

Effect of pH on Methane Oxidation and Community Composition in Landfill Cover Soil

Krishna R. Reddy, F. ASCE

Professor, University of Illinois at Chicago, Department of Civil & Materials Engineering, 842 West Taylor Street, Chicago, IL 60607, USA; e-mail: kreddy@uic.edu (Corresponding author)

Raksha K. Rai, S.M. ASCE

Graduate Research Assistant, University of Illinois at Chicago, Department of Civil & Materials Engineering, 842 West Taylor Street, Chicago, IL 60607, USA; e-mail: rrai5@uic.edu

Stefan J. Green

Sequencing Core, Research Resources Center & Department of Biological Sciences, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA; e-mail: greendna@uic.edu

Jyoti K. Chetri, S.M. ASCE

Graduate Research Assistant, University of Illinois at Chicago, Department of Civil & Materials
Engineering, 842 West Taylor Street, Chicago, IL 60607, USA; e-mail: jkc4@uic.edu

Revised Manuscript Submitted to:
Journal of Environmental Engineering

July 20, 2020

28 **Abstract:** Municipal solid waste (MSW) landfills are regarded as one of the major sources of
29 greenhouse gas (GHG) emissions across the world. An innovative and sustainable biogeochemical
30 cover system that consists of soil, biochar and basic oxygen furnace (BOF) slag is being developed
31 to mitigate fugitive landfill emissions such as methane (CH₄), carbon dioxide (CO₂) and hydrogen
32 sulfide (H₂S). Biochar amended soil can mitigate CH₄ emissions by oxidizing CH₄ with the help
33 of methanotrophs (CH₄ consuming microorganisms) whereas BOF slag can mitigate CO₂ and H₂S
34 emissions by adsorption and various mineralogical reactions. However, BOF slag is highly
35 alkaline in nature with pH values usually above 12 and the effect of such high pH on the overall
36 performance of biogeochemical cover system is not known. This study aims at investigating the
37 effect of pH on CH₄ oxidation and methanotrophic community structure in landfill cover soil and
38 cultivated consortia through laboratory incubation experiments. In this regard, soil-suspension and
39 enrichment cultures were incubated at pH values ranging from 2-12, and CH₄ oxidation rates were
40 measured, and microbial community structure was analyzed using 16S rRNA gene amplicon
41 sequencing. The optimal pH for CH₄ consumption was found to be 7 in enrichment culture and 7.6
42 in soil suspensions. Very low or no CH₄ consumption was observed at extreme pH values of 2
43 (enrichment culture) and 12 (enrichment culture and soil-suspension). A shift in microbial
44 community structure was observed in enrichment cultures initiated at different pH values. Type II
45 methanotrophs were enriched under acidic pH conditions and Type I methanotrophs, were
46 enriched in incubations from pH 4-10. Soil suspensions were more stable, but also showed slight
47 shifts in microbial community dominated by Type I methanotrophs and methylotrophs at pH 7.6-
48 10.0. These results demonstrate that at an extreme alkaline pH (~12), CH₄ oxidation is inhibited
49 as growth of methane oxidizing bacteria (MOB) is arrested in the landfill cover soil.

50

51 **Keywords:** Municipal solid waste (MSW) landfills; Biocover; Landfill cover soil; Landfill gas;

52 Methanotrophs; Methane oxidation; pH; *Methyllobacter*

53 **Introduction**

54

55 Landfills are the third largest anthropogenic source of CH₄ emissions in the USA, making up for
56 14.1% of the total CH₄ emissions in 2016 (USEPA 2019). Although significant amount of CH₄ is
57 emitted from landfills, it is estimated that between 10% and 90% of CH₄ produced is being
58 consumed by methane oxidizing bacteria (MOB) before it enters the atmosphere (Semrau et al.
59 2010; De Visscher et al. 2007). Eq. 1 shows reaction of CH₄ with O₂ to produce CO₂ and H₂O.

61 The enzyme CH₄ monooxygenase (MMO) catalyzes the above reaction (Reddy et al. 2014).
62 In methane oxidizing bacteria (MOB), also called methanotrophic bacteria, the production of this
63 enzyme is regulated by genes such as *pmoA* and *mmoX* (Reddy et al. 2014). Methanotrophs or
64 MOB, are a subset of a larger microbial community called methylotrophs (Reddy et al. 2019).
65 Methanotrophs utilize CH₄ as a sole source of carbon and energy, whereas methylotrophs use a
66 broader range of C1-compounds as their source of carbon and energy (Hanson and Hanson 1996).
67 Methanotrophs within the phylum Proteobacteria have been classified into three phylogenetically
68 distinct groups: Type I, Type II and Type X methanotrophs, where Type I and Type X belong to
69 the class Gamma proteobacteria and Type II to the class Alpha proteobacteria (Hanson and Hanson
70 1996; Semrau et al. 2010). Type I, Type II and Type X methanotrophs are ubiquitous in nature and
71 are usually active where CH₄ and O₂ are present.

Landfill cover soils are typically dominated by Type I or Type II methanotrophs depending upon environmental factors such as moisture content, pH, temperature, substrate concentration, soil texture and nutrients (Su et al. 2014; Borjesson et al. 2004; Urmann et al. 2009; Scheutz et al. 2009). Studies have shown the greatest abundance of Type I methanotrophs in landfill cover soils

76 with pH values ranging from 6.7-8.2 (Chi et al. 2015; Yargicoglu and Reddy 2017a) and Type II
77 methanotrophs at pH range of 5.0-6.5 (Wise et al. 1999; Cebron et al. 2007; Su et al. 2014).
78 Methanotrophs are known to adapt to *in-situ* pH levels in the landfill cover soil (Scheutz and
79 Kjeldsen 2004), though environmental selection can lead to a shift in microbial community
80 structure (Su et al. 2014). But, in recent years, many studies have shown the resiliency of
81 methanotrophs to extreme acidic and alkaline conditions in the forest soils, peat soils, sediments,
82 mine impoundments and soda lakes (Dunfield 2010; Baesman et al. 2015; Kalyuzhnaya et al.
83 2008). These studies have identified methanotroph clades in acidic environments, including
84 members of the families Methylocystaceae, Beijerinckiaceae and Methylococcaceae; these
85 organisms have been typically identified as acidophilic or acid-tolerant methanotrophic bacteria
86 (Nguyen et al. 2018). Further, studies have shown a broad diversity of methanotrophs in alkaline
87 environments. For example, an alkaliphilic methanotroph was isolated from saline Tuva soda lakes
88 which showed fastest growth at pH 9.0-9.5 (Kalyuzhnaya et al. 2008; Khmelenina et al. 1997).

89 Several studies have been conducted to investigate the effects of pH on CH₄ oxidation and
90 microbial community composition using molecular techniques in different ecosystems and are
91 summarized in **Table 1**. For example, Amaral et al. (1998) studied the effects of pH (4.0 to 8.0)
92 on atmospheric CH₄ consumption by forest soil microbial communities using soil slurries (slurry
93 of soil that showed high CH₄ consumption during enrichment) and culture consortia (solution of
94 the bacteria extracted from soil slurries and nutrient media). They observed differences in optimal
95 pH of the soil methylotrophs using slurry (4.0-6.5) or culture consortia (5.8) even though the
96 bacteria were extracted from the same soil, and that cultivation conditions lead to selection for
97 different taxa. Their results showed that the ambient CH₄ consumers were physiologically different
98 from known methanotrophs. Dunfield et al. (1993) tested CH₄ consumption by peat soil obtained

99 from different locations to study the effect of pH ranging from 3.5-8.0. They observed that
100 maximum CH₄ consumption was observed at 0-1 units above the native acidic pH of the peat
101 samples (Saari et al. 2004) and concluded that the microflora involved in CH₄ metabolism was not
102 well adapted to low pH conditions. Baesman et al. (2015) studied the CH₄ oxidation potential and
103 characterized microbial community in a mercury mine impoundment using slurry enrichments.
104 Their studies showed maximum oxidation activity at pH range of 4.5-7.0, with minimal or no
105 activity at pH 3, 9 and 11. Soils contained Type I and Type II Methanotrophs as well as
106 Methylotrophs based on *pmoA* and 16S rRNA gene amplicon analysis. As it is difficult to cultivate
107 these microbes in laboratory because the environmental conditions and nutrient requirements by
108 microbes vary from genera to genera and species to species, cultivation-independent molecular
109 tools have been adopted to detect methanotrophs by employing targeted amplification and
110 sequencing of functional or structural genes, or through non-targeted shotgun sequencing
111 approaches. In shotgun sequencing, all genomic DNA from the microbiome is prepared for
112 sequencing, and portions of the sequence data can be annotated to the taxonomic level of species.
113 Species-level taxonomic resolution is more variable in targeted sequencing approaches (e.g., 16S
114 rRNA gene amplicon sequencing), though targeted approaches are beneficial when the microbial
115 group of interest is not abundant. In such cases, PCR amplification is used, most frequently
116 targeting structural genes such as microbial small subunit ribosomal RNA genes (16S rRNA gene),
117 as well as methane monooxygenase (MMO) genes and genes involved in C1 compound oxidation.

