3

∫ t

0

∫
Q′
|∇u|2 dx ds

)3/4

+ Ct|Q′|q/2−5/6

(
1

|Q′|q/3
ess sup
0≤s≤t

∫
Q′
|u|2 dx

)3/2

≤ Ct1/4|Q′|q/2−1/3(αt + βt)
3/2,

where we used t ≤ C by (3.1) and the fact that the smallest cubes in C have volume bounded
away from 0 so that |Q′|−5/6 ≤ C|Q′|−1/3. At this point we have shown∫

Q
|u(x, t)|2 dx+

∫ t

0

∫
Q
|∇u(x, s)|2 dx ds

≤ C tαt + Ct|Q|q/3α3/2
t + C sup

Q′∩Q∗∗ 6=∅

|Q′|1/3

|Q|1/3
1

|Q′|1/3

∫ t

0

∫
Q′
|u|3 dx ds

≤ C tαt + Ct|Q|q/3α3/2
t + Ct1/4 sup

Q′∩Q∗∗ 6=∅
|Q′|q/2−1/3(αt + βt)

3/2.

So, again using the fact that the volumes of cubes in C are bounded away from zero and
dividing through by |Q|q/3 we obtain

1

|Q|q/3

∫
Q
|u(x, t)|2 dx+

1

|Q|q/3

∫ t

0

∫
Q
|∇u(x, s)|2 dx ds

≤ C tαt + Ctα
3/2
t + Ct1/4 sup

Q′∩Q∗∗ 6=∅

|Q′|q/2−1/3

|Q|q/3
(αt + βt)

3/2

≤ C tαt + Ct1/4(αt + βt)
3/2,

11



provided q ≤ 2 and noting that t ≤ C by (3.1). Therefore,

αt + βt ≤ Ct(αt + βt) + Ct1/4(αt + βt)
3/2.

Since α0 + β0 = α0 = ‖u0‖2M2,q
C

and αt + βt is continuous in t, it follows that

αt + βt ≤ 2‖u0‖2M2,1
C
,

on some time interval [0, T ) where T is maximal, that is, αT + βT = 2‖u0‖2M2,q
C

. Let

T0 = max{(2C)−1, (C4α
1/2
0 )−4}.

If T < T0, then αT < α0, which is impossible. Therefore, T0 ≤ T , that is

ess sup
0<t<T0

sup
Q∈C

1

|Q|q/3

∫
Q
|u|2 dx+ sup

Q∈C

1

|Q|q/3

∫ T0

0

∫
Q
|∇u|2 dx dt ≤ 2‖u0‖2M2,q

C
,

and (3.2) is established.

We also need for Theorem 3.1 to hold for suitable weak solutions in the Leray class. For
a definition of a suitable weak solution in the Leray class, see [31, Definition 3.1].

Lemma 3.2. Theorem 3.1 applies to suitable weak solutions in the Leray class.

Proof. Assume (u, p) is a suitable weak solution in the sense of [31, Definition 3.1]. Then, u
satisfies the items 1–5 in Definition 1.1. For item 6, which concerns the existence of pressure
note that

lim
|x0|→∞

∫ R2

0

∫
BR(x0)

|u|2 dx dt = 0,

for any R > 0. Indeed, for a fixed R we have∫ R2

0

∫
BR(x0)

|u|2 dx dt ≤
∫ R2

0

∫
|u|2 dx <∞.

Thus by the dominated convergence theorem

lim
|x0|→∞

∫ R2

0

∫
BR(x0)

|u|2 dx dt =

∫ R2

0
lim
|x0|→∞

∫
BR(x0)

|u|2 dx dt = 0.

In [17] the above property is shown to imply the local pressure expansion for balls, which is
equivalent to our pressure expansion for cubes. Thus item 6 is satisfied. Hence, any suitable
weak solution in the sense of [31, Definition 3.1] is a local energy solution. Note also that

ess sup
0<t<T

‖u(t)‖2
M2,q
C

+ sup
Q∈C

1

|Q|q/3

∫ T

0

∫
Q
|∇u|2 dx dt

≤ C ess sup
0<t<T

‖u‖2L2 + C

∫ T

0
‖u‖2H1 dt <∞.

