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Abstract

We address the persistence of regularity for the 2D a-fractional Boussinesq equations with positive
viscosity and zero diffusivity in general Sobolev spaces, i.e., for (uo,po) € W*9(R?) x W4(R?),
where s > 1 and g € (2, 00). We prove that the solution (u(t), p(t)) exists and belongs to W*7(R?) x
W=9(R?) for all positive time ¢ for ¢ > 2, where o € (1,2) is arbitrary.

1 Introduction
In this paper, we address the persistence of regularity for the 2D fractional Boussinesq equations

u + A%u +u - Vu+ V7 = pes
pr+u-Vp=0
V-u=0

in Sobolev spaces. Here, u is the velocity satisfying the 2D Navier-Stokes equations [CF, DG, FMT, R,
T2, T3] driven by p, which represents the density or temperature of the fluid, depending on the physical
context. Also, es = (0,1) is the unit vector in the vertical direction and 1 < a < 2.

The global existence and persistence of regularity has been a topic of high interest since the seminal
works of Chae [C] and of Hou and Li [HL], who proved the global existence of a unique solution in the
case of Laplacian, a = 2. Namely, the global persistence holds for (ug, pg) in H® x H*~1 for integers s > 3
[HL], while we have the global persistence in H® x H® for integers s > 3 by [C]. The global existence and
uniqueness in the low regularity space H' x L? was established by Lunasin et al in [LLT]. The persistence
in H® x H*! for the intermediate values 1 < s < 3 was then settled in [HKZ1, HKZ2]. For other results
on the global existence and persistence of solutions, cf. [ACW, BS, BrS, CD, CG, CLR, CN, CW, DP1,
DP2, ES, HK1, HK2, HS, IMWZ, KTW, KWZ, LPZ, SW, T1].

The main difficulty when studying the persistence of regularity in the Sobolev spaces W4 x Ws~1.4

when g > 2 is the lack of availability of the energy equation, which is one of the essential features of the



Boussinesq system. This problem was studied in [KWZ], where it was proven that the persistence holds
if (s—1)g > 2.

In the present paper, we consider the fractional dissipation in the range 1 < a < 2, addressing the
persistence in W#9(R?) x W*49(R?). Namely, we prove that if (ug,po) € W*9(R?) x W*9(R?), then
(u(-,t),p(-,t)) € W9(R?) x W*4(R?) for all t > 0. The main result is contained in Theorem 2.1 and

asserts the global persistence for all s > 1. The main device in the proof is the generalized vorticity
C=w—0,(I—-A)"%2p. (1.1)

This change of variable is inspired by the one introduced by Jiu et al in [JMWZ], (cf. also [SW]), which
in turn drew from the work of Hmidi, Keraani, and Rousset [HKR]. Here we need to modify it to avoid
problems with low frequencies as our data are not square integrable. We show in (2.6) below that the

modified vorticity ¢ defined in (1.1) satisfies the equation

Cotu-VC+AC=[S,u-V]p— (AA — D)dip (1.2)

where S = 9;(I — A)~*/? with A = (=A)/? and A = (I — A)/2. Compared to the original change
of variable in [JMWZ], we obtain a new term Np = (A=*A® — )9 p, for which however we show in
Lemma 2.2 below that it is smoothing of degree 1. The reason why this change of variable is suitable for
low frequencies is due to the inhomogeneity in the second term of (1.1).

Also, an important part of the proof of Sobolev persistence is based on the observation that a fractional
derivative of the commutator term in (1.2) is a sum of two terms, which are also of commutator type and
are thus suitable for the use of a Kato-Ponce type inequality; cf. (4.7) and Remark 4.1 below.

The paper is organized as follows. In Section 2, we state the main theorem on the persistence and
introduce the change of the vorticity variable. We also prove the smoothing property of the operator
N. The next section contains a variant of a Kato-Ponce lemma suitable for the operator S arising in
(1.2). Lemma 3.3 contains the bound for the vorticity and its modified version ¢. The proof of the main
theorem for the case s < « is then provided in Section 4. Finally, the last section contains the proof of

the main theorem for s > «. This part of the proof requires the case s < o when we establish a bound
on ||[A2u||p~ in (5.7) below.