118 Relatively few studies have focused on analyzing the effect of pH on CH₄ oxidation and
119 microbial communities in landfill cover soils (Scheutz and Kjeldsen, 2004; Han et al. 2016; Su et
120 al. 2014). Scheutz and Kjeldsen (2004) studied the effect of environmental factors on CH₄
121 oxidation in the landfill cover soil. Their results showed optimum oxidation at pH 6.5-7.5,

122 concluding that pH was within the range of pH values found at the site (6.9) and not one of the
123 important factors controlling CH₄ oxidation. Furthermore, due to the natural buffering capacity of
124 soil, landfill cover soils frequently have circumneutral pH and that facilitates CH₄ oxidation. Su et
125 al. (2014) studied various factors affecting the diversity of methanotrophs in the landfills with and
126 without landfill gas (LFG) recovery systems. Their studies concluded that pH was the most
127 dominant factor influencing the methanotrophic diversity in the landfill cover soil, followed by
128 water content and organic content.

129 Our study focuses in understanding the broader aspect of effect of pH on both CH₄
130 oxidation and microbial community structure in a newly proposed biogeochemical cover for
131 landfill, where a layer of highly alkaline BOF slag (pH > 12.0) will be overlain or mixed with
132 biochar-amended soil. Previously, the behavior and activity of CH₄-oxidizing bacteria was
133 characterized in a series of batch experiments with highly alkaline biogeochemical cover wherein
134 steel slag was amended with soil and biochar-amended soil (Rai and Reddy, 2019). It was noted
135 that the amendment of soil or biochar-amended soil with steel slag inhibited the CH₄ oxidation
136 process. It is hypothesized that the high pH of these mixtures (>11) could have affected the
137 enzymes of MOB, thereby inhibiting CH₄ oxidation. The present study focuses on affirming this
138 hypothesis and hence, the specific objectives of this study are to systematically investigate the
139 effect of pH on (1) CH₄ oxidation, and (2) the microbial community structure in landfill cover soil,
140 by employing an experimental framework of characterizing enrichment cultures and soil
141 suspension derived from the landfill cover soil. The results from this study will be useful in
142 designing the cover profiles for field applications.

143

144 **Materials and Methods**

145

146 ***Soil Enrichment***

147

148 Soil samples were collected from the Zion landfill, Zion, Illinois, USA from different locations of
149 an interim cover (collection depth ~1 to 2 feet). The samples were stored in 5 gallon buckets at
150 room temperature ($23 \pm 2^\circ\text{C}$). Soil samples were air dried (moisture content < 0.5%), pulverized
151 and screened through a 2 mm sieve (Humbolt Mfg. Co., Elgin, IL, USA) prior to conducting
152 experiments. Physical and chemical properties of the soil are reported by Rai and Reddy (2019).
153 To obtain methanotrophic-enriched consortia, approximately 5 g of sieved soil was mixed with
154 100 mL of modified Nitrate Mineral Salts (NMS) media (Whittenbury et al. 1970) in a 500 mL-
155 serum vial (WHEATON®, Millville, NJ, USA) and sealed using long sleeved rubber septa (Fisher
156 Scientific, Lenexa, KS, USA). Approximately 80 mL of air from the headspace was replaced with
157 equal volume of synthetic LFG (50% CH₄ (v/v) and 50% CO₂ (v/v)) to achieve a headspace
158 concentration of 7% CH₄ (v/v) and 7% CO₂ (v/v) balanced in air (86%) and was incubated for 15
159 days at room temperature ($23 \pm 2^\circ\text{C}$). Gas samples from the headspace were analyzed at regular
160 intervals using Gas Chromatography (GC) until the headspace CH₄ concentration dropped below
161 1%. The vials containing consortia were replenished twice with the synthetic LFG for the
162 enrichment of the methanotrophic culture.

163

164 ***Enrichment Culture Batch Tests***

165

166 Serum vials (WHEATON®, Millville, NJ, USA), rubber septa (McMASTER-CARR®, Elmhurst,
167 IL, USA) and pipettes (Fisher Scientific, Lenexa, KS, USA) were sterilized using a Napco Model

168 8000-DSE autoclave (Thermo Fisher, Waltham, MA, USA) operated at >120°C for a minimum of
169 60 minutes to ensure sterilization prior to experiments with enrichment culture (Reddy et al. 2019).
170 The supernatant from soil enrichments (above) was collected for use in batch tests. Briefly, 5 mL
171 of enrichment culture supernatant was mixed with 5 mL of sterile modified NMS medium (without
172 phosphate buffer) and placed in a 125 mL-serum vial and sealed hermetically using butyl rubber
173 septa secured by aluminum crimp cap (DWK Life Sciences Wheaton™, Fisher Scientific, Lenexa,
174 KS, USA). About 20 mL of air from the headspace of the vial was replaced with an equal volume
175 of synthetic LFG to achieve a headspace concentration of ~5 to 6% CH₄ (v/v) and 5 to 6% CO₂
176 (v/v) balanced in air (89-90%). The pH of enrichment cultures was adjusted from 2 to 12 using
177 either 1M H₂SO₄ or 1M NaOH. Headspace samples were analyzed using gas chromatography
178 (described below). Headspace CH₄ concentrations were monitored until CH₄ concentrations
179 dropped below 1%. In addition, the pH of the liquid medium in each sample was tested periodically
180 with a pH meter (Orion 720A model, Orion Research, Inc. Beverly, MA, USA). Rates of CH₄
181 oxidation were determined from linear regression analysis of CH₄ concentration with respect to
182 time based on zero-order kinetics. At the end of the incubation, microbial cells in the enrichment
183 media were pelleted by centrifugation and frozen for later DNA extraction and microbial
184 community analysis. Experiments were conducted in duplicates, along with the controls containing
185 only sterile media.

186

187 ***Soil Suspension Batch Tests***

188

189 For each sample, 10 g of sieved soil was mixed with 10 mL of sterile distilled water (1:1 ratio),
190 placed in a 125 mL serum vial and hermetically sealed with butyl rubber septa secured by

191 aluminum crimp cap. The vials were spiked with 1M H₂SO₄ to achieve an acidic pH of 4 and 1M
192 NaOH to achieve an alkaline pH of 9.0, 10.0 and 12.0. Bottles with an initial pH of 2.0 were
193 difficult to maintain at that pH due to high buffering capacity of the soil, and hence, these samples
194 were not included in downstream analyses in maintaining the targeted pH. As described above,
195 synthetic landfill gas was added to each bottle to achieve a starting headspace concentration of ~5
196 to 6% CH₄ (v/v) and ~5 to 6% CO₂ (v/v) balanced in air (89-90%). The initial pH value was
197 measured after 60 minutes of addition of acid or alkali, and final pH values measured at the end of
198 the experiment (22 days). At the end of the incubation, the soil suspension samples were
199 centrifuged at 12,500 RPM using mySPIN™ 12 Mini Centrifuge (ThermoFisher Scientific,
200 Skokie, IL, USA) for 15 min, and the supernatant decanted. The residual soil material was frozen
201 at -20°C for later DNA extraction and microbial community analysis. All the samples were
202 prepared in replicate along with the controls (vials containing only LFG without soil slurry or
203 culture).

204

205 ***Gas Analysis***

206

207 Gas samples from headspace were collected at regular time intervals and analyzed for CH₄ and
208 CO₂ concentrations using an SRI 9300 GC (SRI Instruments, Torrance, CA, USA) equipped with
209 thermal conductivity detector (TCD) as previously described (Yargicoglu and Reddy, 2017). Gas
210 samples were extracted from the vials using 1 mL syringe, and 0.5 mL of gas sample was released
211 from the syringe, injecting remaining 0.5 mL into the GC to eliminate the gas pressure effects in
212 the gas analysis by the GC. A calibration curve with a minimum of three points was established

213 using high purity standard gas mixtures ranging from 1% to 50% CH₄ (v:v) and 5% to 50% CO₂
214 (v:v) (Rai et al. 2018).

215

216 ***Analysis of Microbial Community Structure***

217

218 Genomic DNA (gDNA) was extracted from soil samples and cell pellets using a DNeasy
219 PowerSoil Kit (Qiagen) following manufacturer's instructions with a slight modification. Detailed
220 procedure is explained in Reddy et al. (2019). DNA extraction, library preparation and sequencing
221 were performed at the University of Illinois at Chicago (UIC) Sequencing Core (UICSQC). Raw
222 sequence data were initially processed by merging forward and reverse reads using the software
223 package PEAR (Zhang et al. 2013). Ambiguous nucleotides, and primer sequences were removed
224 by trimming merged reads based on quality scores (Reddy et al. 2019). USEARCH algorithm with
225 a comparison to Silva 132 reference sequence database was used to identify and remove chimeric
226 sequences (Edgar 2010; Glöckner et al. 2017; Quast et al. 2012). Taxonomic summaries and
227 biological observation matrices (BIOMs) were generated following similar procedure as explained
228 in Reddy et al. (2019). Generation of BIOMs was performed by the Research Informatics Core
229 (RIC) at UIC.

