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Abstract

In this paper, we show that after a suitable randomization of the initial data in negative-order
Sobolev spaces H~® with 0 < o < 1/2, there exist almost sure global weak solutions for the Boussinesq
equations in R? and T¢, when d = 2,3. Furthermore, we prove that the global weak solutions are
unique in 2d.

1 Introduction

In this paper, we address the almost sure existence of global weak solutions to the Boussinesq equations
in the whole space R? and the tori T¢ for d = 2,3,

uy —Au+u-Vp+ V1 = pes (1.1)
pr—Ap+u-Vp=20 (1.2)
V-u=0. (1.3)

Here, u is the velocity and p is represents the density or temperature of the fluid which depends on the
physical context. 7 denotes the pressure and ez = (0,0,1)7. The Boussinesq system is an important
physical model arising particularly in two situations. It is a model for the inhomogeneous Navier-Stokes
system, which is derived from the full compressible NavierStokes system under the low Mach assumption.
Under this scenario, u represents the velocity while p represents the variation of the density. In the second
context, the Boussinesq system is also related to the RayleighBénard problem, in which case p represents
the temperature.

Data in H® with s < s, (super-critical regime) is rougher than the data of critical regularity. Intu-
itively, scaling is against well-posedness in this case. Ill-posedness in some cases can be circumvented by
an appropriate probabilistic method in some probability space of initial data, in the other words, one may
hope to establish almost sure local well-posedness with respect to certain probability random data space.
This random data approach to well-posedness first appeared in the series of papers [B] of Bourgain in the
context of studying the invariance of Gibbs measures associated to NLS on tori (T and T?). Later, Burqg-

Tzvetkov [BT1, BT2] obtained similar results in the context of the cubic nonlinear wave equation (NLW)



on a three dimensional compact Riemannian manifold. The random data approach to well-posedness
has also been pursued by many authors and applied to several nonlinear evolution equations on different
manifolds. In the context of the incompressible Navier-Stokes equations, almost sure local well-posedness
and in some instances almost sure global existence results in the context of the Navier-Stokes equations
include: [DC, NPS, WY, WW].

Recently, Nahmod, Pavlovié, and Staffilani [NPS] gave the first construction of almost sure global
weak solutions for the Navier-Stokes equations with initial data in H~%(T¢), where 0 < a < 1/2 for
d=2and 0 < a < 1/4 for d = 3 in the probabilistic point of view. In the context of the Navier-Stokes
equations, the local in time well posedness for randomized initial data in L?(T?) was proven by Zhang
and Fang [ZF] and by Deng and Cui [DC] using similar approach. In [NPS], by suitably randomizing
the initial data uo and using the mild formulation v = emu‘é’ + w, the authors singled out the linear

evolution e'2

ug and the difference equation for w was identified, where they showed that the energy
of w is conserved. Later, J. Wang and K. Wang in [WW] extended the global existence results from
the periodic domain to R?, for d = 2,3, and improved the range of the parameter of the negative-order
Sobolev spaces from 0 < a < 1/4 to 0 < a < 1/2 for d = 3. By using the approach in [NPS], L. Du and
T. Zhang in [DZ] proved the almost sure global existence of weak solutions for the MHD equations in T¢
and R?, for d = 2,3, where a uniform bound for the energy of the nonlinear part of the solutions was also
obtained.

In recent years, there has been extensive research on the Boussinesq equations. People have been
studying the persistence of regularity and global existence since the seminal work of Chae [C] and of Hou
and Li [HL], who proved the global existence of a unique solution. In [LLT], Lunasin et al established
global existence and uniqueness in the low regularity space H' x L?. Kukavica and the first author of this
paper addressed the persistence of regularity in W*4 x W#%4 for the 2D fractional Boussinesq equations
in [KW1] and the long time behavior of solutions in [KW2]. For other global results of solutions, see
[ACW, CW, HK1, LLT, SW, W]; however, the analogous almost sure existence of global weak solutions
is less studied. In fact, to the best knowledge of the authors, these are the first results addressing global
existence and long time behavior of weak solutions to the Boussinesq equations with initial random
data. We also address the long time behavior of the constructed weak solutions. More precisely, we
study in which way the variations of the density affect the asymptotic behavior of the velocity field from
a probabilistic point of view. The main tool is the Fourier splitting method introduced by Schonbek
[S1, S2].

