
X. Hu et al. Res Math Sci (2019) 6:29
https://doi.org/10.1007/s40687-019-0187-z

RESEARCH

Randomized and fault-tolerant method of
subspace corrections
Xiaozhe Hu1, Jinchao Xu2* and Ludmil T. Zikatanov2

*Correspondence:
xu@math.psu.edu
2Department of Mathematics,
The Pennsylvania State
University, University Park, PA
16802, USA
Full list of author information is
available at the end of the article
The work of Hu was partially
supported by NSF
(DMS-1620063). The work of Xu
and Zikatanov was supported in
part by NSF (DMS-1522615)

Abstract

In this paper, we consider the iterative method of subspace corrections with random
ordering. We prove identities for the expected convergence rate and use these results
to provide sharp estimates for the expected error reduction per iteration. We also study
the fault-tolerant features of the randomized successive subspace correction method
by rejecting corrections when faults occur and show that the resulting iterative method
converges with probability one. In addition, we derive estimates on the expected
convergence rate for the fault-tolerant, randomized, subspace correction method.

Keywords: Method of subspace corrections, Randomized method, Fault-tolerant
method

1 Introduction
In this paper, we consider iterative methods for solving the following model problem:
Given f ∈ V , find u ∈ V such that

Au = f, (1)

where V is a Hilbert space and A : V �→ V is a symmetric positive definite (SPD) linear
operator. The class of iterative methods we are interested fall into the category of the
so-called the methods of subspace corrections (MSC) which have been widely studied in
the past several decades, see [6,27,28]. MSC is a general framework for linear iterative
methods for the solution of linear problems in Hilbert spaces. Many well-known iterative
methods can be viewed in the MSC framework and, therefore, can be studied using the
general theory of MSC framework, for example, multigrid (MG) method [1,8,26] and
domain decomposition (DD) method [17,25].
There are two basic types of MSC depending on how the error correction in the sub-

spaces is done: the Parallel subspace corrections (PSC) method corrects the error from
all the subspaces simultaneously, while the Successive subspace corrections (SSC)method
corrects one after another. The standard SSC method traverses the subspace problems in
a fixed order, but one of the interesting features of the SSC method is that the ordering
need not be fixed from the start and it can be chosen dynamically during the iterations.
A classical example in this direction is the greedy ordering algorithm for Gauss–Seidel
method by Southwell [22]. Recently, the effects of the greedy ordering on the convergence
of the multiplicative Schwarz method have been studied in [7]. Other related algorithms,

123

© Springer Nature Switzerland AG 2019.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-019-0187-z&domain=pdf

29 Page 2 of 15 X. Hu et al. ResMath Sci (2019) 6:29

such as randomized Kaczmarz iterative method, have been studied in detail in [4,12–
14,16,24]. A randomized Schwarz method has been discussed in [7], and a randomized
coordinate decent methods for a certain class of convex optimization problems was in the
focus of several recent works [11,15,18].
One of our main results is the proof of an identity for the expected error reduction in

energy norm per iteration step of the randomized SSCmethod. We note that in compari-
son with [7], even though the convergence rate estimate is of the same order, our analysis
directly shows how one step of the randomized SSC method relates to the PSC method.
Arguably, the identity we introduce leads to a better understanding of the nature of prod-
uct randomized algorithms and provides more insights that can lead to better algorithms.
In addition, we propose and analyze the convergence of a novel SSC method with J sub-
spaces in which the ordering of the subspace corrections is chosen every J iterations by
randomly selecting a permutation of J = {1, . . . , J }. We further provide a generalization
of the XZ-identity [28] which applies to the error reduction rate in energy norm for such
randomized SSC method. Next, we consider a special feature of this, namely, its conver-
gence in case of hardware and/or software failures. On the one hand, when such error
occur, there is no guarantee that the iterative method can produce a reasonable approx-
imation of the solution. On the other hand, for many PDE-based applications, solving
the linear system of equations dominates the overall simulation time (more than 80% of
the simulation time for large-scale simulations). Therefore, the development and analysis
of fault-tolerant linear solvers with low overhead is an important and urgent issue for
improving the overall reliability of the huge pool of PDE-based applications. The stan-
dard approaches for constructing fault-tolerant iterative methods usually belong to the
so-called ABFT (Algorithm-Based Fault Tolerance) category and basic linear and fault-
tolerant versions of nonlinear iterative methods, such as successive over-relaxation (SOR)
method, conjugate gradient (CG)method, and generalminimal residual (GMRes)method
have been studied in [9,19–21]. Another approach, proposed in [23], relies on rejecting
large hardware error propagation and improves the resilience of iterative methods with
respect to silent errors. In [10], resilience for massively parallel multigrid methods has
been discussed based on combining domain partitioning with geometric multigrid meth-
ods. More recently, in [2], an intrinsic fault-/error-tolerant feature of the MSC has been
explored. The idea is based on introducing redundant subspaces and working with care-
fully designed mappings between subspaces and processors.
Our results also show how the randomization can be used to improve the reliability of

