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Abstract

We address long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity
in the cases of the torus, R?, and on a bounded domain with Lions or Dirichlet boundary conditions.
In all the cases, we obtain bounds on the long time behavior for the norms of the velocity and the
vorticity. In particular, we obtain that the norm ||(u, p)|| g2 g1 is bounded by a single exponential,
improving earlier bounds.

1 Introduction

We consider the asymptotic behavior of solutions to the Boussinesq equations without diffusivity

ur — Au+u - Vu+ V1 = pey (1.1)
pt+u-Vp=0 (1.2)
V-u=0 (1.3)

in a bounded domain Q@ C R?, T2, and R2. Here, u is the velocity satisfying the 2D Navier-Stokes
equations [CF, DG, FMT, R, T1, T2, T3] driven by p, which represents the density or temperature of
the fluid, depending on the physical context. Also, e; = (0, 1) is the unit vector in the vertical direction.

Recently, there has been a lot of progress made on the existence, uniqueness, and persistence of
regularity, mostly in the case of positive viscosity and vanishing diffusivity, considered here, while the
same question with both vanishing viscosity and diffusivity is an important open problem. The initial
results on the global existence in the regularity class have been obtained by Hou and Li [HL], who proved
the global existence and persistence in the class H® x H*~! for integer s > 3. Independently, Chae
[C] considered the class H* x H® and proved the global persistence in H* x H®. The class H® x H*~!

has subsequently been studied in the case of a bounded domain, where Larios et al proved in [LLT] the



global existence and uniqueness for s = 1 and then by Hu et al, who proved in [HKZ1] the persistence
for s = 2. The remaining range 1 < s < 3 was then resolved in [HKZ2] in the case of periodic boundary
conditions. For other works on the global existence and persistence in Sobolev and Besov classes, see
[ACW, BS, BrS, CD, CG, CN, CW, DP1, DP2, DWZZ, HK1, HK2, HS, KTW, KWZ, LPZ].

In a recent paper [J], Ju addressed the important question of long time behavior of solutions. He
proved that in the case of Dirichlet boundary conditions on a bounded domain ©, the H?(Q) x H'(Q)
norm grows at most as CeCtQ, where C > 0 is constant. In the present paper, we consider this question
for this and other boundary conditions. When the domain is finite, we prove that actually the H? x H!
norm is increasing as a single exponential. We conjecture that this bound is sharp. This is because it is
not expected that the solutions of the Boussinesq equation decay. However, note that the rate of increase

of the gradient of the density is bounded by the exponential integral of the L> norm of the gradient, i.e.,

t
IVp(t)l[L2 < exp (/0 Vu(s)| e d8> Vool L2,

cf. (2.37) below, and if u is not decaying, we should expect the integral to be bounded from below by
a constant multiple of ¢. In addition to the behavior of ||(u, p)||g2x a1, We also address the long time
behavior of the vorticity. In the case of the torus, we find constant upper bounds for the vorticity
and the gradient of the vorticity for all L? norms. This result relies on the uniform upper bound for
|lu|| g2 established in [J] as well as on a Nash-Moser type result on the growth of the vorticity, stated as
Lemma 2.2 below and which we believe is of independent interest.

The paper is structured as follows. In Section 2, we first address the case of periodic boundary
conditions. In this case, the exponential bound for the gradient of the density is obtained by establishing
a constant upper bound for ||Vu| r». For this purpose, we first obtain a uniform upper bound for all the
LP norms of the vorticity, a result based on a Nash-Moser type iteration. To do the same for the gradient
of the vorticity, it is not suitable to proceed with direct estimates. Instead, we recall the concept of the
generalized vorticity ¢ (cf. (2.20) below), which reduces the number of the derivatives in the density by
one.

In Section 3, we consider the case of the unbounded domain R?. Here, the energy does not decay and
in fact, the quantity ||u(-,t)||rz grows linearly in time. Applying a similar procedure as in Section 2, we
obtain ||u(-,t)|| g2 = O(t*/?) as well as an information on the growth of ||p||z1. In addition, we obtain
upper bounds for ||w||z» and p~3/2||Vw| s, which are uniform in p.

