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Abstract

We address long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity
in the cases of the torus, R2, and on a bounded domain with Lions or Dirichlet boundary conditions.
In all the cases, we obtain bounds on the long time behavior for the norms of the velocity and the
vorticity. In particular, we obtain that the norm ‖(u, ρ)‖H2

×H1 is bounded by a single exponential,
improving earlier bounds.

1 Introduction

We consider the asymptotic behavior of solutions to the Boussinesq equations without diffusivity

ut −∆u+ u · ∇u+∇π = ρe2 (1.1)

ρt + u · ∇ρ = 0 (1.2)

∇ · u = 0 (1.3)

in a bounded domain Ω ⊆ R
2, T

2, and R
2. Here, u is the velocity satisfying the 2D Navier-Stokes

equations [CF, DG, FMT, R, T1, T2, T3] driven by ρ, which represents the density or temperature of

the fluid, depending on the physical context. Also, e2 = (0, 1) is the unit vector in the vertical direction.

Recently, there has been a lot of progress made on the existence, uniqueness, and persistence of

regularity, mostly in the case of positive viscosity and vanishing diffusivity, considered here, while the

same question with both vanishing viscosity and diffusivity is an important open problem. The initial

results on the global existence in the regularity class have been obtained by Hou and Li [HL], who proved

the global existence and persistence in the class Hs × Hs−1 for integer s ≥ 3. Independently, Chae

[C] considered the class Hs ×Hs and proved the global persistence in H3 ×H3. The class Hs ×Hs−1

has subsequently been studied in the case of a bounded domain, where Larios et al proved in [LLT] the
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global existence and uniqueness for s = 1 and then by Hu et al, who proved in [HKZ1] the persistence

for s = 2. The remaining range 1 < s < 3 was then resolved in [HKZ2] in the case of periodic boundary

conditions. For other works on the global existence and persistence in Sobolev and Besov classes, see

[ACW, BS, BrS, CD, CG, CN, CW, DP1, DP2, DWZZ, HK1, HK2, HS, KTW, KWZ, LPZ].

In a recent paper [J], Ju addressed the important question of long time behavior of solutions. He

proved that in the case of Dirichlet boundary conditions on a bounded domain Ω, the H2(Ω) × H1(Ω)

norm grows at most as CeCt2 , where C > 0 is constant. In the present paper, we consider this question

for this and other boundary conditions. When the domain is finite, we prove that actually the H2 ×H1

norm is increasing as a single exponential. We conjecture that this bound is sharp. This is because it is

not expected that the solutions of the Boussinesq equation decay. However, note that the rate of increase

of the gradient of the density is bounded by the exponential integral of the L∞ norm of the gradient, i.e.,

‖∇ρ(t)‖L2 . exp

(
∫ t

0

‖∇u(s)‖L∞ ds

)

‖∇ρ0‖L2 ,

cf. (2.37) below, and if u is not decaying, we should expect the integral to be bounded from below by

a constant multiple of t. In addition to the behavior of ‖(u, ρ)‖H2×H1 , we also address the long time

behavior of the vorticity. In the case of the torus, we find constant upper bounds for the vorticity

and the gradient of the vorticity for all Lp norms. This result relies on the uniform upper bound for

‖u‖H2 established in [J] as well as on a Nash-Moser type result on the growth of the vorticity, stated as

Lemma 2.2 below and which we believe is of independent interest.

The paper is structured as follows. In Section 2, we first address the case of periodic boundary

conditions. In this case, the exponential bound for the gradient of the density is obtained by establishing

a constant upper bound for ‖∇u‖Lp . For this purpose, we first obtain a uniform upper bound for all the

Lp norms of the vorticity, a result based on a Nash-Moser type iteration. To do the same for the gradient

of the vorticity, it is not suitable to proceed with direct estimates. Instead, we recall the concept of the

generalized vorticity ζ (cf. (2.20) below), which reduces the number of the derivatives in the density by

one.

In Section 3, we consider the case of the unbounded domain R
2. Here, the energy does not decay and

in fact, the quantity ‖u(·, t)‖L2 grows linearly in time. Applying a similar procedure as in Section 2, we

obtain ‖u(·, t)‖H2 = O(t1/2) as well as an information on the growth of ‖ρ‖H1 . In addition, we obtain

upper bounds for ‖ω‖Lp and p−3/2‖∇ω‖Lp , which are uniform in p.