12



It remains to show that αt + βt is continuous in t. Our proof is based on the argument
in [20, Lemma 2]. Denote by LQ ⊆ [0, T ) the set of Lebesgue points of the function
t 7→

∫
|u(x, s)|2φQ(s) ds. We first show that

ess sup
0<s<t

∫
|u(x, s)|2φQ(x) dx+

∫ t

0

∫
|∇u(x, s)|2φQ(x) dx ds (3.3)

is continuous in t for every fixed Q. Since
∫ t

0

∫
|∇u(x, s)|2φQ(x) dx ds, is continuous in t, we

only need to show the continuity of the first term in (3.3). Using a sequence of functions of
the form φQ(x)ψ(t), we obtain from (1.2)∫

|u(x, t2)|2φQ(x) dx+

∫ t2

t2

∫
|∇u(x, s)|2φQ(x) dx ds,

≤
∫
|u(x, t1)|2φQ(x) dx

+

∫∫
|u|2(∂tφQ + ∆φQ) dx dt

+

∫∫
(|u|2 + 2p)(u · ∇φQ) dx dt, t1, t2 ∈ LQ, 0 ≤ t1 ≤ t2 < T.

Choosing t1 = t ∈ LQ and t2 = t+ h, we get

lim sup
h→0+,t+h∈LQ

∫
|u(x, t+ h)|2φQ(x) dx ≤

∫
|u(x, t)|2φQ(x) dx, t ∈ LQ, (3.4)

while setting t2 = t ∈ LQ and t1 = t− h, we get

lim inf
h→0+,t−h∈LQ

∫
|u(x, t− h)|2φQ(x) dx ≥

∫
|u(x, t)|2φQ(x) dx, t ∈ LQ. (3.5)

Since ess sup0<s<t

∫
|u(x, s)|2φQ(x) dx is non-decreasing in t, (3.4) and (3.5) imply continuity

of ess sup0<s<t

∫
|u(x, s)|2φQ(x) dx as a function of t for any fixed Q.

Next, we establish the continuity of αt. Fix t ∈ [0, T ), and let ε > 0. Note that
ess sup0<s<T ‖u(s)‖22 <∞. Thus, there exists m so that

ess sup
0<s<T

1

|Q|q/3

∫
Q
|u(x, s)|2 dx ≤ ε

2
, Q ∈ Sn, n ≥ m.

We have two possibilities: Either

ess sup
0<s<t

sup
Q∈C

1

|Q|q/3

∫
|u(x, s)|2φQ dx ds ≤

ε

2
, (3.6)

or there exists Q0 ∈ Sn with n < m so that

ess sup
0<s<t

sup
Q∈C

1

|Q|q/3

∫
|u(x, s)|2φQ dx ds = ess sup

0<s<t

1

|Q0|q/3

∫
Q0

|u(x, s)|2φQ dx. (3.7)

Assume the first case, (3.6), holds. Then for each Q ∈ Sn, where n < m, there exists δQ > 0
so that

ess sup
0<s<τ

1

|Q|q/3

∫
|u(x, s)|2φQ(x) dx ≤ ε

13



whenever |t− τ | < δQ. Then, using the first part of the proof,∣∣∣∣ess sup
0<s<τ

1

|Q|q/3

∫
|u(x, s)|2φQ(x) dx− ess sup

0<s<t

1

|Q|q/3

∫
|u(x, s)|2φQ(x) dx

∣∣∣∣ ≤ ε
for all Q ∈ Sn where n < m and |t− τ | < δQ. Letting δ = minQ∈

⋃m
n=0 Sn

δQ gives∣∣∣∣∣ess sup
0<s<t

sup
Q∈C

1

|Q|q/3

∫
|u(x, s)|2φQ dx ds− ess sup

0<s<τ
sup
Q∈C

1

|Q|q/3

∫
Q
|u(x, s)|2φQ dx

∣∣∣∣∣ ≤ 3ε

2

for t− τ < δ by (3.6) and

ess sup
0<s<τ

sup
Q∈C

1

|Q|q/3

∫
Q
|u(x, s)|2φQ dx ≤

3ε

2
.