230

231 ***Data Archive***

232

233 Raw sequence data files were submitted in the Sequence Read Archive (SRA) of the National
234 Center for Biotechnology Information (NCBI) and are available under the BioProject identifier
235 PRJN545136.

236

237 **Statistical Analysis**

238

239 One-way (ANOVA) and t-tests (equivalency of sample means) were used to perform statistical
240 analysis of batch test results. Statistical significance was established at a significance level of alpha
241 = 0.05 for all the tests performed in the study. Alpha-diversity indices were calculated and
242 ordination plots (i.e., multidimensional scaling (MDS) plots) were generated by analyzing the
243 microbial community abundance data within the software package Primer7 (Clarke and Gorley,
244 2015; Reddy et al. 2019). Significant differences in community structure between experimental
245 conditions were assessed using analysis of similarity (ANOSIM).

246

247 **Results**

248

249 ***Effect of pH on Methane Oxidation in Soil-Suspension and Enrichment Culture***

250

251 The enrichment culture and soil-suspension samples were exposed to a wide range of pH
252 conditions to investigate the effect of pH on CH₄ oxidation potential and community composition.

253 **Fig 1.** shows the CH₄ consumption with time in enrichment culture (starting pH 2-12) and soil-
254 suspension samples (starting pH 4 -12), along with the corresponding pH measurement. An initial
255 lag phase of 3 days was observed in enrichment cultures at starting pH of 2.0 as shown in **Fig 1a.**
256 after which a gradual decrease in CH₄ concentration was observed from day 3 to 13. Thereafter,
257 no change in CH₄ concentration was observed until day 29. The pH values varied from 1.9 to 2.3
258 throughout the course of the incubation. **Fig 1b.** shows CH₄ headspace concentration with time at

259 a starting pH of 4.0 in enrichment culture and soil-suspension. An initial lag phase of 2 days was
260 observed in enrichment culture after which a gradual decrease in CH₄ headspace concentration
261 was observed from day 3 to day 13. No change in CH₄ headspace was measured by the end of the
262 experiment (day 22). In contrast, soil-suspension samples showed no change in CH₄ concentration
263 throughout the course of the incubation. pH values in the enrichment culture fluctuated from 4.2
264 at the beginning of the experiment to 5.1 at the end of the experiment and increased from 4.2 to
265 6.0 in soil-suspensions. **Fig 1c.** shows CH₄ headspace concentration and corresponding pH
266 measurements as a function of time in reactors with a starting pH of 7.0. An initial lag phase of 1
267 and 3 days were observed in enrichment culture and soil-suspension, respectively, after which a
268 rapid decrease in CH₄ headspace concentration was observed in enrichment cultures and a more
269 gradual decrease in soil-suspension reactors. pH values remained nearly constant throughout the
270 incubation with a decrease of 0.3 - 0.4 units in enrichment cultures and 0.2 units in soil-suspension
271 reactors by the end of the experiment. **Figs 1d and 1e** show CH₄ headspace concentration and the
272 corresponding pH measurement as a function of time for reactors with starting pH values of 9.0
273 and 10.0, respectively. An initial lag phase of 3 days was noted in enrichment culture reactors with
274 starting pH values of 9.0 and, after which a rapid decrease in CH₄ headspace concentration was
275 observed. By the end of the experiment, reactor pH values had dropped to approximately 7.6-7.8,
276 despite intermittent pH adjustment through NaOH addition. In soil-suspension reactors, an initial
277 lag phase of 2 days was observed together with a gradual decrease in CH₄ headspace concentration.
278 Consistent with the enrichment culture reactors, elevated pH levels were not maintained, and
279 average pH values at the end of the experiment were 7.6 and 7.4 for pH 9.0 and pH 10.0 reactors,
280 respectively. No major change in CH₄ headspace concentration of reactors was observed
281 throughout the course of the incubation in enrichment culture and soil-suspension reactors with

282 starting pH values of 12.0. In enrichment culture reactors, pH values dropped from 12.3 to 10.4 by
283 day 4 and were adjusted by adding NaOH. Thereafter, average pH values fluctuated between 11.8
284 and 12.3. In soil-suspension reactors, pH remained nearly constant throughout the incubation
285 (12.1-12.2). A comparison of all reactors is shown in **Fig 2** which demonstrates similar rates of
286 methane oxidation in enrichment culture reactors with starting pH values of 7.0, 9.0 and 10.0, and
287 minimal or no methane oxidation in reactors with starting pH values of 2.0, 4.0 and 12.0. Similarly,
288 soil suspension reactors with starting pH values of 7.6 and 10.0 had similar rates of methane
289 oxidation, and no methane oxidation was observed in reactors with starting pH values of 4.0 and
290 12.0.

291 **Fig 3.** shows average CH₄ oxidation rates in soil-suspension and enrichment culture
292 reactors incubated at starting pH values ranging from 2.0 to 12.0. Maximum CH₄ oxidation rates
293 were observed in reactors with starting pH values of 7.0-10.0 (42.9 - 47.5 $\mu\text{g CH}_4 \text{ mL}^{-1}\text{d}^{-1}$) in
294 enrichment culture and at starting pH values of 10.0 (20 $\mu\text{g CH}_4 \text{ g}^{-1}\text{d}^{-1}$) in soil-suspension reactors.
295 CH₄ oxidation rates in reactors with starting pH values of 7.0, 9.0 and 10.0 were not significantly
296 different from each other in enrichment culture (ANOVA, $p = 0.3325$), whereas rates of CH₄
297 oxidation were significantly different in reactors with starting pH values of 7.6, 9.0 and 10.0
298 (ANOVA, $p=0.0147$) in soil-suspension reactors. Low rates of CH₄ oxidation were observed in
299 enrichment culture reactors with starting pH values of 2.0 and 4.0 (2.4 and 7.3 $\mu\text{g CH}_4 \text{ mL}^{-1}\text{d}^{-1}$,
300 respectively). No methane oxidation was observed in enrichment culture reactors with a starting
301 pH of 12.0 and in soil suspension reactors with starting pH values of 4.0 and 12.0.

302

303 ***Methylotroph Microbial Community Structure in Enrichment Cultures Incubated Across a pH
304 Gradient***

305

306 Microbial community structure in the enrichment cultures reactors was analyzed using deep
307 sequencing of microbial 16S rRNA gene amplicons (**Fig 4**). The average relative abundance of
308 16S rRNA gene amplicon sequences from methylotrophs relative to the total microbial community
309 ranged from 26% (starting pH 2) to 74% (starting pH 12). Microbial community structure varied
310 by starting pH (**Fig 4c**), and the methanotrophic communities were dominated by bacteria from
311 the genera *Methylobacter*, *Methylovorus*, *Methylocystis*, *Methylomicrobium*, *Methylosinus* and
312 *Methyloversatilis*. *Methylobacter*, a Type I methanotroph, was found in abundance across all pH
313 conditions examined. More specifically, *Methylobacter marinus* A45 was the most abundant
314 methanotrophic species detected in the enrichment reactors, and sequences from this taxon
315 constituted 78, 22, 36, 56 and 78% of the total methylotrophic 16S rRNA sequences identified at
316 starting pH values of 2.0, 4.0, 9.0, 10.0, and 12.0, respectively. Type II methanotrophs were also
317 detected, including bacteria from the genera *Methylocystis*. *Methylocystis* were abundant in
318 reactors with starting pH values in the range of 2.0-7.0, but negligible in reactors with higher pH
319 values. In reactors with low and high starting pH values (*i.e.*, pH of 2.0 and 12.0), microbial
320 communities were dominated (>90% relative abundance) by methanotrophs from the genus
321 *Methylobacter*. This similarity likely represents low or no microbial activity in these reactors,
322 leading to an observed microbial community derived from the same source enrichment. At other
323 starting pH values, microbial growth led to shifts in observed microbial community structure.