In the final two sections, we address the case of a smooth bounded domain with either Lions or
Dirichlet boundary conditions. For the Lions boundary conditions, we obtain ||Vp|/z2 < Ce®t, using
a different technique than the one for periodic boundary conditions. In addition, we obtain a uniform
constant upper bound for ||w||z». Similarly, the last section contains the results in the case of Dirichlet
boundary conditions, where we obtain an exponential upper bound for |Vp|/z2 < €t improving the

~

main result in [J].



2 Long time behavior for periodic boundary conditions

In this section, we consider the Boussinesq system (1.1)—(1.3) in the case of the torus T?, i.e., assuming
that v and p are 1-periodic. We assume for simplicity that fTQ u(-,t) = 0 for all ¢ > 0; the general case
can be addressed with the same methods; cf. Remark 2.3 below. The system is supplemented with the
initial condition

(u(-,0), p(-,0)) = (uo, po) € H*(T?) x H'(T?)

with ug divergence-free. By [HKZ1], there exists a global solution (u(t), p(t)) which belongs to H? x H*.
Also, by [J], we have
[u(®)|lg= <C,  t>0. (2.1)

In the following statement, we provide an upper bound for the growth of the p component of the
norm |[(u,p)||gzxm1. Also, we establish a uniform upper bound on the quantities |w(-,t)|» and
p~3/2|Vw(-,t)| r» for all p > 2.

Theorem 2.1. Assume that (uo, po) € H?(T?) x H*(T?) satisfies V - ug = 0 and [, uo = 0. Then we

have
o)l < Ce t>0
for a constant C' = C(||uo| g2, ||pol|g1). Moreover,
lwt)lzr <C,  t>to,  pe2,09)

and
IVw(t)|r < Cp*/2, t > to, p € [2,00), (2.2)

where tg > 0 depends on |lug|| 2.
Note that (2.1) and (2.2) imply
lullw=r < Cp*2, t>t0,  pe[200).

In the proof, we need the following statement on the long time behavior of solutions to the Navier-

Stokes equations, which is of independent interest.

Lemma 2.2. Consider the Navier-Stokes system

u—Au+u-Vu+Vr=f
V-u=0,

supplemented with a divergence-free initial condition u(-,0) = ug € L*(T?) such that [, uo = 0 and
Jp2 f(5t) =0 for t > 0. If, for some X >0, we have

£l o= ([0,00), L0 (12)) < DM, 2<p<oo, (2.3)



where M > 1, then there exists to > 0 depending only on ||ugl|r2 such that
[wi )y <OM,  t>ty,  2<p<oo, (2.4)

where C' is a universal constant. Moreover, for every ty > 0, there exists a constant C depending only on
luollr2 and to such that (2.4) holds.

The proof uses ideas from [K, Lemma 3.1], where A = 0 was considered. Lemma 2.2 is needed below
with A = 1/2.

Proof of Lemma 2.2. First, we prove (2.4) for some tg > 0, leaving the last assertion to the end of the

proof. Without loss of generality, M > 2. The energy inequality reads

1d

5 gl + IVullze < [1flleeflul 22, (2.5)

from where, using the Poincaré inequality,
Lllze + hllzs < 1722
Applying the Gronwall inequality and shifting time, we may assume, without loss of generality, that
lu(®)||2 < CM, t>0. (2.6)
Note that the size of the time shift depends only on |Jug|| 2 and M. Next, the vorticity w = V x u satisfies
w—Aw+u-Vw=V-F, (2.7)
where F' = (Fy1, F5) = (fa,—f1). For p=2,4,8, ..., define
6= [,
where all the integrals in this section are assumed to be over T2. First, the enstrophy inequality reads
L, 2 L2 1 2
205+ IVwlZa < IF NIVl oz = Il Vesllze < 511 + 519wl

from where, using

IVl > Ll 3
L2 — - 9
JullZ=  lulli
which follows from |||z = [[Vu|| 2 < [[ul| )5 Aull}s = [[ul|}2[Vw] 15, we obtain
2
/ ¢2 2
+ .
¢2 C”UH%Q = Hf||L2
Therefore, by (2.6) and || f||2 S M,
3 2
/
$2+ iz S OM7,