the SSC method in this paper. We built our fault-tolerant, randomized SSC method on a
procedure which rejects the faulty subspace corrections when errors occur. Basically, we
only update the solutionwhen there is no error and, naturally, we are able to show that this
simple procedure, together with randomization, converges almost surely (with probability
1). Our results demonstrate the potential of the SSC method as a natural fault-tolerant
iterative method and provide theoretical justification of the usage of the SSC method in
improving the reliability of long-running large-scale PDE applications.
The reminder of the paper is organized as follows. We recall the PSC method, the SSC

method, the XZ-identity, and some basic notions from probability theory in Sect. 2.1. In
Sect. 3, we describe the randomized SSC method and its fault-tolerant variant. Section 4
presents our main results, i.e., the sharp identity estimates of the convergence rate and

X. Hu et al. Res Math Sci (2019) 6:29 Page 3 of 15 29

almost sure convergence of the proposed SSCmethods. At the end, we give some remarks
in Sect. 5 to conclude the paper.

2 Preliminaries
In this section, we introduce the notation and review some basic results and definitions
from the theory of the subspace correction methods and basic notions from probability
theory.

2.1 Method of subspace corrections

We recall the standard definitions and the notation commonly used in the analysis of
subspace correction methods. We begin by introducing a decomposition of the vector
space V which consists of subspaces Vi ⊂ V , i = 1, 2, . . . , J , such that

V =
J∑

i=1
Vi. (2)

This means that, for each v ∈ V , there exist vi ∈ Vi, i = 1, 2, . . . , J , such that v = ∑J
i=1 vi.

This representation of v may not be unique in general, namely (2) is not necessarily a
direct sum.
For each i, we define Qi, Pi : V �→ Vi and Ai : Vi �→ Vi by

(Qiu, vi) = (u, vi), (Piu, vi)A = (u, vi)A, ∀ u ∈ V, vi ∈ Vi, (3)

and

(Aiui, vi) = (Aui, vi), ∀ ui, vi ∈ Vi. (4)

Qi and Pi are both orthogonal projections and Ai is the restriction of A on Vi and is SPD.
Note that, from the definitions given above we have

AiPi = QiA. (5)

Indeed, ∀u, v ∈ V , we have (QiAu, v) = (Au,Qiv) = (u,Qiv)A = (Piu, Qiv)A =
(AiPiu, Qiv) = (AiPiu, v), and therefore AiPi = QiA.
Since Vi ⊂ V , we have the natural inclusion operator Ii : Vi �→ V defined by

(Iiui, v) = (ui, v), ∀ui ∈ Vi. v ∈ V. (6)

We notice that Qi = ITi as (Qiu, vi) = (u, vi) = (u, Iivi) = (ITi u, vi). Similarly, we have
Pi = I∗i , where I∗i is the transpose of Ii with respect to the inner product (·, ·)A induced by
A.
If u is the solution of (1), then

Aiui = fi, (7)

where ui = Piu and fi = Qif . (7) can be viewed as the restriction of (1) on the subspace
Vi, i = 1, 2, . . . , J . MSC solves these subspace equations (7) iteratively. In general, these
subspace equations are solved approximately.More precisely, we introduce a non-singular
operator Ri : Vi �→ Vi, i = 1, 2, . . . , J , which is assumed to be an approximation to
A−1
i in certain sense. And then the subspaces equation (7) are solved approximated by

ui ≈ ûi = Rifi.
As we pointed out in the introduction, there are twomajor types of MSC, depending on

how the error is corrected in each subspace. These are (1) the parallel subspace corrections

29 Page 4 of 15 X. Hu et al. ResMath Sci (2019) 6:29

(PSC) method, which is similar in nature to the classical Jacobi method and the subspace
equations are solved inparallel as inAlgorithm1; and (2) the successive subspace corrections
(SSC) method, similar to the classical Gauss-Seidel method and the error is corrected
successively from each subspace as in Algoritm 2. From the definitions in Algorithm 1, it
is easy to see that

um+1 = um + Ba(f − Aum),

Algorithm 1 Parallel subspace correction method
1: Compute the residual by rm = f − Aum,
2: Approximately solve the subspace equations Aiei = Qirm by êi = RiQirm in parallel,
3: Update the iteration by um+1 = um + ∑J

i=1 Iiêi.

with

Ba =
J∑

i=1
IiRiQi =

J∑

i=1
IiRiI ti , (8)

which is the operator corresponds to the PSC method.

Algorithm 2 Successive subspace correction method
1: Compute the residual by rm = f − Aum,
2: Set v0 = um,
3: for k = 1 → J do
4: vk = vk−1 + RkQk (f − Avk−1),
5: end for
6: Update um+1 = vJ .

