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Abstract

In this paper, we show that after a suitable randomization of the initial data in negative-order
Sobolev spacesH−α with 0 < α < 1/2, there exist almost sure global weak solutions for the Boussinesq
equations in Rd and Td, when d = 2, 3. Furthermore, we prove that the global weak solutions are
unique in 2d.

1 Introduction

In this paper, we address the almost sure existence of global weak solutions to the Boussinesq equations

in the whole space Rd and the tori Td for d = 2, 3,

ut −∆u+ u · ∇ρ+∇π = ρe3 (1.1)

ρt −∆ρ+ u · ∇ρ = 0 (1.2)

∇ · u = 0. (1.3)

Here, u is the velocity and ρ is represents the density or temperature of the fluid which depends on the

physical context. π denotes the pressure and e3 = (0, 0, 1)T . The Boussinesq system is an important

physical model arising particularly in two situations. It is a model for the inhomogeneous Navier-Stokes

system, which is derived from the full compressible NavierStokes system under the low Mach assumption.

Under this scenario, u represents the velocity while ρ represents the variation of the density. In the second

context, the Boussinesq system is also related to the RayleighBénard problem, in which case ρ represents

the temperature.

Data in Ḣs with s < sc (super-critical regime) is rougher than the data of critical regularity. Intu-

itively, scaling is against well-posedness in this case. Ill-posedness in some cases can be circumvented by

an appropriate probabilistic method in some probability space of initial data, in the other words, one may

hope to establish almost sure local well-posedness with respect to certain probability random data space.

This random data approach to well-posedness first appeared in the series of papers [B] of Bourgain in the

context of studying the invariance of Gibbs measures associated to NLS on tori (T and T2). Later, Burq-

Tzvetkov [BT1, BT2] obtained similar results in the context of the cubic nonlinear wave equation (NLW)
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on a three dimensional compact Riemannian manifold. The random data approach to well-posedness

has also been pursued by many authors and applied to several nonlinear evolution equations on different

manifolds. In the context of the incompressible Navier-Stokes equations, almost sure local well-posedness

and in some instances almost sure global existence results in the context of the Navier-Stokes equations

include: [DC, NPS, WY, WW].

Recently, Nahmod, Pavlović, and Staffilani [NPS] gave the first construction of almost sure global

weak solutions for the Navier-Stokes equations with initial data in H−α(Td), where 0 < α < 1/2 for

d = 2 and 0 < α < 1/4 for d = 3 in the probabilistic point of view. In the context of the Navier–Stokes

equations, the local in time well posedness for randomized initial data in L2(T3) was proven by Zhang

and Fang [ZF] and by Deng and Cui [DC] using similar approach. In [NPS], by suitably randomizing

the initial data u0 and using the mild formulation u = et∆uω0 + w, the authors singled out the linear

evolution et∆uω0 and the difference equation for w was identified, where they showed that the energy

of w is conserved. Later, J. Wang and K. Wang in [WW] extended the global existence results from

the periodic domain to Rd, for d = 2, 3, and improved the range of the parameter of the negative-order

Sobolev spaces from 0 < α < 1/4 to 0 < α < 1/2 for d = 3. By using the approach in [NPS], L. Du and

T. Zhang in [DZ] proved the almost sure global existence of weak solutions for the MHD equations in Td

and Rd, for d = 2, 3, where a uniform bound for the energy of the nonlinear part of the solutions was also

obtained.

In recent years, there has been extensive research on the Boussinesq equations. People have been

studying the persistence of regularity and global existence since the seminal work of Chae [C] and of Hou

and Li [HL], who proved the global existence of a unique solution. In [LLT], Lunasin et al established

global existence and uniqueness in the low regularity space H1×L2. Kukavica and the first author of this

paper addressed the persistence of regularity in W s,q ×W s,q for the 2D fractional Boussinesq equations

in [KW1] and the long time behavior of solutions in [KW2]. For other global results of solutions, see

[ACW, CW, HK1, LLT, SW, W]; however, the analogous almost sure existence of global weak solutions

is less studied. In fact, to the best knowledge of the authors, these are the first results addressing global

existence and long time behavior of weak solutions to the Boussinesq equations with initial random

data. We also address the long time behavior of the constructed weak solutions. More precisely, we

study in which way the variations of the density affect the asymptotic behavior of the velocity field from

a probabilistic point of view. The main tool is the Fourier splitting method introduced by Schonbek

[S1, S2].

The paper is organized as follows. In Section 2, we introduce relevant notation and state the main

results. Section 3 contains lemma on the estimates in terms of random data. Section 4 contains the

energy estimates. In the final section, we give the proof for the long time behavior for the weak solution.

2 Notation and the main results

In this section, we introduce basic notations and state our main results. We first define the Leray projector

P
P = I +∇(−∆)−1∇·
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to be a bounded operator into divergence-free vector fields. The Leray projector P may also be defined

via the Fourier transform

(̂Pu)j(ξ) =

(
δjk −

ξjξk
|ξ|2

)
ûk(ξ), j = 1, 2, 3.