and thus there exists a universal constant ¢; > 0 such that
$a(t) < CM?, >t
Now, let p € {2,4,8,...}. Testing the vorticity equation (2.7) with w?~!, we get
%ng +2p-1) /pr_2|VoJ\2 = /8ijoJ2p_1
—(2p— 1)/FW P20, < (2p — DIF || 20 [P~ | 2w/ [P~ V2
< B [T + Ol o

from where
2p—1

1 _ -
op %o /“’QP 2IVwl? < Opl Il lwl 2. (2.8)

Using Nash’s inequality, cf. [N, p. 936],

1/2 1/2
ollze < 21Vl 22 + lloll o (2.9)
with v = w?, we get [lw?||z2 < [w?||lLA%|V(w?)| 12 + [Pl whence [lw|E, < p?|w|Plwh ! Vo2, +
|wl||7%. Therefore,
Cllw|*®
||wP*1VwH%2 Z || ||L2P gp ||Lp
Cp ||w||Lp

Applying this inequality on the second term in (2.8), we get

4

st + B2 < Ol sl (210
whence, by (2.3),

(/5/21) ¢2pc¢2 ¢p <C 2+2>\M2¢(p n/
Note that if

bap > Co max{d)f,,p2(1+’\)p/(”+1)qu)p/(pH)MQp/(pH) }7 (2.11)
then
Py, + (bz; <0,

which means that once ¢, is bounded, ¢, is rapidly decreasing as long as it is sufficiently large. By

increasing the constants, we may assume that
$2(t) < CoM?, >t
and Cy > 1. Denote py = 2%, for k € N. Now, define recursively a sequence M;, My, Ms, ... such that

Mps1 = Comax{pp g, pi P/t ppoe ety g2/t D4 =1, (2.12)

)



(the reason for py in front of M?2, comparing (2.12) with (2.11), is that it appears on the right side of
(2.13) below). Also, let
M; = CoM>.

We shall define a sequence 0 < t; <ty < --- such that
¢on (t) < My, t >t

with {¢x}%2, uniformly bounded. To construct this sequence, we proceed inductively, and assume that

tr has been set. As long as ¢or+1 > M1, we have

Dyens <0.
oM? =

Poeir +

Solving this inequality, we obtain the existence of ¢511 > t; such that

Porsr (t) <28ME, t>tpp (2.13)
with
i =t < o (2.14)
Note that (2.12) and (2.13) imply
¢2k+1 (t) < Mk+1, t> Tht1-

By the summability of the right side of (2.14) in k, the sequence t; with the indicated properties has
been constructed. In particular,
¢2k < Mky t> TOa

where Ty = limyg t, < oo.
It remains to obtain a suitable upper bound for M. For this purpose, we construct a dominating

sequence Ri, Ry, R3,.... Let
Ri1 = CiplRE, k=1,2,... (2.15)

with a constant C7; > Cj to be determined and with u = 2 + 2X. Also, set
Ry = C 2" M?. (2.16)
First, using induction, it is easy to check that (2.15) and (2.16) imply
R, = (2"C)Y M2, k=1,2,3,.... (2.17)

Next, we claim that
My, < Ry, k=1,2,.... (2.18)

It is clear that (2.18) holds for k = 1. Assuming that (2.18) holds for k € N, we get
M1 = Co max{pkMg’pi(l'i')\)Pk/(Pk+1)Mlzpk/(Pk+1)M2pk/(pk+1)}
<0, max{kai,pi(lJr)\)pk/(karl)Ripk/(pwrl)M2pk/(m+1)} (2.19)
< C1pi R = Ri11.



The second inequality in (2.19) is obtained by a direct verification. Since we have now established
M, < e MY, k=1,2,3,...,

by (2.17) and (2.18), we get
k
M/ <oy M,  k=1,2,3,...,

and the first part of the lemma is established.