Let us define Ti = RiQiA, and we note that Ti : Vi �→ Vi is symmetric with respect
to (·, ·)A, nonnegative definite, and satisfies Ti = RiAiPi. Moreover, Ti = Pi if Ri = A−1

i .
Using this notation, we have

BaA =
J∑

i=1
Ti, (9)

and

I − BmA = (I − TJ)(I − Tj−1) . . . (I − T1). (10)

Here, Bm is the operator approximating A−1 which corresponds to the SSC method. For
the theoretical analysis, we define the symmetrized smoother R̄i := Rt

i + Ri − Rt
iAiRi and

subspace solver T̄i = Ti +T ∗
i −T ∗

i Ti with T ∗
i defined as (T ∗

i u, v)A = (u, Tiv)A, ∀u, v ∈ Vi.
We now focus on the randomized and fault-tolerant versions of the SSC method given

by Bm. For its convergence analysis, we will need the following well-known XZ-identity
[28].

Theorem 1 (XZ-identity) Assume that Bm is defined by the SSC method (Algorithm 2),
then we have

‖I − BmA‖2A = 1 − 1
c
, (11)

X. Hu et al. Res Math Sci (2019) 6:29 Page 5 of 15 29

where

c = sup
‖v‖A=1

inf∑
vi=v

J∑

i=1

∥∥∥∥∥∥
Ti

−1/2

⎛

⎝vi + T ∗
i Pi

∑

j>i
vj

⎞

⎠

∥∥∥∥∥∥

2

A

. (12)

Corollary 1 In case that the subspace problems are solved exactly, i.e., Ri = A−1
i , the X-Z

identity (11) holds with

c = sup
‖v‖A=1

inf∑
vi=v

J∑

i=1

∥∥∥∥∥∥
Pi

⎛

⎝
∑

j≥i
vj

⎞

⎠

∥∥∥∥∥∥

2

A

. (13)

3 Randomized and fault-tolerant SSC
Traditionally, the SSC method visits each subspace in a pre-determined ordering, i.e., it
solves subspace problems one by one in a fixed, problem-independent order. Here we
consider to choose the ordering randomly, which is a key component of the algorithms.
Another componentwe introduce into the SSCmethod is the fault-tolerant ability enabled
by randomization. In this section, we formulate those algorithms and their convergence
analysis are discussed in the next section.

3.1 Randomized SSC

In the randomized SSCmethod, we randomly choose the next subspace in which the error
needs to be corrected.We randomly choose the subspace, according to certain probability
distribution as in Algorithm 3.

Algorithm 3 SSC method with random ordering (Version 1)
1: Randomly choose an index i ∈ {1, 2, . . . , J } with probability pi = 1

J ,
2: uk+1 = uk + RiQi(f − Auk)

As discussed in [7], the cost of randomly picking i does not exceed O(log J) and each
update in the SSC method can be done in O(N) operations where N is the dimension
of the vector space V . Therefore, the overall computational cost of the randomized SSC
method is comparable to the standard SSC method which is a very desirable feature.
Note that inAlgorithm3, there is no guarantee that all the J subspaces are all corrected in

J iterations. Therefore, we propose the second version randomized SSCmethod, such that
the J subspaces are guaranteed to be corrected within J iterations by randomly choosing
the ordering in which the error is corrected. To do this, we first consider the set of all
permutations of J = {1, 2, . . . , J }. Then a permutation of J is any bijective mapping σ :
J �→ J. The idea is to randomly choose a permutation σ from the set of permutations and
apply the SSC following the correction order as specified by σ . We have the randomized
SSC method presented in Algorithm 4.
We note that, in Algorithm 4, the cost of randomly picking the permutation σ is

O(J log J) (see, e.g., [3,5] for such algorithms) which is more expensive than Algorithm 3.
However, the cost of the for loop (steps 4–6 in Algorithm 4) is comparable with tradi-
tional PSC method (Algorithm 1). Moreover, it is reasonable to assume that J = O(N)

29 Page 6 of 15 X. Hu et al. ResMath Sci (2019) 6:29

Algorithm 4 SSC method with random ordering (Version 2)
1: Compute the residual by rm = f − Aum,
2: v0 = um,
3: Randomly choose a permutation σ of the indexes J = {1, 2, . . . , J } with probability 1

J ! ,
4: for k = 0 → J − 1 do
5: vk+1 = vk + Rσ (k)Qσ (k)(f − Avk),
6: end for
7: Update the iteration by um+1 = vJ .

at the worst case (as in the multigrid method), then the overall computational cost of
Algorithm 4 isO(N logN) which is nearly optimal.

3.2 Fault-tolerant randomized SSC

Another feature pertaining to this randomized SSC method is its fault tolerance. During
the iterative process, the correction or update may fail due to hard and/or soft errors. The
hard error usually is due to a permanent node/memory crash which stops the process.
A soft error is a type of error where a signal or datum is wrong. In this case, the process
continues and the failures affects the following execution. Both cases, if errors are not
accounted for correctly, can result in stagnating iterations, namely, there will be no error
reduction during iterations.
We propose a simple approach which can handle all such scenarios (see Algorithm 5).