2 Notation and the main result on global persistence

We consider solutions of the Boussinesq system

u + A%u +u - Vu+ V7 = pes (2.1)
pt+u-Vp=0 (2.2)
V-u=0, (2.3)

where the operator A® is defined by



or, using the Fourier transform,

(A (€)= f(&), €eR™ (2.4)
The following is the main result of the paper.

Theorem 2.1. Let g € (2,00) and s > 1. Assume that ||ug||ws.« < 0o with V-uy =0 and ||po||ws« < c0.
Then there exists a unique solution (u,p) to the equations (2.1)~(2.3) such that u € C ([0, T], W*(R?))
and p € C ([0, T], W=4(R?)) for all T > 0.

Applying the curl operator to (2.1), we obtain the vorticity equation
wi + A%+ u - Vw = 01p. (2.5)

Define A = (I — A)'/2 and set
C: W= Spa

where

S =A% =0,(I —A)~*/2

The equation satisfied by ( is obtained by replacing w with ¢ + Sp in (2.5) and combining the resulting
equation with (2.2). We get

G+AC+Hu-V(=—=Spt —u-VSp—A*Sp+dip

- (2.6)
=[S,u-V]p— (AT*AY = )0 p.
Therefore, the equation for the generalized vorticity ¢ reads
G+ A+ u-VC=[S,u-V]p— Np, (2.7)
where we set
N = (A=A% — 1)d;. (2.8)

The operator N is a Fourier multiplier with the symbol

93

It is possible to check that the symbol satisfies the assumptions of the Héormander-Mikhlin theorem and
thus [|[Np|lra < C|lp|lre for 1 < § < co. However, as asserted in the next lemma, a stronger statement

holds. Namely, the operator N defined in (2.8) is smoothing of order 1.

Lemma 2.2. Consider the Fourier multiplier Tz, with the symbol

() = (1€ +1)*m(¢).

Then Ty is a Hormander-Mikhlin operator satisfying

I Taflle S Nflles,  f €LY, (2.9)

forl< q< .



An equivalent way of stating (2.9) is
INfllea +IVNfllga S I fllzss  f€LY g€ (1,00).

Proof of Lemma 2.2. Tt suffices to prove that the symbol

(1+1gP)/2 — jgl°
T+ P72

m(§) =&
satisfies the Hormander-Mikhlin condition

os C(lel)
[0°m(&)] < A

Since &1 /(1 + |£]?)'/? is of Hérmander-Mikhlin type, it is sufficient to prove that

ae N2, ¢eR?\ {0}

m(€) = (1+ €)' 2((1 + [€1%)*/2 — [¢]%)
satisfies the Hormander-Mikhlin condition. In order to check this, we write

1 2\1—a/2
a/ (1+1€1%) gt
0

m(§) = 2 ), Gt P

and then verify that the condition holds for the low and high frequencies, i.e., when || S 1 and |§| 2 1
respectively. O
Next, we recall a version of the Kato-Ponce inequality from [KWZ].

Lemma 2.3 ([KWZ]). Let s € (0,1) and f,g € S(R?). For 1 < ¢ < oo and j € {1,2}, the inequality
11405, g1f|lze < Cllfllzar A *gll Lo + ClA® fl| o2 | Agll oo

holds, where q1,q1,42 € [q,00] and g2 € [q,00) satisfy 1/q = 1/q1 + 1/@1 = 1/q2 + 1/G2 and C =
C(q17617627q275>'

Finally, we recall from [CC, J] an inequality useful for treating the fractional coercive term.

Lemma 2.4 ([CC, J]). Consider the operator A defined in (2.4) on R2. If ,A%0 € LP, where p > 2,
then 5
/ 0P 2070 dz > f/ (A*72(|0]P/%))? d, (2.10)
R? P Jr2

for all s € (0,2).

3 An LY inequality for the vorticity and a Kato-Ponce type com-
mutator estimate

The following lemma provides an L? bound for the modified vorticity (.



Lemma 3.1. Assume that ug, pg € W*4(R?), where s > 1 and q > 2. Then we have
[¢lle < CeCt, t>0 (3.1)

and
lwlre < Ce“,  t>0, (3.2)

where C' = C(J|wollLe, [|pollze). Moreover, we have
t
[ 1o s do < o, (33
0

for allt > 0.

