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Abstract

We address the persistence of regularity for the 2D α-fractional Boussinesq equations with positive
viscosity and zero diffusivity in general Sobolev spaces, i.e., for (u0, ρ0) ∈ W s,q(R2) × W s,q(R2),
where s > 1 and q ∈ (2,∞). We prove that the solution (u(t), ρ(t)) exists and belongs to W s,q(R2)×
W s,q(R2) for all positive time t for q > 2, where α ∈ (1, 2) is arbitrary.

1 Introduction

In this paper, we address the persistence of regularity for the 2D fractional Boussinesq equations

ut + Λαu+ u · ∇u+∇π = ρe2

ρt + u · ∇ρ = 0

∇ · u = 0

in Sobolev spaces. Here, u is the velocity satisfying the 2D Navier-Stokes equations [CF, DG, FMT, R,

T2, T3] driven by ρ, which represents the density or temperature of the fluid, depending on the physical

context. Also, e2 = (0, 1) is the unit vector in the vertical direction and 1 < α < 2.

The global existence and persistence of regularity has been a topic of high interest since the seminal

works of Chae [C] and of Hou and Li [HL], who proved the global existence of a unique solution in the

case of Laplacian, α = 2. Namely, the global persistence holds for (u0, ρ0) in Hs×Hs−1 for integers s ≥ 3

[HL], while we have the global persistence in Hs×Hs for integers s ≥ 3 by [C]. The global existence and

uniqueness in the low regularity space H1×L2 was established by Lunasin et al in [LLT]. The persistence

in Hs ×Hs−1 for the intermediate values 1 < s < 3 was then settled in [HKZ1, HKZ2]. For other results

on the global existence and persistence of solutions, cf. [ACW, BS, BrS, CD, CG, CLR, CN, CW, DP1,

DP2, ES, HK1, HK2, HS, JMWZ, KTW, KWZ, LPZ, SW, T1].

The main difficulty when studying the persistence of regularity in the Sobolev spaces W s,q ×W s−1,q

when q > 2 is the lack of availability of the energy equation, which is one of the essential features of the
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Boussinesq system. This problem was studied in [KWZ], where it was proven that the persistence holds

if (s− 1)q > 2.

In the present paper, we consider the fractional dissipation in the range 1 < α < 2, addressing the

persistence in W s,q(R2) × W s,q(R2). Namely, we prove that if (u0, ρ0) ∈ W s,q(R2) × W s,q(R2), then

(u(·, t), ρ(·, t)) ∈ W s,q(R2) × W s,q(R2) for all t ≥ 0. The main result is contained in Theorem 2.1 and

asserts the global persistence for all s > 1. The main device in the proof is the generalized vorticity

ζ = ω − ∂1(I −∆)−α/2ρ. (1.1)

This change of variable is inspired by the one introduced by Jiu et al in [JMWZ], (cf. also [SW]), which

in turn drew from the work of Hmidi, Keraani, and Rousset [HKR]. Here we need to modify it to avoid

problems with low frequencies as our data are not square integrable. We show in (2.6) below that the

modified vorticity ζ defined in (1.1) satisfies the equation

ζt + u · ∇ζ + Λαζ = [S, u · ∇]ρ− (Λ̃−αΛα − I)∂1ρ (1.2)

where S = ∂1(I − ∆)−α/2 with Λ = (−∆)1/2 and Λ̃ = (I − ∆)1/2. Compared to the original change

of variable in [JMWZ], we obtain a new term Nρ = (Λ̃−αΛα − I)∂1ρ, for which however we show in

Lemma 2.2 below that it is smoothing of degree 1. The reason why this change of variable is suitable for

low frequencies is due to the inhomogeneity in the second term of (1.1).

Also, an important part of the proof of Sobolev persistence is based on the observation that a fractional

derivative of the commutator term in (1.2) is a sum of two terms, which are also of commutator type and

are thus suitable for the use of a Kato-Ponce type inequality; cf. (4.7) and Remark 4.1 below.

The paper is organized as follows. In Section 2, we state the main theorem on the persistence and

introduce the change of the vorticity variable. We also prove the smoothing property of the operator

N . The next section contains a variant of a Kato-Ponce lemma suitable for the operator S arising in

(1.2). Lemma 3.3 contains the bound for the vorticity and its modified version ζ. The proof of the main

theorem for the case s ≤ α is then provided in Section 4. Finally, the last section contains the proof of

the main theorem for s > α. This part of the proof requires the case s ≤ α when we establish a bound

on ‖Λ1/2u‖L∞ in (5.7) below.

2 Notation and the main result on global persistence

We consider solutions of the Boussinesq system

ut + Λαu+ u · ∇u+∇π = ρe2 (2.1)

ρt + u · ∇ρ = 0 (2.2)

∇ · u = 0, (2.3)

where the operator Λα is defined by

Λα = (−∆)α/2, 1 < α < 2,
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or, using the Fourier transform,

(Λαf )̂ (ξ) = |ξ|αf̂(ξ), ξ ∈ R
2. (2.4)

The following is the main result of the paper.

Theorem 2.1. Let q ∈ (2,∞) and s > 1. Assume that ‖u0‖W s,q < ∞ with ∇·u0 = 0 and ‖ρ0‖W s,q < ∞.

Then there exists a unique solution (u, ρ) to the equations (2.1)–(2.3) such that u ∈ C
(

[0, T ],W s,q(R2)
)

and ρ ∈ C
(

[0, T ],W s,q(R2)
)

for all T > 0.

Applying the curl operator to (2.1), we obtain the vorticity equation

ωt + Λαω + u · ∇ω = ∂1ρ. (2.5)

Define Λ̃ = (I −∆)1/2 and set

ζ = ω − Sρ,

where

S = ∂1Λ̃
−α = ∂1(I −∆)−α/2.

The equation satisfied by ζ is obtained by replacing ω with ζ + Sρ in (2.5) and combining the resulting

equation with (2.2). We get

ζt + Λαζ + u · ∇ζ = −Sρt − u · ∇Sρ− ΛαSρ+ ∂1ρ

= [S, u · ∇]ρ− (Λ̃−αΛα − I)∂1ρ.
(2.6)

Therefore, the equation for the generalized vorticity ζ reads

ζt + Λαζ + u · ∇ζ = [S, u · ∇]ρ−Nρ, (2.7)

where we set

N = (Λ̃−αΛα − I)∂1. (2.8)

The operator N is a Fourier multiplier with the symbol

m(ξ) =
|ξ|αξ1

(1 + |ξ|2)α/2
− ξ1.