Basically, we do not update the approximation to the solution during the iterations when
error occurs. The randomization of the ordering helps to guarantee that such simple
treatment leads to theoretically convergent iterative method.

Algorithm 5 Fault-tolerant SSC method with random ordering
1: if error occurs then
2: uk+1 = uk ,
3: else
4: Randomly choose an index i ∈ {1, 2, . . . , J } with probability pi = 1

J ,
5: uk+1 = uk + RiQi(f − Auk).
6: end if

Similar to Algorithm 3, the cost of randomly picking i is O(log J) and each correction
costs O(N). Therefore, the overall cost of Algorithm 5 is comparable to the cost of the
traditional SSC method and Algorithm 3.

4 Convergence analysis
In this section, we present the convergence analysis of the randomized and fault-tolerant
SSCmethods (Algorithms 3–5).Wewant to emphasize that, instead of usual upper bound
estimation,wegive identities for the convergence rate of the randomized and fault-tolerant
SSCmethods. We note that in the analysis below we relate the expected convergence rate
of the SSC method, to the quality of the PSC preconditioner, and the latter is obviously
independent of the ordering of the subspaces. This result confirms that the expected (or
the average) convergence rate of an SSC method is also independent of the ordering.

X. Hu et al. Res Math Sci (2019) 6:29 Page 7 of 15 29

4.1 Convergence rate of the randomized SSC

First, we consider Algorithm 3 and the main result is stated in the following theorem.
Here, we use Ba to denote the operator corresponding to the PSC method with R̄i as the
inexact subspace solver.

Theorem 2 The Algorithm 3 converges with the expected error decay rate,

E(‖u − uk+1‖2A) =
(
1 − δk

J

)
E(‖u − uk‖2A) =

k∏

�=0

(
1 − δ�

J

)
‖u − u0‖2A, (14)

where δk = E((BaAek ,ek)A)
E((ek ,ek)A)

> 0 and ek = u − uk . Moreover, if ‖I − Ti‖A < 1, then δk < J .

Proof It is easy to see that, given i, we have

‖ek+1‖2A = ‖(I − Ti)ek‖2A = (
(
I − T̄i

)
ek , ek)A,

where T̄i is the symmetrized version of Ti. According to the way we pick the index i, at
iteration k , we define random variables Sk (x) as follows:

Sk (ωk) = ωk , ωk = (i1, i2, . . . , ik), im ∈ �, m = 1, . . . , k.

Because we choose an index i ∈ {1, 2, . . . , J } uniformly with probability 1/J and picking i
is independent of the iteration number k , we have,

P(Sk+1 = ωk+1 | Sk = ωk) =
⎧
⎨

⎩

1
J , if ωk+1 = (ωk , i), i = 1, 2, . . . , J

0, otherwise

Then we define, for ωk = (i1, i2, . . . , ik),

Xk (ωk) = ‖(I − Tik)(I − Tik−1) . . . (I − Ti1)e0‖2A := ‖ek‖2A,

and the conditional expectation with respect to Sk+1 conditioned on Sk = ωk can be
computed as follows:

E(Xk+1 | Sk)(ωk) = E(Xk+1 | Sk = ωk)

=
∑

ωk+1∈�k+1

Xk+1(ωk+1)P(Sk+1 = ωk+1 | Sk = ωk)

=
J∑

i=1
‖(I − Ti)ek‖2A

1
J

=
J∑

i=1

1
J
((I − T̄i)ek , ek)A

= ‖ek‖2A − 1
J
(

J∑

i
T̄iek , ek)A = ‖ek‖2A − 1

J
(BaAek , ek)A,

where the last equation follows from (9) with Ti replaced by T̄i since here Ba denotes the
PSC method with symmetrized smoother as mentioned at the beginning of this section.
Apply E(X) = E(E(X |Y)), use the linearity of the expectation, and let X = Xk+1, Y = Sk ,

29 Page 8 of 15 X. Hu et al. ResMath Sci (2019) 6:29

we then have the desired expected value with respect to Sk+1 as follows,

E(‖ek+1‖2A) = E(Xk+1) = E(E(Xk+1|Sk))
= E(‖ek‖2A − 1

J
(BaAek , ek)A)

= E(‖ek‖2A) − 1
J
E((BaAek , ek)A)

=
(
1 − 1

J
E((BaAek , ek)A)
E((ek , ek)A)

)
E(‖ek‖2A).