As for the last assertion, let ¢y > 0 be arbitrary. Applying the Gronwall lemma on (2.5), we get (2.6)
for t > t¢/2, where C' depends on |lug||z2 and tg. By shifting time by ¢,/2, we have (2.6) for ¢ > 0.
Similarly, we can choose t; = tq/2F*1 for k = 1,2,... and the constants then depend on |ug| > and
to. O

An important device in the proof of Theorem 2.1 is the modified vorticity
¢ =w— Rp, (2.20)
introduced in [KW] where
R=0A2=0,(I-A)""!

with A = (I — A)Y/2. This, in turn, is a modification of the change of variable introduced in [JMWZ]
(cf. also [SW, HKR]). The quantity ¢ satisfies

G~ AC+u- V(= [Ru-V]p—Np, (2.21)

where
N =(A2A -1, (2.22)

is a smoothing operator of order —1 (cf. [KW]), i.e., the operator VN in the Calderén-Zygmund class.

Using that u is divergence-free, the first term on the right hand side of (2.21) may be rewritten as
[R,u- V]p = Ru;0;p —u;0;Rp = 9;R(u;p) — u;0; Rp = [0; R, uj]p. (2.23)
Also, for any multiplier operator T', we have
T([R,u-V]p) = [TRO;,u;lp — [T0;,u;]Rp (2.24)

(cf. [KW]). In both identities (2.23) and (2.24), which may be verified by a direct calculation, it is

essential that u is divergence-free.

Proof of Theorem 2.1. We assume
[uol|mz2, [|pol| 1 < C. (2.25)

By the Gagliardo-Nirenberg inequality

2 1-2
[vllze S P20l 22190527 + o]l 2



with v = py and by (2.25), we get
lpollze S P2, pe[2,00)
and thus
lp)lle Sp72, >0,  pe(2,00). (2.26)

Using (2.26) and applying Lemma 2.2 with A = 1/2, there exists t; > 0 such that

lwllze < C, t >, p € [2,00], (2.27)
which by the triangle inequality implies

[Kller ST, t>t,  pe[2,00] (2.28)

Since C' is allowed to depend on |lug||r2, we may assume that ¢; > 0 is arbitrarily small.
In order to bound Vw, we consider evolution of the modified vorticity (2.20). Applying Jx to (2.21),
multiplying the resulting equation by |0(|*?~20x(, integrating and summing in k leads to

1d

5 i 2 I0kCEE, = > / (ADKC)|ORC[*204C da
k k

- N S ) 2p—2
_ Zk:/ak(u]ajg)mkgp 3dea?+zk:/3k([R,u V]p)|0kC|*P ™0k C dx (2.29)

- Z/@kNp\akﬂz”_Qadex
k
=Ji+Jo+ J3

with no summation convention applied to the index k& in this proof. For p € {2,4,8,...}, denote

Yp = |OkCIP. (2.30)
>/

Note that the second term on the left hand side of (2.29) equals

2p—1
P2

> [ ooy = 3,

where
D=3 [aiocPio o) = 3 IV (acP) -
k k
Regarding J;, we use the divergence-free condition on u to write
5= =3 ot 00uclr2ou = =3 [ o cione o
b k

SIVallz V¢l Y110kl awrenn S IVullzz D IIVEITE,.
k k



Therefore,

T S lwlle2 V¢, S Z 10x< 75 -
Using the Gagliardo-Nirenberg inequality, we have

10k¢ 172 = 10RC P70 S 110kCIP 12V (k¢ IP) 22 = 10kC I 20 IV (10CIP) ] 2
for £k = 1,2, and thus
D D
S sz 10k¢ 11750 < 1 P (2.31)
Next, for the second term Js, we have

Jo=—(2p—1) Z/[R,u - V]p|okC P20 ¢ da
k

L it Z/[R,u - VplOkC [P~ 2 0Ok (|0kC|P) dae
P

SR w-Vpllzze Y IV (0kCP) 2 11061 N popro--
k

The first factor is estimated as

|- Vipllzer < [ROw;0)plluen + ;0 Rollzn = 11RO, (uzp) | + ;0 Roll oo

S pllpullze + llull = [(VR)pl c2e S pllulpeloll2e S 92,

where we used (2.1) and (2.26) in the last inequality. Therefore, we obtain

T2 S 7Y IV 2 ORC P I oo S 0%/ Z IV (18kCIP) 22 10kC I 20
k

(2.32)
<p*2Dp'/? Z [EAq g T Op‘*Z 10k 75,2 < + Cptyi P,
For Js, we use that the operator N, defined in (2.22), is a smoothing operator or order —1 (cf. [KW]).
Thus