The paper is organized as follows. In Section 2, we introduce relevant notation and state the main
results. Section 3 contains lemma on the estimates in terms of random data. Section 4 contains the

energy estimates. In the final section, we give the proof for the long time behavior for the weak solution.

2 Notation and the main results

In this section, we introduce basic notations and state our main results. We first define the Leray projector
P
P=1+V(-A)'vV.



to be a bounded operator into divergence-free vector fields. The Leray projector P may also be defined

via the Fourier transform

), (€) = (6jk - ﬁfj) w©).  J=123

We next introduce the construction of random initial data in the whole space R for d > 1, which was
first introduced by Burq and Tzvetkov [BT1]. In R?, we divide the frequency space by using the Wiener
decomposition. For n € Z%, let @Q,, be the unit cube Q,, = n + (—%, %]d. Then we have

R = JQn.
Note that Q, N Q. =0 if m #n and ), xq, (§) = 1. Hence, we have the decomposition
fl@)y= > F'xa.b).
nezd

Define a nonnegative and even smooth function ¢ such that ¢(¢) = 1 for £ € (=3, 1)9 and ¢(¢) = 0 for
¢ € ([-1,1]%)°, and let
p(&) =

Note that > ¢(§ —n) = 1. Define

D =mf = [ F(€ple —ne=<de

Then f has a smooth version for the Wiener decomposition:

For any real-valued function f, we obtain

o(D+n)f =¢(D—n)f

and ) ¢(D —n)f is also a real-valued function.

In the T? case, the frequencies of functions are in Z¢, so we can divide the frequency space into
the integer points. To keep the consistence of the notations, we denote the decomposition operator
(D —n)f = f(n)eimn.

We now introduce the randomization of functions in the negative-order Sobolev spaces. We first

introduced the randomization of elements in negative order Sobolev spaces H .

Definition 2.1. Let (I,,(w)),,cze be a sequence of real, 0-mean, independent random variables on a prob-
ability space (€, A,p) with associated sequence of distributions (g, ),eza so that there exists ¢ > 0, for
all v € R and for all n € Z? we have that

o0
‘/ e dun ()| < e’ (2.4)
— 00




For f € H-*(R%) or f € H~%(T%), we define the map from (2, A) to H~° by
w— f

where

7= 3 la@e(D —n)f. (2.5)

nezd

where ¢(D —n)f is defined as before. We call such a map randomization.

The following are the main results of this paper.

Theorem 2.1 (Existence and uniqueness in 2D). Fiz T > 0, 0 < a < 1/2. Let ug,po € H™*(R?) or
H=%(T?) and V - ug = 0. We further suppose ug and py are mean zero in the periodic case. Then there
exists a set X C ) of probability 1 such that for any w € X the initial value problem (1.1) — (1.3) with

datum (ug, p§) has a unique global weak solution in the sense of Definition 2.1 of the form
u=gy+v,

p=gs +0,
and
(v,6) € L*=([0,T); L?) N L3([0, T]; H),

tA tA

where gf = e"2uf and g5 = €' pg .

Theorem 2.2 (Existence in 3D). Fiz T > 0, 0 < o < 1/2. Let ug,po € H=*(R?) or H=*(T?) and
V -ug = 0. We further suppose ug and pg are mean zero in the periodic case. Then there exists a set

Y C Q of probability 1 such that for any w € % the initial value problem (1.1) — (1.3) with datum (ug, p§)

has a global weak solution in the sense of Definition 2.1 of the form

u=gi +v,
p=gs +0,
and
(v,0) € L([0,T]; L%) N ([0, T); HY),
where g¥ = e'®uf and g§ = P pl.

3 A priori estimates on the random data

We now introduce the deterministic estimates for the random initial data and probabilistic estimates for
the heat kernel in terms of random data. The following lemma is a standard large deviation property

(see Lemma 3.1 in [BT1]) and it will be used to analyze the heat flow on the randomized data.