Note that, if ‖I − Ti‖A < 1, by the definition of T̄i, we have 0 ≤ (T̄iek , ek)A < (ek , ek)A.
Therefore, we have (BaAek , ek)A = (

∑J
i=1 T̄iek , ek)A < J (ek , ek)A which implies that

E((BaAek , ek)A) < JE((ek , ek)A), i.e., δk < J . This completes the proof. �

Remark 1 Now we discuss about the constant δk , we have

λmin(BaA)‖ek‖2A ≤ (BaAek , ek)A ≤ λmax(BaA)‖ek‖2A.
Use the linearity and monotonicity of expectation, we have

λmin(BaA)E(‖ek‖2A) ≤ E((BaAek , ek)A) ≤ λmax(BaA)E(‖ek‖2A).
Therefore, we have

λmin(BaA) ≤ δk ≤ λmax(BaA),

and

1 − δk
J

≤ 1 − λmin(BaA)
J

.

Remark 2 After J steps, we have E(‖eJ‖2A) ≤
(
1 − λmin(BaA)

J

)J ‖e0‖2A and the energy error

reduction is bounded by
(
1 − λmin(BaA)

J

)J ≤ exp (−λmin(BaA)).

Remark 3 Here we choose the index i ∈ {1, 2, . . . , J } based on a uniform distribution with
constant probability pi = 1

J . However, one can use other choices as long as the probability
does not depend on the iteration number k . Similar results can be derived and same
statements also apply to the theoretical results below.

E(‖u − ukJ‖2A) ≤ δkE(‖u − u0‖2A), δ = e−λmin(BaA)

A special case of Algorithm 3 is that the subspace corrections are exact, i.e, Ri = A−1
i .

And the following corollary is a direct consequence of Theorem 2.

Corollary 2 Assume that the probabilities pi, i ∈ J are independent of the iteration num-
ber k. Then Algorithm 3 with Ri = A−1

i converges with the following expected error reduc-
tion:

E(‖u − uk+1‖2A) =
(
1 − δk

J

)
E(‖u − uk‖2A) =

k∏

�=0

(
1 − δ�

J

)
‖u − u0‖2A, (15)

where 0 < δk = E
(∑J

i=1 ||Piek ||2A
)

E(||ek ||2A)
< J .

X. Hu et al. Res Math Sci (2019) 6:29 Page 9 of 15 29

Next theorem shows that the randomized SSC method converges almost surely, i.e.,
converges with probability 1, if all the subspace corrections are convergent.

Theorem 3 If ‖I − Ti‖A < 1 for i = 1, 2, . . . , J , then Algorithm 3 converges almost surely
or with probability 1, i.e., ‖ek‖2A

a.s−→ 0.

Proof Inorder to showthealmost sure convergence,weneed to showthat
∑∞

k=1 P(‖ek‖2A ≥
ε) < +∞ for any ε > 0. Note that, by Markov’s inequality, we have

P(‖ek‖2A ≥ ε) ≤ 1
ε
E(‖ek‖2A) = 1

ε

k−1∏

�=0

(
1 − δ�

J

)
‖e0‖2A,

Since ‖I−Ti‖A < 1 and according toRemark 1,wehaveλmin(BaA) < δ� < λmax(BaA) < J
and then,

∞∑

k=1

1
ε

k−1∏

�=0

(
1 − δ�

J

)
‖e0‖2A ≤ 1

ε
‖e0‖2A

∞∑

k=1

(
1 − λmin(BaA)

J

)k−1

= 1
ε
‖e0‖2A

J
λmin(BaA)

< +∞.

Therefore, we have that the series
∑∞

k=1 P(‖ek‖2A ≥ ε) converges. �

Next, we discuss the convergence rate for Algorithm 4. We introduce Bσ to denote the
corresponding operator for J iterations using permutation σ , i.e.,

I − BσA = (I − Tσ (J))(I − Tσ (J−1)) . . . (I − Tσ (1)).

We have the following theorem.

Theorem 4 Consider Bσ defined by Algorithm 4, we have

E(‖I − BσA‖2A) = 1 − 1
J !

J !∑

i=1

1
cσi

,

where cσi is the constant c in the XZ-identity (12) of SSC using permutation σi.

Proof According to XZ-identity (11), for a permutation σi, we have

||I − BσiA||2A = 1 − 1
cσi

.

Here, we need to introduce a different probability space (�,F , P) where � =
{σ1, σ2, . . . , σJ !}, i.e., the set of all possible permutations,F is again the σ -algebra of�, and
the probability P is defined by P(a) = |a|/J !, a ∈ F . Based on this probability space, we
define a random variable X : � �→ R as following,

X(σi) = ‖I − BσiA‖2A = 1 − 1
cσi

=: xσi , i = 1, 2, . . . , J !

29 Page 10 of 15 X. Hu et al. ResMath Sci (2019) 6:29

X is a discrete random variable an its expectation can be computed as following

E(‖I − BσA‖2A) = E(X) =
J !∑

i=1
xσiP(X = xσi)

=
J !∑

i=1

(
1 − 1

cσi

)
1
J !

= 1 − 1
J !

J !∑

i=1

1
cσi

,

which completes the proof. �

Remark 4 For a given space decomposition, different permutations of the subspaces lead
to different convergence of the corresponding SSCmethod. According to the XZ-identity,
the worse case is when Cmax = max1≤i≤J ! cσi and the corresponding permutation is
denoted by σ ∗. Note that

1 − 1
J !