I3 S 3 10N pll e 11061 pzwrcz— S 0> Npllzee 11081~ pwrcan
k k

- 2p—1)/2
SVAED D P Re i
k

(2.33)

By replacing the estimates (2.31), (2.32), and (2.33) in (2.29), we get
1 1 _ _
Uy + D < Cplhay + Cplugf ™ Cp Py p 2

Using (2.9) with v = |0x(|?, we obtain

V3, — Cy

i < Cpipay + Cptypd VP 4 Op* /28 p g,

1
,w’
prr



and thus, absorbing the last term on the right side and multiplying the resulting inequality by p,
v3,

5  (p—1
Uit G S O+ Oy + O, 22, (2.34)
D
In order to start the induction, we also need an estimate for 5. In this case, we have

Velize
D=3 [onconc = Y Iv@ols 2 e,
k k L

Then the same derivation as above shows that

IV¢lize
€172

Py + < Cipy +C, (2.35)
from where, using (2.28) with p = 2,
Wy + 5 < Cipy + C.
Applying the Gronwall inequality, this implies that there exists to > ¢; such that
IVCllz <C, t2>ta.

Going back to the inequality (2.34), fix p > 2, and note that if for any ¢ > 0 we have

Py > Cmax{p®y2, pPy2P/ @t}

for a sufficiently large constant C', half of the second term on the left hand side dominates the terms on

the right hand side and thus
V3
/ P
o, + 202 <0.

As in the proof of Lemma 2.2, this implies the existence of t3 > t5 such that
IV¢|r <C,  t>ts3, pe€[2,00].

In particular, we get
va||Lp 5 p3/27 t Z t3a p S [27 00)7 (236)

since |VRp||z» < pllpllee < p*/2. The inequalities (2.27) and (2.36) then imply

||VU||Loo S C, t 2 t3.

Since
d 2 < 2
2 1Vollze S IVl =lIVolz., (2.37)
we get
IVpllLz < Ce,  t>0,
and the assertion is proven. O

10



Remark 2.3. It is not difficult to extend Theorem 2.1 to the case when we do not assume fTQ ug = 0. In

this case, we get UTQ u| <t -+ 1. Based on the energy inequality

1d
S s + IVl < Clul
we get ||u(t)|z2 St+1 for t > 0. Also, as in the proof above, we get ||w||z» < (t4 1) for all p € [2, 00

~

and thus also ||Cwl|rr < (t+ 1)Y/2 for all ¢+ > ¢; for some ¢; > 0. Again proceeding as above, we get

IV¢|lr < (t+ 1)Y2 first for p = 2 and then for all p € [2, oc] for ¢ sufficiently large.

3 The case R?

In this section, we consider the case of the whole space R2.

Theorem 3.1. Assume that (ug, po) € H*(R?) x HY(R?), where V - ug = 0. Then we have
lulmz < CE+1)V2 t20
and
V|2 < CeCt+1) log(t+2)’ >0

for a constant C' = C(||uol| g2, ||pollg1), where

i 1
,@:Hl<1—2j> = (0.28878 - - -
j:

Moreover,
lw(®)l| e S

< (t+ 1)1/z)+ﬂ(1—2/1))’ t > to, p €2,
and

IVw@®)lle SP2+ 4+ 12 t>t),  pe[20)
for some tq > 0.

Remark 3.2. The reason for a different bound than in Theorem 2.1 is a lack of the Poincaré inequality,
which is available in other settings in this paper. If an additional damping term ~u, where v > 0, is
added to the left side of the equation (1.1), then the bounds are identical to those in Theorem 2.1, with

constants depending on .