Above and in the sequel, the exponent g > 2 and the parameter s > 1 are considered fixed, so we do
not indicate dependence of constants on these parameters.
The main step in the proof of Lemma 3.1 and Theorem 2.1 is an inhomogeneous Kato-Ponce type

commutator estimate, which is stated next.

Lemma 3.2. Denote
S = |V|(I—-A)"/2

Then, for j € {1,2} and 0 < u < «, we have

I[A*S0;, g1 fllza < CIVgllr |[A*Sfl o + CIA* T Sgllzea 1 f]l 12,
where 11,71,72 € [q,00] and ro € [g,00) satisfy 1/q = 1/r + 1/71 = 1/ro + 1/72 and where C =
C(r1,71,72,72,q).

Proof of Lemma 3.2 (sketch). We follow the strategy from [KP] (cf. also [KWZ]) and consider the com-

mutator in three regions defined by the supports of ®; below. Namely, we write

3
; 4" (& +m) (& + 1) I3E3TT;
A S, g]f = ¢ ew<£+n>(| i) : )

A+ EraP)? (L4 ER)er
< F©)am s (|'f7'|) dn de (3.4)

3
—eY / / ) Ay (¢, ) dn d,
k=1

where ®;: R — [0,1] are C*° cut-off functions such that

3
Z(bk =1 on [0,00)
k=1

with
supp ®; C [-1/2,1/2], supp @2 C [1/4, 3], supp @3 C [2, 7]
e ol &t P €
Au(Esm) = LM ) ”)AA@().
e = (e e~ s Fosom (i



Thus, the commutator (3.4) may be rewritten as

3

ISSERTIEDS / / e Ay (€,m) dn d&.

k=1

We write A; as

Ar(€,n) = (If (€ +n) (& )L+ 02 Erag A+ ()
n (14 [€ + n|?)/2[n|+2 (14 [€]2)/2[n|w+2
< fOW S0y ()
= 01(&m) f(§) (A1 Sg) ().
It is elementary to show that
|01| S 07
as well as more generally
" Clad 18D

By the Coifman-Meyer theorem, we get

H / / e A, (€, 1m) i d

where 1/g =1/r1 +1/71. For A3, we write

Sl AP Sgll

La

(G )& ) MG ) Py s <|5>
o) = (e ) - KESS ) foames (1
_ A+ EP)2 (et Gt n)E +my)  EraE ) . . (
PIEGE ( (1 + €+ n2)e/? 1+ EP)o (A*SF)(E)(Vg) (n)Ps
— oal& (W51 (O (Vor s (15
Setting
e e i
we have
o) = MEE tnl" (€ + (& + tn)(& + tny) | [€+ tnl"m (& + tn;)

(1 +[€ +tn[2)2/ (14 [€+ tn|?)o/

1€+ tnl#n; (& +tm) | o€+t (§ +tni) (&5 + tn;) (€ +in)n

_|_
(14 1€ +tn|?)o/2 (14 1€+ tn|2)o/2+1

Note that in the region ®3 > 0, we have || > 2|n|. Therefore,

|03| S 07

1€l

In]

)



as well as more generally

C(lel 18])

9*9° < — 0
0°0% 03] < Ty e TA

a,fp e N%.
By the Coifman-Meyer theorem, we get

H / / ¢ E A (€, ) dp

S IVgllza [A*S S| Lo,
La

where 1/g = 1/q1 +1/¢2. For As, we use the complex interpolation inequality. Since the argument is the

same as in [KP], we omit the proof. By combining the estimates for Ay, Ao, and A3, we get
I[A*S8;, g1 fllzs < IVgllza [A*SF Lo + [|A*SV gl Lo || £ s

where the parameters q1, ¢z, 93,94 € [g,00] satisfy 1/¢ = 1/q1 + 1/q2 = 1/g3 + 1/q4 and the implicit
constant depends on qi, g2, ¢3, g4, and pu. O

Proof of Lemma 3.1. Since s > 1, we have W*4(R? C L°°(R?), and thus
Lo S an q € [Q7OO]
Using the L7 conservation property for the density equation (2.2), we get

lp(®llze < llpolls S1, G € [g,09], (3.5)

where we assume that all the constants depend on ||po||rs and ||wo|/rs. In order to estimate ||C||Ls, we

multiply the equation (2.7) with |¢|272¢ and integrate obtaining

d
L4y, + / (AQ)[C|2¢ da
q dt (3.6)
= —/Np|(|q_2(:da: + /[S,u . V]pmq_QCdx =1+ Is.