In the final two sections, we address the case of a smooth bounded domain with either Lions or

Dirichlet boundary conditions. For the Lions boundary conditions, we obtain ‖∇ρ‖L2 ≤ CeCt, using

a different technique than the one for periodic boundary conditions. In addition, we obtain a uniform

constant upper bound for ‖ω‖Lp . Similarly, the last section contains the results in the case of Dirichlet

boundary conditions, where we obtain an exponential upper bound for ‖∇ρ‖L2 . eCt, improving the

main result in [J].
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2 Long time behavior for periodic boundary conditions

In this section, we consider the Boussinesq system (1.1)–(1.3) in the case of the torus T2, i.e., assuming

that u and ρ are 1-periodic. We assume for simplicity that
∫

T2 u(·, t) = 0 for all t ≥ 0; the general case

can be addressed with the same methods; cf. Remark 2.3 below. The system is supplemented with the

initial condition

(u(·, 0), ρ(·, 0)) = (u0, ρ0) ∈ H2(T2)×H1(T2)

with u0 divergence-free. By [HKZ1], there exists a global solution (u(t), ρ(t)) which belongs to H2 ×H1.

Also, by [J], we have

‖u(t)‖H2 ≤ C, t ≥ 0. (2.1)

In the following statement, we provide an upper bound for the growth of the ρ component of the

norm ‖(u, ρ)‖H2×H1 . Also, we establish a uniform upper bound on the quantities ‖ω(·, t)‖Lp and

p−3/2‖∇ω(·, t)‖Lp for all p ≥ 2.

Theorem 2.1. Assume that (u0, ρ0) ∈ H2(T2) ×H1(T2) satisfies ∇ · u0 = 0 and
∫

T2 u0 = 0. Then we

have

‖ρ(t)‖H1 ≤ CeCt, t ≥ 0

for a constant C = C(‖u0‖H2 , ‖ρ0‖H1). Moreover,

‖ω(t)‖Lp ≤ C, t ≥ t0, p ∈ [2,∞]

and

‖∇ω(t)‖Lp ≤ Cp3/2, t ≥ t0, p ∈ [2,∞), (2.2)

where t0 ≥ 0 depends on ‖u0‖L2 .

Note that (2.1) and (2.2) imply

‖u‖W 2,p ≤ Cp5/2, t ≥ t0, p ∈ [2,∞).

In the proof, we need the following statement on the long time behavior of solutions to the Navier-

Stokes equations, which is of independent interest.

Lemma 2.2. Consider the Navier-Stokes system

ut −∆u+ u · ∇u+∇π = f

∇ · u = 0,

supplemented with a divergence-free initial condition u(·, 0) = u0 ∈ L2(T2) such that
∫

T2 u0 = 0 and
∫

T2 f(·, t) = 0 for t ≥ 0. If, for some λ ≥ 0, we have

‖f‖L∞([0,∞),Lp(T2)) ≤ pλM, 2 ≤ p <∞, (2.3)
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where M ≥ 1, then there exists t0 > 0 depending only on ‖u0‖L2 such that

‖ω(·, t)‖Lp ≤ CM, t ≥ t0, 2 ≤ p ≤ ∞, (2.4)

where C is a universal constant. Moreover, for every t0 > 0, there exists a constant C depending only on

‖u0‖L2 and t0 such that (2.4) holds.

The proof uses ideas from [K, Lemma 3.1], where λ = 0 was considered. Lemma 2.2 is needed below

with λ = 1/2.

Proof of Lemma 2.2. First, we prove (2.4) for some t0 > 0, leaving the last assertion to the end of the

proof. Without loss of generality, M ≥ 2. The energy inequality reads

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ ‖f‖L2‖u‖L2 , (2.5)

from where, using the Poincaré inequality,

d

dt
‖u‖L2 +

1

C
‖u‖L2 ≤ ‖f‖L2 .

Applying the Gronwall inequality and shifting time, we may assume, without loss of generality, that

‖u(t)‖L2 ≤ CM, t ≥ 0. (2.6)

Note that the size of the time shift depends only on ‖u0‖L2 andM . Next, the vorticity ω = ∇×u satisfies

ωt −∆ω + u · ∇ω = ∇ · F , (2.7)

where F = (F1, F2) = (f2,−f1). For p = 2, 4, 8, . . ., define

φp =

∫

ωp,

where all the integrals in this section are assumed to be over T2. First, the enstrophy inequality reads

1

2
φ′2 + ‖∇ω‖2L2 ≤ ‖F‖L2‖∇ω‖L2 = ‖f‖L2‖∇ω‖L2 ≤

1

2
‖f‖2L2 +

1

2
‖∇ω‖2L2 ,

from where, using

‖∇ω‖2L2 ≥
‖ω‖4L2

‖u‖2L2

=
φ22

‖u‖2L2

,

which follows from ‖ω‖L2 = ‖∇u‖L2 ≤ ‖u‖
1/2
L2 ‖∆u‖

1/2
L2 = ‖u‖

1/2
L2 ‖∇ω‖

1/2
L2 , we obtain

φ′2 +
φ22

C‖u‖2L2

≤ ‖f‖2L2 .