Lemma 3.1 (Lemma 3.1 in [BT1]). Let (I,(w))o~, be a sequence of real, 0-mean, independent random
variables on a probability space (2, A, P) with associated sequence of distributions (). Assume that
there exists ¢ > 0 such that Vy € R, Vr > 1 we have

’/ " dp(z)| < e

Then there exists o > 0 such that for every X > 0, every sequence (a,)2, € €% of real numbers,

d a)?
Plw: ZaTlr(w) >\ <Cexp Tl |
r=1 r Z%

As a consequence, for every q > 2 and (a?)22, € ¢2,

Z apl(w)

We next recall another classical result for a sequence of real, mean-0, independent random variables.

< CValarlle-

L9(Q)

Lemma 3.2. Let {l,,(w)},cze be a sequence of real, mean-0, independent random variables satisfy Def-
inition 2.1 on a probability space (2, A,P). Then given €,§ > 0, there exists a subset Qs C Q satisfying
P(Q5) < e~ 3%, such that for all w € Q

)] S = Tog({n) + 1)

where (n) = /|n|? + 1.

Proof. For each n and a small € > 0, we have a constant C,

Eel @)l < ¢,
Set M = 5%, and then we have
elln (@) L
E QT S Ce™ 3¢

Then we obtain,

Ce % >E

(e
c ‘ 3Pl > Mjh) = 3P|l (w |>—+dlog<>)

jezd jEZl

Excluding Q§ := U;{[l;(w)| > 5 + dlog( )} from Q, for all w € Qs, we have
[ln(w)] < 5 + dlog(n) < 5 log(< )y +1),for n € Z¢.
with P(Q5) < Ce™ 7", O

Remark 3.3. For given € > 0 and arbitrary small v > 0, it’s easy to check the fact that

1

POlf“Ng—e-—~ > < Hf||H «) S e

which implies almost surely f“ € H~*~7 for arbitrary small v > 0.



Lemma 3.4. For 0 < a <1 and k € N. Given € > 0 and arbitrary small v > 0. If f € H‘“(Rd) or
f € H-(T%) of mean zero. Suppose f“ is defined as (2.5), then there exists a subset Qs C ) satisfying
P(Q5) S e~ 5, for all w € Q5 we obtain that

IV4e2 POl < 50+ =) (36)
and
V4 F (0l < 5 max{e 3, =2 (37)
Proof. Based on the deterministic properties of heat kernel (see Lemma 3.1 in [NPS]), we have
e (O ER (e Tl (3.8)
and
IV (1) | e < max{t™ 367 Y12 s (3.9)
Applying Remark 3.3 into (3.8) and (3.9), we have (3.6) and (3.7) after excluding a subset of probability
<ewe. O

Remark 3.5. Given f € H™*(T?) of mean zero, || f| gr-o(ra) = (Zkezd,k;éo<k>_a|f(k)|2)1/2 is comparable
to (D ez rzo k|~ f(k)|2)1/2 = £l zr-a(ray- So in the periodic case, it’s equivalent to use H~ and

H~% when the functions are mean zero.

We use the deterministic properties of heat kernel but we still leave the linear evolution e*® f*(t)
unbounded when t is near zero. This is also the reason why we can not construct the weak solution of

negative regularity deterministically. In the following lemma, we exploit the randomness in the data f<«

and then we bound the linear evolution e*® f*(¢) in the small interval around zero in the LP sense.

Lemma 3.6. Forp,q>2,0<a<1 withap <2 and§ > 0. Given some € < % — 5, set

1_a_
Espq={w€Q: eS| Loqosn.L0) > (0777 || fl-a, ¥8" € (0,4]}.

Then we have

P(Eé,p,q) Setre.

Proof. By Minkowski’s inequality and large deviation property (Lemma 3.1), for r > p,q we can have
the following bound (see Lemma 2.4 in [WW])

1l_a
Elle™ o o.51,L0) " < CoaVT(8)7 ™| flli-o (3.10)
By Chebyshev’s inequality, we have
Pl <l oqosnn > A) < Cp A5 (85 | £llf-o

for any r > p,q. When A/ ()5~ |[f,-.) > €%, we select 7 = A/ (55~ F || £, ). By r=% <e™
when r > e?, we have

)\2
(@521l

P([[e" £l Lo(o.67,00) > A) Spg exp | —



When A/ (((5’)57%|\f||}'1,a) < €2, we select r = maxp,q (WLOG suppose r = p). It’s easy to check
2

117, )

that C7 A~Pp%(8)1~7%

A
—ro
2

s 2> . So we have
"\ p

fllfr-o Spq exp <—(

A2
(@)% 171-.)