For I, we have
L < |INpllzall €1 *¢l pasca—n S lollzallCTa S €T (3.7)
where we used Holder’s inequality and (3.5). Since u is divergence-free, we may rewrite the commutator
as
[S,u - V]p = Su;0jp —u;0;Sp = (0;5)(u;p) — u;(0;5)p = [0;5, ujlp.
Observe that 0;5 is an operator of order 2 — «. Thus, by Lemma 3.2 with p = 0, we have
I < ||[S,u- VpllzallCa" = 11058, uglpllall¢l "
S (1Spllza [Vull o + llpllez 1SVl 2e2) €]
- G -1
S (ISpllzallwllzer + llpllpez [1Swllze) SN TS



with the Lebesgue exponents above satisfying 1/¢ = 1/a1+1/b; = 1/az+1/bs and ay, a2, b1, b € (g, 00).
Therefore, choosing a; = as = ¢/(a — 1) and by = by = ¢/(2 — @),
G G 1
Iy S (1Spll Larca—n Wl Larcz—ar + ol pasca— 1S Las-a) 1SN e
Now, by the fractional Gagliardo-Nirenberg inequality applied to |¢|%/2, we have

¢l o S ICNEa2r 20 er | ae/2((g|@/2) 35D/ g < < 2¢/(2 — @), (3.8)

from where
Il zarea-er S ICHET ™ IA2(1gl2) 17517,
Also, using the triangle inequality
[wllzare-a) < NIClLare-o + 180l Lac-a) SNCILare-o + 1ol Lare-o S ¢l pase-a +1
SICIE a2 (g2l 41
we get
I S (lwll pasc-a) + 18wl parc-a) <N 52"
S wll ase-w 115" (3.9)
SICNE et ataer2 (g 1617 1 i¢)g

Replacing (3.7) and (3.9) in (3.6) and using (2.10) on the coercive term, we obtain
1d 2 o - 2—a)/a+q—1 ra 4(a—1
;@MM¢+;LM/%mW»%xsmmf+mm;W*ﬂ|M/MQWM£“”W

Since 4(a — 1)/aq < 2, we may use Young’s inequality with exponents ag/(ag —2a+2) and ag/2(a —1)
to get

d _
Gz + /Q(A‘W(KIQ/Q))de SICIE + 11l Eq (3.10)

where the implicit constant depends on the initial data. The inequality (3.1) then follows by applying
the Gronwall inequality, while (3.2) is a consequence of (3.1) and the triangle inequality. Finally, (3.3)
holds by using (3.1) in (3.10) and integrating. O

It is important that we may bootstrap the above statement and obtain the conclusion on the behavior
of the L7 norm of ¢, and thus of w, for all § > g.

Lemma 3.3. Assume that ug, pg € W*4(R?), where s > 1 and q € (2,00). Then for every q € (q,0)
and tog > 0 we have
[¢llze < CeCt, >t

and
|wllze < CeCt, t>to, (3.11)

where C' = C(||wol|Ls, [|pollLe, @, to). Moreover, we have
t
|1 as < o,
0

for all t > 0 where C = C(||wol|La, ||lpollLe, G, to)-



Proof of Lemma 3.2. We first prove that the statement holds for all § € [¢q,2¢/(2 — «)], and the rest

follows by an iteration argument. Using (3.3) with ¢t = ¢y = 1, we obtain

Ht € (0,t] : HAQ/2(|CW2(7§)|)||2L2 < CH > %

for C' > 0 sufficiently large. It is easy to deduce then that there exists t € (0,tg) such that
[A/2(1C2) (D)l 2 < C.