Therefore, by (2.6) and ‖f‖L2 .M ,

φ′2 +
φ22
CM2

≤ CM2,
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and thus there exists a universal constant t1 ≥ 0 such that

φ2(t) ≤ CM2, t ≥ t1.

Now, let p ∈ {2, 4, 8, . . .}. Testing the vorticity equation (2.7) with ω2p−1, we get

1

2p
φ′2p + (2p− 1)

∫

ω2p−2|∇ω|2 =

∫

∂jFjω
2p−1

= −(2p− 1)

∫

Fjω
2p−2∂jω ≤ (2p− 1)‖F‖L2p‖ωp−1‖L2p/(p−1)‖ωp−1∇ω‖2

≤
2p− 1

2

∫

ω2p−2|∇ω|2 + Cp‖f‖2L2p‖ωp−1‖2L2p/(p−1) ,

from where
1

2p
φ′2p +

2p− 1

2

∫

ω2p−2|∇ω|2 ≤ Cp‖f‖2L2p‖ω‖
2p−2
L2p . (2.8)

Using Nash’s inequality, cf. [N, p. 936],

‖v‖L2 . ‖v‖
1/2
L1 ‖∇v‖

1/2
L2 + ‖v‖L1 (2.9)

with v = ωp, we get ‖ωp‖L2 . ‖ωp‖
1/2
L1 ‖∇(ωp)‖

1/2
L2 + ‖ωp‖L1 whence ‖ω‖4pL2p . p2‖ω‖2pLp‖ωp−1∇ω‖2L2 +

‖ω‖4pLp . Therefore,

‖ωp−1∇ω‖2L2 ≥
‖ω‖4pL2p − C‖ω‖4pLp

Cp2‖ω‖2pLp

.

Applying this inequality on the second term in (2.8), we get

1

2p
φ′2p +

φ22p − Cφ4p
Cpφ2p

≤ Cp‖f‖2L2pφ
(p−1)/p
2p , (2.10)

whence, by (2.3),

φ′2p +
φ22p − Cφ4p

Cφ2p
≤ Cp2+2λM2φ

(p−1)/p
2p .

Note that if

φ2p ≥ C0 max
{

φ2p, p
2(1+λ)p/(p+1)φ2p/(p+1)

p M2p/(p+1)
}

, (2.11)

then

φ′2p +
φ22p
Cφ2p

≤ 0,

which means that once φp is bounded, φ2p is rapidly decreasing as long as it is sufficiently large. By

increasing the constants, we may assume that

φ2(t) ≤ C0M
2, t ≥ t1

and C0 ≥ 1. Denote pk = 2k, for k ∈ N. Now, define recursively a sequence M1,M2,M3, . . . such that

Mk+1 = C0 max
{

pkM
2
k , p

2(1+λ)pk/(pk+1)
k M

2pk/(pk+1)
k M2pk/(pk+1)

}

, k = 1, 2, . . . (2.12)
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(the reason for pk in front of M2
k , comparing (2.12) with (2.11), is that it appears on the right side of

(2.13) below). Also, let

M1 = C0M
2.

We shall define a sequence 0 ≤ t1 ≤ t2 ≤ · · · such that

φ2k(t) ≤Mk, t ≥ tk

with {tk}
∞

k=1 uniformly bounded. To construct this sequence, we proceed inductively, and assume that

tk has been set. As long as φ2k+1 ≥Mk+1, we have

φ′2k+1 +
φ22k+1

CM2
k

≤ 0.

Solving this inequality, we obtain the existence of tk+1 ≥ tk such that

φ2k+1(t) ≤ 2kM2
k , t ≥ tk+1 (2.13)

with

tk+1 − tk ≤
C

2k
. (2.14)

Note that (2.12) and (2.13) imply

φ2k+1(t) ≤Mk+1, t ≥ tk+1.

By the summability of the right side of (2.14) in k, the sequence tk with the indicated properties has

been constructed. In particular,

φ2k ≤Mk, t ≥ T0,

where T0 = limk tk <∞.

It remains to obtain a suitable upper bound for Mk. For this purpose, we construct a dominating

sequence R1, R2, R3, . . .. Let

Rk+1 = C1p
µ
kR

2
k, k = 1, 2, . . . (2.15)

with a constant C1 ≥ C0 to be determined and with µ = 2 + 2λ. Also, set

R1 = C12
µM2. (2.16)

First, using induction, it is easy to check that (2.15) and (2.16) imply

Rk = (2µC1)
2k−1M2k , k = 1, 2, 3, . . . . (2.17)

Next, we claim that

Mk ≤ Rk, k = 1, 2, . . . . (2.18)

It is clear that (2.18) holds for k = 1. Assuming that (2.18) holds for k ∈ N, we get

Mk+1 = C0 max
{

pkM
2
k , p

2(1+λ)pk/(pk+1)
k M

2pk/(pk+1)
k M2pk/(pk+1)

}

≤ C0 max
{

pkR
2
k, p

2(1+λ)pk/(pk+1)
k R

2pk/(pk+1)
k M2pk/(pk+1)

}

≤ C1p
µ
kR

2
k = Rk+1.