If the second case, (3.7), holds, then let S be the collection of Q ∈
⋃m−1
n=0 Sn so that

ess sup
0<s<t

sup
Q̃∈C

1

|Q̃|q/3

∫
|u(x, s)|2φQ̃ dx ds > ess sup

0<s<t

1

|Q|q/3

∫
Q
|u(x, s)|2φQ dx.

Let S′ = ∪m−1
n=0 Sn \ S. Let

ε̄ = min

{
ε

2
,min
Q∈S

(
ess sup
0<s<t

sup
Q̃∈C

1

|Q̃|q/3

∫
|u(x, s)|2φQ̃ dx ds

− ess sup
0<s<t

1

|Q|q/3

∫
Q
|u(x, s)|2φQ dx

)}
.

For each Q ∈ S′, there exists δQ > 0 so that

ess sup
0<s<t

sup
Q∈C

1

|Q|q/3

∫
|u(x, s)|2φQ dx ds+

ε̄

2

≥ ess sup
0<s<τ

1

|Q|q/3

∫
Q
|u(x, s)|2φQ dx

≥ ess sup
0<s<t

sup
Q∈C

1

|Q|q/3

∫
|u(x, s)|2φQ dx ds−

ε̄

2

whenever |t− τ | < δQ. On the other hand, for each Q ∈ S, there exists δQ > 0 so that

ess sup
0<s<τ

1

|Q|q/3

∫
Q
|u(x, s)|2φQ dx ≤ ess sup

0<s<t
sup
Q∈C

1

|Q|q/3

∫
|u(x, s)|2φQ dx ds−

ε̄

2
.

Hence, ∣∣∣∣ess sup
0<s<τ

1

|Q|q/3

∫
Q
|u(x, s)|2φQ dx− ess sup

0<s<t

1

|Q|q/3

∫
Q
|u(x, s)|2φQ dx

∣∣∣∣ ≤ ε
provided |t− τ | < minS∪S′ δQ.

The proof of the continuity of βt is similar, but simpler since there is no supremum over
the time interval in the definition of β.
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4 Construction

4.1 Approximating the initial data

We begin with a lemma on approximation of functions in M̊2,2
C with those in L2.

Lemma 4.1. Assume f ∈ M̊2,2
C is divergence-free. For every ε > 0 there exists a divergence-

free g ∈ L2 such that ‖f − g‖
M2,2
C
≤ ε.

To make sure the approximation is divergence-free, we utilize Bogovskii’s map [2] (see
also [12, 31]) which we recall next.

Lemma 4.2. Let Ω be a bounded Lipschitz domain in Rn, where 2 ≤ n < ∞. There is
a linear map Ψ that maps a scalar f ∈ L2(Ω) with

∫
Ω f = 0 to a vector field v = Ψf ∈

W 1,2
0 (Ω;Rn) and

div v = f, ‖v‖
W 1,2

0 (Ω)
≤ c(Ω)‖f‖L2(Ω).

The constant c(Ω) depends on the size of Ω and, when Ω are shells of the form {x : 2n ≤
|x| ≤ 2n+1}, it is of the form C2n.

Proof of Lemma 4.1. Assume f ∈ M̊2,2
C is divergence-free, and let ε > 0. Assume n is large

enough so that ‖fχR3\B2n (0)‖M2,2
C
≤ ε/C for some constant C to be identified later. Let

Z = Zn ∈ C∞(R3) satisfy Z(x) = 1 if |x| ≤ 2n, Z(x) = 0 if |x| ≥ 2n+1, and assume it
is radial, and non-increasing for 2n ≤ |x| ≤ 2n+1. For every n, we may choose Z so that
‖∇Z‖∞ ≤ C2−n where C is independent of n. Then,

∇ · (fZ) = f · ∇Z

because f is divergence-free. Note that∫
f · ∇Z dx = 0

because Z has compact support and f is divergence free. Denote by Φ the image of −f ·∇Z
under the Bogovskii map with q = 2 and domain An = {x : 2n ≤ |x| ≤ 2n+1}. Then,
Φ ∈W 1,2

0 (An) and
∇ · (Zf + Φ) = 0.

Furthermore, ∫
An

|Φ|2 dx ≤ C22n

∫
An

|f |2|∇Z|2 dx ≤ C
∫
An

|f |2 dx.