It is possible to check that the symbol satisfies the assumptions of the Hörmander-Mikhlin theorem and

thus ‖Nρ‖Lq̄ ≤ C‖ρ‖Lq̄ for 1 < q̄ < ∞. However, as asserted in the next lemma, a stronger statement

holds. Namely, the operator N defined in (2.8) is smoothing of order 1.

Lemma 2.2. Consider the Fourier multiplier Tm̃ with the symbol

m̃(ξ) = (|ξ|2 + 1)1/2m(ξ).

Then Tm̃ is a Hörmander-Mikhlin operator satisfying

‖Tm̃f‖Lq̄ . ‖f‖Lq̄ , f ∈ Lq̄, (2.9)

for 1 < q̄ < ∞.
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An equivalent way of stating (2.9) is

‖Nf‖Lq̄ + ‖∇Nf‖Lq̄ . ‖f‖Lq̄ , f ∈ Lq̄, q̄ ∈ (1,∞).

Proof of Lemma 2.2. It suffices to prove that the symbol

m̃(ξ) = ξ1
(1 + |ξ|2)α/2 − |ξ|α

(1 + |ξ|2)α−1/2

satisfies the Hörmander-Mikhlin condition

|∂αm̃(ξ)| ≤
C(|α|)

|ξ|α
, α ∈ N

2
0, ξ ∈ R

2 \ {0}.

Since ξ1/(1 + |ξ|2)1/2 is of Hörmander-Mikhlin type, it is sufficient to prove that

m̄(ξ) = (1 + |ξ|2)1−α/2((1 + |ξ|2)α/2 − |ξ|α)

satisfies the Hörmander-Mikhlin condition. In order to check this, we write

m̄(ξ) =
α

2

∫ 1

0

(1 + |ξ|2)1−α/2

(t+ |ξ|2)1−α/2
dt

and then verify that the condition holds for the low and high frequencies, i.e., when |ξ| . 1 and |ξ| & 1

respectively. �

Next, we recall a version of the Kato-Ponce inequality from [KWZ].

Lemma 2.3 ([KWZ]). Let s ∈ (0, 1) and f, g ∈ S(R2). For 1 < q < ∞ and j ∈ {1, 2}, the inequality

‖[Λs∂j , g]f‖Lq ≤ C‖f‖Lq1 ‖Λ1+sg‖Lq̃1 + C‖Λsf‖Lq2 ‖Λg‖Lq̃2

holds, where q1, q̃1, q̃2 ∈ [q,∞] and q2 ∈ [q,∞) satisfy 1/q = 1/q1 + 1/q̃1 = 1/q2 + 1/q̃2 and C =

C(q1, q̃1, q̃2, q2, s).

Finally, we recall from [CC, J] an inequality useful for treating the fractional coercive term.

Lemma 2.4 ([CC, J]). Consider the operator Λ defined in (2.4) on R
2. If θ,Λsθ ∈ Lp, where p ≥ 2,

then
∫

R2

|θ|p−2θΛsθ dx ≥
2

p

∫

R2

(Λs/2(|θ|p/2))2 dx, (2.10)

for all s ∈ (0, 2).

3 An L
q inequality for the vorticity and a Kato-Ponce type com-

mutator estimate

The following lemma provides an Lq bound for the modified vorticity ζ.
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Lemma 3.1. Assume that u0, ρ0 ∈ W s,q(R2), where s > 1 and q > 2. Then we have

‖ζ‖Lq ≤ CeCt, t ≥ 0 (3.1)

and

‖ω‖Lq ≤ CeCt, t ≥ 0, (3.2)

where C = C(‖ω0‖Lq , ‖ρ0‖Lq ). Moreover, we have

∫ t

0

‖Λα/2(|ζ|q/2)‖2L2 dx ≤ CeCt, (3.3)

for all t ≥ 0.

Above and in the sequel, the exponent q > 2 and the parameter s > 1 are considered fixed, so we do

not indicate dependence of constants on these parameters.

The main step in the proof of Lemma 3.1 and Theorem 2.1 is an inhomogeneous Kato-Ponce type

commutator estimate, which is stated next.

Lemma 3.2. Denote

S̄ := |∇|(I −∆)−α/2.

Then, for j ∈ {1, 2} and 0 ≤ µ ≤ α, we have

‖[ΛµS∂j , g]f‖Lq ≤ C‖∇g‖Lr1 ‖ΛµS̄f‖Lr̃1 + C‖Λµ+1S̄g‖Lr2 ‖f‖Lr̃2 ,

where r1, r̃1, r̃2 ∈ [q,∞] and r2 ∈ [q,∞) satisfy 1/q = 1/r1 + 1/r̃1 = 1/r2 + 1/r̃2 and where C =

C(r1, r̃1, r̃2, r2, q).

Proof of Lemma 3.2 (sketch). We follow the strategy from [KP] (cf. also [KWZ]) and consider the com-

mutator in three regions defined by the supports of Φk below. Namely, we write

[ΛµS∂j , g]f = c0

3
∑

k=1

∫∫

eix(ξ+η)

(

|ξ + η|µ(ξ1 + η1)(ξj + ηj)

(1 + |ξ + η|2)α/2
−

|ξ|µξ1ξj
(1 + |ξ|2)α/2

)

× f̂(ξ)ĝ(η)Φk

(

|ξ|

|η|

)

dη dξ

= c0

3
∑

k=1

∫∫

eix(ξ+η)Ak(ξ, η) dη dξ,

(3.4)

where Φk : R → [0, 1] are C∞ cut-off functions such that

3
∑

k=1

Φk = 1 on [0,∞)

with

suppΦ1 ⊆ [−1/2, 1/2], suppΦ2 ⊆ [1/4, 3], suppΦ3 ⊆ [2,∞]

and

Ak(ξ, η) =

(

|ξ + η|µ(ξ1 + η1)(ξj + ηj)

(1 + |ξ + η|2)α/2
−

|ξ|µξ1ξj
(1 + |ξ|2)α/2

)

f̂(ξ)ĝ(η)Φk

(

|ξ|

|η|

)

.
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Thus, the commutator (3.4) may be rewritten as

[Λs−1S∂j , uj ]ρ =

3
∑

k=1

∫∫

eix(ξ+η)Ak(ξ, η) dη dξ.