(2.19)
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The second inequality in (2.19) is obtained by a direct verification. Since we have now established

Mk ≤ (2µC1)
2k−1M2k , k = 1, 2, 3, . . . ,

by (2.17) and (2.18), we get

M
1/2k

k ≤ 2µC1M, k = 1, 2, 3, . . . ,

and the first part of the lemma is established.

As for the last assertion, let t0 > 0 be arbitrary. Applying the Gronwall lemma on (2.5), we get (2.6)

for t ≥ t0/2, where C depends on ‖u0‖L2 and t0. By shifting time by t0/2, we have (2.6) for t ≥ 0.

Similarly, we can choose tk = t0/2
k+1 for k = 1, 2, ... and the constants then depend on ‖u0‖L2 and

t0.

An important device in the proof of Theorem 2.1 is the modified vorticity

ζ = ω −Rρ, (2.20)

introduced in [KW] where

R = ∂1Λ̃
−2 = ∂1(I −∆)−1

with Λ̃ = (I − ∆)1/2. This, in turn, is a modification of the change of variable introduced in [JMWZ]

(cf. also [SW, HKR]). The quantity ζ satisfies

ζt −∆ζ + u · ∇ζ = [R, u · ∇]ρ−Nρ, (2.21)

where

N = (Λ̃−2∆− I)∂1 (2.22)

is a smoothing operator of order −1 (cf. [KW]), i.e., the operator ∇N in the Calderón-Zygmund class.

Using that u is divergence-free, the first term on the right hand side of (2.21) may be rewritten as

[R, u · ∇]ρ = Ruj∂jρ− uj∂jRρ = ∂jR(ujρ)− uj∂jRρ = [∂jR, uj ]ρ. (2.23)

Also, for any multiplier operator T , we have

T
(

[R, u · ∇]ρ
)

= [TR∂j , uj ]ρ− [T∂j , uj ]Rρ (2.24)

(cf. [KW]). In both identities (2.23) and (2.24), which may be verified by a direct calculation, it is

essential that u is divergence-free.

Proof of Theorem 2.1. We assume

‖u0‖H2 , ‖ρ0‖H1 ≤ C. (2.25)

By the Gagliardo-Nirenberg inequality

‖v‖Lp . p1/2‖v‖
2/p
L2 ‖∇v‖

1−2/p
L2 + ‖v‖L2
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with v = ρ0 and by (2.25), we get

‖ρ0‖Lp . p1/2, p ∈ [2,∞)

and thus

‖ρ(t)‖Lp . p1/2, t ≥ 0, p ∈ [2,∞). (2.26)

Using (2.26) and applying Lemma 2.2 with λ = 1/2, there exists t1 ≥ 0 such that

‖ω‖Lp ≤ C, t ≥ t1, p ∈ [2,∞], (2.27)

which by the triangle inequality implies

‖ζ‖Lp . 1, t ≥ t1, p ∈ [2,∞]. (2.28)

Since C is allowed to depend on ‖u0‖L2 , we may assume that t1 > 0 is arbitrarily small.

In order to bound ∇ω, we consider evolution of the modified vorticity (2.20). Applying ∂k to (2.21),

multiplying the resulting equation by |∂kζ|
2p−2∂kζ, integrating and summing in k leads to

1

2p

d

dt

∑

k

‖∂kζ‖
2p
L2p −

∑

k

∫

(∆∂kζ)|∂kζ|
2p−2∂kζ dx

= −
∑

k

∫

∂k(uj∂jζ)|∂kζ|
2p−2∂kζ dx+

∑

k

∫

∂k([R, u · ∇]ρ)|∂kζ|
2p−2∂kζ dx

−
∑

k

∫

∂kNρ|∂kζ|
2p−2∂kζ dx

= J1 + J2 + J3

(2.29)

with no summation convention applied to the index k in this proof. For p ∈ {2, 4, 8, . . . }, denote

ψp =
∑

k

∫

|∂kζ|
p. (2.30)

Note that the second term on the left hand side of (2.29) equals

2p− 1

p2

∑

k

∫

∂j(|∂kζ|
p)∂j(|∂kζ|

p) ≥
D

p
,

where

D =
∑

k

∫

∂j(|∂kζ|
p)∂j(|∂kζ|

p) =
∑

k

‖∇(|∂kζ|
p)‖2L2 .