J !∑

i=1

1
cσi

≤ 1 − 1
cmax

.

The equality holds if and only if cσi = cmax for all σi. The left hand side of the inequality is
the convergence rate ofAlgorithm4 in expectation and the right hand side of the inequality
is the worse case of SSC method. Therefore, the above inequality implies that the ran-
domized SSC method Algorithm 4 “improves” the convergence rate of the deterministic
SSC method in the worst case scenario.
Here we present a simple numerical test to demonstrate this. We consider solving the

model problem (1) arising from the linear finite element discretization of the Laplace
problem−	u = f on unit square in 2D with f = 0 and homogeneous Dirichlet boundary
conditions. Uniform meshes are used here. Therefore, we consider SSC in the geometric
multigrid setting, i.e., the space decomposition (2) is a multilevel nodal decomposition
(see [27,28]). For Algorithm 2, we use lexicographical ordering and compare the results
with Algorithm 4. We set the initial guess to be the vector (1, . . . , 1)T and, since the exact
solution is u = 0, we can compute the error ‖em‖A directly. The iterations are terminated
when ‖em‖A

‖e0‖A ≤ 10−6. The results are shown in Table 1 for different levels (column “Level”
in the table). Here, mesh size h = 2−Level, that is, a higher level means a finer mesh. For
Algorithm 2, we use lexicographical ordering and report the number of iterations (col-
umn “Iter.”) and the convergence rate (Conv. Rate), which is computed as

(‖em‖A
‖e0‖A

)1/m
.

As expected, since we use a multilevel nodal decomposition, the corresponding SSC con-
verges uniformly, i.e., the number of iterations stays the same as we refine the mesh. For
Algorithm 4, since we use random permutation, we repeat the experiments 10 times on
each level and report the average number of iterations (Ave. #Iter.) and average conver-
gence rate (Ave. Conv. Rate). As we can see, Algorithm 4 not only converges uniformly
but also is consistently faster than Algorithm 2 on all levels. In addition, we also report
how many times out of 10 experiments, Algorithm 4 actually converges in less number of
iterations than Algorithm 2 (in percentage). Except the smallest size case (Level=4), Algo-
rithm 4 is 100% faster than Algorithm 2 in terms of number of iterations. This justifies

X. Hu et al. Res Math Sci (2019) 6:29 Page 11 of 15 29

Table 1 Comparison between Algorithms 2 and 4

Algorithm 2 Algorithm 4

Level Iter Conv. Rate Ave. #Iter Ave. Conv. Rate Percentage (%)

4 12 0.316 11.8 0.301 30

5 13 0.331 12.0 0.305 100

6 13 0.332 11.8 0.292 100

7 13 0.334 11.8 0.298 100

8 13 0.334 11.7 0.291 100

9 13 0.332 11.2 0.279 100

10 13 0.330 11.3 0.283 100

Fig. 1 Computational complexity of Algorithms 2 and 4

our statement that randomized SSC improves the convergence rate of the deterministic
SSC method in the worst case scenario.
In Fig. 1, we report the computational complexity of Algorithms 2 and 4. Since the CPU

time depends on the specific computational environment and implementation, we use
relative CPU time to show the complexity of the algorithms here, namely, we set the CPU
time for solving the smallest size problem (Level = 4) as the base 1 for each algorithm
and the relative CPU time is the ratio between the CPU time for solving the problem on
current level and the base CPU time. As we can see, Algorithm 2 scales like O(N) and
Algorithm 4 scales likeO(N logN), confirming that Algorithm 4 is a little bit more costly.
Therefore, the trade-off between the convergence rate and computational cost should be
carefully considered in practice in order to achieve the best performance.

4.2 Fault-tolerant randomized SSC

In this section, we discuss the convergence rate of the fault-tolerant randomized SSC
method (Algorithm 5). The main assumption is that the errors occur with probability

29 Page 12 of 15 X. Hu et al. ResMath Sci (2019) 6:29

θ ∈ [0, 1). Next theorem says that the fault-tolerant randomized SSC method converges
in expectation. Again, we use Ba to denote the operator corresponding to the PSCmethod
with R̄i = Rt

i + Ri − Rt
iAiRi as the inexact subspace solver.

Theorem 5 Assume that error occurs with probability θ ∈ [0, 1) which is independent of
k and how i is picked, then the Algorithm 5 converges with the expected convergence rate,

E(‖u − uk+1‖2A) =
(
1 − (1 − θ)δk

J

)
E(‖u − uk‖2A)

=
k∏

�=0

(
1 − (1 − θ)δ�

J

)
‖u − u0‖2A, (16)

where δk = E((BaAek ,ek)A)
E((ek ,ek)A)

> 0 and ek = u − uk . Moreover, if ‖I − Ti‖A < 1, then δk < J .