We write A1 as

A1(ξ, η) =

(

|ξ + η|µ(ξ1 + η1)(ξj + ηj)(1 + |η|2)α/2

(1 + |ξ + η|2)α/2|η|µ+2
−

|ξ|µξ1ξj(1 + |η|2)α/2

(1 + |ξ|2)α/2|η|µ+2

)

× f̂(ξ)(Λµ+1S̄g)̂ (η)Φ1

(

|ξ|

|η|

)

= σ1(ξ, η)f̂(ξ)(Λ
µ+1S̄g)̂ (η).

It is elementary to show that

|σ1| ≤ C,

as well as more generally

|∂α∂βσ1| ≤
C(|α|, |β|)

(|ξ|+ |η|)|α|+|β|
, α, β ∈ N

2
0.

By the Coifman-Meyer theorem, we get

∥

∥

∥

∥

∫∫

eix(ξ+η)A1(ξ, η) dη dξ

∥

∥

∥

∥

Lq

. ‖f‖Lr1 ‖Λµ+1S̄g‖Lr̃1 ,

where 1/q = 1/r1 + 1/r̃1. For A3, we write

A3(ξ, η) =

(

|ξ + η|µ(ξ1 + η1)(ξj + ηj)

(1 + |ξ + η|2)α/2
−

|ξ|µξ1ξj
(1 + |ξ|2)α/2

)

f̂(ξ)ĝ(η)Φ3

(

|ξ|

|η|

)

=
(1 + |ξ|2)α/2

|η||ξ|µ+1

(

|ξ + η|µ(ξ1 + η1)(ξj + ηj)

(1 + |ξ + η|2)α/2
−

|ξ|µξ1ξj
(1 + |ξ|2)α/2

)

(ΛµS̄f )̂ (ξ)(∇g)̂ (η)Φ3

(

|ξ|

|η|

)

= σ3(ξ, η)(Λ
µS̄f )̂ (ξ)(∇g)̂ (η)Φ3

(

|ξ|

|η|

)

.

Setting

φ(t) =
|ξ + tη|µ(ξ1 + tη1)(ξj + tηj)

(1 + |ξ + tη|2)α/2
, t ∈ [0, 1]

we have

φ′(t) =
µ|ξ + tη|µ−2(ξ + tη)η(ξ1 + tη1)(ξj + tηj)

(1 + |ξ + tη|2)α/2
+

|ξ + tη|µη1(ξj + tηj)

(1 + |ξ + tη|2)α/2

+
|ξ + tη|µηj(ξ1 + tη1)

(1 + |ξ + tη|2)α/2
+

α|ξ + tη|µ(ξ1 + tη1)(ξj + tηj)(ξ + tη)η

(1 + |ξ + tη|2)α/2+1
.

Note that in the region Φ3 > 0, we have |ξ| ≥ 2|η|. Therefore,

|σ3| ≤ C,
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as well as more generally

|∂α∂βσ3| ≤
C(|α|, |β|)

(|ξ|+ |η|)|α|+|β|
, α, β ∈ N

2
0.

By the Coifman-Meyer theorem, we get

∥

∥

∥

∥

∫∫

eix(ξ+η)A3(ξ, η) dη dξ

∥

∥

∥

∥

Lq

. ‖∇g‖Lq1 ‖ΛµS̄f‖Lq2 ,

where 1/q = 1/q1 +1/q2. For A2, we use the complex interpolation inequality. Since the argument is the

same as in [KP], we omit the proof. By combining the estimates for A1, A2, and A3, we get

‖[ΛµS∂j , g]f‖Lq . ‖∇g‖Lq1 ‖ΛµS̄f‖Lq2 + ‖ΛµS̄∇g‖Lq3 ‖f‖Lq4 ,

where the parameters q1, q2, q3, q4 ∈ [q,∞] satisfy 1/q = 1/q1 + 1/q2 = 1/q3 + 1/q4 and the implicit

constant depends on q1, q2, q3, q4, and µ. �

Proof of Lemma 3.1. Since s > 1, we have W s,q(R2 ⊆ L∞(R2), and thus

ρ0 ∈ Lq̄, q̄ ∈ [q,∞].

Using the Lq̄ conservation property for the density equation (2.2), we get

‖ρ(t)‖Lq̄ ≤ ‖ρ0‖Lq̄ . 1, q̄ ∈ [q,∞], (3.5)

where we assume that all the constants depend on ‖ρ0‖Lq and ‖ω0‖Lq . In order to estimate ‖ζ‖Lq , we

multiply the equation (2.7) with |ζ|q−2ζ and integrate obtaining

1

q

d

dt
‖ζ‖qLq +

∫

(Λαζ)|ζ|q−2ζ dx

= −

∫

Nρ|ζ|q−2ζ dx+

∫

[S, u · ∇]ρ|ζ|q−2ζ dx = I1 + I2.

(3.6)

For I1, we have

I1 ≤ ‖Nρ‖Lq‖|ζ|q−2ζ‖Lq/(q−1) . ‖ρ‖Lq‖ζ‖q−1
Lq . ‖ζ‖q−1

Lq , (3.7)

where we used Hölder’s inequality and (3.5). Since u is divergence-free, we may rewrite the commutator

as

[S, u · ∇]ρ = Suj∂jρ− uj∂jSρ = (∂jS)(ujρ)− uj(∂jS)ρ = [∂jS, uj ]ρ.

Observe that ∂jS is an operator of order 2− α. Thus, by Lemma 3.2 with µ = 0, we have

I2 ≤ ‖[S, u · ∇]ρ‖Lq‖ζ‖q−1
Lq = ‖[∂jS, uj ]ρ‖Lq‖ζ‖q−1

Lq

. (‖S̄ρ‖La1 ‖∇u‖Lb1 + ‖ρ‖La2 ‖S̄∇u‖Lb2 )‖ζ‖
q−1
Lq

. (‖S̄ρ‖La1 ‖ω‖Lb1 + ‖ρ‖La2 ‖S̄ω‖Lb2 )‖ζ‖
q−1
Lq ,
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with the Lebesgue exponents above satisfying 1/q = 1/a1+1/b1 = 1/a2+1/b2 and a1, a2, b1, b2 ∈ (q,∞).

Therefore, choosing a1 = a2 = q/(α− 1) and b1 = b2 = q/(2− α),

I2 . (‖S̄ρ‖Lq/(α−1)‖ω‖Lq/(2−α) + ‖ρ‖Lq/(α−1)‖S̄ω‖Lq/(2−α))‖ζ‖
q−1
Lq .