Regarding J1, we use the divergence-free condition on u to write

J1 = −
∑

k

∫

∂k(uj∂jζ)|∂kζ|
2p−2∂kζ = −

∑

k

∫

∂kuj∂jζ|∂kζ|
2p−2∂kζ

. ‖∇u‖L2

∥

∥∇ζ‖L4p

∑

k

∥

∥|∂kζ|
2p−1‖L4p/(2p−1) . ‖∇u‖L2

∑

k

‖∇ζ‖2pL4p .
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Therefore,

J1 . ‖ω‖L2‖∇ζ‖2pL4p .
∑

k

‖∂kζ‖
2p
L4p .

Using the Gagliardo-Nirenberg inequality, we have

‖∂kζ‖
2p
L4p = ‖|∂kζ|

p‖2L4 . ‖|∂kζ|
p‖L2‖∇(|∂kζ|

p)‖L2 = ‖∂kζ‖
p
L2p‖∇(|∂kζ|

p)‖L2

for k = 1, 2, and thus

J1 ≤
D

4p
+ Cp

∑

k

‖∂kζ‖
2p
L2p ≤

D

4p
+ Cpψ2p. (2.31)

Next, for the second term J2, we have

J2 = −(2p− 1)
∑

k

∫

[R, u · ∇]ρ|∂kζ|
2p−2∂kkζ dx

= −
2p− 1

p

∑

k

∫

[R, u · ∇]ρ|∂kζ|
p−2∂kζ∂k(|∂kζ|

p) dx

. ‖[R, u · ∇]ρ‖L2p

∑

k

‖∇(|∂kζ|
p)‖L2‖|∂kζ|

p−1‖L2p/(p−1) .

The first factor is estimated as

‖[R, u · ∇]ρ‖L2p ≤ ‖R(uj∂j)ρ‖L2p + ‖uj∂jRρ‖L2p = ‖R∂j(ujρ)‖L2p + ‖uj∂jRρ‖L2p

. p‖ρu‖L2p + ‖u‖L∞‖(∇R)ρ‖L2p . p‖u‖L∞‖ρ‖L2p . p3/2,

where we used (2.1) and (2.26) in the last inequality. Therefore, we obtain

J2 . p3/2
∑

k

‖∇(|∂kζ|
p)‖L2‖|∂kζ|

p−1‖L2p/(p−1) . p3/2
∑

k

‖∇(|∂kζ|
p)‖L2‖∂kζ‖

p−1
L2p

≤ p3/2D1/2
∑

k

‖∂kζ‖
p−1
L2p ≤

D

4p
+ Cp4

∑

k

‖∂kζ‖
2p−2
L2p ≤

D

4p
+ Cp4ψ

(p−1)/p
2p .

(2.32)

For J3, we use that the operator N , defined in (2.22), is a smoothing operator or order −1 (cf. [KW]).

Thus

J3 .
∑

k

‖∂kNρ‖L2p‖|∂kζ|
2p−1‖L2p/(2p−1) . p

∑

k

‖ρ‖L2p‖|∂kζ|
2p−1‖L2p/(2p−1)

. p3/2
∑

k

‖∂kζ‖
2p−1
L2p . p3/2ψ

(2p−1)/2p
2p .

(2.33)

By replacing the estimates (2.31), (2.32), and (2.33) in (2.29), we get

1

p
ψ′

2p +
1

p
D ≤ Cpψ2p + Cp4ψ

(p−1)/p
2p + Cp3/2ψ

(2p−1)/2p
2p , p ≥ 2.

Using (2.9) with v = |∂kζ|
p, we obtain

1

p
ψ′

2p +
ψ2
2p − Cψ4

p

Cpψ2
p

≤ Cpψ2p + Cp4ψ
(p−1)/p
2p + Cp3/2ψ

(2p−1)/2p
2p , p ≥ 2,
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and thus, absorbing the last term on the right side and multiplying the resulting inequality by p,

ψ′

2p +
ψ2
2p

Cψ2
p

≤ Cψ2
p + Cp2ψ2p + Cp5ψ

(p−1)/p
2p , p ≥ 2. (2.34)

In order to start the induction, we also need an estimate for ψ2. In this case, we have

D =
∑

k

∫

∂jkζ∂jkζ =
∑

k

‖∇(∂kζ)‖
2
L2 &

‖∇ζ‖4L2

‖ζ‖2L2

.

Then the same derivation as above shows that

ψ′

2 +
‖∇ζ‖4L2

‖ζ‖2L2

≤ Cψ2 + C, (2.35)

from where, using (2.28) with p = 2,

ψ′

2 + ψ2
2 ≤ Cψ2 + C.

Applying the Gronwall inequality, this implies that there exists t2 ≥ t1 such that

‖∇ζ‖L2 ≤ C, t ≥ t2.