Proof Note that, if there is no error (with probability 1 − θ), for a given i, we have

‖ek+1‖2A = ‖(I − Ti)ek‖2A = (
(
I − T̄i

)
ek , ek)A,

otherwise, we have

‖ek+1‖2A = ‖ek‖2A.
As in the proof of Theorem 2, we define random variables Sk (x) such that,

Sk (ωk) = ωk , ωk = (i1, i2, . . . , ik), im ∈ �, m = 1, . . . , k.

Because we pick i is independent of the iteration number k , we have,

P(Sk+1 = ωk+1 | Sk = ωk) =

⎧
⎪⎪⎨

⎪⎪⎩

θ , if ωk+1 = (ωk , 0),
1−θ
J , if ωk+1 = (ωk , i), i = 1, 2, . . . , J

0, otherwise

Next we define for ωk = (i1, i2, . . . , ik),

Xk (ωk) = ‖(I − Tik)(I − Tik−1) . . . (I − Ti1)e0‖2A := ‖ek‖2A,
Therefore, then we compute the conditional expectation as following

E(Xk+1 | Sk)(ωk) = E(Xk+1 | Sk = ωk)

=
∑

ωk+1∈�k+1

Xk+1(ωk+1)P(Sk+1 = ωk+1 | Sk = ωk)

= θ‖ek‖2A +
J∑

i=1

(1 − θ)
J

‖(I − Ti)ek‖2A

= θ‖ek‖2A + 1 − θ

J
J (ek , ek)A −

J∑

i=1

1 − θ

J
(T̄iek , ek)A

= ‖ek‖2A − 1 − θ

J
(BaAek , ek)A.

Following the proof of Theorem 2, we apply the identity E(X) = E(E(X |Y)) and use the
linearity of the expectation to derive (16). This completes the proof. �

X. Hu et al. Res Math Sci (2019) 6:29 Page 13 of 15 29

Remark 5 We can estimate the constant δk as in Remark 1, i.e.,

λmin(BaA) ≤ δk ≤ λmax(BaA).

Therefore, we have

1 − (1 − θ)δk
J

≤ 1 − (1 − θ)λmin(BaA)
J

.

Remark 6 After J steps, we have

E(‖eJ‖2A) ≤
(
1 − (1 − θ)λmin(BaA)

J

)J
‖e0‖2A,

and the energy error reduction is bounded by
(
1 − (1 − θ)λmin(BaA)

J

)J
≈ exp ((θ − 1)λmin(BaA)) , 0 ≤ θ < 1.

The following corollary consider a special case of Theorem 5 that all the subspace
corrections are exact, i.e, Ri = A−1

i .

Corollary 3 Assume that errors occurs with probability θ ∈ [0, 1) which is independent of
k, then Algorithm 5 with Ri = A−1

i converges with the expected error decay rate,

E(‖u − uk+1‖2A) =
(
1 − (1 − θ)δk

J

)
E(‖u − uk‖2A)

=
�=k∏

�=0

(
1 − (1 − θ)δ�

J

)
‖u − u0‖2A, (17)

where 0 < δk = E(
∑J

i=1
∥∥Piek

∥∥2
A)/E(

∥∥ek
∥∥2
A) < J .

Next theorem shows that the fault-tolerant randomized SSC method converges almost
surely or with probability 1 if all the subspace corrections are convergent.

Theorem 6 Assume that ‖I − Ti‖A < 1 for i = 1, 2, . . . , J . Moreover, assume that errors
occur with probability θ ∈ [0, 1) and independent of k, Algorithm 5 converges almost surely
or with probability 1, i.e., ‖ek‖2A

a.s−→ 0.

Proof The proof is the same as the proof of Theorem 3, thus, omitted. �

Theorems 5 and 6 suggest that, when error occurs, simply do not update the solution or

reject the update. The randomized SSCmethod are guaranteed to converge to the correct
solution. Such property is useful for developing error resilience algorithms.

5 Conclusion
We study the convergence behavior of the randomized subspace correction methods.
Instead of the usual upper bound for the convergence rate, we derived an identity for the
estimation of the expect error decay rate in energy norm and also show the randomized
algorithm converges almost surely if all the subspace correction converges.
We also propose another version randomized subspace correction method in which

each subspace is corrected once within J iterations. We theoretically prove that it is
convergent by using the XZ-identity and show how it improves the standard SSCmethod
at the worst case in terms of the convergence rate.

29 Page 14 of 15 X. Hu et al. ResMath Sci (2019) 6:29

In order to improve the error resilience of the subspace correctionmethods, we develop
a fault-tolerant variant of the randomized method by rejecting any correction when error
occurs. We show that the fault-tolerant iterative method based on such approach con-
verges with probability 1 if all the subspace corrections are convergent and, moreover,
we also derive a sharp identity estimate for the convergence rate. These results show the
intrinsic fault-tolerant features of the subspace correction method and its potential in
extreme-scale computing by introducing randomization.