We next introduce the construction of random initial data in the whole space Rd for d ≥ 1, which was

first introduced by Burq and Tzvetkov [BT1]. In Rd, we divide the frequency space by using the Wiener

decomposition. For n ∈ Zd, let Qn be the unit cube Qn = n+ (− 1
2 ,

1
2 ]d. Then we have

Rd =
⋃
n

Qn.

Note that Qn ∩Qm = ∅ if m 6= n and
∑
n χQn(ξ) = 1. Hence, we have the decomposition

f(x) =
∑
n∈Zd

F−1(χQn f̂).

Define a nonnegative and even smooth function ϕ such that φ(ξ) = 1 for ξ ∈ (− 1
2 ,

1
2 )d and φ(ξ) = 0 for

ξ ∈ ([−1, 1]d)c, and let

ϕ(ξ) =
φ(ξ)∑

n φ(ξ − n)
.

Note that
∑
n ϕ(ξ − n) = 1. Define

ϕ(D − n)f =

∫
Rd
f̂(ξ)ϕ(ξ − n)ei2πx·ξ dξ.

Then f has a smooth version for the Wiener decomposition:

f(x) =
∑
n∈Zd

ϕ(D − n)f.

For any real-valued function f , we obtain

ϕ(D + n)f = ϕ(D − n)f

and
∑
n ϕ(D − n)f is also a real-valued function.

In the Td case, the frequencies of functions are in Zd, so we can divide the frequency space into

the integer points. To keep the consistence of the notations, we denote the decomposition operator

φ(D − n)f = f̂(n)ei2πx·n.

We now introduce the randomization of functions in the negative-order Sobolev spaces. We first

introduced the randomization of elements in negative order Sobolev spaces H−α.

Definition 2.1. Let (ln(ω))n∈Zd be a sequence of real, 0-mean, independent random variables on a prob-

ability space (Ω, A, p) with associated sequence of distributions (µn)n∈Zd so that there exists c > 0, for

all γ ∈ R and for all n ∈ Zd we have that∣∣∣∣∫ ∞
−∞

eγx dµn(x)

∣∣∣∣ ≤ ecγ2

. (2.4)

3



For f ∈ H−α(Rd) or f ∈ H−α(Td), we define the map from (Ω, A) to H−α by

ω → fω

where

fω =
∑
n∈Zd

ln(ω)φ(D − n)f, (2.5)

where φ(D − n)f is defined as before. We call such a map randomization.

The following are the main results of this paper.

Theorem 2.1 (Existence and uniqueness in 2D). Fix T > 0, 0 < α ≤ 1/2. Let u0, ρ0 ∈ Ḣ−α(R2) or

H−α(T2) and ∇ · u0 = 0. We further suppose u0 and ρ0 are mean zero in the periodic case. Then there

exists a set Σ ⊆ Ω of probability 1 such that for any ω ∈ Σ the initial value problem (1.1) − (1.3) with

datum (uω0 , ρ
ω
0 ) has a unique global weak solution in the sense of Definition 2.1 of the form

u = gω1 + v,

ρ = gω2 + θ,

and

(v, θ) ∈ L∞([0, T ];L2) ∩ L2([0, T ]; Ḣ1),

where gω1 = et∆uω0 and gω2 = et∆ρω0 .

Theorem 2.2 (Existence in 3D). Fix T > 0, 0 < α ≤ 1/2. Let u0, ρ0 ∈ Ḣ−α(R3) or H−α(T3) and

∇ · u0 = 0. We further suppose u0 and ρ0 are mean zero in the periodic case. Then there exists a set

Σ ⊆ Ω of probability 1 such that for any ω ∈ Σ the initial value problem (1.1)− (1.3) with datum (uω0 , ρ
ω
0 )

has a global weak solution in the sense of Definition 2.1 of the form

u = gω1 + v,

ρ = gω2 + θ,

and

(v, θ) ∈ L∞([0, T ];L2) ∩ L2([0, T ]; Ḣ1),

where gω1 = et∆uω0 and gω2 = et∆ρω0 .

3 A priori estimates on the random data

We now introduce the deterministic estimates for the random initial data and probabilistic estimates for

the heat kernel in terms of random data. The following lemma is a standard large deviation property

(see Lemma 3.1 in [BT1]) and it will be used to analyze the heat flow on the randomized data.
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Lemma 3.1 (Lemma 3.1 in [BT1]). Let (lr(ω))
∞
r=1 be a sequence of real, 0-mean, independent random

variables on a probability space (Ω, A,P) with associated sequence of distributions (µr)
∞
r=1. Assume that

there exists c > 0 such that ∀γ ∈ R, ∀r ≥ 1 we have∣∣∣∣∫ ∞
−∞

eγx dµr(x)

∣∣∣∣ ≤ ecγ2

.

Then there exists α > 0 such that for every λ > 0, every sequence (ar)
∞
r=1 ∈ `2 of real numbers,

P

(
ω :

∣∣∣∣∣
∞∑
r=1

arlr(ω)

∣∣∣∣∣ > λ

)
≤ C exp

(
− αλ2

‖ar‖2`2r

)
.