Now, by the fractional Gagliardo-Nirenberg inequality applied to |ζ|q/2, we have

‖ζ‖Lr . ‖ζ‖
(rα−2r+2q)/αr
Lq ‖Λα/2(|ζ|q/2)‖

4(r−q)/αrq
L2 , q ≤ r ≤ 2q/(2− α), (3.8)

from where

‖ζ‖Lq/(2−α) . ‖ζ‖
(2−α)/α
Lq ‖Λα/2(|ζ|q/2)‖

4(α−1)/αq
L2 .

Also, using the triangle inequality

‖ω‖Lq/(2−α) ≤ ‖ζ‖Lq/(2−α) + ‖S̄ρ‖Lq/(2−α) . ‖ζ‖Lq/(2−α) + ‖ρ‖Lq/(2−α) . ‖ζ‖Lq/(2−α) + 1

. ‖ζ‖
(2−α)/α
Lq ‖Λα/2(|ζ|q/2)‖

4(α−1)/αq
L2 + 1

we get

I2 . (‖ω‖Lq/(2−α) + ‖S̄ω‖Lq/(2−α))‖ζ‖
q−1
Lq

. ‖ω‖Lq/(2−α)‖ζ‖
q−1
Lq

. ‖ζ‖
(2−α)/α+q−1
Lq ‖Λα/2(|ζ|q/2)‖

4(α−1)/αq
L2 + ‖ζ‖q−1

Lq .

(3.9)

Replacing (3.7) and (3.9) in (3.6) and using (2.10) on the coercive term, we obtain

1

q

d

dt
‖ζ‖qLq +

2

q

∫

Ω

(Λα/2(|ζ|q/2))2 dx . ‖ζ‖q−1
Lq + ‖ζ‖

(2−α)/α+q−1
Lq ‖Λα/2(|ζ|q/2)‖

4(α−1)/αq
L2 .

Since 4(α− 1)/αq < 2, we may use Young’s inequality with exponents αq/(αq− 2α+2) and αq/2(α− 1)

to get

d

dt
‖ζ‖qLq +

∫

Ω

(Λα/2(|ζ|q/2))2 dx . ‖ζ‖q−1
Lq + ‖ζ‖qLq , (3.10)

where the implicit constant depends on the initial data. The inequality (3.1) then follows by applying

the Gronwall inequality, while (3.2) is a consequence of (3.1) and the triangle inequality. Finally, (3.3)

holds by using (3.1) in (3.10) and integrating. �

It is important that we may bootstrap the above statement and obtain the conclusion on the behavior

of the Lq̄ norm of ζ, and thus of ω, for all q̄ > q.

Lemma 3.3. Assume that u0, ρ0 ∈ W s,q(R2), where s ≥ 1 and q ∈ (2,∞). Then for every q̄ ∈ (q,∞)

and t0 > 0 we have

‖ζ‖Lq̄ ≤ CeCt, t ≥ t0

and

‖ω‖Lq̄ ≤ CeCt, t ≥ t0, (3.11)

where C = C(‖ω0‖Lq , ‖ρ0‖Lq , q̄, t0). Moreover, we have
∫ t

0

‖Λα/2(|ζ q̄/2|)‖2L2 ds ≤ CeCt,

for all t ≥ 0 where C = C(‖ω0‖Lq , ‖ρ0‖Lq , q̄, t0).
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Proof of Lemma 3.2. We first prove that the statement holds for all q̄ ∈ [q, 2q/(2 − α)], and the rest

follows by an iteration argument. Using (3.3) with t = t0 = 1, we obtain

∣

∣

∣

{

t ∈ (0, t0] : ‖Λ
α/2(|ζ q̄/2(t)|)‖2L2 ≤ C

}∣

∣

∣
≥

1

C

for C > 0 sufficiently large. It is easy to deduce then that there exists t̄ ∈ (0, t0) such that

‖Λα/2(|ζ q̄/2|)(t̄)‖L2 ≤ C.

Since also

‖ζ(t̄)‖Lq ≤ C,

we get by (3.8)

‖ζ(t̄)‖Lq̄ ≤ C

since q ≤ q̄ ≤ 2q/(2− α). Applying Lemma 3.1 but with q replaced with q̄, we obtain the statement for

q̄ in this range. Continuing by induction, we get then the conclusion for all q̄ ∈ [q,∞), and the lemma is

established. �

4 The Sobolev persistence for 1 < s ≤ α

In this section, we prove our main result, Theorem 2.1, in the case when s ≤ α.

Proof of Theorem 2.1 for s ≤ α. For j = 1, 2, we multiply the j-th velocity equation of (2.1) with

|uj |
q−2uj , integrate the resulting equation with respect to x, and sum for j = 1, 2 obtaining

1

q

d

dt

2
∑

j=1

‖uj‖
q
Lq +

2
∑

j=1

∫

(Λαuj)|uj |
q−2uj dx = −

2
∑

j=1

∫

∂jπ · |uj |
q−2uj dx+

2
∑

j=1

∫

ρe2 · |uj |
q−2uj dx

since due to the divergence-free condition for u we have
∫

(u · ∇uj)|uj |
q−2uj dx = 0 for j = 1, 2. By

Lemma 2.4 and Hölder’s inequality, we get

1

q

d

dt

2
∑

j=1

‖uj‖
q
Lq +

2

q

2
∑

j=1

‖Λα/2(|uj |
q/2)‖2L2 . ‖∇π‖Lq‖u‖q−1

Lq + ‖u‖q−1
Lq (4.1)

where, as above, q is considered fixed (i.e., the constants are allowed to depend on q). Using the Calderón-

Zygmund and Sobolev embedding theorems, we obtain

‖∇π‖Lq . ‖u‖L2q‖ω‖L2q . ‖u‖
1−1/q
Lq ‖ω‖

1/q
Lq ‖ω‖L2q . CeCt‖u‖

1−1/q
Lq , (4.2)

where we also used Lemma 3.3 in the last step. Applying (4.2) on the first term of the right hand side of

(4.1) gives

d

dt

2
∑

j=1

‖uj‖
q
Lq +

2
∑

j=1

‖Λα/2(|uj |
q/2)‖2L2 . eCt‖u‖

q−1/q
Lq + ‖u‖q−1

Lq

9



and thus

‖u‖Lq . eCt

by the Gronwall inequality.