Going back to the inequality (2.34), fix p ≥ 2, and note that if for any t ≥ 0 we have

ψ2p ≥ Cmax{p2ψ2
p, p

5ψ2p/(p+1)
p },

for a sufficiently large constant C, half of the second term on the left hand side dominates the terms on

the right hand side and thus

ψ′

2p +
ψ2
2p

2ψ2
p

≤ 0.

As in the proof of Lemma 2.2, this implies the existence of t3 ≥ t2 such that

‖∇ζ‖Lp ≤ C, t ≥ t3, p ∈ [2,∞].

In particular, we get

‖∇ω‖Lp . p3/2, t ≥ t3, p ∈ [2,∞), (2.36)

since ‖∇Rρ‖Lp . p‖ρ‖Lp . p3/2. The inequalities (2.27) and (2.36) then imply

‖∇u‖L∞ ≤ C, t ≥ t3.

Since

d

dt
‖∇ρ‖2L2 . ‖∇u‖L∞‖∇ρ‖2L2 , (2.37)

we get

‖∇ρ‖L2 ≤ CeCt, t ≥ 0,

and the assertion is proven.
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Remark 2.3. It is not difficult to extend Theorem 2.1 to the case when we do not assume
∫

T2 u0 = 0. In

this case, we get
∣

∣

∫

T2 u
∣

∣ . t+ 1. Based on the energy inequality

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ C‖u‖L2

we get ‖u(t)‖L2 . t+1 for t ≥ 0. Also, as in the proof above, we get ‖ω‖Lp . (t+1)1/2 for all p ∈ [2,∞]

and thus also ‖ζω‖Lp . (t + 1)1/2 for all t ≥ t1 for some t1 ≥ 0. Again proceeding as above, we get

‖∇ζ‖Lp . (t+ 1)1/2 first for p = 2 and then for all p ∈ [2,∞] for t sufficiently large.

3 The case R
2

In this section, we consider the case of the whole space R
2.

Theorem 3.1. Assume that (u0, ρ0) ∈ H2(R2)×H1(R2), where ∇ · u0 = 0. Then we have

‖u‖H2 ≤ C(t+ 1)1/2, t ≥ 0

and

‖∇ρ‖L2 ≤ CeC(t+1)β+1 log(t+2), t ≥ 0

for a constant C = C(‖u0‖H2 , ‖ρ0‖H1), where

β =

∞
∏

j=1

(

1−
1

2j

)

= 0.28878 · · · .

Moreover,

‖ω(t)‖Lp . (t+ 1)1/p+β(1−2/p), t ≥ t0, p ∈ [2,∞]

and

‖∇ω(t)‖Lp . p3/2 + (t+ 1)1/2, t ≥ t0, p ∈ [2,∞)

for some t0 ≥ 0.

Remark 3.2. The reason for a different bound than in Theorem 2.1 is a lack of the Poincaré inequality,

which is available in other settings in this paper. If an additional damping term γu, where γ > 0, is

added to the left side of the equation (1.1), then the bounds are identical to those in Theorem 2.1, with

constants depending on γ.

Proof of Theorem 3.1. The energy inequality

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ C‖u‖L2

implies

‖u(t)‖L2 . t+ 1, t ≥ 0.

Similarly, the L2 inequality for the vorticity reads

1

2

d

dt
‖ω‖2L2 + ‖∇ω‖2L2 ≤ C,

11



which implies

‖∇u(t)‖L2 = ‖ω‖L2 . (t+ 1)1/2, t ≥ 0. (3.1)

Next, we consider the upper bounds for ‖ω‖Lp and ‖∇ω‖Lp for p ≥ 2. Denote

φp = ‖ω‖pLp

and fix p ≥ 2. From the vorticity equation

ωt −∆ω + u · ∇ω = ∂1ρ

we obtain, as in (2.10), the inequality

φ′2p +
φ22p
Cφ2p

≤ Cp3φ
(p−1)/p
2p .

As in the proof of Lemma 2.2, we conclude by induction that

‖ω‖Lp . (t+ 1)βp , t ≥ t0,

for p = 2, 4, . . ., where

β2k =

k
∏

j=1

(

1−
1

2j

)

.

Therefore,

‖ω‖L∞ . (t+ 1)β , t ≥ t0.

Combined with (3.1), we get

‖ω‖Lp . (t+ 1)1/p+β(1−2/p), t ≥ t0, p ∈ [2,∞],

from where also

‖∇u‖Lp . p(t+ 1)1/p+β(1−2/p), t ≥ t0, p ∈ [2,∞).

