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Abstract

In a recent paper [Y], Ye proved the global persistence of regularity for a 3D Boussinesq model in
H*(R?) x H*(R*) with s > 5/2. In this paper, we show that the global persistence and uniqueness
still hold when s > 3/2.

1 Introduction

In [C1], Chae proposed a modified Navier-Stokes model and addressed the global regularity persistence
with initial data ug € H*(R3) and s > 5/2. The modified Navier-Stokes model reads

u—Au+R X (uxw)=0
V-u=0,

where the operator R = (R1, Ra,R3) is the vector of Riesz transforms defined by using the Fourier

transform as

_ 5

Subsequently, Ye in [Y] proved the global regularity and persistence for the 3D Boussinesq model
u—Au+R X (uxw)+RXR X (peg) =0 (1.1)
pt+u-Vp=0 (1.2)
V-u=0 (1.3)

in H*(R3) x H*(R?) for s > 5/2. For the 2D Boussinesq equations, the global existence and persistence
of regularity have been topics of high interest since the seminal work of Chae [C2] and of Hou and
Li [HL], who proved the global existence of a unique solution. Namely, the global persistence holds
for (ug,po) in H® x H*™! for integers s > 3 [HL], while we have the global persistence in H® x H*
for integers s > 3 by [C1]. The persistence in H* x H*"! for the intermediate values 1 < s < 3

was then settled in [HKZ]. For other results on the global existence and persistence of solutions, see



[ACW, BrS, CG, CW, DP, HK, KWZ, LPZ, T|. The persistence of regularity in the Sobolev spaces
W4 x W14 when q # 2 was studied in [KWZ], where it was proven that the persistence holds if
(s —1)q > 2. Later, Kukavica and the author of this paper addressed the global regularity persistence
for the fractional Boussinesq equations in [KW1] and long time behavior of the solutions in [KW?2].

In this paper, we prove that the global regularity persistence and the uniqueness still hold with initial
data (ug, po) € H* x H® and s > 3/2. The paper is organized as follows. In Section 2, we introduce basic
notations and state the main theorem on the persistence. In Section 3, we prove Theorem 2.1, while the

uniqueness of solutions is obtained in Section 4.

2 Notation and the main result on global persistence

We consider the 3D Boussinesq model (1.1)—(1.3) with the initial condition u(z,0) = ug. The following

is the main result of this paper.

Theorem 2.1. Let s > 3/2, and assume that ||ug|lgs < oo with V - ug = 0 and ||po||lgs < oo. Then
there exists a unique solution (u,p) to the equations (1.1)~(1.3) such that u € C ([0,00); H*(R®)) N
L3 ([0,00); H¥TY(R?)) and p € C ([0, 00); H*(R?)).
The operator A® is defined by
AY = (=A)*/2, l<a<?2,

or, using the Fourier transform (A®f)"(&) = |€]* f(€) for € € R3. In the next lemma, we recall the product

rule for fractional derivatives.

Lemma 2.2 (Product estimate). Let s > 0. For all f,g € H*(R3) N L>=(R3), the inequality

[A*(f9)llLarey < Cllf Lo ®e)l[A°gllLar sy + ClIA® fllLaz (3 [19]| a2 ()

holds, where q1,G1,G2 € [g,00] and g2 € [q,00) satisfy 1/q = 1/q1 +1/¢1 = 1/g2 + 1/Go and C =
Clq1, @1, G2, 92, 8). In particular,

1A (fllz2ms) < Cllfllnoe®syIA°gllL2msy + CIA® fll L2®s) gl oo (m3)-

For the proof, cf. [KP]. In the following lemma, we recall a version of the Kato-Ponce inequality
from [KWZ].

Lemma 2.3 ([KWZ]). Let s € (0,1). For 1 < q¢ < oo and j € {1,2,3} and for f,g € S(R?), the

inequality
[1[A°0;, 9] f I Laqrey < Cllf Lo @) IA 29l Lar sy + ClIA® £l Loz (o) 1A L2 (2

h01d57 where Q1a61752 S [q,OO} and g2 € [q,OO) SGtiSfy 1/q = 1/q1 + 1/@1 = 1/q2 + 1/@2 and C =
Clq1,q1,G2,q2,8). In particular,

1[A°0;, 91 fllL2(ms) < C||f||L°°(R3)||A1+89HL2(]R3) + ClA° fll L2 s [ A Lo ()

for f,g € S(R?).



3 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. Next we establish the global existence and the persistence of

regularity, while the uniqueness is shown in the next sectioni.

Proof of Theorem 2.1(ezistence). Assume that ||uo| ms,||pollas S 1, where s > 3/2 is fixed. Since s >

3/2, we have H*(R3) C L>°(R3), and thus
po € L9, q € [2,00].
Using the L7 conservation property for the density equation (1.2), we get
lp()llca <llpollea 1, € [2,00].

The H' energy inequality
t
[ullfpr + [ IVullfdr <C#),  t>0 (3.1)
0

was obtained in [Y]. Next, we use the parabolic regularity to estimate fg IVul| < dr. Fix tg > 0 and
let 6: R — [0, 00) be a smooth non-decreasing function such that § = 0 on [0,%(/2] and = 1 on [¢o, c0].

Then we have
O (0(t)u) — A(O(t)u) = —R x (0(t)u x w) — R x R x (0(t)pe3) + ' (t)u.