324

325 ***Methylotroph Microbial Community Structure in Soil-Suspensions Incubated Across a pH***

326 ***Gradient***

327

328 Microbial community structure in soil-suspensions reactors with starting pH values ranging from
329 7.6 to 12.0 were analyzed using 16S rRNA gene amplicon sequencing (**Fig 4b**). The average
330 relative abundance of 16S rRNA gene amplicon sequences from methanotrophs relative to
331 sequences from the total microbial community ranged from 3% (starting pH 12.0) to 32% (starting
332 pH 9.0 and 10.0). Four taxa dominated the active methanotrophic microbial communities in
333 reactors with starting pH values of 7.6, 9.0 and 10.0, including bacteria from the genera
334 *Methylobacter* and *Methylomicrobium* and bacteria from the family Methylophilaceae and
335 Methylomonaceae. The bacteria from members of the family Methylomonaceae was found in
336 abundance with a relative abundance of 22.5%, 32% and 29% at starting pH 7.6, 9.0 and 10.0,
337 respectively, followed by Methylophilaceae with a relative abundance of 28.7%, 11.6% and
338 22.7%. However, at starting pH 12.0, only 3% of the total sequences that belong to the
339 methyotrophic community were identified, indicating high alkaline conditions (starting pH 12.0)
340 did not favor the growth of methyotrophic community. Further, due to sequencing difficulties at
341 starting pH 4.0, microbial community was not detected from these sample sets.

342

343 **Discussion**

344

345 This study analyzed the effect of pH on CH₄ oxidation potential and microbial community
346 structure in landfill cover soil and methanotrophic enrichment cultures. The pH values fluctuated
347 during the experiment, hence pH ranges are reported denoting the initial (start of experiment) and
348 final (end of experiment) pH values. Both culture and soil suspension showed lag phases that
349 varied from 1 to 3 days at different pH values tested which could be due to the time for
350 microorganisms to adapt to the new pH environment. The highest CH₄ oxidation rates were

351 observed at circumneutral starting pH values of 6.7-7.1 (enrichment culture reactors) and 7.4-7.6
352 (soil-suspension reactors), consistent with prior studies on landfill covers (Scheutz and Kjeldsen,
353 2004, Han et al. 2016, Wang et al. 2011). This finding is also consistent with the *in situ* pH of the
354 landfill cover soil (pH 7.6), and the long-term stability of the soil pH could limit the available
355 microbial diversity. The highest CH₄ oxidation rates by pure cultures of methanotrophs have been
356 shown at pH values of 6.6-6.8 (Whittenbury et al. 1970, Hanson and Hanson 1996). For
357 environmental methanotrophic communities, the highest rates of CH₄ oxidation have been shown
358 at pH values of 5.5-8.5 in soils and sediments from a variety of different ecosystems (Dunfield
359 1993, Hutsch 1994; Scheutz and Kjeldsen 2004; Sherry et al. 2016; Han et al. 2016). Our results
360 show a slight, but not significant, decrease in CH₄ oxidation rates with increasing pH in enrichment
361 cultures with starting pH values between 7.0 and 10.0. At starting pH values of 9.0 and 10.0, the
362 small decrease in the oxidation rates could be a result of the initial alkaline pH. By day 6, despite
363 addition of NaOH, the pH was measured to be 9.3 and 8.3, and corresponding decreases in CH₄
364 headspace concentrations were also observed. Thereafter, the pH decreased to 7.7-7.8, with
365 continuing oxidation of CH₄. This drop in the pH could be a result of bacterial growth releasing
366 metabolites, acids and/or production of CO₂ during CH₄ oxidation. A similar trend was observed
367 in soil-suspension experiments, where the pH dropped to neutral pH by the end of the experiment,
368 likely due to the metabolic activity of methanotrophic and heterotrophic bacteria in the reactors.
369 With decreasing pH values, rates of methane oxidation increased. At an extreme alkaline starting
370 pH 12, methanotrophic and heterotrophic activity were restricted, and pH values did not decrease
371 substantially, with the exception of a drop in pH after 4 days in the enrichment culture reactors.
372 After pH adjustment, no further significant change in pH levels were observed. This may be in
373 part due to buffering by the carbonate system (pKa of 6.4 and 10.3). Since the targeted pH of 12

374 was maintained throughout the incubation in both enrichments and soil-suspension, no CH₄
375 oxidation was observed, confirming inhibition of activity of MOBs at such pH values. Currently,
376 no studies have shown the oxidation of CH₄ at an alkaline pH >12, although alkaliphilic
377 methanotrophs have been isolated from extreme alkaline lakes and marine environments, and these
378 organisms can grow at pH of 9-11 in the presence of NaCl (Kalyuzhnaya et al. 2001, Sorokin et
379 al. 2000, Khmelenina et al. 1997). These halophilic or alkaliphilic methanotrophs are genotypically
380 and phenotypically different from taxa in freshwater and have been identified as new species
381 within the genera *Methylobacter* and *Methylomicrobium* (Khmelenina et al. 2009). Their specific
382 biochemical properties such as synthesis of osmoprotectants, formation of glycoprotein S-layers
383 on the outer surface of the cell walls and the ability to modify chemical composition of cell
384 membranes help them to adapt to highly alkaline habitats (Trotsenko and Khmelenina, 2002).

385 At acidic starting pH of 2 and 4, pH varied between 1.9-2.3 and 4.2-5.1 in enrichment
386 cultures. CH₄ oxidation was significantly low or negligible at acidic pH range (pH 2.0-4.0) which
387 shows high sensitivity of methanotrophs to acidification of the environment (Le Mer and Roger
388 2001). Marginal oxidation of CH₄ occurred in enrichment culture reactors with starting pH 4 in
389 contrast to soil-suspension reactors that showed no oxidation at starting pH 4.0. This could be due
390 to differing microbial communities in the soil suspension reactors and enrichment culture reactors.
391 Methanotrophs capable of oxidizing CH₄ in acidic soils (pH 4.0-6.0) have been discovered
392 previously (Wise et al. 1999; Cebron et al. 2007; Kong et al. 2014; Benstead and King, 2001;
393 Amaral et al. 1998). However, this study suggests that the landfill cover soil methanotrophic
394 microbial community was not adapted to lower pH conditions even though the enrichments did
395 respond to acidic pH with marginal CH₄ consumption.

396 It was observed that methanotrophic microbial community structure varied by pH in soil
397 and enrichment reactors. Bacteria most closely related to *Methylobacter marinus* A45, a Type I
398 methanotroph, were identified in abundance across all pH conditions tested in enrichment cultures,
399 with lower relative abundance at circumneutral pH (2.1%). *Methylobacter marinus* A45 are
400 aerobic methanotrophs, typically found in coastal and hydrothermal vent marine ecosystems
401 (Flynn et al. 2016) and are halophilic or alkali-tolerant methanotrophic bacteria that require NaCl
402 or Na ions for growth (Bowman et al. 1993; Kalyuzhnaya et al. 2008). Not all species of
403 *Methylobacter* require NaCl for growth, however (Bowman et al. 1993), and most species are
404 considered to be non-halophilic (Osudar et. al 2017). Our studies detected this species at both
405 acidic and alkaline pH, but this may represent microorganisms (active or inactive) present in the
406 source soil material.

407 In reactors with starting pH values of 7, 9, and 10, bacteria from the family
408 *Methylophilaceae* (soil suspension), *Methylomonaceae* (soil suspension) and genera
409 *Methylobacter* (enrichment culture) and *Methylomicrobium* (soil suspension) were abundant. Prior
410 studies have identified the presence of these taxa in landfill cover soil (Gebert et al. 2009; Su et al.
411 2014; Wise et al. 1999; Chi et al. 2015; Xing et al. 2017). Bacteria from the genus *Methylobacter*
412 have been shown to grow at pH ranging from 5.0-9.0 with an optimal growth at 6.5-7.0 (Bowman
413 1993), consistent with this study. In general, however, bacteria from the genus *Methylobacter*
414 appear to be ubiquitous in landfill soils. Prior studies of landfill soil have demonstrated the
415 widespread presence of *Methylobacter* species. In enrichment cultures seeded with landfill soil
416 and with high methane headspace concentrations, Wise et al. (1999) observed that nutrient levels
417 were more important than pH in selecting for MOB, and elevated nutrient levels selected for
418 bacteria from the genus *Methylobacter*. Similarly, Kallistova et al. (2013) identified *Methylobacter*

419 species from landfill cover soil in mesophilic enrichments, and a recovered *Methylobacter* isolate
420 from the landfill was most similar to a psychrotolerant strain. Jugnia et al. (2009) also enriched
421 primarily *Methylobacter* from experimental landfill covers and opined that these type I
422 methanotrophs represent pioneer organisms with a high growth rate. In this study, *Methylobacter*
423 are clearly abundant in the source material, but further enriched under the cultivation conditions
424 employed.

425 Methanotrophs from the genus *Methylocystis*, Type II methanotrophs, were identified in
426 samples from enrichment culture reactors with starting pH values 2, 4 and 7. These microbes were
427 also identified in multiple studies of acidic (pH 4.8 and 6.2) and neutral (pH 7.6) landfill cover
428 soils (Wise et al. (1999), Cebron et al. (2007), Su et al. (2014), and Kong et al. (2014)). The relative
429 abundance of bacteria from the genus *Methylocystis* in soil-suspensions was low at pH values of
430 7.6 and above, possibly due to competition with Type I methanotrophs. Type I methanotrophs have
431 been shown to outcompete Type II methanotrophs at higher O₂ and lower CH₄ concentrations
432 (Amaral and Knowles 1995; Henckel et al. 2000). Our incubation conditions have likely limited
433 the growth of Type II methanotrophs in this study. Bacteria from the genus *Methylocystis* have
434 been shown to grow within a pH range from 4.5-9.0 (Bowman et al. 1993). They possess diverse
435 systems of membrane transporters that ensures pH homeostasis (Nguyen et al. 2018).