Let g = Zf + Φ.
Note that there exist only finitely many cubes Q′ ∈ C that intersect An and this number

is bounded independently of n. Hence,

‖Φ‖2
M2,2
C
≤ sup

Q′∩An 6=0

1

|Q′|2/3

∫
Q′
|Φ|2 dx ≤ C 1

22n

∫
An

|Φ|2 dx,
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where we have also used the fact that if Q′ intersects An, then |Q′| ∼ 23n. Thus,

1

22n

∫
An

|Φ|2 dx ≤ C 1

22n

∫
An

|f |2 dx

≤ C 1

22n

∑
Q′∩An 6=0

∫
Q′
|fχR3\B2n (0)|2 dx

≤ C
∑

Q′∩An 6=0

1

|Q′|2/3

∫
Q′
|fχR3\B2n (0)|2 dx

≤ C‖fχR3\B2n (0)‖2M2,2
C
≤ Cε2.

Therefore,
‖f − g‖

M2,2
C
≤ ‖f − Zf‖

M2,2
C

+ ‖Φ‖
M2,2
C
≤ Cε,

and the proof is concluded.

4.2 Proof of Theorem 1.3

Proof of Theorem 1.3. Let u0 ∈ M̊2,2
C be divergence-free. By Lemma 4.1, for each n ∈ N

there exists un0 ∈ L2 so that ‖u0 − un0‖M2,2
C
≤ 1/2n. By the classical theory, there exists a

global in time suitable weak solution un in the Leray class with the initial data un0 and an
associated pressure pn (see e.g. [31, Chapter 3]), which satisfies the pressure expansion (2.2).

Let Qn = ∪m≤n;Q′∈SmQ
′. We adopt the same convention when defining Q∗n and Q∗∗n as

when Q ∈ C; namely, Q∗n is the union of Qn and all cubes in C adjacent to Qn and Q∗∗n the
union of Q∗n and the cubes in C adjacent to Q∗n.

Define p̄n recursively as follows:

• If x ∈ Q0 then p̄n(x) = GQ1
ij (uni u

n
j )(x), where we use 0 instead of xQ in (2.1).

• If x ∈ Qk+1 then p̄n(x) = G
Qk+1

ij (uni u
n
j )(x) + cn,k, where

cn,k = GQkij (uni u
n
j )(x)−GQk+1

ij (uni u
n
j )(x), x ∈ Qk+1

is a constant (in x) chosen so that the definition is unambiguous. Note that

cn,k =

∫
Q∗∗k+1\Q

∗∗
k

Kij(−y)uni u
n
j (y) dy.

It is easy to see that ∇pn = ∇p̄n and therefore (un, p̄n) is also a global-in-time local energy
solution to (1.1). We therefore redefine pn to be p̄n. Defined in this way pn still satisfies
the local pressure expansion for cubes in C.

By Lemma 3.2 we may apply Theorem 3.1 with q = 2 to obtain a priori estimates for
un on the time interval [0, T ) depending only on ‖u0‖M2,2

C
.

We now construct a solution to (1.1) with the initial data u0 following the inductive
procedure from [18]. Fix k ∈ N and denote by B2k the ball of radius 2k centered at the
origin. From Theorem 3.1 we have

sup
0<t<T

∫
B

2k

|un(x, t)|2 dx+

∫ T

0

∫
B

2k

|∇un(x, t)|2 dx dt ≤ C(k, u0).
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It follows that ∫ T

0

∫
B

2k

|un|10/3 dx dt ≤ C(k, u0)

and ∫ T

0

∫
B

2k

|pn|3/2 dx dt ≤ C(k, u0),

where we used cn,k ≤ C(k)‖un‖2L2(Q∗∗k+1) ≤ C(k, u0). Note that the constants change from

line to line but depend only on k and u0. As in [18, p. 154], using (1.1), we additionally
have that for any w ∈ C∞0 (B2k),

∫ T

0

∫
B

2k

∂tu
n · w dxdt ≤ C(k, u0)