As a consequence, for every q ≥ 2 and (a2
r)
∞
r=1 ∈ `2,∥∥∥∥∥

∞∑
r=1

arlr(ω)

∥∥∥∥∥
Lq(Ω)

≤ C√q ‖ar‖`2r .

We next recall another classical result for a sequence of real, mean-0, independent random variables.

Lemma 3.2. Let {ln(ω)}n∈Zd be a sequence of real, mean-0, independent random variables satisfy Def-

inition 2.1 on a probability space (Ω, A,P). Then given ε, δ > 0, there exists a subset Ωδ ⊂ Ω satisfying

P(Ωcδ) . e
− 1
δε , such that for all ω ∈ Ωδ

|ln(ω)| . 1

δε
log(〈n〉+ 1)

where 〈n〉 =
√
|n|2 + 1.

Proof. For each n and a small ε > 0, we have a constant C,

Ee|ln(ω)| ≤ C.

Set M = 1
δε , and then we have

E
∣∣∣∣e|ln(ω)|

eM

∣∣∣∣ ≤ Ce− 1
δε

Then we obtain,

Ce−
1
δε > E

∣∣∣∣e|ln(ω)|

eM

∣∣∣∣ ≥ ∑
j∈Zd

P(e|lj(ω)| ≥ eM 〈j〉d) =
∑
j∈Zd

P(|lj(ω)| ≥ 1

δε
+ d log〈j〉).

Excluding Ωcδ := ∪j{|lj(ω)| ≥ 1
δε + d log〈j〉} from Ω, for all ω ∈ Ωδ, we have

|ln(ω)| ≤ 1

δε
+ d log〈n〉 . 1

δε
log(〈n〉+ 1), for n ∈ Zd.

with P(Ωcδ) < Ce−
1
δε . �

Remark 3.3. For given ε > 0 and arbitrary small γ > 0, it’s easy to check the fact that

P(‖fω‖H−α−γ >
1

δε
‖f‖H−α) . e

1
δε

which implies almost surely fω ∈ H−α−γ for arbitrary small γ > 0.
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Lemma 3.4. For 0 < α < 1 and k ∈ N. Given ε > 0 and arbitrary small γ > 0. If f ∈ Ḣ−α(Rd) or

f ∈ H−α(Td) of mean zero. Suppose fω is defined as (2.5), then there exists a subset Ωδ ⊂ Ω satisfying

P(Ωcδ) . e
− 1
δε , for all ω ∈ Ωδ we obtain that

‖∇ket∆fω(t)‖L2 ≤ 1

δε
(1 + t−

α+γ+k
2 )‖f‖Ḣ−α (3.6)

and

‖∇ket∆fω(t)‖L∞ ≤
1

δε
max{t− 1

2 , t
−k+α+γ+d/2

2 }‖f‖Ḣ−α . (3.7)

Proof. Based on the deterministic properties of heat kernel (see Lemma 3.1 in [NPS]), we have

‖∇ket∆fω(t)‖L2 ≤ (1 + t−
α+k

2 )‖fω‖Ḣ−α−γ (3.8)

and

‖∇ket∆fω(t)‖L∞ ≤ max{t− 1
2 , t

−k+α+d/2
2 }‖fω‖Ḣ−α−γ . (3.9)

Applying Remark 3.3 into (3.8) and (3.9), we have (3.6) and (3.7) after excluding a subset of probability

. e−
1
δε . �

Remark 3.5. Given f ∈ H−α(Td) of mean zero, ‖f‖H−α(Td) = (
∑
k∈Zd,k 6=0〈k〉−α|f̂(k)|2)1/2 is comparable

to (
∑
k∈Zd,k 6=0 |k|−α|f̂(k)|2)1/2 = ‖f‖Ḣ−α(Td). So in the periodic case, it’s equivalent to use H−α and

Ḣ−α when the functions are mean zero.

We use the deterministic properties of heat kernel but we still leave the linear evolution et∆fω(t)

unbounded when t is near zero. This is also the reason why we can not construct the weak solution of

negative regularity deterministically. In the following lemma, we exploit the randomness in the data fω

and then we bound the linear evolution et∆fω(t) in the small interval around zero in the Lp sense.

Lemma 3.6. For p, q ≥ 2, 0 < α < 1 with αp ≤ 2 and δ > 0. Given some ε < 1
p −

α
2 , set

Eδ,p,q = {ω ∈ Ω : ‖et∆fω‖Lp([0,δ′],Lq) > (δ′)
1
p−

α
2−ε‖f‖H−α , ∀δ′ ∈ (0, δ]}.

Then we have

P(Eδ,p,q) . e
− 1
δε .

