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Abstract

In a recent paper [Y], Ye proved the global persistence of regularity for a 3D Boussinesq model in
Hs(R3) ×Hs(R3) with s > 5/2. In this paper, we show that the global persistence and uniqueness
still hold when s > 3/2.

1 Introduction

In [C1], Chae proposed a modified Navier-Stokes model and addressed the global regularity persistence

with initial data u0 ∈ Hs(R3) and s > 5/2. The modified Navier-Stokes model reads

ut −∆u+R× (u× ω) = 0

∇ · u = 0,

where the operator R = (R1,R2,R3) is the vector of Riesz transforms defined by using the Fourier

transform as

(Rjf )̂ (ξ) =
ξj
i|ξ|

f̂(ξ), j = 1, 2, 3.

Subsequently, Ye in [Y] proved the global regularity and persistence for the 3D Boussinesq model

ut −∆u+R× (u× ω) +R×R× (ρe3) = 0 (1.1)

ρt + u · ∇ρ = 0 (1.2)

∇ · u = 0 (1.3)

in Hs(R3)×Hs(R3) for s > 5/2. For the 2D Boussinesq equations, the global existence and persistence

of regularity have been topics of high interest since the seminal work of Chae [C2] and of Hou and

Li [HL], who proved the global existence of a unique solution. Namely, the global persistence holds

for (u0, ρ0) in Hs × Hs−1 for integers s ≥ 3 [HL], while we have the global persistence in Hs × Hs

for integers s ≥ 3 by [C1]. The persistence in Hs × Hs−1 for the intermediate values 1 < s < 3

was then settled in [HKZ]. For other results on the global existence and persistence of solutions, see
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[ACW, BrS, CG, CW, DP, HK, KWZ, LPZ, T]. The persistence of regularity in the Sobolev spaces

W s,q × W s−1,q when q 6= 2 was studied in [KWZ], where it was proven that the persistence holds if

(s − 1)q > 2. Later, Kukavica and the author of this paper addressed the global regularity persistence

for the fractional Boussinesq equations in [KW1] and long time behavior of the solutions in [KW2].

In this paper, we prove that the global regularity persistence and the uniqueness still hold with initial

data (u0, ρ0) ∈ Hs×Hs and s > 3/2. The paper is organized as follows. In Section 2, we introduce basic

notations and state the main theorem on the persistence. In Section 3, we prove Theorem 2.1, while the

uniqueness of solutions is obtained in Section 4.

2 Notation and the main result on global persistence

We consider the 3D Boussinesq model (1.1)–(1.3) with the initial condition u(x, 0) = u0. The following

is the main result of this paper.

Theorem 2.1. Let s > 3/2, and assume that ‖u0‖Hs < ∞ with ∇ · u0 = 0 and ‖ρ0‖Hs < ∞. Then

there exists a unique solution (u, ρ) to the equations (1.1)–(1.3) such that u ∈ C
(
[0,∞);Hs(R3)

)
∩

L2
loc

(
[0,∞);Hs+1(R3)

)
and ρ ∈ C

(
[0,∞);Hs(R3)

)
.

The operator Λα is defined by

Λα = (−∆)α/2, 1 < α < 2,

or, using the Fourier transform (Λαf )̂ (ξ) = |ξ|αf̂(ξ) for ξ ∈ R3. In the next lemma, we recall the product

rule for fractional derivatives.

Lemma 2.2 (Product estimate). Let s > 0. For all f, g ∈ Hs(R3) ∩ L∞(R3), the inequality

‖Λs(fg)‖Lq(R3) ≤ C‖f‖Lq1 (R3)‖Λsg‖Lq̃1 (R3) + C‖Λsf‖Lq2 (R3)‖g‖Lq̃2 (R3)

holds, where q1, q̃1, q̃2 ∈ [q,∞] and q2 ∈ [q,∞) satisfy 1/q = 1/q1 + 1/q̃1 = 1/q2 + 1/q̃2 and C =

C(q1, q̃1, q̃2, q2, s). In particular,

‖Λs(fg)‖L2(R3) ≤ C‖f‖L∞(R3)‖Λsg‖L2(R3) + C‖Λsf‖L2(R3)‖g‖L∞(R3).

For the proof, cf. [KP]. In the following lemma, we recall a version of the Kato-Ponce inequality

from [KWZ].

Lemma 2.3 ([KWZ]). Let s ∈ (0, 1). For 1 < q < ∞ and j ∈ {1, 2, 3} and for f, g ∈ S(R3), the

inequality

‖[Λs∂j , g]f‖Lq(R3) ≤ C‖f‖Lq1 (R3)‖Λ1+sg‖Lq̃1 (R3) + C‖Λsf‖Lq2 (R3)‖Λg‖Lq̃2 (R3)

holds, where q1, q̃1, q̃2 ∈ [q,∞] and q2 ∈ [q,∞) satisfy 1/q = 1/q1 + 1/q̃1 = 1/q2 + 1/q̃2 and C =

C(q1, q̃1, q̃2, q2, s). In particular,

‖[Λs∂j , g]f‖L2(R3) ≤ C‖f‖L∞(R3)‖Λ1+sg‖L2(R3) + C‖Λsf‖L2(R3)‖Λg‖L∞(R3)

for f, g ∈ S(R3).
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3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. Next we establish the global existence and the persistence of

regularity, while the uniqueness is shown in the next sectioni.