(∫ T

0

∫
B

2k

|∇w|3 dx dt

)1/3

,

implying
‖∂tun‖Xk ≤ C(k, u0),

where Xk is the dual space of L3(0, T ; W̊ 1,3(B2k)).
The preceding four estimates and compactness arguments imply that there exists a

sub-sequence {(u1,n, p1,n)} and a couple (u1, p1) such that

u1,n ∗
⇀ u1 in L∞(0, T ;L2(B2))

u1,n ⇀ u1 in L2(0, T ;H1(B2))

u1,n → u1 in L3(0, T ;L3(B2))

and
p1,n ⇀ p1 in L3/2(0, T ;L3/2(B2))

as n→∞.
We repeat this procedure for k = 2. Let {u2,n} be a subsequence of {u1,n} that converges

to a vector field u2 on B2 × (0, T ) in the sense

u2,n ∗
⇀ u2 in L∞(0, T ;L2(B4))

u2,n ⇀ u2 in L2(0, T ;H1(B4))

u2,n → u2 in L3(0, T ;L3(B4)),

as n→∞. Additionally, there exists p2 so that

p2,n ⇀ p2 in L3/2(0, T ;L3/2(B4)).

Iterating this argument we obtain a collection {uk,n} and a sequence uk so that uk is defined
on B2k × (0, T ) and

uk,n
∗
⇀ uk in L∞(0, T ;L2(B2k))

uk,n ⇀ uk in L2(0, T ;H1(B2k))

uk,n → uk in L3(0, T ;L3(B2k)),
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as n→∞ for each k. Additionally, there exists pk so that

pk,n ⇀ pk in L3/2(0, T ;L3/2(B2k)).

Let u(k) = uk,k and p(k) = pk,k. Note that if n > m, then un = um on B2m and pn = pm on
B2m . Hence, we unambiguously define u and p by letting them equal un and pn respectively
on B2n . Then,

u(k) ∗⇀ u in L∞(0, T ;L2
loc)

u(k) ⇀ u in L2(0, T ;H1
loc)

u(k) → u in L3(0, T ;L3
loc),

as k →∞. Also,

p(k) ⇀ p in L3/2(0, T ;L
3/2
loc ).

These convergence properties ensure that u and p satisfy (1.1) in the sense of distri-
butions. Furthermore, the convergence properties of u(k) and p(k) imply that the local
energy inequality, which is satisfied by all u(k) and p(k), is inherited by u and p. Also,
‖∂tu‖Xk ≤ C(k, u0). Fix w ∈ L2(B2k). Then the function

t 7→
∫
B

2k

u(x, t) · w(x) dx

is continuous in time because ‖∂tu‖Xk ≤ C(k, u0) and

ess sup
0<t<T

∫
B

2k+1

|u|2 dx+

∫ T

0

∫
B

2k+1

|∇u|2 dx dt <∞.

That the limit u is in the correct local energy class follows from the local energy in-
equality. Indeed, let φQ = 1 on Q and equal zero off of Q∗ be the usual non-negative
cut-off function. The local energy inequality, weak continuity in time, and the convergence
properties of u(k) and p(k) give∫

|u(x, t)|2

2
φQ(x) dx+

∫ t

0

∫
|∇u(x, s)|2φQ(x) dx ds

≤
∫
|u(x, 0)|2

2
φQ(x) dx+

∫ t

0

∫
|u|2

2
∆φQ(x) dx ds

+

∫ t

0

∫ (
|u|2

2
u · ∇φQ(x) + pu · ∇φQ(x)

)
dx ds

≤
∫
|u(x, 0)|2

2
φQ(x) dx+ lim

k→∞

∫ t

0

∫
|u(k)|2

2
|∆φQ(x)| dx ds

+ lim
k→∞

∫ t

0

∫ (
|u(k)|3

2
|∇φQ(x)|+ |p(k) − p(k)

Q (t)|3/2|∇φQ(x)|

)
dx ds

for all t ≥ 0 where we used the fact that
∫ t

0

∫
p

(k)
Q (t)u(k) · ∇φQ dx dt = 0.

Dividing by |Q|2/3 and using the estimates in Section 3 gives

ess sup
0<t<T0

1

|Q|2/3
sup
Q∈C

∫
Q
|u|2 dx+ sup

Q∈C

1

|Q|2/3

∫ T0

0

∫
Q
|∇u|2 dx dt ≤ C‖u0‖2M2,1

C
.
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We remark that the estimates of Section 2 cannot be applied directly to u and p at this
point because we do not have the local pressure expansion for p yet, and to establish it we
need the above estimate for u.