Proof. By Minkowski’s inequality and large deviation property (Lemma 3.1), for r ≥ p, q we can have

the following bound (see Lemma 2.4 in [WW])

(E‖et∆fω‖rLp([0,δ′],Lq))
1/r ≤ Cp,q

√
r(δ′)

1
p−

α
2 ‖f‖H−α . (3.10)

By Chebyshev’s inequality, we have

P(‖et∆fω‖Lp([0,δ′],Lq) > λ) ≤ Crp,qλ−rr
r
2 (δ′)

r
p−

rα
2 ‖f‖rH−α

for any r ≥ p, q. When λ/
(

(δ′)
r
p−

rα
2 ‖f‖rH−α

)
≥ e2, we select r = λ/

(
(δ′)

r
p−

rα
2 ‖f‖rH−α

)
. By r−

r
2 ≤ e−r2

when r ≥ e2, we have

P(‖et∆fω‖Lp([0,δ′],Lq) > λ) .p,q exp

− λ2(
(δ′)

r
p−

rα
2 ‖f‖rH−α

)2

 .
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When λ/
(

(δ′)
r
p−

rα
2 ‖f‖rH−α

)
< e2, we select r = max p, q (WLOG suppose r = p). It’s easy to check

that Crp,qλ
−pp

p
2 (δ′)1− pα2 ‖f‖pH−α .p,q exp

(
− λ2(

(δ′)
r
p
− rα

2 ‖f‖r
H−α

)2

)
. So we have

P(‖et∆fω‖Lp([0,δ′],Lq) > λ) .p,q exp

− λ2(
(δ′)

r
p−

rα
2 ‖f‖rH−α

)2

 .

By choosing λ = (δ′)
1
p−

α
2−ε‖f‖H−α , we prove

P(Eδ,δ′,p,q) . e
− 1

(δ′)2ε .

where

Eδ,δ′,p,q = {ω ∈ Ω : ‖et∆fω‖Lp([0,δ′],Lq) > (δ′/2)
1
p−

α
2−ε‖f‖H−α , where δ′ ∈ (0, δ]}.

By choosing δ′ = δ, δ2 ,
δ
4 ,

δ
8 , ..., we have P(∪∞j=1Eδ,2−jδ,p,q) ≤

∑∞
j=1 P(Eδ,2−jδ,p,q) . e−

1
δε . It is easy to

check Eδ,p,q ⊂ ∪∞j=1Eδ,2−jδ,p,q, so we also have (3.10). �

4 Energy estimates for the Boussinesq system

In this section, we give energy estimates for the difference equation. We will use these a priori estimates

to construct weak solutions. First, we set

u = gω1 + v,

ρ = gω2 + θ.

It is equivalent to consider the new system

vt −∆v + P∇ · ((gω1 + v)⊗ (gω1 + v)) = P((gω2 + θ)e3), (4.11)

θt −∆θ +∇ · ((gω1 + v)(gω2 + θ)) = 0, (4.12)

∇ · v = 0. (4.13)

Now we define the energy for v and θ, respectively.

E1(v, t) = ‖v‖2L2 +

∫ t

0

‖∇v‖2L2 ds

and

E2(θ, t) = ‖θ‖2L2 +

∫ t

0

‖∇θ‖2L2 ds.

The following theorem establishes energy bounds which will be used in constructing global weak solutions.

The proofs of the whole space and the periodic space are similar, so we only present the proof of the

whole space. Denote that f = (u0, ρ0) and ‖f‖Ḣ−α = ‖u0‖Ḣ−α + ‖ρ0‖Ḣ−α .
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Theorem 4.1. Fix T > 0 and α ∈ (0, 1
2 ). Given 0 < ε < 1

4 −
α
2 and γ > 0 can be arbitrarily small.

Consider a function g1 and g2 satisfying the following properties, for i = 1, 2

‖gi‖L2 ≤ 1

δε
(1 + t−

α+γ+k
2 )‖f‖Ḣ−α , (4.14)

and

‖gi‖L4([0,δ],L4) + ‖gi‖L4([0,δ],L4+ ) ≤ δ
1
4−

α
2−ε‖f‖Ḣ−α , when d = 2 (4.15)

where 1
4+ = 1

4 − γ and

‖gi‖L3([0,δ],L9) + ‖gi‖L4([0,δ],L4) ≤ δ
1
4−

α
2−ε‖f‖Ḣ−α , when d = 3 (4.16)

where δ is small enough. Suppose (v, θ) ∈ L∞([0, T ];L2(T2)) ∩ L2; Ḣ1) is a solution, then

E1 + E2 ≤ C(T, α, ‖f‖Ḣ−α).

Proof of Theorem 2.2. First, by multiplying by v and integrating the resulting equation for t ∈ [0, δ] we

obtain the following equation:

E1(v, t) = −
∫ t

0

∫
v · P∇ · (g1 ⊗ g1) dxds−

∫ t

0

∫
v · P∇ · (gω1 ⊗ v) dxds−

∫ t

0

∫
v · P∇ · (v ⊗ g1) dxds

−
∫ t

0

∫
v · P∇ · (v ⊗ v) dxds−

∫ t

0

∫
v · P(g2 + θ)e3 dxds =

5∑
i=1

Ii.

By the divergence-free condition on v and g1, we have

I2 = I4 = 0.