436 Bacteria from the genus *Methylovorus* were also identified in enrichment cultures at
437 starting pH values of 4, 9 and 10. *Methylovorus glucosetrophus* SIP3-4, of the family
438 Methylophilaceae, are obligate methylotrophs that utilize C1 compounds as a source of carbon and
439 energy for growth (Lapidus et al. 2011). This organism was first isolated from sediments of Lake
440 Washington, growing at a pH 4.2-8.0 (optimum at 6.5) and temperature 9-37°C (Kalyuzhnaya et
441 al. 2012). These organisms may have obtained their carbon from methanol produced during

442 oxidation of CH₄ by the enzyme MMO (Cebron et al. 2007). Kallistova et al. (2005) and Han et al.
443 (2016) detected *Methylovorus glucosetrophus* in the landfill cover soil (pH 6.0-8.0) and were
444 successful in cultivating them in laboratory, suggesting that their occurrence in landfill cover soils
445 is not unusual and is consistent with the community composition found in the current study.

446

447 **Conclusions**

448

449 In the present study, enrichment cultures and soil suspensions derived from landfill cover were
450 studied to evaluate the effect of pH on CH₄ oxidation and microbial community structure. The
451 highest CH₄ oxidation was observed in reactors with pH 7.0-7.6 (pH 7.0 in culture and 7.6 in soil
452 suspension), with negligible oxidation at pH 2.0 (enrichment culture) and completely inhibited at
453 pH 12.0 (enrichment culture and soil-suspension). Analysis of microbial community structure in
454 the enrichment culture reactors demonstrated shifts in the microbial communities with Type I,
455 Type II methanotrophs and methylotrophs identified in reactors with starting pH values of 4, 7, 9
456 and 10. However, in soil-suspension no strong shift in methylotrophic community was observed
457 at starting pH values of 7.6, 9.0, and 10.0 and communities were generally dominated by Type I
458 methanotrophs, particularly *Methylobacter*. Overall, this study shows CH₄ oxidation at pH range
459 of 4.0-10.0 in enrichment culture, 7.6-10.0 in soil-suspension and no oxidation at an extreme
460 alkaline pH 12.0 (enrichment culture and soil-suspension) in the landfill cover soil. This study
461 indicates that the high pH of slag (pH >12.0) could inhibit methanotrophic activities in soil if the
462 slag comes in direct contact of the soil. However, the study also shows that the microbial
463 communities can adapt to a wide range of pH conditions (pH 4.0-10.0) suggesting that if BOF slag
464 is used as a layer above in biogeochemical cover, it may not have a significant effect on the

465 methanotrophic activities below the slag layer. Further studies are underway to analyze the
466 microbial activity in various profiles of biogeochemical cover system under dynamic
467 environmental conditions.

468

469 **Acknowledgements**

470

471 This research is a part of comprehensive project titled “Innovative Biochar-Slag-Soil Cover
472 System for Zero Emissions at Landfills” funded by the National Science Foundation (CMMI#
473 1724773) which is gratefully acknowledged.

474

475 **Data Availability**

476

477 All data generated during the study appear in this article.

478

479 **References**

480

481 Amaral, J. A., Ren, T., and Knowles, R. (1998). “Atmospheric methane consumption by forest
482 soils and extracted bacteria at different pH values”. *Appl. Environ. Microb.*, 64(7), 2397-
483 2402.

484 Baesman, S. M., Miller, L. G., Wei, J. H., Cho, Y., Matys, E. D., Summons, R. E., and Oremland,
485 R. S. (2015). “Methane oxidation and molecular characterization of methanotrophs from a
486 former mercury mine impoundment”. *Microorganisms*, 3(2), 290-309.

487 Bender, M., and Conrad, R. (1995). Effect of CH₄ concentrations and soil conditions on the
488 induction of CH₄ oxidation activity. *Soil Biol. Biochem.*, 27(12), 1517-1527.

489 Benstead, J., and King, G. M. (2001). “The effect of soil acidification on atmospheric methane
490 uptake by a Maine forest soil”. *FEMS Microbiol Ecol.*, 34(3), 207-212.

491 Belova, S. E., Kulichevskaya, I. S., Bodelier, P. L., and Dedysh, S. N. (2013). “Methylocystis
492 bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat,
493 and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman
494 et al. 1993”. *Int. J. Syst. Evol. Microbiol.*, 63(3), 1096-1104.

495 Börjesson, G., Sundh, I., and Svensson, B. (2004). “Microbial oxidation of CH₄ at different
496 temperatures in landfill cover soils”. *FEMS Microbiol Ecol.*, 48(3), 305-312.

497 Bowman, J. P., Sly, L. I., Nichols, P. D., and Hayward, A. C. (1993). “Revised taxonomy of the
498 methanotrophs: description of *Methylobacter* gen. nov., emendation of *Methylococcus*,
499 validation of *Methylosinus* and *Methylocystis* species, and a proposal that the family
500 *Methylococcaceae* includes only the group I methanotrophs”. *Int. J. Syst. Evol.
501 Microbiol.*, 43(4), 735-753.

502 Cébron, A., Bodrossy, L., Chen, Y., Singer, A. C., Thompson, I. P., Prosser, J. I., and Murrell, J.
503 C. (2007). “Identity of active methanotrophs in landfill cover soil as revealed by DNA-
504 stable isotope probing”. *FEMS Microbiol. Ecol.*, 62(1), 12-23.

505 Chi, Z. F., Lu, W. J., and Wang, H. T. (2015). “Spatial patterns of methane oxidation and
506 methanotrophic diversity in landfill cover soils of Southern China”. *J. Microbiol.
507 Biotechnol.*, 25(4), 423-430.

508 Clarke, K. R., and Gorley, R. N. (2015). “Getting started with PRIMER v7. PRIMER-E:
509 Plymouth”, Plymouth Marine Laboratory.

510 De Visscher, A., Boeckx, P., and Van Cleemput, O. (2007). "Artificial Methane
511 Sinks". *Greenhouse Gas Sinks*, 184.

512 Dunfield, P., Dumont, R., and Moore, T. R. (1993). "Methane production and consumption in
513 temperate and subarctic peat soils: response to temperature and pH". *Soil Biol.*
514 *Biochem.*, 25(3), 321-326.

515 Dunfield, P. F. (2010). "Methanotrophy in extreme environments." Encyclopedia of Life Sciences,
516 30, 55-64.

517 Dunfield, P. F., Yuryev, A., Senin, P., Smirnova, A. V., Stott, M. B., Hou, S., and Wang, J. (2007).
518 "Methane oxidation by an extremely acidophilic bacterium of the phylum
519 *Verrucomicrobia*". *Nature*, 450(7171), 879.

520 Edgar, R. C. (2010). "Search and clustering orders of magnitude faster than
521 BLAST". *Bioinformatics*, 26(19), 2460-2461.

522 Flynn, J. D., Hirayama, H., Sakai, Y., Dunfield, P. F., Klotz, M. G., Knief, C., and Murrell, J. C.
523 (2016). "Draft genome sequences of gammaproteobacterial methanotrophs isolated from
524 marine ecosystems". *Genome Announcements*, 4(1), 1629-15.

525 Gagliano, A. L., D'Alessandro, W., Tagliavia, M., Parello, F., and Quatrini, P. (2014).
526 "Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at
527 Pantelleria (Italy)". *Biogeosciences (BG)*.

528 Gebert, J., Singh, B. K., Pan, Y., and Bodrossy, L. (2009). "Activity and structure of
529 methanotrophic communities in landfill cover soils". *Environ Microbiol Rep.*, 1(5), 414-
530 423.

531 Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, Bruns G, Yarza P, Peplies J,
532 Westram R, Ludwig W (2017). “25 years of serving the community with ribosomal RNA
533 gene reference databases and tools”. *J Biotechnol*, 261, pp.169-176

534 Han, B., Chen, Y., Abell, G., Jiang, H., Bodrossy, L., Zhao, J., and Xing, X. H. (2009). “Diversity
535 and activity of methanotrophs in alkaline soil from a Chinese coal mine”. *FEMS Microbiol.*
536 *Ecol.*, 70(2), 196-207.

537 Han, J. S., Mahanty, B., Yoon, S. U., and Kim, C. G. (2016). “Activity of a Methanotrophic
538 Consortium Isolated from Landfill Cover Soil: Response to Temperature, pH, CO₂, and
539 Porous Adsorbent”. *Geomicrobiol.*, 33(10), 878-885.