Convergence to the initial data in L2
loc follows from the weak continuity in time and the

local energy inequality.
We finally establish the local pressure expansion. Define p̄ recursively by

• If x ∈ Q0 then p̄(x) = GQ1
ij (uiuj)(x)

• If x ∈ Qk+1 then p̄(x) = G
Qk+1

ij (uiuj)(x) + ck, where

ck = GQkij (uiuj)(x)−GQk+1

ij (uiuj)(x) on Qk+1,

is a constant (in x) . Note that

ck =

∫
Q∗∗k+1\Q

∗∗
k

Kij(−y)uiuj dy.

Note that if Q∗∗ ⊂ Qk+1 and k ∈ N is minimal, then, for all x ∈ Q∗ and at a fixed t (which
we suppress),

GQij(uiuj)(x)− p̄(x, t)− ck

= p.v.

∫
y∈Q∗∗

Kij(x− y)(uiuj)(y) dy − p.v.

∫
y∈Q∗∗k+1

Kij(x− y)(uiuj)(y) dy

+

∫
y/∈Q∗∗

(Kij(x− y)−Kij(xQ − y))(uiuj)(y) dy

−
∫
y/∈Q∗∗k+1

(Kij(x− y)−Kij(−y))(uiuj)(y) dy

= −
∫
Q∗∗k+1\Q∗∗

Kij(xQ − y)uiuj(y) dy

+

∫
y/∈Q∗∗k+1

(Kij(−y)−Kij(xQ − y))uiuj(y) dy.

(4.1)

Since xQ ∈ Qk+1, the last term converges absolutely whenever u ∈M2,2
C . Furthermore, the

right hand side above does not depend on x and so is a constant depending on Q and t. We
therefore have for (x, t) ∈ Q∗ that

p̄(x, t) = GQij(uiuj)(x, t) + pQ(t), (4.2)

where pQ(t) is defined by collecting the constants appearing above. It is easy to check that
the function p̄ defined this way satisfies the analog of (4.2) for all cubes in R3, not just for
the cubes in C. It remains to show that p̄ = p, as this will show that p satisfies the equation
(2.1) modulo a function of time, i.e. it satisfies the local pressure expansion.

We claim that

GQij(u
(k)
i u

(k)
j )→ GQij(uiuj), (4.3)
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in L3/2(0, T ;L3/2(Q)) for any cube Q ∈ C, i.e.,

− 1

3
δij(u

(k)
i u

(k)
j )(x, s) + p.v.

∫
y/∈Q∗∗

Kij(x− y)(u
(k)
i u

(k)
j )(y, s) dy

+ p.v.

∫
y∈Q∗∗

(Kij(x− y)−Kij(xQ − y))(u
(k)
i u

(k)
j )(y, t) dy

→ −1

3
δij(uiuj)(x, s) + p.v.

∫
y/∈Q∗∗

Kij(x− y)(uiuj)(y, s) dy

+ p.v.

∫
y∈Q∗∗

(Kij(x− y)−Kij(xQ − y))(uiuj)(y, t) dy.

(4.4)

Since u(k) → u strongly in L3(0, T ;L3
loc), we have δiju

(k)
i u

(k)
j → δijuiuj in L3/2(0, T ;L3/2(Q∗∗)).

Also, using the Calderón-Zygmund theory, we have

p.v.

∫
y∈Q∗∗

Kij(x− y)(uiuj)(y) dy

− 1

3
δijuiuj + p.v.

∫
y∈Q∗∗

Kij(x− y)(u
(k)
i u

(k)
j )(y) dy

= p.v.