Since also

I<@)Le < C,

we get by (3.8)
I<@®lzs < C

since ¢ < 7 < 2¢/(2 — «). Applying Lemma 3.1 but with ¢ replaced with g, we obtain the statement for
d in this range. Continuing by induction, we get then the conclusion for all § € [¢,o0), and the lemma is
established. O

4 The Sobolev persistence for 1 < s < «

In this section, we prove our main result, Theorem 2.1, in the case when s < a.

Proof of Theorem 2.1 for s < a. For 7 = 1,2, we multiply the j-th velocity equation of (2.1) with

|u;|97%u;, integrate the resulting equation with respect to x, and sum for j = 1,2 obtaining

2 2 2 9
1d - ) )
MZ”“J‘”%”Z/ (A " do = = / Oy - " 2wy do + > / pes - Juy|" 2, da

=t i=1 =1 =1

since due to the divergence-free condition for u we have [(u- Vu;)|u;|? ?ujdz = 0 for j = 1,2. By

Lemma 2.4 and Holder’s inequality, we get
1d ¢ q 2 ¢ a/2 a/2\12. < q—1 q—1
cdl D lluslgs + p DA (gl ) 12e S IVl pallullfa + )iz (4.1)
j=1 j=1

where, as above, ¢ is considered fixed (i.e., the constants are allowed to depend on ¢). Using the Calderén-

Zygmund and Sobolev embedding theorems, we obtain
1-1 1 1—
IV7llze S lullgzalwllzze S laullzeNell ol e S Ceflull ', (42)

where we also used Lemma 3.3 in the last step. Applying (4.2) on the first term of the right hand side of
(4.1) gives

2 2

d c -1 -1

7 S e + > IAY2(u| )3 < el + ulld
j=1

j=1



and thus
Jufl e S e

by the Gronwall inequality.
Next, we consider the L? norm of higher order derivatives. Applying A*~! to (2.7), multiplying the
resulting equation by |[A*71¢]972A%71(, and integrating, we get

ld s— « s— s— — s—
ST, + [ AT G e

- */ A u- VOIATI PN o + / AH(S,u- Vo) AT da

(4.3)
_ /As_le|A5_1C|q_2AS_1<d£C
=J1+ Jo+ J3.
By Lemma 2.3, we estimate
Ji = —/(AH(u V¢ —u- ATV ASTICITPAT (de
< A - VE) — - ATV AT (1.4)

2
<Y N0;A T (1) — w05 AT | AT

j=1
where we used the divergence-free condition and the triangle inequality in the last step. Therefore,
TS (¢l e 1A ]l zra + [[Aullrs A7) AN
S (IShzr (JAT e + |AST 1S ATl ) AT

for any r1,72,7r3,74 € (¢,00) such that 1/¢g =1/r1 +1/ro =1/r3 +1/rs. Choose r1 =ro =13 =714 = 2¢q
and note that

r2) + |l

LT3

IA* 1S pllr2a S llpllzze S 1

~

by s < a. Therefore, using Lemma 3.3,
T S eH AT e + DA

By (3.8), have
¢l z2a S NCHST/ A2 (|c|2/2) |25, (4.5)

and thus we obtain
i S PN AR ATI DRI + e AT
For J,, we write
AT ([S,u- Vp) = ATH(S((u- V)p)) = A7 ((u- V)Sp)
= A (S((w- V)p)) - V(AT (Sp))
+u- V(A T(Sp)) — A ((u-V)Sp) (4.6)
= A"7189; (uzp) — u;0; (A7 (Sp))
+u;0; (A7 (Sp)) — A*719;(u; Sp),

10



where we used the divergence-free condition (2.3) in the last step. The first two and the last two terms

on the far right side of (4.6) form commutators, as we may write
A H([S,u- V]p) = [A*7150;,ujlp — [A*719;,u;]Sp. (4.7
For the second commutator in (4.7), we apply Lemma 2.3 and obtain
JA*05, w518 pl e S 1l A% ull oz + 1A Splloa [Wullzoe,

where 1/g=1/p1 + 1/p2 = 1/ps + 1/p4 and p; € (¢g,00) for i =1,2,3,4. Thus, by Lemma 3.2,

Jo < [|A°TH[S, w- V]plal| AT
S (IVull 2o [A* Sl 20 + [|A* 7 SV p2a|pll 20) 1A ¢S
+ (1Sl L2 l|A*w 20 + [lpll2a | SA ]| L20) A CIIES
= Jo1 + Jaa.