Therefore, it remains to estimate I1, I3 and I5. For I1, by Hölder inequality, the definition of E1 and

(4.15) (4.16), we have

I1 . ‖∇v‖L2([0,t],L2)‖g1‖2L4([0,t],L4) . δ
1
2−α−2ε‖f‖2

Ḣα
E1(t)

1
2 .

For I3, when d = 2, by Hölder inequality, (4.15) and the definition of E1, we have that

I3 . ‖∇v‖L2([0,t],L2)‖g1‖L4([0,t],L4+ )‖v‖L4([0,t],L4− ) . δ
1
4−

α
2−ε‖f‖ḢαE1(t)

1
2 ‖v‖L4([0,t],L4− ), (4.17)

where 1
4− = 1

4 + γ. For ‖v‖L4([0,t],L4− ), by Lp interpolation theory and Sobolev inequality, we have

‖v‖L4([0,t],L4− ) .
(
‖v‖L∞([0,t],L2)

) 1
2

(
‖v‖L2([0,t],L∞− )

) 1
2

.

(
sup

0≤s≤t
E1(s)

) 1
4 (
‖v‖L2([0,t],H1)

) 1
2

.

(
sup

0≤s≤t
E1(s)

) 1
4 (
‖v‖L2([0,t],L2) + ‖∇v‖L2([0,t],L2)

) 1
2

.

(
sup

0≤s≤t
E1(s)

) 1
4
(
t1/2 sup

0≤s≤t
E1(s)

1
2 + E1(t)

1
2

) 1
2

,

(4.18)
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where 1
∞− = γ/2. Combining (4.17) and (4.18), and taking t = δ, we have that for δ < 1

I3 . δ
1
4−

α
2−ε‖f‖Ḣ−α sup

0≤s≤δ
E1(s).

For I3, when d = 3, by Hölder inequality, (4.16) and the definition of E1, we have that

I3 . ‖∇v‖L2([0,t],L2)‖g1‖L3([0,t],L9)‖v‖L6([0,t],L
18
7 )
. δ

1
4−

α
2−ε‖f‖ḢαE1(t)

1
2 ‖v‖

L6([0,t],L
18
7 )
.

Based on the interpolation theory and Sobolev inequality, we have

‖v‖
L6([0,t],L

18
7 )
. ‖v‖

2
3

L∞([0,t],L2)‖v‖
1
3

L2([0,t],Ḣ1)
. sup

0≤s≤δ
E1(s)

1
2 (4.19)

Hence when d = 3, we have the same bound of I3 as (4.19). For I5, by Cauchy inequality and (4.14) we

have that

I5 . ‖v‖L∞([0,t],L2)

(
t‖θ‖L∞([0,t],L2) + ‖g1‖L1([0,t],L2)

)
. δ sup

0≤s≤δ
E1(s)1/2 sup

0≤s≤δ
E2(s)1/2 + δ1−α+γ

2 −ε sup
0≤s≤δ

E1(s)
1
2 .

(4.20)

For the estimate of E2, First, we multiply by θ and integrate the resulting equation

E2(θ, t) = −
∫ t

0

∫
(∇θ) · (g1g2 + g1θ + vg2 + vθ) dxds

= −
∫ t

0

∫
(∇θ) · (g1g2)−

∫ t

0

∫
(∇θ) · (vg2) dxds = J1 + J2,

where we use the fact that both v and g1 are divergence-free. For J1, we apply Hölder’s inequality

obtaining

J1 ≤ ‖∇θ‖L2([0,t],L2)‖g1‖L4([0,t],L4)‖g2‖L4([0,t],L4) . δ
1
2−α−2ε‖f‖2

Ḣα
E2(t)

1
2 .

For J2, when d = 2, applying Hölder’s inequality, (4.15) and (4.18) we have

J2 . ‖∇θ‖L2([0,t],L2)‖g2‖L4([0,t],L4+ )‖v‖L4([0,t],L4− ) . δ
1
4−

α
2−ε‖f‖Ḣα sup

0≤s≤δ
E1(s)

1
2 sup

0≤s≤δ
E2(s)

1
2 .

For J2, when d = 3, applying Hölder’s inequality, (4.16) and (4.20) we have

J2 . ‖∇θ‖L2([0,t],L2)‖g2‖L3([0,t],L9)‖v‖L6([0,t],L
18
7 )
. δ

1
4−

α
2−ε‖f‖Ḣα sup

0≤s≤δ
E1(s)

1
2 sup

0≤s≤δ
E2(s)

1
2 .

Summarizing
∑5
i=1 Ii and

∑2
i=1 Ji, when t ∈ [0, δ] we have the following bound

sup
0≤s≤δ

(E1(s) + E2(s)) .δ
1
2−α−2ε‖f‖2

Ḣα

(
sup

0≤s≤δ
E1(s)

1
2 + E2(s)

1
2

)
+ δ

1
4−

α
2−ε‖f‖Ḣ−α sup

0≤s≤δ
E1(s)

+ δ sup
0≤s≤δ

E1(s)1/2 sup
0≤s≤δ

E2(s)1/2 + δ1−α+γ
2 −ε sup

0≤s≤δ
E1(s)

1
2

+ δ
1
2−α−2ε‖f‖2

Ḣα
E2(t)

1
2 + δ

1
4−

α
2−ε‖f‖Ḣα sup

0≤s≤δ
E1(s)

1
2 sup

0≤s≤δ
E2(s)

1
2 .