540 Hanson, R. S., and Hanson, T. E. (1996). “Methanotrophic bacteria”. *Rev. Microbiol.*, 60(2), 439-
541 471.

542 Henckel, T., Roslev, P., and Conrad, R. (2000). “Effects of O₂ and CH₄ on presence and activity
543 of the indigenous methanotrophic community in rice field soil”. *Environ. Microbiol.*, 2(6),
544 666-679.

545 Hou, S., Makarova, K. S., Saw, J. H., Senin, P., Ly, B. V., Zhou, Z., and Wolf, Y. I. (2008).
546 “Complete genome sequence of the extremely acidophilic methanotroph isolate V4,
547 *Methylacidiphilum infernorum*, a representative of the bacterial phylum
548 *Verrucomicrobia*”. *Biol. Direct*, 3(1), 26.

549 Hütsch, B. W., Webster, C. P., and Powlson, D. S. (1994). “Methane oxidation in soil as affected
550 by land use, soil pH and N fertilization”. *Soil Biol. Biochem.*, 26(12), 1613-1622.

551 Jugnia, L.B., Aït-Benichou, S., Fortin, N., Cabral, A.R. and Greer, C.W. (2009). “Diversity and
552 dynamics of methanotrophs within an experimental landfill cover soil”. *Soil Science
553 Society of America Journal*, 73(5), 1479-1487.

554 Kallistova, A. Y., Kevbrina, M. V., Nekrasova, V. K., Glagolev, M. V., Serebryanaya, M. I., and
555 Nozhevnikova, A. N. (2005). "Methane oxidation in landfill cover
556 soil". *Microbiology*, 74(5), 608-614.

557 Kaluzhnaya, M., Khmelenina, V., Eshinimaev, B., Suzina, N., Nikitin, D., Solonin, A., and
558 Trotsenko, Y. (2001). "Taxonomic characterization of new alkaliphilic and alkalitolerant
559 methanotrophs from soda lakes of the Southeastern Transbaikal region and description of
560 *Methylomicrobium buryatense* sp. Nov". *Syst. Appl. Microbiol.*, 24(2), 166-176.

561 Kalyuzhnaya, M. G., Khmelenina, V., Eshinimaev, B., Sorokin, D., Fuse, H., Lidstrom, M., and
562 Trotsenko, Y. (2008). "Classification of halo (alkali)philic and halo (alkali) tolerant
563 methanotrophs provisionally assigned to the genera *Methylomicrobium* and *Methylobacter*
564 and emended description of the genus *Methylomicrobium*". *Int. J. Syst. Evol.*
565 *Microbiol.*, 58(3), 591-596.

566 Kalyuzhnaya, M. G., Beck, D. A., Vorobev, A., Smalley, N., Kunkel, D. D., Lidstrom, M. E., and
567 Chistoserdova, L. (2012). "Novel methylotrophic isolates from lake sediment, description
568 of *Methylotenera versatilis* sp. nov. and emended description of the genus
569 *Methylotenera*". *Int. J. Syst. Evol. Microbiol.*, 62(1), 106-111.

570 Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE & Trotsenko YA (1997). "Isolation
571 and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda
572 lakes". *Microbiology*, 35: 257–261.

573 Khmelenina, V. N., Shchukin, V. N., Reshetnikov, A. S., Mustakhimov, I. I., Suzina, N. E.,
574 Eshinimaev, B. T., and Trotsenko, Y. A. (2010). "Structural and functional features of
575 methanotrophs from hypersaline and alkaline lakes". *Microbiology*, 79(4), 472-482.

576 Knief, C., Lipski, A., and Dunfield, P. F. (2003). "Diversity and activity of methanotrophic
577 bacteria in different upland soils". *Appl. Environ. Microbiol.*, 69(11), 6703-6714.

578 Kong, J. Y., Bai, Y., Su, Y., Yao, Y., and He, R. (2014). "Effects of trichloroethylene on
579 community structure and activity of methanotrophs in landfill cover soils". *Soil Biol.*
580 *Biochem.*, 78, 118-127.

581 Kim, I.T., Ahn, K., Yoo, Y.S., and Kim, K.S. (2017). "Effect of Ammonium Chloride on the
582 Methane-Oxidizing Bacterial Community." doi:10.20944/PREPRINTS201711.0077.V1

583 Le Mer, J., & Roger, P. (2001). "Production, oxidation, emission and consumption of methane by
584 soils: a review." *Eur. J. Soil Biol.*, 37(1), 25-50.

585 Moonsamy, P. V., Williams, T., Bonella, P., Holcomb, C. L., Höglund, B. N., Hillman, G., and
586 Simen, B. B. (2013). "High throughput HLA genotyping using 454 sequencing and the
587 Fluidigm Access Array™ system for simplified amplicon library preparation". *HLA*, 81(3),
588 141-149.

589 Nguyen, N. L., Yu, W. J., Gwak, J. H., Kim, S. J., Park, S. J., Herbold, C. W., and Rhee, S. K.
590 (2018). "Genomic Insights into the Acid Adaptation of Novel Methanotrophs Enriched
591 from Acidic Forest Soils". *Front Microbiol*, 9.

592 Osudar, R., Klings, K. W., Wagner, D., and Bussmann, I. (2017). "Effect of salinity on microbial
593 methane oxidation in freshwater and marine environments". *Aquat. Microb. Ecol.*, 80(2),
594 181-192.

595 Park, J. R., Moon, S., Ahn, Y. M., Kim, J. Y., and Nam, K. (2005). "Determination of
596 environmental factors influencing methane oxidation in a sandy landfill cover
597 soil". *Environ. Technolol.*, 26(1), 93-102.

598 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The
599 SILVA ribosomal RNA gene database project: improved data processing and web-based
600 tools. *Nucleic Acids Rese* 41(D1), pp. D590-D596.

601 Rai, R. K., Chetri, J. K., Green, S. J., and Reddy, K. R. (2018). "Identifying Active Methanotrophs
602 and Mitigation of CH₄ Emissions in Landfill Cover Soil.) *Proceedings of the 8th*
603 *International Congress on Environmental Geotechnics*, Springer, Singapore, Vol 2, pp.
604 308-316.

605 Rai, R. K., and Reddy, K. R. (2019). "Methanotrophic methane oxidation in new biogeochemical
606 landfill cover system." *Proc. 34th International Conference on Solid Waste Technology*
607 *and Management*, Annapolis, MD, USA.

608 Reddy, K. R., Rai, R. K., Green, S. J., and Chetri, J. K. (2019). "Effect of temperature on methane
609 oxidation and community composition in landfill cover soil." *J Ind. Microbiol. Biot.*, 46(9-
610 10), 1283-1295.

611 Reddy, K. R., Yargicoglu, E. N., Yue, D., and Yaghoubi, P. (2014). "Enhanced microbial methane
612 oxidation in landfill cover soil amended with biochar." *J. Geotech. Geoenviron.*, 140(9),
613 04014047.

614 Saari, A., Rinnan, R., and Martikainen, P. J. (2004). "Methane oxidation in boreal forest soils:
615 kinetics and sensitivity to pH and ammonium". *Soil Biol. Biochem.*, 36(7), 1037-1046.

616 Sadasivam, B. Y., and Reddy, K. R. (2014). "Landfill methane oxidation in soil and bio-based
617 cover systems: a review". *Rev. Environ. Sci. Bio.*, 13(1), 79-107.

618 Scheutz, C., and Kjeldsen, P. (2004). "Environmental factors influencing attenuation of methane
619 and hydrochlorofluorocarbons in landfill cover soils". *J. Environ. Qual.*, 33(1), 72-79.

620 Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A., and Spokas, K.
621 (2009). "Microbial methane oxidation processes and technologies for mitigation of landfill
622 gas emissions". *Waste Manag. Res.*, 27(5), 409-455.

623 Semrau, J. D., DiSpirito, A. A., and Yoon, S. (2010). "Methanotrophs and copper". *FEMS*
624 *Microbiol. Rev.*, 34(4), 496-531.

625 Sherry, A., Osborne, K. A., Sidgwick, F. R., Gray, N. D., and Talbot, H. M. (2016). "A temperate
626 river estuary is a sink for methanotrophs adapted to extremes of pH, temperature and
627 salinity". *Environ. Microbiol. Rep.*, 8(1), 122-131.

628 Sorokin, D. Y., Jones, B. E., and Kuenen, J. G. (2000). "An obligate methylotrophic, methane-
629 oxidizing *Methylomicrobium* species from a highly alkaline
630 environment". *Extremophiles*, 4(3), 145-155.

631 Su, Y., Zhang, X., Xia, F. F., Zhang, Q. Q., Kong, J. Y., Wang, J., and He, R. (2014). "Diversity
632 and activity of methanotrophs in landfill cover soils with and without landfill gas recovery
633 systems". *Syst. Appl. Microbiol.*, 37(3), 200-207.