∫
y∈Q∗∗

Kij(x− y)((uiuj)(y)− ((u
(k)
i u

(k)
j )(y)) dy → 0,

in L3/2(0, T ;L3/2(Q∗∗)).
Therefore, the first two terms on the left hand side of (4.4) converge to the corresponding

two on the right. To get the convergence of the remaining term, for R > 0 denote by QR(0)
the cube centered at zero with side length R. Note that∣∣∣∣∫

y/∈Q∗∗
(Kij(x− y)−Kij(xQ − y))((uiuj)(y)− (u

(k)
i u

(k)
j )(y)) dy

∣∣∣∣
≤

∣∣∣∣∣
∫
y∈QR(0)∩(Q∗∗)c

(Kij(x− y)−Kij(xQ − y))((uiuj)(y)− (u
(k)
i u

(k)
j )(y)) dy

∣∣∣∣∣
+

∣∣∣∣∣
∫
y∈QR(0)c∩(Q∗∗)c

(Kij(x− y)−Kij(xQ − y))((uiuj)(y)− (u
(k)
i u

(k)
j )(y)) dy

∣∣∣∣∣
=: IR1 + IR2 .

For the first term, we have∫ T

0

∫
Q
|IR1 |3/2 dx dt ≤ C|Q|

∫ T

0

(∫
QR(0)

∣∣(uiuj)(y, t)− (u
(k)
i u

(k)
j )(y, t)

∣∣ dy)3/2

dt

≤ C(Q,R)

∫ T

0

∫
QR(0)

∣∣(uiuj)(y, t)− (u
(k)
i u

(k)
j )(y, t)

∣∣3/2 dy dt→ 0.

Let ε > 0 be given. Then

|IR2 (x, t)| ≤ C
∑

Q′∈C;|Q′|1/3>R

|Q|1/3
∫
Q′

1

|x− y|4
∣∣(uiuj)(y, t)− (u

(k)
i u

(k)
j )(y, t)

∣∣ dy
≤ C

∑
Q′∈C;|Q′|1/3>R

|Q|1/3

|Q′|4/3

∫
Q′

∣∣(uiuj)(y, t)− (u
(k)
i u

(k)
j )(y, t)

∣∣ dy.
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Since all u(k) and u are uniformly bounded in M2,2
C in terms of ‖u0‖M2,2

C
, we have

|IR2 (x, t)| ≤ C‖u0‖2M2,2
C

∑
Q′∈C;|Q′|>R

|Q|1/3

|Q′|2/3
.

The sum above can be expanded over cubes in nested shells where the number of cubes in
each shell is bounded. We therefore have

|IR2 (x, t)| ≤ C

R2
|Q|1/3‖u0‖2M2,2

C

∞∑
n=blog2(R)c

1

22n
.

Clearly, we may choose R so that∫ T

0

∫
Q
|IR2 (x, t)|3/2 dx dt ≤ ε.

Therefore, we have the convergence (4.3) in L3/2(0, T ;L3/2(Q)) for all Q ∈ C. Now note
that p(k) also satisfies (4.1), i.e. for x ∈ Q we can write

p(k)(x, t) = GQij(u
(k)
i u

(k)
j )(x, t) + p

(k)
Q (t),

where pQ consists of the constants in (4.1) with u replaced by u(k). We have shown that

p(k) → p and GQij(u
(k)
i u

(k)
j ) → GQij(uiuj), both in L3/2(0, T ;L3/2(Q)). To show that p

satisfies the local pressure expansion, it is enough to show that p
(k)
Q (t)→ pQ(t) in L3/2(0, T ).

Expanding pQ(t)−p(k)
Q (t) leads to several integrals over bounded regions and an integral over

unbounded regions. The integrals over bounded regions all converge to zero by convergence
properties of u(k) to u. The remaining term is∫

(Q∗∗k+1)c
(Kij(−y)−Kij(xQ − y))(u

(k)
i u

(k)
j − uiuj)(y, t) dy,

and we need to explain why this vanishes as k →∞ . We have

|Kij(−y)−Kij(xQ − y))| . 1

|y|4
,

for |y| large and so can treat this in an analogous way to IR2 . This gives convergence of the
sequence at every time t. Convergence in L3/2(0, T ) follows by the dominated convergence
theorem. This proves that

p(k)(x, t) = GQij(u
(k)
i u

(k)
j )(x, t) + p

(k)
Q (t)→ GQij(uiuj)(x, t) + pQ(t)

in L3/2(0, T ;L3/2(Q)), which implies p = GQij(uiuj)+pQ(t), i.e. p satisfies the local pressure
expansion for u.
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