(4.21)

Since α < 1
2 − 2ε, we could choose δ is small enough such that δ1−α+γ

2 −ε � 1 and δ
1
4−

α
2−ε‖f‖Ḣ−α � 1.

Then the continuity argument with (4.21) helps us obtain that

sup
0≤s≤δ

(E1(s) + E2(s)) ≤ C(α, ‖f‖Ḣ−α).
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Let us know consider t ∈ [δ, T ]. The previous energy of (v, θ) is bounded at t = δ which gives ‖v(δ)‖L2

and ‖θ(δ)‖L2 are bounded by C(α, ‖f‖Ḣ−α). Back to (u, ρ) which is the solution of (1.1)-(1.3), we know

that

‖u(δ)‖L2 ≤ ‖v(δ)‖L2 + ‖g1(δ)‖L2 . E1(δ)
1
2 + δ−

α+γ−ε
2 ‖f‖Ḣ−α ≤ C(α, ‖f‖Ḣ−α)

and

‖ρ(δ)‖L2 ≤ ‖θ(δ)‖L2 + ‖g2(δ)‖L2 . E2(δ)
1
2 + δ−

α+γ−ε
2 ‖f‖Ḣ−α ≤ C(α, ‖f‖Ḣ−α).

By the property of classical L2 weak solution of (u, ρ), we have that for t ∈ [δ, T ]

E1(u, t) + E2(ρ, t) ≤ C(T, α, ‖f‖Ḣ−α).

Hence for the energy of (v, θ) we have that for t ∈ [δ, T ]

E1(v, t) + E2(θ, t) ≤ E1(g1, t) + E1(u, t) + E2(g2, t) + E2(ρ, t)

. E1(u, t) + E2(ρ, t) + δ−
α+γ+2ε

2 ‖f‖Ḣ−α + tδ−
α+γ+1+2ε

2 ‖f‖Ḣ−α
. C(T, α, ‖f‖Ḣ−α)

�

5 Construction of the weak solutions to the difference equation
of the Boussinesq system

In this section, we construct weak solutions to the initial value problem (1.1)–(1.3).
vt −∆v + P∇ · ((gω1 + v)⊗ (gω1 + v))− P((gω2 + θ)e3) = 0,

θt −∆θ +∇ · ((gω1 + v)(gω2 + θ)) = 0,

∇ · v = 0, v(x, 0) = 0, θ(x, 0) = 0.

(5.22)

Theorem 5.1. Fix T > 0 and α ∈ (0, 1
2 ). Given 0 < ε < 1

4 −
α
2 and γ > 0 can be arbitrarily small.

Consider a function g1 and g2 satisfying the following properties, for i = 1, 2

‖gi‖L2 ≤ 1

δε
(1 + t−

α+γ
2 )‖f‖Ḣ−α

and

‖gi‖L4([0,δ],L4) + ‖gi‖L4([0,δ],L4+ ) ≤ δ
1
4−

α
2−ε‖f‖Ḣ−α , when d = 2

where 1
4+ = 1

4 − γ and

‖gi‖L3([0,δ],L9) + ‖gi‖L4([0,δ],L4) ≤ δ
1
4−

α
2−ε‖f‖Ḣ−α , when d = 3

when δ is small enough. Then there exists a weak solution (v, θ) in [0, T ] for the initial value problem

(5.22).

10



Proof. In the construction of weak solutions, we follow Galerkin approximations approach. We first

construct the solutions (vM , θM ) (where M > 1) of finite dimensional approximation equations as follows
vMt −∆vM + PMP∇ · ((PMgω1 + vM )⊗ (PMg

ω
1 + vM ))− PMP((PMg

ω
2 + θM )e3) = 0,

θMt −∆θM + PM∇ · ((PMgω1 + vM )(PMg
ω
2 + θM )) = 0,

∇ · vM = 0, vM (x, 0) = 0, θM (x, 0) = 0.

(5.23)

Our plan is to obtain the local-in-time well-posedness of the finite approximation equations via the fixed

point argument in the space

XT = C([0, T ], L2
x) ∩ L2([0, T ], Ḣ1

x).

Define

Φ(vM , θM ) =

∫ t

0

∆vM dt−
∫ t

0

PMP∇ · ((PMgω1 + vM )⊗ (PMg
ω
1 + vM ))− PMP((PMg

ω
2 + θM )e3) dt

and

Ψ(vM , θM ) =

∫ t

0

∆θM dt− PM∇ · ((PMgω1 + vM )(PMg
ω
2 + θM )) dt.

It’s easy to obtain the following estimates

‖Φ(vM , θM )‖L∞t L2
x([0,T ]) .M

2T‖vM‖L∞t L2
x

+M1+ d
2 T‖vM‖2L∞t L2

x

+M1+ d
2 +T 1−α2 ‖vM‖L∞t L2

x
+MTh(d)−2γλ2 + T 1−α2 λ+ T‖θM‖L∞t L2

x
.