634 Trotsenko, Y. A., and Khmelenina, V. N. (2002). "The biology and osmoadaptation of
635 haloalkaliphilic methanotrophs". *Microbiology*, 71(2), 123-132.

636 United States Environmental Protection Agency (USEPA) (2019) Landfill methane outreach
637 program: Basic information about landfill gas. Available at:
638 <https://www.epa.gov/lmop/basic-information-about-landfill-gas> (accessed on 19th April,
639 2019)

640 Urmann, K., Lazzaro, A., Gandolfi, I., Schroth, M. H., and Zeyer, J. (2009). "Response of
641 methanotrophic activity and community structure to temperature changes in a diffusive

642 CH₄/O₂ counter gradient in an unsaturated porous medium". *FEMS Microbiol.*
643 *Ecol.*, 69(2), 202-212.

644 Wang, J., Xia, F. F., Bai, Y., Fang, C. R., Shen, D. S., and He, R. (2011). "Methane oxidation in
645 landfill waste biocover soil: kinetics and sensitivity to ambient conditions". *J. Waste*
646 *Manag.*, 31(5), 864-870.

647 Wang, X., Cao, A., Zhao, G., Zhou, C., and Xu, R. (2017). "Microbial community structure and
648 diversity in a municipal solid waste landfill". *J. Waste Manag.*, 66, 79-87.

649 Whittenbury, R., Phillips, K. C., and Wilkinson, J. F. (1970). "Enrichment, isolation and some
650 properties of methane-utilizing bacteria". *Microbiology*, 61(2), 205-218.

651 Wise, M. G., McArthur, J. V., and Shimkets, L. J. (1999). "Methanotroph diversity in landfill soil:
652 isolation of novel type I and type II methanotrophs whose presence was suggested by
653 culture-independent 16S ribosomal DNA analysis". *Appl. Environ. Microbiol.*, 65(11),
654 4887-4897.

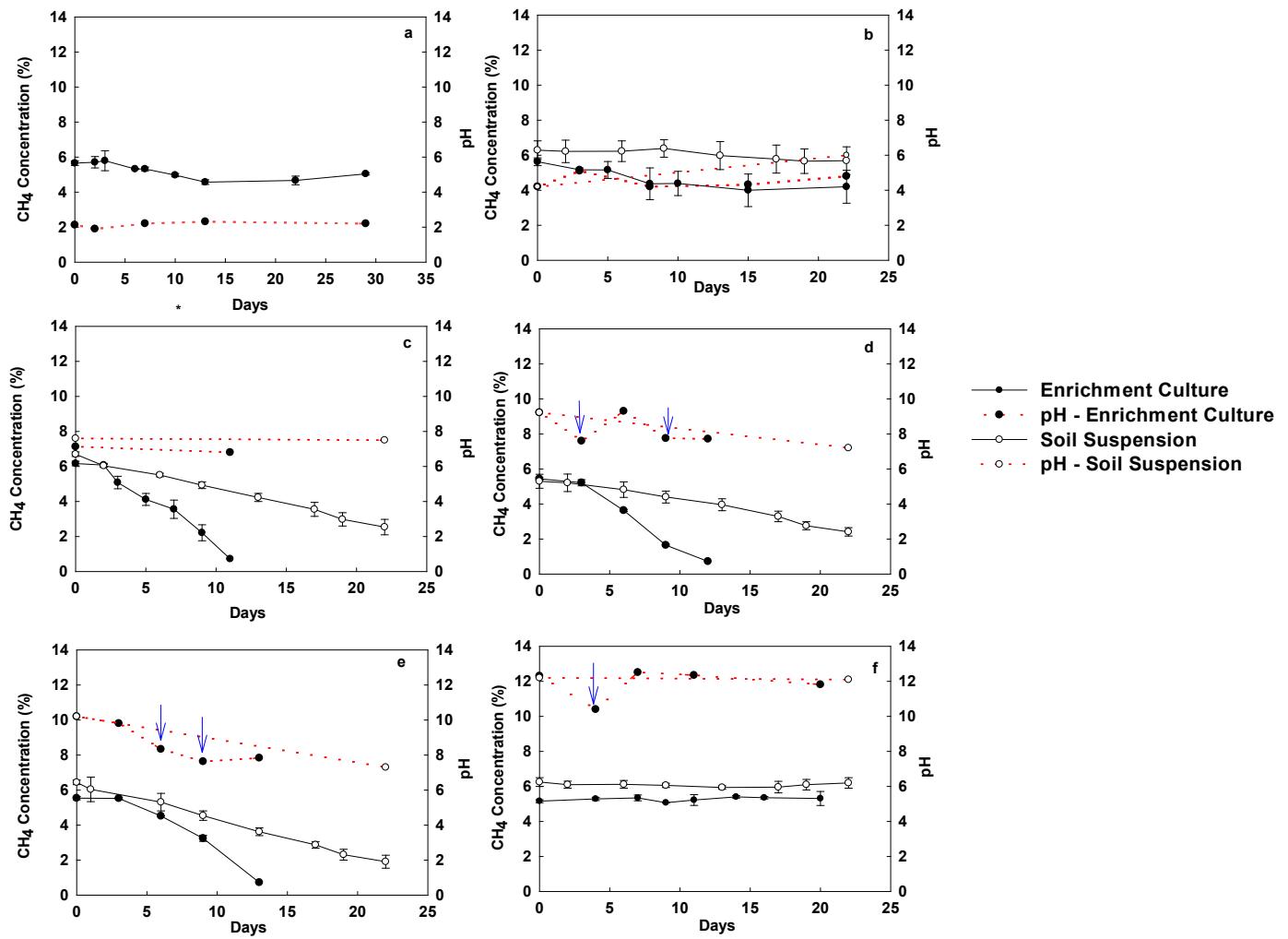
655 Xing, Z. L., Zhao, T. T., Gao, Y. H., Yang, X., Liu, S., and Peng, X. Y. (2017). "Methane oxidation
656 in a landfill cover soil reactor: Changing of kinetic parameters and microorganism
657 community structure". *J. Environ. Sci. Heal. A*, 52(3), 254-264.

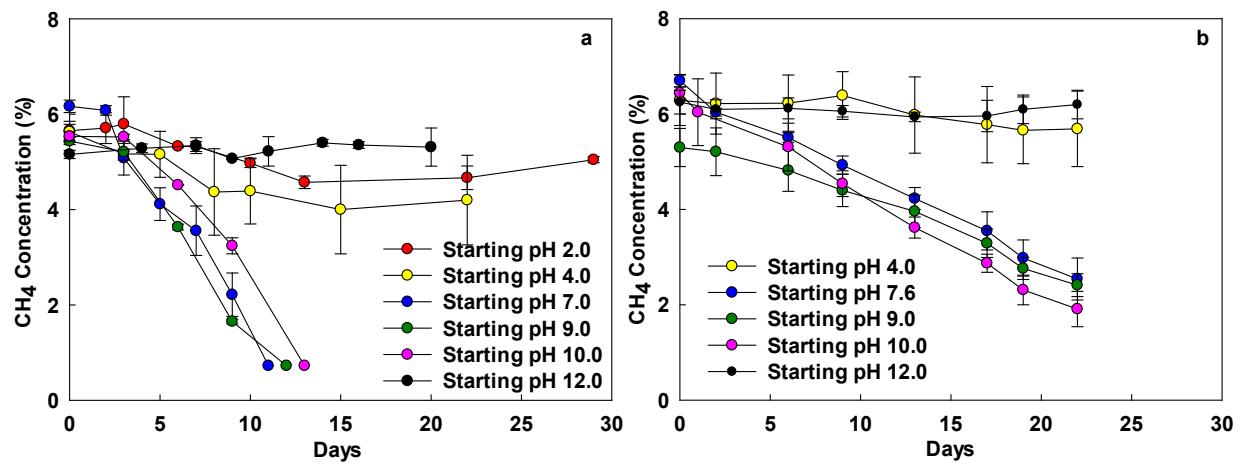
658 Yargicoglu, E. N., and Reddy, K. R. (2017, a). "Microbial abundance and activity in biochar-
659 amended landfill cover soils: evidence from large-scale column and field experiments". *J.*
660 *Environ. Eng.*, 143(9), 04017058.