Next, we consider the Lq norm of higher order derivatives. Applying Λs−1 to (2.7), multiplying the

resulting equation by |Λs−1ζ|q−2Λs−1ζ, and integrating, we get

1

q

d

dt
‖Λs−1ζ‖qLq +

∫

Λα(Λs−1ζ)|Λs−1ζ|q−2Λs−1ζ dx

= −

∫

Λs−1(u · ∇ζ)|Λs−1ζ|q−2Λs−1ζ dx+

∫

Λs−1([S, u · ∇]ρ)|Λs−1ζ|q−2Λs−1ζ dx

−

∫

Λs−1Nρ|Λs−1ζ|q−2Λs−1ζ dx

= J1 + J2 + J3.

(4.3)

By Lemma 2.3, we estimate

J1 = −

∫

(

Λs−1(u · ∇ζ)− u · Λs−1∇ζ
)

|Λs−1ζ|q−2Λs−1ζ dx

≤ ‖Λs−1(u · ∇ζ)− u · Λs−1∇ζ‖Lq‖Λs−1ζ‖q−1
Lq

≤

2
∑

j=1

‖∂jΛ
s−1(ujζ)− uj∂jΛ

s−1ζ‖Lq‖Λs−1ζ‖q−1
Lq ,

(4.4)

where we used the divergence-free condition and the triangle inequality in the last step. Therefore,

J1 . (‖ζ‖Lr1 ‖Λs−1ω‖Lr2 + ‖Λu‖Lr3 ‖Λs−1ζ‖Lr4 )‖Λs−1ζ‖q−1
Lq

.
(

‖ζ‖Lr1 (‖Λs−1ζ‖Lr2 + ‖Λs−1Sρ‖Lr2 ) + ‖ω‖Lr3 ‖Λs−1ζ‖Lr4

)

‖Λs−1ζ‖q−1
Lq ,

for any r1, r2, r3, r4 ∈ (q,∞) such that 1/q = 1/r1 + 1/r2 = 1/r3 + 1/r4. Choose r1 = r2 = r3 = r4 = 2q

and note that

‖Λs−1Sρ‖L2q . ‖ρ‖L2q . 1

by s ≤ α. Therefore, using Lemma 3.3,

J1 . eCt(‖Λs−1ζ‖L2q + 1)‖Λs−1ζ‖q−1
Lq .

By (3.8), have

‖ζ‖L2q . ‖ζ‖
(α−1)/α
Lq ‖Λα/2(|ζ|q/2)‖

2/αq
L2 , (4.5)

and thus we obtain

J1 . eCt‖Λs−1ζ‖
(α−1)/α
Lq ‖Λα/2(|Λs−1ζ|)q/2‖

2/αq
L2 + eCt‖Λs−1ζ‖q−1

Lq .

For J2, we write

Λs−1
(

[S, u · ∇]ρ
)

= Λs−1
(

S
(

(u · ∇)ρ
))

− Λs−1
(

(u · ∇)Sρ
)

= Λs−1
(

S
(

(u · ∇)ρ
)

)

− u · ∇
(

Λs−1(Sρ)
)

+ u · ∇
(

Λs−1(Sρ)
)

− Λs−1
(

(u · ∇)Sρ
)

= Λs−1S∂j
(

ujρ
)

− uj∂j
(

Λs−1(Sρ)
)

+ uj∂j
(

Λs−1(Sρ)
)

− Λs−1∂j
(

ujSρ
)

,

(4.6)
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where we used the divergence-free condition (2.3) in the last step. The first two and the last two terms

on the far right side of (4.6) form commutators, as we may write

Λs−1
(

[S, u · ∇]ρ
)

= [Λs−1S∂j , uj ]ρ− [Λs−1∂j , uj ]Sρ. (4.7)

For the second commutator in (4.7), we apply Lemma 2.3 and obtain

‖[Λs−1∂j , uj ]Sρ‖Lq . ‖Sρ‖Lp1 ‖Λsu‖Lp2 + ‖Λs−1Sρ‖Lp3 ‖∇u‖Lp4 ,

where 1/q = 1/p1 + 1/p2 = 1/p3 + 1/p4 and pi ∈ (q,∞) for i = 1, 2, 3, 4. Thus, by Lemma 3.2,

J2 ≤ ‖Λs−1[S, u · ∇]ρ‖Lq‖Λs−1ζ‖q−1
Lq

. (‖∇u‖L2q‖Λs−1S̄ρ‖L2q + ‖Λs−1S̄∇u‖L2q‖ρ‖L2q )‖Λs−1ζ‖q−1
Lq

+ (‖Sρ‖L2q‖Λsu‖L2q + ‖ρ‖L2q‖SΛsu‖L2q )‖Λs−1ζ‖q−1
Lq

= J21 + J22.

(4.8)

Now, we use the conservation property (3.5) for the density and the fact that the operator Λs−1S̄ is of

Hörmander-Mikhlin type, and we get

J21 . ‖∇u‖L2q‖Λs−1ζ‖q−1
Lq . ‖ω‖L2q‖Λs−1ζ‖q−1

Lq . eCt‖Λs−1ζ‖q−1
Lq , (4.9)

where we applied Lemma 3.1 in the last step. For J22, we choose p2 = p4 = 2q. Then by the conservation

of density and (4.5) we have

J22 . (‖Λs−1ω‖L2q + ‖ω‖L2q )‖Λs−1ζ‖q−1
Lq

.
(

‖Λs−1ζ‖L2q + ‖Λs−1Sρ‖L2q + eCt
)

‖Λs−1ζ‖q−1
Lq

.
(

‖Λs−1ζ‖L2q + eCt
)

‖Λs−1ζ‖q−1
Lq

. ‖Λs−1ζ‖
(α−1)/α+q−1
Lq ‖Λα/2(|Λs−1ζ|q/2)‖

2/αq
L2 + eCt‖Λs−1ζ‖q−1

Lq .

(4.10)

From (4.8), (4.9), and (4.10), we conclude

J2 ≤
1

C
‖Λα/2(|Λs−1ζ|q/2)‖2L2 + C‖Λs−1ζ‖qLq + CeCt‖Λs−1ζ‖q−1

Lq .

For J3, we use Lemma 2.2 and obtain

J3 ≤ ‖Λs−1Nρ‖Lq‖Λs−1ζ‖q−1
Lq . ‖ρ‖Lq‖Λs−1ζ‖q−1

Lq . ‖Λs−1ζ‖q−1
Lq .