(4.8)

Now, we use the conservation property (3.5) for the density and the fact that the operator A*~1S is of
Hoérmander-Mikhlin type, and we get

Jo1 S I Vaullzal|A T S llwllzaal| AT S e IAT T, (4.9)

where we applied Lemma 3.1 in the last step. For Jos, we choose ps = py = 2q. Then by the conservation

of density and (4.5) we have

Joz S (IA° 7wl p2a + [|wll 2 A ¢ F0
S (147 2o + A° 71 Spll 20 + ) A8 (4.10)
S (147 2o + €)M ¢
SIASTACYE T A2 (AT )70 + P AT g
From (4.8), (4.9), and (4.10), we conclude
1 _ o o _
Ja < 5IIA“/2(|AS NI G + LA T + Ce A
For J3, we use Lemma 2.2 and obtain
T3 < AT Npllpa AT S pllall AT S 1A
Combining the estimates of Ji, Jo, and J3, using Young’s inequality, we get
d — 1 @ 5— s— —
Z14° g+ colA PN 52 S eP AT g + e (4.11)

Setting

X =A%
X = [AY2(A 12|,

11



we may rewrite (4.11) as

1
iX_i_i

X St (x40

Therefore, by the Gronwall lemma,
1Al S e, 20
Similarly to Lemma 3.3, we also obtain
1Az S e, >0,
for all § € [q,0), where the constant C' depends on g. Consequently, we get
1A wllze < A Cllza + 1A Spllza S €, g€ [g,00). (4.12)

Next, we consider the evolution of ||A®p||L.. We apply A® to the equation (2.2), multiply it by
[Asp|9=2A%p, and integrate obtaining

1d,,, s o 02 as
Sl [ A VRISl 2 A pda =0,

Therefore, using Lemma 2.3,
1 d S q S S |1g—2As
=A%l 7 = = [ A°(u-Vp)|A°p|T"A°pda
qdt
—— [ (% Tp) — u AV A% 2N
S A (u-Vp) —u- A*Vpl|a||A%p]|T,"
s -1
S Al [Vpllpes + |Aul| L |A%pllLa) A%l 75,
under the conditions si,s2 € (¢,00) and 1/¢g = 1/s1 + 1/s2. Now, choose

s—1
Co ’

Sy =q+

where Cj is a positive constant. Note that s1,s2 € (¢,00). If Cy is sufficiently large, we may use the

fractional Gagliardo-Nirenberg inequality to write

Vol S ol 1A%plI 7

with A € (0,1). Therefore, using (4.12),

1d

— — -1
6£||A5p\\%q S (I8 wllze Il A AN T + Aul = |4l a) [A%p]1Fs

L1

(4.13)
; A—1 s
S AT ([ Aul L [Ap] -

Let g € [g,00) be sufficiently large so that we have

IAull o S Al g™ A% (Aw) 1,

12



where p € (0,1). Then we get

IAullzoe S IAull g |45 (Aw) s S lwllzs" 1A s < e

La ~ Ld ~

by (3.11) and (4.12). Hence, continuing from (4.13), we get
d
A PlIL. S e U+ [1A%p]).

The proof of persistence for s € (1,a] is then concluded by an application of the Gronwall lemma.
It remains to prove the uniqueness of solutions. Consider two solutions (u(®,p™), p(D) and (u?, p3), p(2)
of the system (2.1)-(2.3), and set

U =) _ @
R=ph _ p@
P =pm _p@

Subtracting the equations for (u(¥,p™, pM) and (u?,p®?, p?), we get
Ui + AU +U - Vu) 4+ u® . VU 4+ VP = Rey (4.14)
and
R +U-VpY +u® . VR=0. (4.15)

We shall establish uniqueness in the space L?(R?) x L"(R?) where
4q
r=——.
2¢q—qa+4
Note that 1 < r < oo and (U(0), R(0)) = (0,0) € L?(R?) x L"(R?). From (4.14), we get