In order to obtain an estimate on the growth of ∇ω, we consider the generalized vorticity (2.20), which

satisfies (2.21). As in the periodic case, we set (2.30), i.e.,

ψp =
∑

k

∫

|∂kζ|
p, p ≥ 2

and obtain

ψ′

2 +
ψ2
2

‖ζ‖2L2

≤ Cψ2 + C (3.2)

(cf. (2.35) above) and

ψ′

2p +
ψ2
2p

Cψ2
p

≤ Cp2ψ2p + Cp5ψ
(p−1)/p
2p , p ≥ 2 (3.3)

12



(cf. (2.34) above). The inequality (3.2) and

‖ζ‖L2 . (t+ 1)1/2, t ≥ 0

imply

ψ2(t) . t+ 1, t ≥ 0.

Continuing by induction, we obtain from (3.3)

ψp(t) . pµ(t+ 1)p/2, t ≥ 0, p = 2, 22, 23, . . .

with a certain µ > 0. These inequalities then lead to

‖∇ζ‖Lp . (t+ 1)1/2, t ≥ 0, p ∈ [2,∞].

From here, we obtain ‖∇ω‖Lp ≤ ‖∇ζ‖Lp+‖∇Rρ‖Lp . (t+1)1/2+p3/2, and thus ‖D2u‖Lp . p5/2(t+1)1/2.

Therefore,

‖∇u‖L∞ ≤ C‖∇u‖
1−2/p
Lp ‖D2u‖

2/p
Lp . Cp(t+ 1)3/p−2/p2

.

Choosing a proper value for p, we get

‖∇u‖L∞ . (t+ 1)β∞ log(t+ 1), t ≥ t0

which then implies

‖∇ρ‖L2 . exp
(

(t+ 1)β∞+1 log(t+ 1)
)

, t ≥ 0,

and the theorem is proven.

4 Bounds with the Lions boundary condition

In this section, we consider the Boussinesq system on a bounded smooth domain Ω ⊆ R
2, with the Lions

boundary conditions

u · n = ω = 0 on ∂Ω,

where n denotes the outward unit normal. We use the standard notation corresponding to the Navier-

Stokes system [CF, T1, R, HKZ1]. In particular, denote

H = {u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 on ∂Ω},

where n stands for the outward unit normal vector with respect to the domain Ω, which is assumed to

be smooth and bounded. Let also

V = {u ∈ H1(Ω) : ∇ · u = 0, u · n = 0 on ∂Ω}.

The Stokes operator A : D(A) → H, with the domain D(A) = H2(Ω)∩V , is defined by A = −P∆, where

P is the Leray projector in L2(Ω) on the space H.
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Theorem 4.1. Assume that (u0, ρ0) ∈ D(A)×H1(Ω). Then we have

‖u‖H2 ≤ C, t ≥ 0 (4.1)

and

‖∇ρ‖L2 ≤ CeCt, t ≥ 0 (4.2)

for a constant C = C(‖u0‖D(A), ‖ρ0‖H1). In addition, we have

‖ω(t)‖Lp ≤ C, t ≥ t0, p ∈ [2,∞],

where t0 ≥ 0 depends on ‖u0‖L2 and ‖ρ0‖L2 .

The global persistence for the Boussinesq system with the Lions boundary conditions was recently

addressed by Doering et al in [DWZZ]. The authors moreover proved that ‖u‖H1 → 0 as t → ∞. It is

not clear whether the same holds for other boundary conditions considered in the present paper. Namely,

the important ingredients in [DWZZ] are that θ = ay+ b belongs to the state space and that the vorticity

ω vanishes on the boundary.

From here on, the constant C is allowed to depend on ‖u0‖D(A) and ‖ρ0‖H1 . The proof of the assertion

(4.1) is the same as in [J], which considered the Dirichlet boundary condition. From [J], we also recall

the inequality
∫ t2

t1

‖A3/2u(s)‖2L2 ds ≤ C(t2 − t1 + 1), 0 ≤ t1 ≤ t2

(cf. [J, p. 115]).

Proof of Theorem 4.1. Note that the proof of Lemma 2.2 applies here verbatim, and thus we obtain

‖ω(·, t)‖Lp ≤ C, t ≥ t0, 2 ≤ p ≤ ∞. (4.3)

Since t0 > 0 may be chosen arbitrarily small (cf. Lemma 2.2) and by the local existence, we may simply

assume that (4.3) holds for all t ≥ 0.

Now, note that the argument starting in (2.29) does not apply in this setting due to arising boundary

terms. Thus we use an alternative argument, described next. Fix t0 > 0. Let θ : R → [0,∞) be a smooth

non-decreasing function such that θ ≡ 0 on [0, t0/2] and θ ≡ 1 on [t0,∞]. Then we have

∂t(θ(t)ω)−∆(θ(t)ω) = θ′(t)ω − ∂j(θ(t)ujω) + ∂1(θ(t)ρ)

= ∂1(θ
′(t)u2)− ∂2(θ

′(t)u1)− ∂j(θ(t)ujω) + ∂1(θ(t)ρ).