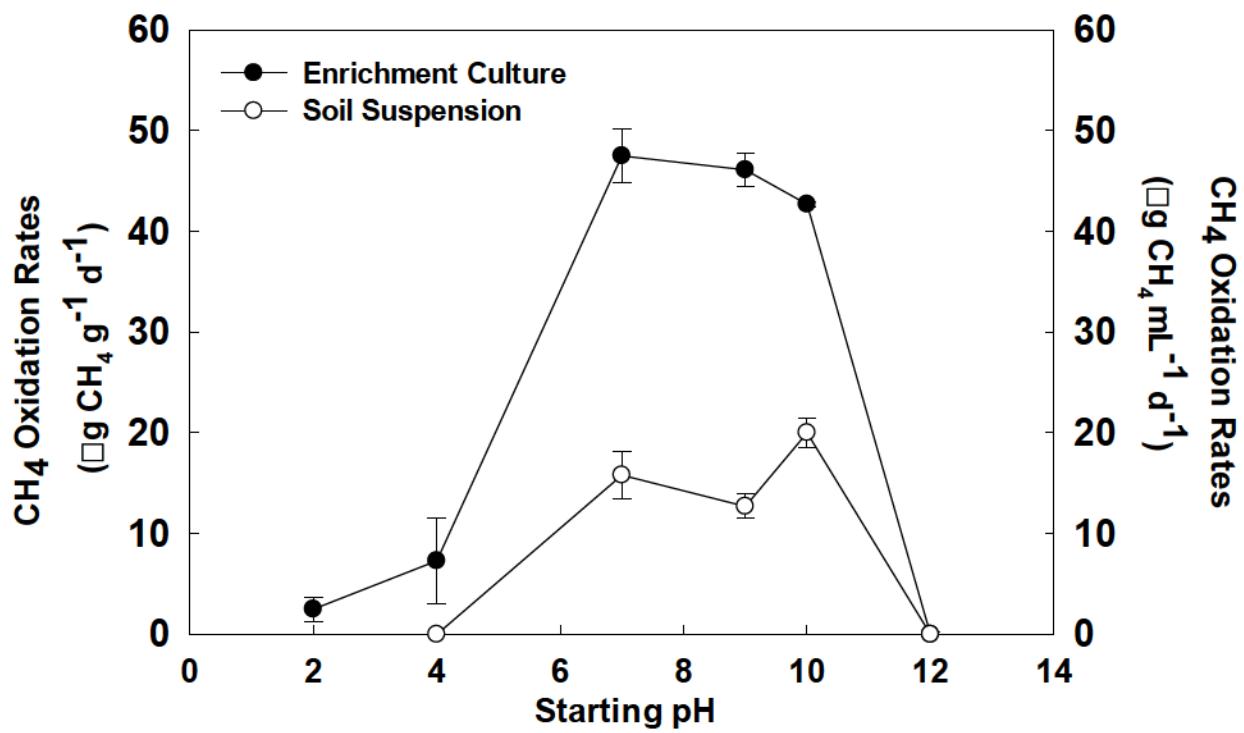
661 Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2013). "PEAR: a fast and accurate Illumina
662 Paired-End read merger". *Bioinformatics*, 30(5), 614-620

Table 1: Effect of pH on CH₄ oxidation and community composition in different ecosystem

pH Range	Optimal/ Maximum pH	CH ₄ concentration	Ecosystem	Molecular Biomarker	Genus/ Species/ Type of Methanotrophs	References
4.0 – 9.0	4.0 - 6.5 (Soil)	5%	Forest soil	-	-	Amaral et al. (1998)
	5.0 – 8.0 (Culture)	20%		-	-	
3.5 – 8.0	-	0.1%	Peat soil	-	-	Dunfield et al. (1993)
4.3 – 8.0	-	<1%	Upland soils	<i>pmoA</i> PLFA	Type I Methanotrophs (<i>Methylocaldum</i>) Type II Methanotrophs (<i>Methylocystis</i> , <i>Methylosinus</i>)	Knief et al. (2003)
3.0 – 10.0	6.5 – 7.5	15%	Landfill cover	-	-	Scheutz and Kjeldsen (2004)
9.4	-	-	Coal mine	16S rRNA <i>pmoA</i> microarray RFLP DGGE	Type I Methanotrophs (<i>Methylobacter</i> , <i>Methylosoma</i> , <i>Methylococcus</i>) Type II Methanotrophs (<i>Methylocystis</i> , <i>Methylosinus</i>)	Han et al. (2009)
4.7 - 8.1	-	5%	Landfill cover	<i>pmoA</i> TRFLP	Type I Methanotrophs (pH 6.8 – 8.1) Type II Methanotrophs (pH 4.7 – 5.35)	Su et al. (2014)
4.0 – 9.0	6.0 – 8.0	5%	River estuary	<i>pmoA</i>	<i>Methylomonas</i> , <i>Methylosoma</i> (pH 4 - 5) <i>Methylomicrobium</i> (pH 9) <i>Methylobacter</i> (pH 6 – 9)	Sherry et al. (2016)
3.0 – 11.0	4.5	1%	Mercury mine impoundment	<i>pmoA</i> 16S rRNA	Type I Methanotrophs and Type II Methanotrophs (pH 4.5)	Baesman et al. (2015)
5.0 – 10.0	7.0	20%	Landfill cover	-	-	Han et al. (2016)


Figure Captions


Figure 1: Methane concentration over time as a function of pH in enrichment culture and soil-suspension reactors with starting values of (a) pH 2.0, (b) pH 4.0, (c) pH 7.0/7.6, (d) pH 9.0, (e) pH 10.0 (f), and pH 12.0. (All pH values are ± 0.1 - 0.3 units). The arrows indicate addition of NaOH in enrichment cultures


Figure 2: Methane consumption in (a) enrichment culture reactors and (b) soil suspension reactors with starting pH values ranging from 2.0 to 12.0

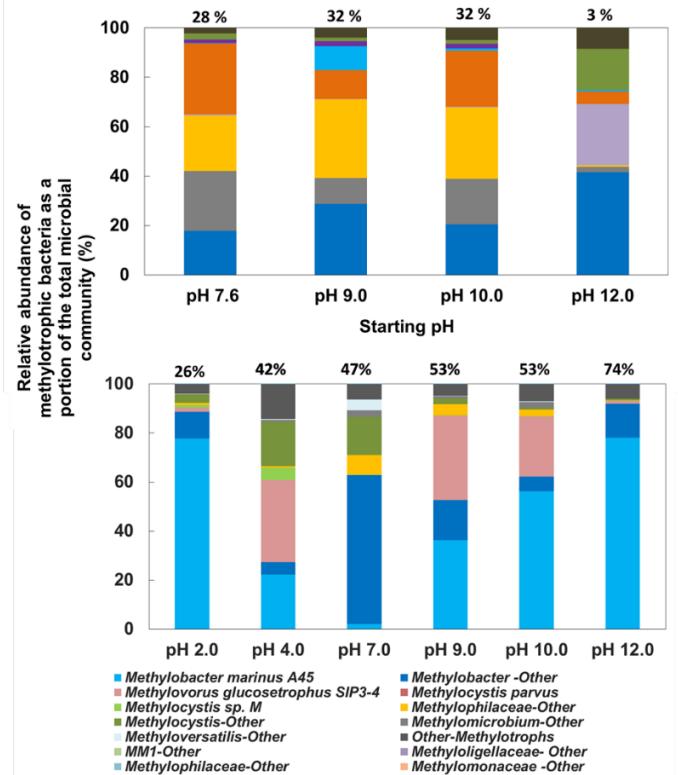
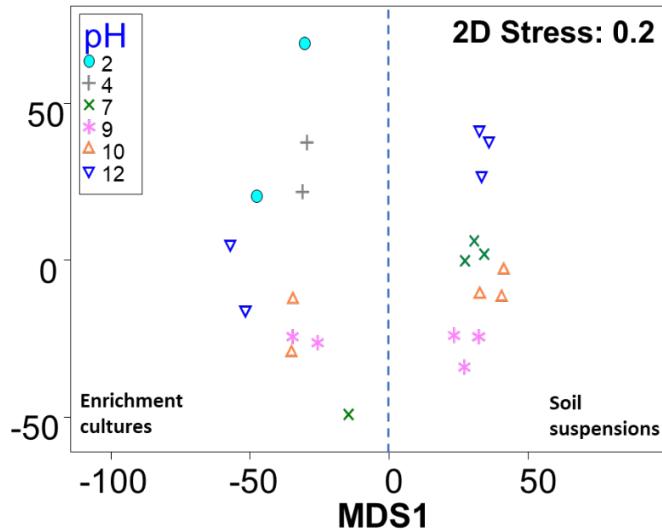


Figure 3: Methane oxidation rates in soil-suspension and enrichment culture reactors with starting pH values ranging from 2.0 to 12.0

Figure 4: Microbial community structure in soil and enrichment culture microcosms as assessed by DNA-based 16S rRNA gene amplicon sequence analysis. (a) Metric multi-dimensional scaling plot of total microbial community structure by pH. (b) Bar chart of the average methylotrophic bacteria communities in soil suspension microcosms across a range of incubation pH values. The relative abundance of methylotrophic bacteria as a portion of the total microbial community is shown above each condition. (c) Bar chart of the average methylotrophic bacteria in enrichment culture microcosms across a range of incubation pH values. The relative abundance of methylotrophic bacteria as a portion of the total microbial community is shown above each condition