P([[e" f“ |l Lr(0,6,09) > A) Spg exp | —

By choosing A = (6/)%_%_6”]8”1{—0, we prove
1
P(Esspq) Se O

where
1_a_
E(;’(s/’p’q = {w cN: ||€tAfw||Lp([015/]’Lq) > (5//2)1’ 2 HfHH—a7 where §’ € (0,6]}.

By choosing §' = 4, %, %, g, <y we have P(U32, Eso-i5,.4) < Z;’;l P(Ess-ispq) S e~3 . It is easy to

check Esp g C U2 Es0-i5p,q, 50 We also have (3.10). O

4 Energy estimates for the Boussinesq system

In this section, we give energy estimates for the difference equation. We will use these a priori estimates

to construct weak solutions. First, we set

u=gy+v,
p=ygs+0.
It is equivalent to consider the new system
vy — Av+PV - ((¢5 +v) @ (¢ +v)) =P((g5 + b)es), (4.11)
b — D9+ V- (g7 +v)(g5 +6) =0, (4.12)
V-v=0. (4.13)

Now we define the energy for v and 6, respectively.

t
&mw=wm+ﬁnw%m8

and .
A&WJFAWﬁw+/HVW$d&
0

The following theorem establishes energy bounds which will be used in constructing global weak solutions.
The proofs of the whole space and the periodic space are similar, so we only present the proof of the

whole space. Denote that f = (ug, po) and || f|| g-o = |uoll - + |0l o



Theorem 4.1. Fix T > 0 and « € (0, %) Given 0 < € < i — 5 and v > 0 can be arbitrarily small.

Consider a function g1 and go satisfying the following properties, for i =1,2

atyth

lgillze < g(l +t ANl e (4.14)
and
lgill aco.a1.z0) + 1ill o o.gy.paty <05 F N fllgroar  when d =2 (4.15)
where 4% = i — v and
lgillzeo.0.L0) + Nlgillzaqo.soo) < 05 25 f oo, whend=3 (4.16)

where § is small enough. Suppose (v,0) € L>®([0,T); L*(T?)) N L?; H') is a solution, then
Eyr+ By <C(T, 0, || fll o)

Proof of Theorem 2.2. First, by multiplying by v and integrating the resulting equation for ¢ € [0, 0] we

obtain the following equation:

//v PV - (g1 ®¢g1) dxds—//v PV - (¢5 ®v) dxds—//v PV - (v ® g1) dxds
//v PV-(v®wv d:z:dsf// g2+963d1‘d5—21

=1

By the divergence-free condition on v and g;, we have
I, =1,=0.

Therefore, it remains to estimate I, I3 and I5. For I;, by Holder inequality, the definition of F; and
(4.15) (4.16), we have

a—2e¢ 1
L S IVollzeqoeo) 91 Ea o ooy S 627> 1 I Ba(6)2

For I3, when d = 2, by Holder inequality, (4.15) and the definition of E;, we have that

1_a_ 1
Is S ||VU||L2([0,t],L2)||£71HL4([0¢],L4+)||UHL4([0¢],L4*) SO0 fll e B (1) ||UHL4([0¢],L4*), (4.17)
where 4% = i +7. For [[v] ;4 ([0.4,L47 ) by LP interpolation theory and Sobolev inequality, we have
1 3
ol paqou oy S Uollzeqoz)* (Hollago g s
T 1
( sup £1(5)) (Il )’
1 (4.18)
: ( np, s ) (1]l z2q10.0.22) + V2l 0,0,22)) *
0<s<t
2
< ( sup Ei(s ) (t1/2 sup Ei(s )§+E1(t)§) ,
0<s<t 0<s<t



where —I= = /2. Combining (4.17) and (4.18), and taking ¢ = &, we have that for § < 1

I S 67757 fl g sup Ei(s).
0<s<é

757

For I, when d = 3, by Holder inequality, (4.16) and the definition of F;, we have that
1_a_ 1
IS S ||vv||L2([O,t],L2)Hgl||L3([O,t],L9)||U||LG([O,t]’L%) g e ||fHHQE1(t)2 HU”LG([O,t],L%)'