‖Ψ(vM , θM )‖L∞t L2
x([0,T ]) .M

2T‖θM‖L∞t L2
x

+M1+ d
2 T‖vM‖L∞t L2

x
‖θM‖L∞t L2

x

+M1+ d
2 +T 1−α2 (‖θM‖L∞t L2

x
+ ‖vM‖L∞t L2

x
) +MTh(d)−2γλ2 + T 1−α2 λ.

And

‖Φ(vM , θM )‖L2
t Ḣ

1
x([0,T ]) .M

3T
3
2 ‖vM‖L∞t L2

x
+M2+ d

2 T
3
2 ‖vM‖2L∞t L2

x

+M2+ d
2 +T−γ+θ(d)‖vM‖L∞t L2

x
+M2T ρ(d)−2γλ2 + T 1−α2 λ+ T‖θM‖L∞t L2

x
.

‖Ψ(vM , θM )‖L2
t Ḣ

1
x([0,T ]) .M

3T
3
2 ‖θM‖L∞t L2

x
+M2+ d

2 T
3
2 ‖vM‖L∞t L2

x
‖θM‖L∞t L2

x

+M2+ d
2 +T−γ+θ(d)(‖θM‖L∞t L2

x
+ ‖vM‖L∞t L2

x
) +M2T ρ(d)−2γλ2 + T 1−α2 λ.

Since PMgi satisfies the same assumptions as gi in Section 4, we can repeat the proof of Theorem 4.1

and obtain the same energy bounds given in Theorem 4.1 for finite dimensional approximation solutions

(vM , θM ). As a consequence we can use an iteration argument to evolve the solution up to time T . By

applying a standard compactness argument, together with the fact that PMgi strongly converges to gi

for i = 1, 2, we obtains a weak solution (v, θ) to (5.22) on [0, T ]. Since T is arbitrary large, we obtained

a global weak solution. �
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6 Uniqueness in 2D

In this section, we give the proof of uniqueness of 2D global weak solutions.

Theorem 6.1. Suppose g1 and g2 satisfy the decay properties in Theorem 4.1. Then, the weak solutions

in L2([0, T ];V ) ∩ L∞([0, T ];H) are unique when d = 2.

Proof of Theorem 6.1. Suppose (v1, θ1) and (v2, θ2) are two solutions. Then, set

w = v1 − v2

z = θ1 − θ2.

Thus, we obtain the equation in terms of w and z

wt −∆w + P∇ · (g1 ⊗ w) + P∇ · (w ⊗ g1) + P∇ · (v1 ⊗ w) + P∇ · (w ⊗ v2) = P(ze3)

and

zt −∆z + w · ∇g2 + w · ∇θ1 + gω1 · ∇z + v1 · ∇z = 0. (6.24)

Now we do the L2 energy estimates given w(0) = z(0) = 0. Take the L2 inner product on (6.24) with w

and we get that

1

2

d

dt
‖w‖2L2 + ‖∇w‖2L2 ≤ ‖w‖2L4‖∇v2‖L2 + ‖g1‖L4‖w‖L4‖∇w‖L2 + ‖z‖L2‖w‖L2

≤ ‖w‖2L4‖∇v2‖L2 +
1

2
‖g1‖2L4‖w‖2L4 +

1

2
‖∇w‖2L2 +

1

2
‖z‖2L2 +

1

2
‖w‖2L2 .

Therefore, we have

1

2

d

dt
‖w‖2L2 ≤ C(‖∇v2‖4L2 + ‖g1‖2L4)‖w‖2L4 +

1

2
‖z‖2L2 .

Next, we consider the energy estimates for z by using Holder’s inequality and Ladyzhenskaya inequality

1

2

d

dt
‖z‖2L2 + ‖∇z‖2L2 =

∫
w · ∇zg2 dx−

∫
w · ∇θ1z dx−

∫
g1 · ∇z · z dx−

∫
v2 · ∇z · z dx

=

∫
w · ∇zg2 dx−

∫
w · ∇θ1z dx

≤ ‖w‖L4‖∇z‖L2‖g2‖L4 + ‖w‖L4‖∇θ1‖L2‖z‖L4

≤ (
1

2
‖∇z‖2L2 +

1

2
‖w‖2L4‖g2‖2L4) + (‖w‖1/2L2 ‖∇w‖1/2L2 ‖∇θ1‖L2‖z‖1/2L2 ‖∇z‖1/2L2 )

= M1 +M2.

For M1,

M1 ≤
1

2
‖∇z‖2L2 + C‖w‖2L2‖g2‖4L4 +

1

3
‖∇w‖2L2 .

For M2,

M2 ≤ C‖∇θ1‖L2‖w‖L2‖z‖L2 + C‖∇w‖L2‖∇z‖L2

C‖∇θ1‖2L2‖w‖2L2 + C‖z‖2L2 +
1

3
‖∇w‖2L2 +

1

3
‖∇z‖L2 .