Proof of Theorem 2.1(existence). Assume that ‖u0‖Hs , ‖ρ0‖Hs . 1, where s > 3/2 is fixed. Since s >

3/2, we have Hs(R3) ⊆ L∞(R3), and thus

ρ0 ∈ Lq̄, q̄ ∈ [2,∞].

Using the Lq̄ conservation property for the density equation (1.2), we get

‖ρ(t)‖Lq̄ ≤ ‖ρ0‖Lq̄ . 1, q̄ ∈ [2,∞].

The H1 energy inequality

‖u‖2H1 +

∫ t

0

‖∇u‖2H1 dτ ≤ C(t), t ≥ 0 (3.1)

was obtained in [Y]. Next, we use the parabolic regularity to estimate
∫ t

0
‖∇u‖L∞ dτ . Fix t0 > 0 and

let θ : R→ [0,∞) be a smooth non-decreasing function such that θ ≡ 0 on [0, t0/2] and θ ≡ 1 on [t0,∞].

Then we have

∂t(θ(t)u)−∆(θ(t)u) = −R× (θ(t)u× ω)−R×R× (θ(t)ρe3) + θ′(t)u.

For any t > 0, we get(∫ t

0

‖θ(s)∆u(s)‖2L4 ds

)1/2

≤
(∫ t

0

‖R × (θu× ω)‖2L4 ds

)1/2

+

(∫ t

0

‖R ×R× (θρe3)‖2L4 ds

)1/2

+

(∫ t

0

‖θ′(s)u‖2L2 ds

)1/4

.

(∫ t

0

‖u× ω‖2L4 ds

)1/2

+

(∫ t

0

‖ρ‖2L4 ds

)1/2

+

(∫ t

0

‖u‖2L2 ds

)1/4

.

(∫ t

0

‖u‖2L8‖∇u‖2L8 ds

)1/2

+ t1/2 + C(t).

By the Gagliardo-Nirenberg inequality, we get(∫ t

0

‖θ(s)∆u(s)‖2L4 ds

)1/2

.

(
t3/8

(∫ t

0

‖D2u‖5/8L2 ds

))1/2

+ t1/2 + C(t)

. t7/8
(∫ t

0

‖D2u‖2L2 ds

)5/16

+ t1/2 + C(t) . C(t),

from where ∫ t

t0

‖∆u‖2L4 ds ≤ C(t).
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Thus, by interpolation, we have

‖Λu‖L∞ . ‖Λu‖1/4L4 ‖∇Λu‖3/4L4 . ‖∇u‖1/4L4 ‖∆u‖3/4L4

.
(
‖∇u‖1/4L2 ‖∆u‖3/4L2

)1/4

‖∆u‖3/4L4 . C(t)‖∆u‖3/16
L2 ‖∆u‖3/4L4 .

Therefore, we get ∫ t

0

‖Λu‖L∞ dτ . C(t). (3.2)

Next, for the evolution of ‖Λsu‖L2 , we apply the operator Λs to the equation (1.1), multiply by Λsu, and

integrate the resulting equation obtaining

1

2

d

dt
‖Λsu‖2L2 + ‖∇(Λsu)‖2L2 = −

∫
Λs (R× (u× ω)) ·Λsu dx−

∫
Λs (R×R× (ρe3)) ·Λsu dx = J1 + J2.

We apply the Cauchy-Schwarz inequality and the fractional product rule to estimate

J1 . ‖Λs(u× ω)‖L2‖Λsu‖L2 . (‖Λsu‖L2‖ω‖L∞ + ‖Λsω‖L2‖u‖L∞)‖Λsu‖L2

≤ C‖ω‖L∞‖Λsu‖2L2 +
1

2
‖∇(Λsu)‖2L2 + C‖u‖2L∞‖Λsu‖2L2 .

For J2, we apply the Cauchy-Schwarz inequality

J2 ≤ ‖Λsρ‖L2‖Λsu‖L2 .

Thus, using the estimates for J1 and J2 above yields

d

dt
‖Λsu‖2L2 +

1

C
‖∇(Λsu)‖2L2 . (‖ω‖L∞ + ‖u‖2L∞)‖Λsu‖2L2 + ‖Λsρ‖L2‖Λsu‖L2 . (3.3)

Next, we consider higher order derivatives of the density ρ. We apply the operator Λs to the equation

(1.2), multiply by Λsρ, and integrate the resulting equation obtaining

1

2

d

dt
‖Λsρ‖2L2 = −

∫
[Λs, u · ∇]ρΛsρ dx ≤ ‖[Λs, u · ∇]ρ‖L2‖Λsρ‖L2 . (3.4)

By Lemma 2.3, we have

‖[Λs, u · ∇]ρ‖L2 . ‖ρ‖L∞‖Λs+1u‖L2 + ‖Λu‖L∞‖Λsρ‖L2 . ‖∇(Λsu)‖L2 + ‖Λu‖L∞‖Λsρ‖L2 .