Proof of Theorem 3.1. The energy inequality

1d
5 aellullZa + 19ulBs < Clull
implies

lu(®)lrz St+1,  t=0.
Similarly, the L? inequality for the vorticity reads

1d

Sl + Vel < C,

11



which implies
<@E+D)Y2 0 t>o0. (3.1)

~

IVu(®)|ze = [[wlz-
Next, we consider the upper bounds for ||w||zr and ||[Vw||zr for p > 2. Denote
¢p = WL
and fix p > 2. From the vorticity equation
wt — Aw +u-Vw = 01p
we obtain, as in (2.10), the inequality
¢y

-1
Ot oy < OV,
p

As in the proof of Lemma 2.2, we conclude by induction that
lollze S (E+1)%, ¢ >t

for p=2,4,..., where

w-T(1- 1)

j=1
Therefore,
lollz~ < E+1)7, >t
Combined with (3.1), we get
|wl|Le < (¢4 1)Y/PFAA=2/P) t > 1o, p € [2,00],

from where also
IVulle < p(t+ )YPFAO=20) >4 p e [2,00).

In order to obtain an estimate on the growth of Vw, we consider the generalized vorticity (2.20), which
satisfies (2.21). As in the periodic case, we set (2.30), i.e.,

wp=Z/\8k<|p, p>2
k

and obtain
;Y3
¢2+W <Cys+C (32)
L2
(cf. (2.35) above) and
’ wgp 2 5,,(p—1)/p
Yo, + oz < Cp*thap + CpPpyy, P, p>2 (3.3)
P

12



(cf. (2.34) above). The inequality (3.2) and
ICle S E+D)Y2 £>0

imply
Yo(t) St+1,  t>0.

Continuing by induction, we obtain from (3.3)
V(1) SprE+1)P2 >0,  p=2,222% ..
with a certain p > 0. These inequalities then lead to
V¢l S E+1DY2, >0,  pef2,00].

From here, we obtain ||Vw| z» < |VC|| 2o+ |V Rl e < (t4+1)1/24p3/2, and thus || D?u||p» < p>/2(t+1)12.

~

Therefore,
IVullz= < CIVul P |D*ul 7 < Cplt +1)*P=2/7".
Choosing a proper value for p, we get
[Vullpe < (t+1)P=log(t+1), t>tg
which then implies
IVpllze S exp ((t+1)7~ log(t +1)),  t>0,

and the theorem is proven. O

4 Bounds with the Lions boundary condition

In this section, we consider the Boussinesq system on a bounded smooth domain Q C R?, with the Lions
boundary conditions

u-n=w=0 on 0f,

where n denotes the outward unit normal. We use the standard notation corresponding to the Navier-
Stokes system [CF, T1, R, HKZ1]. In particular, denote

H={uecl*Q):V-u=0u-n=0ondN},

where n stands for the outward unit normal vector with respect to the domain €2, which is assumed to

be smooth and bounded. Let also
V={ueH(Q):V-u=0u-n=0ondN}.

The Stokes operator A: D(A) — H, with the domain D(A) = H%(Q) NV, is defined by A = —PA, where
P is the Leray projector in L?(Q2) on the space H.

13



Theorem 4.1. Assume that (ug, po) € D(A) x H*(Q). Then we have
lullpz <C, =0 (4.1)
and
|Vl < Ce“t, t>0 (4.2)
for a constant C' = C(||luol|p(ay, |pollz1). In addition, we have
lo@®lr <C, t>t,  pE[2,00],
where tg > 0 depends on ||uo||r2 and ||pollLz-

The global persistence for the Boussinesq system with the Lions boundary conditions was recently
addressed by Doering et al in [DWZZ]. The authors moreover proved that ||u|lg: — 0 as t — co. It is
not clear whether the same holds for other boundary conditions considered in the present paper. Namely,
the important ingredients in [DWZZ] are that § = ay+ b belongs to the state space and that the vorticity
w vanishes on the boundary.

From here on, the constant C'is allowed to depend on ||ug||p(ay and ||po|| g2 . The proof of the assertion
(4.1) is the same as in [J], which considered the Dirichlet boundary condition. From [J], we also recall
the inequality .