Combining the estimates of J1, J2, and J3, using Young’s inequality, we get

d

dt
‖Λs−1ζ‖qLq +

1

C
‖Λα/2(|Λs−1ζ|q/2)‖2L2 . eCt‖Λs−1ζ‖q−1

Lq + eCt. (4.11)

Setting

X = ‖Λs−1ζ‖qLq ,

X̄ = ‖Λα/2(|Λs−1ζ|q/2)‖2L2 ,
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we may rewrite (4.11) as

d

dt
X +

1

C
X̄ . eCt(X1−1/q + 1).

Therefore, by the Gronwall lemma,

‖Λs−1ζ‖Lq . eCt, t ≥ 0.

Similarly to Lemma 3.3, we also obtain

‖Λs−1ζ‖Lq̄ . eCt, t ≥ 0,

for all q̄ ∈ [q,∞), where the constant C depends on q̄. Consequently, we get

‖Λs−1ω‖Lq̄ ≤ ‖Λs−1ζ‖Lq̄ + ‖Λs−1Sρ‖Lq̄ . eCt, q̄ ∈ [q,∞). (4.12)

Next, we consider the evolution of ‖Λsρ‖Lq . We apply Λs to the equation (2.2), multiply it by

|Λsρ|q−2Λsρ, and integrate obtaining

1

q

d

dt
‖Λsρ‖qLq +

∫

Λs(u · ∇ρ)|Λsρ|q−2Λsρ dx = 0.

Therefore, using Lemma 2.3,

1

q

d

dt
‖Λsρ‖qLq = −

∫

Λs(u · ∇ρ)|Λsρ|q−2Λsρ dx

= −

∫

(Λs(u · ∇ρ)− u · Λs∇ρ) |Λsρ|q−2Λsρ dx

. ‖Λs(u · ∇ρ)− u · Λs∇ρ‖Lq‖Λsρ‖q−1
Lq

. (‖Λsu‖Ls1 ‖∇ρ‖Ls2 + ‖Λu‖L∞‖Λsρ‖Lq ) ‖Λsρ‖q−1
Lq ,

under the conditions s1, s2 ∈ (q,∞) and 1/q = 1/s1 + 1/s2. Now, choose

s2 = q +
s− 1

C0
,

where C0 is a positive constant. Note that s1, s2 ∈ (q,∞). If C0 is sufficiently large, we may use the

fractional Gagliardo-Nirenberg inequality to write

‖∇ρ‖Ls2 . ‖ρ‖1−λ
Lq ‖Λsρ‖λLq

with λ ∈ (0, 1). Therefore, using (4.12),

1

q

d

dt
‖Λsρ‖qLq .

(

‖Λs−1ω‖Ls1 ‖ρ‖
1−λ
Lq ‖Λsρ‖λLq + ‖Λu‖L∞‖Λsρ‖Lq

)

‖Λsρ‖q−1
Lq

. eCt‖Λsρ‖q+λ−1
Lq + ‖Λu‖L∞‖Λsρ‖qLq .

(4.13)

Let q̄ ∈ [q,∞) be sufficiently large so that we have

‖Λu‖L∞ . ‖Λu‖1−µ
Lq̄ ‖Λs−1(Λu)‖µLq̄
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where µ ∈ (0, 1). Then we get

‖Λu‖L∞ . ‖Λu‖1−µ
Lq̄ ‖Λs−1(Λu)‖µLq̄ . ‖ω‖1−µ

Lq̄ ‖Λs−1ω‖µLq̄ . eCt

by (3.11) and (4.12). Hence, continuing from (4.13), we get

d

dt
‖Λsρ‖qLq . eCt(1 + ‖Λsρ‖qLq ).

The proof of persistence for s ∈ (1, α] is then concluded by an application of the Gronwall lemma.

It remains to prove the uniqueness of solutions. Consider two solutions (u(1), p(1), ρ(1)) and (u(2), p(2), ρ(2)

of the system (2.1)–(2.3), and set

U = u(1) − u(2)

R = ρ(1) − ρ(2)

P = p(1) − p(2).

Subtracting the equations for (u(1), p(1), ρ(1)) and (u(2), p(2), ρ(2), we get

Ut + ΛαU + U · ∇u(1) + u(2) · ∇U +∇P = Re2 (4.14)

and

Rt + U · ∇ρ(1) + u(2) · ∇R = 0. (4.15)

We shall establish uniqueness in the space L2(R2)× Lr(R2) where

r =
4q

2q − qα+ 4
.

Note that 1 < r < ∞ and (U(0), R(0)) = (0, 0) ∈ L2(R2)× Lr(R2). From (4.14), we get

1

2

d

dt
‖U‖2L2 + ‖Λα/2U‖2L2 . ‖∇u(1)‖L∞‖U‖2L2 + ‖U‖Lr/(r−1)‖R‖Lr

. ‖∇u(1)‖L∞‖U‖2L2 + ‖Λα/2U‖L2‖R‖Lr + ‖U‖L2‖R‖Lr ,

(4.16)

where we used
r

r − 1
≤

4

2− α
,

which follows from r ≥ 4/(2 + α) and this holds by qα ≥ 2. Also, (4.15) implies

d

dt
‖R‖rLr . ‖U‖L4/(2−α)‖∇ρ(1)‖Lq‖R‖r−1

Lr ,

from where

d

dt
‖R‖2Lr . ‖U‖L4/(2−α)‖∇ρ(1)‖Lq‖R‖Lr . ‖Λα/2U‖L2‖ρ(1)‖W s,q‖R‖Lr . (4.17)

Now, u(1) ∈ L∞
loc((0,∞)([0, T ],W s,q̄(R2)) for all q̄ ∈ [q,∞), and W s,q̄(R2) ⊆ W 1,∞(R2) for all q̄ suffi-

ciently large. Thus (4.16) and (4.17) imply U(t) = 0 and R(t) = 0 for all t ≥ 0. �

Remark 4.1. Note that the identity (4.7) only uses the additivity of Λs−1 and the fact that it commutes

with the differential operators. Thus, for any multiplier operator T , we have

T
(

[S, u · ∇]ρ
)

= [TS∂j , uj ]ρ− [T∂j , uj ]Sρ.

The proof of this identity uses the fact that u is divergence-free.
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5 The Sobolev persistence for s > α

We now consider the persistence of regularity when s > α.