1d o
§%||U||%2 + AU 72 SUVe® | = 1UNF2 + 1T Lre-n | R] e (4.16)
SIVuD | U7z + AU 2| B e + U L2 | Rl e
where we used
r 4
< b
r—17-2—«
which follows from r > 4/(2 + «) and this holds by ga > 2. Also, (4.15) implies
d , _
1B S Ul Lo IV | ol RIS
from where
d
@”RHQU S Ul e-o VoD Lo | Rl e S IIA*2U 2]l p™M | wesa || R - (4.17)

Now, u) € L= ((0,00)([0, T], W9(R?)) for all § € [q,00), and W*(R?) C WH>°(R?) for all g suffi-
ciently large. Thus (4.16) and (4.17) imply U(¢t) = 0 and R(t) = 0 for all ¢ > 0. O

Remark 4.1. Note that the identity (4.7) only uses the additivity of A®~! and the fact that it commutes

with the differential operators. Thus, for any multiplier operator T, we have
T([S,u-V]p) = [TS9;,u;]lp — [T;,u;]Sp.

The proof of this identity uses the fact that u is divergence-free.
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5 The Sobolev persistence for s > «

We now consider the persistence of regularity when s > a.

Proof of Theorem 2.1 for the case s > «. Let Jp, Jo, and J3 be as in (4.3). For Ji, (4.4) and Lemma 2.3
imply

TS (A e Al ey 4 (1€ 1A ol 2 ) A ¢S

S (
S (A ¢l lwllzr + Sl A ¢z + ¢l A Spllzra) A ¢IIES" (5.1)
S AT N + A5 pll ) IS,

for any 1,79 € (¢,00) such that 1/g = 1/r1 + 1/r2. We restrict
r2 € (¢,2¢/(2 - a))

so that we may use the inequality (3.8) obtaining

A%l S AT G A% (1A [/ 2 (52)
where 0 = 2(rq — q)/are. Also, we have

1A plloee S Mol APl 7 S 1A PN 2 (5-3)
with 6y = (2/q — 2/r2 + s — «)/s. Thus, by (5.1) and (5.2), we obtain
Tu S eCHAT R A2 (AR 20T 4 O A A
The term Jy is rewritten using (4.7) as
Jy = /[As_lsaj,uj]p|AS_1(\q_2A5_1C dx — /[As_laj,uj}Sp|A5_1C|q_2AS_1(dx
= Jo1 + Joo.

For the first term, we have

Ja1 S IVl A Spll e + 1A SVl s ol ) [ A7) gL

< ,Ct s—« s—a s—1,11g—1 (54)
S e (IATT pllnrs + AT wllLrs) 1A ¢TSS

where 73,74 € (q,00) are such that 1/r3+1/ry = 1/q. For ||[A*~p||Lr, we use (5.3), while for |A*~*w||1rs,
we have by the triangle inequality

1A= wllzrs S Al + A% Spllzra S ICH L AT + [ACT2H D pll
S XA T A+ IACT2 D p) s,

where 03 = (2/qg—2/r5+s—a)/(s—1), as long as r3 is sufficiently close to q. From (5.4) we thus obtain

Tor < e (A%l + 1A + 1) 1457115 (55)

14



if s <2a—1, and
Jor < e (A%l + AR + A2 Y AT s> 201,

where €¢g > 0 is arbitrarily small if r3 is sufficiently close to ¢. Since 82 > (s — 2a.+ 1)/s, we obtain that
(5.5) holds even if s > 2a.— 1 as long as r3 > ¢ is sufficiently close to ¢. For Jag, we recall (4.8), by which

Joo S (I8pll e [|A%ul| L2 + [[pll e [SA%u o ) [|A* ¢ %0
< eCH(IA%u] o + [[SA | pa) | A* T4
S AT b + [ ASTESpl e + [ISA%u o) [|AS ¢4,

and thus
Jao S €SI T s + Al + [ SA ] La)|A* ¢85
S e (IATIC Lre 4 AT Lr + ISA* ™ | ) | AT IS
S e (AT L + APl Lre + I1SA° T Lo + [|[SA T Spl| o) [AT1¢)E T

Note that the last two terms inside the parentheses are lower order compared to the first two. Therefore,

T2 S €I e A A pllzra + NICH e + 1€l e + ol + llpllza) A T¢I,
S e IN Tz + A pllre + DA