Therefore,
1

2

d

dt
‖Λsρ‖2L2 ≤

1

2
‖∇(Λsu)‖2L2 + (1 + ‖Λu‖L∞)‖Λsρ‖2L2 .

Finally, adding (3.3) and (3.4) yields

d

dt
(‖Λsu‖2L2 + ‖Λsρ‖2L2) + ‖Λs+1u‖2L2 . (‖ω‖L∞ + ‖u‖2L∞)‖Λsu‖2L2 + (1 + ‖Λu‖L∞)‖Λsρ‖2L2

+ ‖Λsu‖2L2 + ‖Λsρ‖2L2 .

By the Sobolev embedding, (3.1), and (3.2), we get∫ t

0

‖u‖2L∞ dτ .
∫ t

0

‖u‖2H2 dτ ≤ C(t)
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and ∫ t

0

‖Λu‖L∞ dτ ≤ C(t).

We thus conclude the proof by applying the Gronwall inequality. �

4 Uniquenesss in L2(R3)× L2(R3)

In this section, we address the uniqueness.

Proof of Theorem 2.1(uniqueness). Consider two solutions (u(1), ρ(1)) and (u(2), ρ(2) of the system (1.1)–

(1.3) and set

U = u(1) − u(2)

Θ = ρ(1) − ρ(2)

Ω = ω(1) − ω(2) = ∇× u(1) −∇× u(2).

Subtracting the equations for (u(1), ρ(1)) and (u(2), ρ(2), we get

Ut −∆U +R× (U × ω(1)) +R× (u(2) × Ω) +R×R× (Θe3) = 0 (4.1)

Θt + u(2) · ∇Θ + U · ∇ρ(1) = 0. (4.2)

We multiply (4.1) with U and integrate the resulting equation obtaining

1

2

d

dt
‖U‖2L2 + ‖∇U‖2L2 = −

∫ (
R× (U × ω(1))

)
· U dx−

∫ (
R× (u(2) × Ω)

)
· U dx

−
∫

(R×R× (ρe3)) · U dx = I1 + I2 + I3.

For I1, we apply Hölder’s inequality

I1 ≤ C‖U × ω(1)‖L2‖U‖L2 ≤ ‖ω(1)‖L∞‖U‖2L2 .

Similarly, for I2 we have

I2 ≤ ‖u(2) × Ω‖L2‖U‖L2 ≤ ‖u(2)‖L∞‖Ω‖L2‖U‖L2 ≤ C‖u(2)‖L∞‖∇U‖L2‖U‖L2

≤ 1

2
‖∇U‖2L2 + C‖u(2)‖2L∞‖U‖2L2 .

For I3, we apply the Cauchy–Schwarz inequality

I3 ≤ ‖Θ‖L2‖U‖L2 .

Combining the estimates for I1, I2, and I3 gives

1

2

d

dt
‖U‖2L2 + ‖∇U‖2L2 ≤

1

2
‖∇U‖2L2 + (‖u(2)‖2L∞ + ‖ω(1)‖L∞)‖U‖2L2 + ‖Θ‖L2‖U‖L2 . (4.3)
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Next, for the evolution of ‖Θ‖L2(R3), we multiply (4.2) with Θ and integrate the resulting equation

yielding

1

2

d

dt
‖Θ‖2L2 = −

∫
R3

U · ∇ρ(1)Θ dx ≤ ‖U‖L6‖∇ρ(1)‖L3‖Θ‖L2

≤ ‖∇U‖L2‖∇ρ(1)‖L3‖Θ‖L2 ≤ 1

2
‖∇U‖2L2 + C‖∇ρ(1)‖2L3‖Θ‖2L2 .

(4.4)

Adding (4.3) and (4.4), we obtain

d

dt
(‖U‖2L2 + ‖Θ‖2L2) ≤ (‖u(2)‖2L∞ + ‖ω(1)‖L∞)‖U‖2L2 + C‖Θ‖L2‖U‖L2 + C‖∇ρ(1)‖2L3‖Θ‖2L2 .

Next, ‖ω(1)‖L∞ is integrable in time. Indeed, for any T > 0 and s > 3/2, by the Sobolev embedding we

get ∫ T

0

‖ω(1)‖L∞ dτ ≤
∫ T

0

‖∇u(1)‖L∞ dτ <∞.

Finally, by the Sobolev embedding again we get

‖∇ρ(1)‖L3(R3) ≤ C‖ρ(1)‖Hs(R3) ≤ C.

Since U0 = Θ0 = 0, by using the Gronwall inequality, we have the uniqueness. �
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