Combining the estimates above gives the uniqueness of the solutions. �
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7 Proof of main theorems

We find the solution (u, ρ) by

u = gω1 + v,

ρ = gω2 + θ,

where gω1 = et∆uω0 and gω2 = et∆ρω0 . Then we consider the corresponding system of (v, θ): (4.11)-(4.13).

Proof of Theorem 2.1 and 2.2. In Theorem 4.1, Theorem 5.1 and Theorem 6.1, we show that main the-

orems (Theorem 2.1) and (Theorem 2.2) are true when gω1 and gω2 satisfy the following conditions for

i = 1, 2:

‖gωi ‖L2 ≤ 1

δε
(1 + t−

α+γ+k
2 )‖f‖Ḣ−α , (7.1)

and for all δ′ ≤ δ

‖gωi ‖L4([0,δ′],L4) + ‖gωi ‖L4([0,δ′],L4+ ) ≤ (δ′)
1
4−

α
2−ε‖f‖Ḣ−α , when d = 2, (7.2)

where 1
4+ = 1

4 − γ and

‖gωi ‖L3([0,δ′],L9) + ‖gωi ‖L4([0,δ′],L4) ≤ (δ′)
1
4−

α
2−ε‖f‖Ḣ−α , when d = 3. (7.3)

Define Ω
(1)
δ = {ω ∈ Ω : gω1 , g

ω
2 satifies (7.1)} and Ω

(2)
δ = {ω ∈ Ω : gω1 , g

ω
2 satifies (7.2)&(7.3)}. It is easy to

see that for any 0 < δ1 < δ2, Ω
(1)
δ2
⊂ Ω

(1)
δ1

and Ω
(2)
δ2
⊂ Ω

(2)
δ1

. Suppose ω ∈ Ωgood = (∪δ>0Ω
(1)
δ )∩ (∪δ>0Ω

(2)
δ ),

for the initial data uω0 and ρω0 we can solve the system (1.1)-(1.3) on [0, T ]. It remains to show P(Ωgood) =

1. First we have

P(Ωgood) = 1−P
(
∩δ>0(Ω

(1)
δ )c ∪ ∩δ>0(Ω

(2)
δ )c

)
.

By Lemma 3.4 and Lemma 3.6, we know that P((Ω
(1)
δ )c) . e−

1
δε and P((Ω

(2)
δ )c) . e−

1
δε so we have

P
(
∩δ>0(Ω

(1)
δ )c ∪ ∩δ>0Ω

(2)
δ )c

)
≤ lim
δ→0

P((Ω
(1)
δ )c) + P((Ω

(2)
δ )c) . lim

δ→0
e−

1
δε = 0

which shows P(Ωgood) = 1. �

8 Long time behavior of the weak solution

In this section, we address the long time behavior of the weak solution (u, ρ). We give the growth and

decay rates for u and ρ, respectively.

Theorem 8.1 (Long time behavior of the weak solution). Let (v, θ) be the weak solution provided the

bounds for the energy:

E1(v, t) = ‖v‖2L2 +

∫ t

0

‖∇v‖2L2 ds ≤ C + Ct

and

E2(θ, t) = ‖θ‖2L2 +

∫ t

0

‖∇θ‖2L2 ds ≤ ‖θ0‖2L2 .
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We further assume that θ0 ∈ L1 ∩ L2. Then,

‖ρ‖L2 ≤ Ct−α/2 (8.4)

and

‖u‖L2 ≤ Ct1−α/2. (8.5)

Proof of Theorem 8.1 . Suppose d = 3 (in fact the following proof also works for d ≥ 3 provided the

bounded energy). We know that θ satisfies the following perturbed density equation: By Lemma 3.2, we

have E ≤ C. Therefore, by the Sobolev embedding Ḣ1(R3) ↪→ L6(R3), we have

d

dt
‖θ‖2L2 ≤ −2‖∇θ‖2L2 ≤ −2‖θ‖2L6 .

By interpolation we obtain

‖θ‖L2 ≤ C‖θ‖2/5L1 ‖θ‖3/5L6 ≤ C‖θ0‖2/5L1 ‖θ‖3/5L6 ≤ C‖θ‖3/5L6 ,

Thus,
d

dt
‖θ‖2L2 ≤ −C(‖θ‖2L2)5/3.

Thus, after integrating we obtain

‖θ‖L2 ≤ Ct−3/4.

Combining the estimates above, we obtain

‖ρ‖L2 ≤ ‖gω2 ‖L2 + ‖θ‖L2 . t−α/2 + Ct−3/4 . t−α/2.

Next, we address the growth rate for u. We multiply by u on equation (1.1) and integrate the resulting

equation obtaining

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 =

∫
ρe2u dx ≤ ‖ρ‖L2‖u‖L2 ,

where we used the divergence-free condition of u. Thus,

d

dt
‖u‖L2 ≤ ‖ρ‖L2 .

Therefore, we get

‖u‖L2 . t1−α/2.

The proof is complete. �
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