The right hand side does not lead to any new terms compared to the estimate for J; in (5.1), except for
the lower order third term inside the parentheses.
Next, we treat J3. When s < 2, we have

Js SN Nl pa AL S lollpa A TIN5 S A%
while if s > 2,
Js S A Nl pa [ AL G S A2 pl| o | A5 2¢]|95 1
2/s s s—2)/s s— — s s—2)/s s— —
S ol 1Al 2 A= tel|9at S IApll S o a2 4
‘We thus conclude
i AS—1c)9 l Aa/2 As—1 q/2\(12
AT, 4 SIA2 (AT )
< AT, + eCHATIC D 4 €O A% pl| %, A ¢ (5.6)
s—2)/s _
AP AT

Next, we consider ||A®p||Le. First, we have by Sobolev embedding, with ¢* = max{2/(a —1),q} + 1,
[Aull = S A Aull e + [[Aullpor S AT I am + AT Sl ar + l|wllpor S 6(1),  (5.7)
where we used Theorem 2.1 in the third inequality and where

@(t) = Cexp (Cexp(Ct))
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with sufficiently large C. (The dependence on ¢ can be improved, but we do not optimize the dependence

in this paper.) Thus, by Lemma 2.3,

1 d S S S S — S

qailt pllf. = —/(A (u-Vp) —u-A*Vp)|A*p|?"2A%p da
SIA*(u-Vp) —u- A*Vpl|al|A*pl|F5"
S (1A% o [ Vol pe + ([ Au oo [|A%pl| ) [A%p]1 T
S (A wllze [ Vol + @O A°pllza) M)

(5.8)

where s1, 9 € (¢,00) are such that 1/s1 +1/s2 = 1/¢g. At this point, we employ an inequality from [BM],

which gives

Vol

1—1/s 1/s 1/s
e S ol S IAS oIl < A oIl

where 1/s2 = 1/sq + (1/32)(1 — 1/s), assuming that sy < ¢s, which is equivalent to

qs
Tgs—1°

S1

From (5.8) and (5.9) we then obtain

d s 55— s 1/s s
A plze S 1A e 1A " + S(E) Ao

If

we may apply (3.8) and obtain
A" wllzer < AT Lo + AT Spl| e

1,16 - 20 _

S AT G A2 (AT ) 757+ A p] s
s— — e} s— 26 — s

S AT B A2 (A ) 1757 + ol o 1A ol 2
s— — « s— 20 S

S AT B A2 (A ) 1757 + 1A%l

where 03 = 2(s1 — ¢q)/asy and 04 = (s —a — 2/s1 +2/q)/s. Therefore, by (5.10),

d s 55— — [e} 5— 0 s s s 0 S s
T plle AT G A2 (A G A Pl + ATl + B0 [A e

Now, in order to conclude the proof, let v > 0, and denote

X =47,

Y = (|A%l|ze + )77,

Z = AN 7.
Then (5.6) and (5.12) may be rewritten as

dy 1,0 c Cty(a-1)/q . Cty0av/a y(a-1)/a o v ((5=2)/s)s7/a y(a—1)/q
X4 LS OX X 4 Cty®a/ax 1Y X
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(5.9)

(5.10)

(5.11)

(5.12)

(5.13)



and

%y < X(=0s)/ag0s/aylty/sa=y/a  yr0a/atv/sati=v/a 4 g1}y, (5.14)

respectively. (We use here that if (d/dt)||[A®p|z« < f, then Y < fY1=7/4)) Adding (5.13) and (5.14), we
obtain

%(X +Y)+ %Z < eCtX 4 eCtxaN/a 4 (Ctytar/ax(a=1/a 4 y(s=2)/s)+7/a x(a=1)/a

+ X (1=03)/a 70s/ay1+v/sa=7/q + y94/at+v/sa+1-7/qa + p(t)Y.

In order to apply the Gronwall lemma, it is sufficient that the conditions

(5.15)

if s > 2 and as

<<
571_7_

if s < 2. The last condition in (5.15) is equivalent to

Setting s1 = ¢s/(gs — 1), it is easy to verify that we may simply take v = s/(s — 1) as we have
s/(s —1) < 1/65. The condition (5.11) can also be checked easily. The proof is concluded by a simple

application of a Gronwall lemma. O
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