/ A3 2u(s) |2 ds < Clts — 1 +1),  0<t <t
ty

(cf. [J, p. 115]).

Proof of Theorem 4.1. Note that the proof of Lemma 2.2 applies here verbatim, and thus we obtain
oDl <C. t3t,  2<p< oo (4.3)

Since to > 0 may be chosen arbitrarily small (cf. Lemma 2.2) and by the local existence, we may simply
assume that (4.3) holds for all ¢ > 0.

Now, note that the argument starting in (2.29) does not apply in this setting due to arising boundary
terms. Thus we use an alternative argument, described next. Fix ¢y > 0. Let §: R — [0, 00) be a smooth

non-decreasing function such that ¢ =0 on [0,¢9/2] and § =1 on [tg, 00]. Then we have

P (0(t)w) — A(0(t)w) = 0 (t)w — 9;(0(t)ujw) + 91 (0(t)p)
= 010" (t)uz) — 92(0' (t)ur) — 9;(0(t)ujw) + D1 (6(t)p).

14



Using the parabolic regularity with the right side in divergence form we get, for all ¢ > 0,

([ wrveons, o) v
= (/ot |07l ds ) +Cr (/ 10(s)w(s)uls)IIZs ) o (/Ot 1(s)o(s)I%, d5>1/p
<op( [ 1l o ) won( [ 1ot ds) "o (/[ wsrotoniz, as) v

t 1/p
<Cp (/ ull?, ds) + Cp*/2t /P,
0
(4.4)

where 2 < p < 00 by ||ullpe < |lul|lge S 1. Therefore, using |Jul|r» < 1,

~

t 1/p
([ 109wtolt as) < o
0

Now, for every p € [2,00), we have
IVullz~ < ClIVullp, P D2l 3 + Cl|Vul e < Cpllwlln P Vw34 + Cpllwl|zr-

In particular,
t
/ (Ve ds < / wll 22| Veol| 2 ds + / lwllzs ds
to

S s (4.5)
s(t w477 d ) ( / ||w||‘z4ds) o eole ds
0 0

to
SR8 1 <ty

where we used (4.4) with p = 4 in the last inequality. Integrating (2.37), which also holds in this setting,

and applying (4.5) then gives the inequality (4.2). O

5 Bounds with the Dirichlet boundary condition

Finally, we address the long time behavior of the Boussinesq system with the classical Dirichlet (non-slip)

boundary condition
u=0 on 0,

where  is a bounded smooth domain. Recall the standard notation H = {u € L?(Q) : V- u =
0,u-n =0 on 9N}, where n denotes the outward unit normal vector with respect to the domain Q, and

V = H}(Q) N H. The Stokes operator is then defined as in the previous section, i.e.,
A= —-PA,

with the domain D(A) = H%(Q) NV, where P is the Leray projector in L?(Q) on the space H.
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Theorem 5.1. Assume that (ug, po) € D(A) x H*(Q). Then we have
ol <C. 20 (5.1)
and
IVpllzz < Ce,  t>0 (5.2)
for a constant C = C(||uol| p(ay [lpollm1)-

Proof of Theorem 5.1. With @ = 0(t) a smooth cut-off function as in the previous section, we have
0 (0u) — A(Ou) +u - V(0u) + V(0p) = 0'u + Opes.

Using the W2 regularity estimate due to Sohr and Von Wahl [SYW], we get

t 1/4 t 1/4 t 1/4 t 1/4
( / ||eDQu||‘z4) s( / ||u-v<9u>i4ds) +( / |e’u||i4ds) +( / ||p||i4ds)
t 1/4 " 1/2
([ mtrvuliaas) o ([ pulgeas) o
i . 1/4

t 1/4 t
s(/ ||u||Lz||Vu||4Lz||D2u||i2ds) +(/ u||%z||w||%zds) e

< g1/
whence .
| Iptalt st (53
to
Also, by (5.1), we obtain
[w®)l[rr < C(p),  t>to,  pE2,00). (5.4)

As in the previous section, the inequalities (5.3) and (5.4) with p = 4 imply
t
/ ||VU||LO@ dsf/t, tzto,
to

and (5.2) follows from (2.37). O
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