For any ¢ > 0, we get

t 1/2 t
(/ |e(s)Au<s)||§4ds> < </ ||Rx(euxw)|§4ds)
0 0
. 1/4
+</ |9’(s)u||2Lgds)
0
t 1/2 t 1/2 t 1/4
5( / ||uxw||%4ds) +( | |p||i4ds) +( / ||u||%zds)
0 0 0

t 1/2
< (/ llul2s]| V|2 ds) + Y24 C).
0

1/2

t 1/2
+ (/ R x R x (Bpe3)||3a ds)
0

By the Gagliardo-Nirenberg inequality, we get
t 1/2 t 1/2
([ 1oeauias) s (@ ([ p2uisas)) e
0 0
¢ 5/16
<78 (/ | D?ul|%. ds) +t'2 1 C@t) S C),
0

from where

t
/ |Aul|34 ds < O(t).
to



Thus, by interpolation, we have
1/4 3/4 1/4 3/4
[Aul| = < [Aul AV Aul3A! < Hv 1A Al

< (Ivul ) faul %t £ Colaul?iau

Therefore, we get

/0 [Aul| Lo dT S C(2). (3.2)

Next, for the evolution of ||A®u||z2, we apply the operator A® to the equation (1.1), multiply by A®u, and

integrate the resulting equation obtaining

5 dt||ASu||L2 + V(A w)|3: = —/AS (R X (uxw)) Audz —/AS (R X R x (pe3)) - Nudx = Jy + Ja.

We apply the Cauchy-Schwarz inequality and the fractional product rule to estimate
Ji SIA(u x w2 |A%u] 2 S (1A%u]| g2 [w]| oo + [[A°w][ 2 |ull Lo ) [[A%ul| 2
S 1 S S
< Cllwllp< A%z + S IV(A W) 72 + Cllullze A%l 7.
For Js, we apply the Cauchy-Schwarz inequality
J2 < [[A%pll 2 ([ A%u] 2.

Thus, using the estimates for J; and Jo above yields

d s, 112 1 s 2 < 2 s, 112 s s

G 18%ullze + FIVATW)L2 S (lwllzee + Jullze) 1A ullzz + [A%pll 2| A%l 22 (3.3)

Next, we consider higher order derivatives of the density p. We apply the operator A® to the equation
(1.2), multiply by A®p, and integrate the resulting equation obtaining

2 Al = - / A% u- VIpA*pde < [|[A%, 1w - V]| 2 l|A%p] 2. (3.4)

By Lemma 2.3, we have
1A% u - Vplize S llpllnee A ull g2 + [[Au oo [A%pll 2 S IV (A% 22 + [[Au] o | A%p]| 2.
Therefore,
5 dt”ASPHm < *IIV(AS Mz + (1 + [Aul L) [|A° 2.
Finally, adding (3.3) and (3.4) yields

d S S S S S
(I ulZe + 1A% 72) + 1A ulZe S (lwllee + [[ullZ) 1A%l 7z + (L + [Aul =) [A%p]l 72
+ A2 + [[A%p][Zo-

By the Sobolev embedding, (3.1), and (3.2), we get

t t
/0 ul3 dr < / lul% dr < C(1)



and

t
/ [Au|| Lo dr < C(t).
0

We thus conclude the proof by applying the Gronwall inequality. O

4 Uniquenesss in L?(R3) x L*(R?)
In this section, we address the uniqueness.

Proof of Theorem 2.1(uniqueness). Consider two solutions (u(™), p(V)) and (u, p(?) of the system (1.1)-
(1.3) and set

U=u® _y®
0 =pM) — p@
Q=w® —w® =V xu® -V xu?.

Subtracting the equations for (u"), p™M) and (u?, p?), we get

U — AU +R x (U x wM) + R x (u® x Q)+ R xR x (Bez) =0 (4.1)
0, +u®.ve+U - vp =o. (4.2)

We multiply (4.1) with U and integrate the resulting equation obtaining

%%nuniz VU, = —/ (Rx U x ) - Uda - / (R (u® x ) - U da
—/(RXRX (pe3)) - Udx =1 + I + I5.
For I, we apply Hélder’s inequality
L < OU x @D 2)|U]| 2 < o] o= U7

Similarly, for Is we have

I

IN

1u® x Q2 [Ull 2 < Ilu® |2 192] 221U 22 < Cllu® || VU 22U 2

IN

1

S IVUIZ: + Cllu®(F U] 72

For I35, we apply the Cauchy—Schwarz inequality

I3 < [|0] 2 |U][ 2.

Combining the estimates for I, Is, and I3 gives

1d

1
57 UIE= + VUL < SIVUIE: + ([0l + lo® ) U172 + 0] 21U 2. (4.3)



Next, for the evolution of ||©] z2gs), we multiply (4.2) with © and integrate the resulting equation
yielding

1d
3108 == [ U Vo6 ds < U1 TV o]
1
< IVUl= VoV 22 1lle < SIIVUIIZ + ClIVAM I Zs Ol172.
Adding (4.3) and (4.4), we obtain
d
0172 +10172) < ([u® 7 + 0™ [L)U]1Z2 + ClOll2 U2 + CIVAD |75 1012

Next, ||w!)| e is integrable in time. Indeed, for any 7' > 0 and s > 3/2, by the Sobolev embedding we
get

T T
/ w1 dr < / IV 1 dr < oc.
0 0

Finally, by the Sobolev embedding again we get
VoV s@sy < Cllp™M |l usy < C-

Since Uy = ©¢ = 0, by using the Gronwall inequality, we have the uniqueness. O
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