14



Using the parabolic regularity with the right side in divergence form we get, for all t ≥ 0,

(
∫ t

0

‖θ(s)∇ω(s)‖pLp ds

)1/p

≤ Cp

(
∫ t

0

‖θ′(s)u‖pLp ds

)1/p

+ Cp

(
∫ t

0

‖θ(s)ω(s)u(s)‖pLp ds

)1/p

+ Cp

(
∫ t

0

‖θ(s)ρ(s)‖pLp ds

)1/p

≤ Cp

(
∫ t

0

‖θ′(s)u‖pLp ds

)1/p

+ Cp

(
∫ t

0

‖θ(s)ω(s)‖pLp ds

)1/p

+ Cp

(
∫ t

0

‖θ(s)ρ(s)‖pLp ds

)1/p

≤ Cp

(
∫ t

0

‖u‖pLp ds

)1/p

+ Cp3/2t1/p,

(4.4)

where 2 ≤ p <∞ by ‖u‖L∞ . ‖u‖H2 . 1. Therefore, using ‖u‖Lp . 1,

(
∫ t

0

‖θ(s)∇ω(s)‖pLp ds

)1/p

≤ Cp3/2t1/p.

Now, for every p ∈ [2,∞), we have

‖∇u‖L∞ ≤ C‖∇u‖
1−2/p
Lp ‖D2u‖

2/p
Lp + C‖∇u‖Lp ≤ Cp‖ω‖

1−2/p
Lp ‖∇ω‖

2/p
Lp + Cp‖ω‖Lp .

In particular,

∫ t

t0

‖∇u‖L∞ ds .

∫ t

t0

‖ω‖
1/2
L4 ‖∇ω‖

1/2
L4 ds+

∫ t

t0

‖ω‖L4 ds

.

(
∫ t

t0

‖ω‖
4/7
L4 ds

)7/8 (∫ t

t0

‖∇ω‖4L4 ds

)1/8

+

∫ t

t0

‖ω‖L4 ds

. t7/8t1/8 + t . t,

(4.5)

where we used (4.4) with p = 4 in the last inequality. Integrating (2.37), which also holds in this setting,

and applying (4.5) then gives the inequality (4.2).

5 Bounds with the Dirichlet boundary condition

Finally, we address the long time behavior of the Boussinesq system with the classical Dirichlet (non-slip)

boundary condition

u = 0 on ∂Ω,

where Ω is a bounded smooth domain. Recall the standard notation H = {u ∈ L2(Ω) : ∇ · u =

0, u · n = 0 on ∂Ω}, where n denotes the outward unit normal vector with respect to the domain Ω, and

V = H1
0 (Ω) ∩H. The Stokes operator is then defined as in the previous section, i.e.,

A = −P∆,

with the domain D(A) = H2(Ω) ∩ V , where P is the Leray projector in L2(Ω) on the space H.
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Theorem 5.1. Assume that (u0, ρ0) ∈ D(A)×H1(Ω). Then we have

‖v‖H2 ≤ C, t ≥ 0 (5.1)

and

‖∇ρ‖L2 ≤ CeCt, t ≥ 0 (5.2)

for a constant C = C(‖u0‖D(A), ‖ρ0‖H1).

Proof of Theorem 5.1. With θ = θ(t) a smooth cut-off function as in the previous section, we have

∂t(θu)−∆(θu) + u · ∇(θu) +∇(θp) = θ′u+ θρe2.

Using the W 2,4 regularity estimate due to Sohr and Von Wahl [SvW], we get

(
∫ t

0

‖θD2u‖4L4

)1/4

.

(
∫ t

0

‖u · ∇(θu)‖4L4 ds

)1/4

+

(
∫ t

0

‖θ′u‖4L4 ds

)1/4

+

(
∫ t

0

‖ρ‖4L4 ds

)1/4

.

(
∫ t

0

‖u‖4L8‖∇u‖4L8 ds

)1/4

+

(
∫ t

0

‖u‖4L4 ds

)1/2

+ t1/4

.

(
∫ t

0

‖u‖L2‖∇u‖4L2‖D2u‖3L2 ds

)1/4

+

(
∫ t

0

‖u‖2L2‖∇u‖2L2 ds

)1/4

+ t1/4

. t1/4

whence
∫ t

t0

‖D2u‖4L4 . t. (5.3)

Also, by (5.1), we obtain

‖ω(t)‖Lp ≤ C(p), t ≥ t0, p ∈ [2,∞). (5.4)

As in the previous section, the inequalities (5.3) and (5.4) with p = 4 imply

∫ t

t0

‖∇u‖L∞ ds . t, t ≥ t0,

and (5.2) follows from (2.37).
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