Proof of Theorem 2.1 for the case s > α. Let J1, J2, and J3 be as in (4.3). For J1, (4.4) and Lemma 2.3

imply

J1 . (‖Λs−1ζ‖Lr2 ‖Λu‖Lr1 + ‖ζ‖Lr1 ‖Λs−1ω‖Lr2 )‖Λs−1ζ‖q−1
Lq

.
(

‖Λs−1ζ‖Lr2 ‖ω‖Lr1 + ‖ζ‖Lr1 ‖Λs−1ζ‖Lr2 + ‖ζ‖Lr1 ‖Λs−1Sρ‖Lr2

)

‖Λs−1ζ‖q−1
Lq

. eCt(‖Λs−1ζ‖Lr2 + ‖Λs−αρ‖Lr2 )‖Λs−1ζ‖q−1
Lq ,

(5.1)

for any r1, r2 ∈ (q,∞) such that 1/q = 1/r1 + 1/r2. We restrict

r2 ∈ (q, 2q/(2− α))

so that we may use the inequality (3.8) obtaining

‖Λs−1ζ‖Lr2 . ‖Λs−1ζ‖1−θ1
Lq ‖Λα/2(|Λs−1ζ|q/2)‖

2θ1/q
L2 (5.2)

where θ1 = 2(r2 − q)/αr2. Also, we have

‖Λs−αρ‖Lr2 . ‖ρ‖1−θ2
Lq ‖Λsρ‖θ2Lq . ‖Λsρ‖θ2Lq (5.3)

with θ2 = (2/q − 2/r2 + s− α)/s. Thus, by (5.1) and (5.2), we obtain

J1 . eCt‖Λs−1ζ‖1−θ1
Lq ‖Λα/2(|Λs−1ζ|q/2)‖

2θ1/q
L2 + eCt‖Λsρ‖θ2Lq‖Λ

s−1ζ‖q−1
Lq .

The term J2 is rewritten using (4.7) as

J2 =

∫

[Λs−1S∂j , uj ]ρ|Λ
s−1ζ|q−2Λs−1ζ dx−

∫

[Λs−1∂j , uj ]Sρ|Λ
s−1ζ|q−2Λs−1ζ dx

= J21 + J22.

For the first term, we have

J21 . (‖∇u‖Lr1 ‖Λs−1S̄ρ‖Lr2 + ‖Λs−1S̄∇u‖Lr3 ‖ρ‖Lr4 )‖Λs−1ζ‖q−1
Lq

. eCt(‖Λs−αρ‖Lr2 + ‖Λs−αω‖Lr3 )‖Λs−1ζ‖q−1
Lq ,

(5.4)

where r3, r4 ∈ (q,∞) are such that 1/r3+1/r4 = 1/q. For ‖Λs−αρ‖Lr2 , we use (5.3), while for ‖Λs−αω‖Lr3 ,

we have by the triangle inequality

‖Λs−αω‖Lr3 . ‖Λs−αζ‖Lr3 + ‖Λs−αSρ‖Lr3 . ‖ζ‖1−θ3
Lq ‖Λs−1ζ‖θ3Lq + ‖Λ(s−2α+1)+ρ‖Lr3

. eCt‖Λs−1ζ‖θ3Lq + ‖Λ(s−2α+1)+ρ‖Lr3 ,

where θ3 = (2/q− 2/r3 + s−α)/(s− 1), as long as r3 is sufficiently close to q. From (5.4) we thus obtain

J21 ≤ eCt
(

‖Λsρ‖θ2Lq + ‖Λs−1ζ‖θ3Lq + 1
)

‖Λs−1ζ‖q−1
Lq (5.5)

14



if s ≤ 2α− 1, and

J21 ≤ eCt
(

‖Λsρ‖θ2Lq + ‖Λs−1ζ‖θ3Lq + ‖Λsρ‖
(s−2α+1)/s+ǫ0
Lq

)

‖Λs−1ζ‖q−1
Lq , s > 2α− 1,

where ǫ0 > 0 is arbitrarily small if r3 is sufficiently close to q. Since θ2 > (s− 2α+ 1)/s, we obtain that

(5.5) holds even if s > 2α− 1 as long as r3 > q is sufficiently close to q. For J22, we recall (4.8), by which

J22 .
(

‖S̄ρ‖Lr1 ‖Λsu‖Lr2 + ‖ρ‖L∞‖S̄Λsu‖Lq

)

‖Λs−1ζ‖q−1
Lq

. eCt(‖Λsu‖Lr2 + ‖S̄Λsu‖Lq )‖Λs−1ζ‖q−1
Lq

. eCt(‖Λs−1ζ‖Lr2 + ‖Λs−1Sρ‖Lr2 + ‖S̄Λsu‖Lq )‖Λs−1ζ‖q−1
Lq

and thus

J22 . eCt(‖Λs−1ζ‖Lr2 + ‖Λs−αρ‖Lr2 + ‖S̄Λsu‖Lq )‖Λs−1ζ‖q−1
Lq

. eCt(‖Λs−1ζ‖Lr2 + ‖Λs−αρ‖Lr2 + ‖S̄Λs−1ω‖Lq )‖Λs−1ζ‖q−1
Lq

. eCt(‖Λs−1ζ‖Lr2 + ‖Λs−αρ‖Lr2 + ‖S̄Λs−1ζ‖Lq + ‖S̄Λs−1Sρ‖Lq )‖Λs−1ζ‖q−1
Lq .

Note that the last two terms inside the parentheses are lower order compared to the first two. Therefore,

J22 . eCt(‖Λs−1ζ‖Lr2 + ‖Λs−αρ‖Lr2 + ‖ζ‖Lr2 + ‖ζ‖Lq + ‖ρ‖Lr2 + ‖ρ‖Lq )‖Λs−1ζ‖q−1
Lq

. eCt(‖Λs−1ζ‖Lr2 + ‖Λs−αρ‖Lr2 + 1)‖Λs−1ζ‖q−1
Lq .

The right hand side does not lead to any new terms compared to the estimate for J1 in (5.1), except for

the lower order third term inside the parentheses.

Next, we treat J3. When s ≤ 2, we have

J3 . ‖Λs−1Nρ‖Lq‖Λs−1ζ‖q−1
Lq . ‖ρ‖Lq‖Λs−1ζ‖q−1

Lq . ‖Λs−1ζ‖q−1
Lq ,

while if s ≥ 2,

J3 . ‖Λs−1Nρ‖Lq‖Λs−1ζ‖q−1
Lq . ‖Λs−2ρ‖Lq‖Λs−1ζ‖q−1

Lq

. ‖ρ‖
2/s
Lq ‖Λsρ‖

(s−2)/s
Lq ‖Λs−1ζ‖q−1

Lq . ‖Λsρ‖
(s−2)/s
Lq ‖Λs−1ζ‖q−1

Lq .