Author details
1Department of Mathematics, Tufts University, Medford, MA 02155, USA, 2Department of Mathematics, The Pennsylvania
State University, University Park, PA 16802, USA.

Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.

Received: 1 May 2018 Accepted: 27 May 2019 Published online: 12 August 2019

References
1. Bramble, J.: Multigrid Methods. Chapman & Hall/CRC, Boca Raton (1993)
2. Cui, T., Xu, J., Zhang, C.S.: An error-resilient redundant subspace correction method. Comput. Vis. Sci. 18(2–3), 65–77

(2017)
3. Durstenfeld, R.: Algorithm235: randompermutation. Commun. ACM7(7), 420 (1964). https://doi.org/10.1145/364520.

364540
4. Eldar, Y.C., Needell, D.: Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss Lemma. Numer.

Algorithms 58(2), 163–177 (2011)
5. Fisher, R.A., Yates, F.: Statistical Tables for Biological Agricultural andMedical Research. Oliver and Boyd, London (1948)
6. Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70(2),

163–180 (1995). https://doi.org/10.1007/s002110050115
7. Griebel, M., Oswald, P.: Greedy and randomized versions of the multiplicative Schwarz method. Linear Algebra Appl.

437(7), 1596–1610 (2012)
8. Hackbusch, W.: Multigrid Methods and Applications, Springer Series in Computational Mathematics, vol. 4. Springer-

Verlag, Berlin (1985)
9. Hoemmen, M., Heroux, M.A.: Fault-tolerant iterative methods via selective reliability. In: Proceedings of the 2011

International Conference for High Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer
Society, vol. 3, p. 9 (2011)

10. Huber, M., Gmeiner, B., Rüde, U., Wohlmuth, B.: Resilience for massively parallel multigrid solvers. SIAM J. Sci. Comput.
38(5), S217–S239 (2016)

11. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and conditioning. Math.
Oper. Res. 35(3), 641–654 (2010)

12. Liu, J., Wright, S.J.: An accelerated randomized kaczmarz algorithm. arXiv preprint arXiv:1310.2887 (2013)
13. Mansour, H., Yilmaz, O.: A fast randomized kaczmarz algorithm for sparse solutions of consistent linear systems. arXiv

preprint arXiv:1305.3803 (2013)
14. Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT Numer. Math. 50(2), 395–403 (2010)
15. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2),

341–362 (2012)
16. Oswald, P., Zhou, W.: Convergence analysis for Kaczmarz-type methods in a Hilbert space framework. Linear Algebra

Appl. 478, 131–161 (2015)
17. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press,

Oxford (1999)
18. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a

composite function. Math. Program. 144(1–2), 1–38 (2014)
19. Roy-Chowdhury, A., Banerjee, P.: A fault-tolerant parallel algorithm for iterative solution of the laplace equation. In:

International Conference on Parallel Processing, 1993. ICPP 1993, vol. 3, pp. 133–140. IEEE (1993)
20. Roy-Chowdhury, A., Bellas, N., Banerjee, P.: Algorithm-based error-detection schemes for iterative solution of partial

differential equations. IEEE Trans. Comput. 45(4), 394–407 (1996)
21. Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Fault tolerant preconditioned conjugate gradient for sparse linear

system solution. In: Proceedings of the 26th ACM International Conference on Supercomputing, pp. 69–78. ACM
(2012)

22. Southwell, R.V.: Relaxation Methods in Engineering Science—A Treatise in Approximate Computation. Oxford Uni-
versity Press, Oxford (1946)

23. Stoyanov, M.K., Webster, C.G.: Numerical analysis of fixed point algorithms in the presence of hardware faults. Tech.
rep., Tech. rep. Oak Ridge National Laboratory (ORNL) (2013)

24. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl.
15(2), 262–278 (2009)

25. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory. Springer Verlag, Berlin (2005)
26. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, Cambridge (2001)

https://doi.org/10.1145/364520.364540
https://doi.org/10.1145/364520.364540
https://doi.org/10.1007/s002110050115
http://arxiv.org/abs/1310.2887
http://arxiv.org/abs/1305.3803

X. Hu et al. Res Math Sci (2019) 6:29 Page 15 of 15 29

27. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992). https://
doi.org/10.1137/1034116

28. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space.
J. Am. Math. Soc. 15(3), 573–597 (2002). https://doi.org/10.1090/S0894-0347-02-00398-3

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1137/1034116
https://doi.org/10.1137/1034116
https://doi.org/10.1090/S0894-0347-02-00398-3

	Randomized and fault-tolerant method of subspace corrections
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Method of subspace corrections

	3 Randomized and fault-tolerant SSC
	3.1 Randomized SSC
	3.2 Fault-tolerant randomized SSC

	4 Convergence analysis
	4.1 Convergence rate of the randomized SSC
	4.2 Fault-tolerant randomized SSC

	5 Conclusion
	References