We thus conclude

d

dt
‖Λs−1ζ‖qLq +

1

C
‖Λα/2(|Λs−1ζ|q/2)‖2L2

. eCt‖Λs−1ζ‖qLq + eCt‖Λs−1ζ‖q−1
Lq + eCt‖Λsρ‖θ2Lq‖Λ

s−1ζ‖q−1
Lq

+ ‖Λsρ‖
((s−2)/s)+
Lq ‖Λs−1ζ‖q−1

Lq .

(5.6)

Next, we consider ‖Λsρ‖Lq . First, we have by Sobolev embedding, with q∗ = max{2/(α− 1), q}+ 1,

‖Λu‖L∞ . ‖Λα−1Λu‖Lq∗ + ‖Λu‖Lq∗ . ‖Λα−1ζ‖Lq∗ + ‖Λα−1Sρ‖Lq∗ + ‖ω‖Lq∗ . φ(t), (5.7)

where we used Theorem 2.1 in the third inequality and where

φ(t) = C exp (C exp(Ct))
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with sufficiently large C. (The dependence on t can be improved, but we do not optimize the dependence

in this paper.) Thus, by Lemma 2.3,

1

q

d

dt
‖Λsρ‖qLq = −

∫

(

Λs(u · ∇ρ)− u · Λs∇ρ
)

|Λsρ|q−2Λsρ dx

. ‖Λs(u · ∇ρ)− u · Λs∇ρ‖Lq‖Λsρ‖q−1
Lq

. (‖Λsu‖Ls1 ‖∇ρ‖Ls2 + ‖Λu‖L∞‖Λsρ‖Lq ) ‖Λsρ‖q−1
Lq

.
(

‖Λs−1ω‖Ls1 ‖∇ρ‖Ls2 + φ(t)‖Λsρ‖Lq

)

‖Λsρ‖q−1
Lq

(5.8)

where s1, s2 ∈ (q,∞) are such that 1/s1+1/s2 = 1/q. At this point, we employ an inequality from [BM],

which gives

‖∇ρ‖Ls2 . ‖ρ‖
1−1/s
Ls̄2

‖Λsρ‖
1/s
Lq . ‖Λsρ‖

1/s
Lq (5.9)

where 1/s2 = 1/sq + (1/s̄2)(1− 1/s), assuming that s2 ≤ qs, which is equivalent to

s1 ≥
qs

qs− 1
.

From (5.8) and (5.9) we then obtain

d

dt
‖Λsρ‖Lq . ‖Λs−1ω‖Ls1 ‖Λsρ‖

1/s
Lq + φ(t)‖Λsρ‖Lq . (5.10)

If

s1 ≤
2q

2− α
(5.11)

we may apply (3.8) and obtain

‖Λs−1ω‖Ls1 ≤ ‖Λs−1ζ‖Ls1 + ‖Λs−1Sρ‖Ls1

. ‖Λs−1ζ‖1−θ3
Lq ‖Λα/2(|Λs−1ζ|q/2)‖

2θ3/q
L2 + ‖Λs−αρ‖Ls1

. ‖Λs−1ζ‖1−θ3
Lq ‖Λα/2(|Λs−1ζ|q/2)‖

2θ3/q
L2 + ‖ρ‖1−θ4

Lq ‖Λsρ‖θ4Lq

. ‖Λs−1ζ‖1−θ3
Lq ‖Λα/2(|Λs−1ζ|q/2)‖

2θ3/q
L2 + ‖Λsρ‖θ4Lq ,

where θ3 = 2(s1 − q)/αs1 and θ4 = (s− α− 2/s1 + 2/q)/s. Therefore, by (5.10),

d

dt
‖Λsρ‖Lq . ‖Λs−1ζ‖1−θ3

Lq ‖Λα/2(|Λs−1ζ|q/2)‖
2θ3/q
L2 ‖Λsρ‖

1/s
Lq + ‖Λsρ‖

θ4+1/s
Lq + φ(t)‖Λsρ‖Lq . (5.12)

Now, in order to conclude the proof, let γ > 0, and denote

X = ‖Λs−1ζ‖qLq ,

Y = (‖Λsρ‖Lq + 1)q/γ ,

Z = ‖Λα/2(|Λs−1ζ|q/2)‖2L2 .

Then (5.6) and (5.12) may be rewritten as

d

dt
X +

1

C
Z . eCtX + eCtX(q−1)/q + eCtY θ2γ/qX(q−1)/q + Y ((s−2)/s)+γ/qX(q−1)/q (5.13)
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and

d

dt
Y . X(1−θ3)/qZθ3/qY 1+γ/sq−γ/q + Y γθ4/q+γ/sq+1−γ/q + φ(t)Y, (5.14)

respectively. (We use here that if (d/dt)‖Λsρ‖Lq ≤ f , then Ẏ ≤ fY 1−γ/q.) Adding (5.13) and (5.14), we

obtain

d

dt
(X + Y ) +

1

C
Z . eCtX + eCtX(q−1)/q + eCtY θ2γ/qX(q−1)/q + Y ((s−2)/s)+γ/qX(q−1)/q

+X(1−θ3)/qZθ3/qY 1+γ/sq−γ/q + Y γθ4/q+γ/sq+1−γ/q + φ(t)Y.

In order to apply the Gronwall lemma, it is sufficient that the conditions

θ2γ

q
+

q − 1

q
≤ 1

(

s− 2

s

)

+

γ

q
+

q − 1

q
≤ 1

1

q
+

γ

sq
−

γ

q
≤ 0

γθ4
q

+
γ

sq
−

γ

q
≤ 0

(5.15)

hold. The first three conditions may be summarized as

s

s− 1
≤ γ ≤ min

{

1

θ2
,

s

s− 2

}

if s > 2 and as
s

s− 1
≤ γ ≤

1

θ2

if s ≤ 2. The last condition in (5.15) is equivalent to

s ≥
1

1− θ4
.

Setting s1 = qs/(qs − 1), it is easy to verify that we may simply take γ = s/(s − 1) as we have

s/(s − 1) ≤ 1/θ2. The condition (5.11) can also be checked easily. The proof is concluded by a simple

application of a Gronwall lemma. �
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