Based on the interpolation theory and Sobolev inequality, we have

sup El(s)% (4.19)
0<s<é

2 1
o128 S 00 o0 1 gy
Hence when d = 3, we have the same bound of I3 as (4.19). For I5, by Cauchy inequality and (4.14) we
have that
Is S llolloeo.,02) (#1012 g0,0,2) + llgnllea o,01,22)

<6 sup Ei(s)? sup E2(S)1/2+51—“;V—5 sup El(s)%.
0<s<s 0<s<8 0<s<s

(4.20)

For the estimate of E5, First, we multiply by 6 and integrate the resulting equation

t
Ea(6,1) = / / (V0) - (9195 + 10 + vgs + v0) dds
0

/Ot/(vg).(gng)/Ot/(V9)~(vgz)dxdsJ1+J2,

where we use the fact that both v and g; are divergence-free. For J;, we apply Holder’s inequality

obtaining

Jr < IVl 2o,y 91 La o0 92 oo, o) S 27072 FI1% 0 Ea(t) 2.

For Jy, when d = 2, applying Holder’s inequality, (4.15) and (4.18) we have

sup EQ(S)%.

1_ o . 1
J2 S HVQHLQ([O,t],L"‘)||92||L4([07t]7L4+)||U||L4([o,t]7L4*) SO0 27 fll g oiugé Ei(s)? o

For Jo, when d = 3, applying Holder’s inequality, (4.16) and (4.20) we have

I

—_a_ 1 1
J2 S HVHHL2([O,t],L2)||g2||L3([O,t],L9)HUHLG([O’t]’L%) SO05T 2| fll o oiu25E1(8)2 sup FEs(s)?.

0<s<s

Summarizing Zle I; and Zle Ji, when t € [0, §] we have the following bound

o

sup (E1(s) + Ea(s)) <0272 f|1%,. ( sup E1(8)5+E2(8)5) + 05757 fl oo sup En(s)
0<s<6 0<s<s

0<s<6
+0 sup Ei(s)"? sup EQ(S)l/Q—i—(Sl_OZJ?rW_E sup E1(s)% (4.21)
0<s<é 0<s<6 0<s<é
+ 83 f I Ba ()% + 652 fll g sup Ei(s)® sup Ea(s)*.
0<s<é 0<s<é

o

Since a < 1 — 2¢, we could choose § is small enough such that Sl ¢ < land 65 % Nl g-o < 1.

Then the continuity argument with (4.21) helps us obtain that

S (Ei(s) + Ba(s)) < Clas £l g—)-



Let us know consider t € [0, T]. The previous energy of (v, #) is bounded at t = ¢ which gives ||v(d)]| 2

and [|0(9)|| 2 are bounded by C(a, || f|| 7-«). Back to (u, p) which is the solution of (1.1)-(1.3), we know
that

atvy—e

[w(@)llz2 < o)z + lgr1 (D)2 S Er(8)? +6 2 | fl o < Clas [ fllg-o)

and
a+

o)z < 18512 + llg2(8)llz2 S E2(0)2 +3~ 3 || fl o < Clas |1 fll o).

By the property of classical L? weak solution of (u, p), we have that for ¢t € [§,T]
Ey(u,t) + Ex(p,t) < C(T, «, ||fHH*G)
Hence for the energy of (v,6) we have that for t € [0, T]

E1(U,t) + E2(07t) < El(glat) + El(u7t) + E2(927t) + EQ(IO’ t)
atvy+2e aty+142e

S Ev(u,t)+ Ea(pt) +67 = |fllg-a +t6 2
SOT,a | fllg-a)

fllgr-a

5 Construction of the weak solutions to the difference equation
of the Boussinesq system

In this section, we construct weak solutions to the initial value problem (1.1)—(1.3).

v — Av+PV - ((¢¢ +v) @ (¢¢ +v)) —P((¢§ + 0)es) =0,

O, — A+ V- ((gf +v)(g5 +6)) =0, (5.22)
V-v=0, wv(z,0)=0, 6(z,0)=0.
Theorem 5.1. Fiz T >0 and a € (0,3). Given 0 < e < 1 — 2 and v > 0 can be arbitrarily small.

Consider a function g1 and go satisfying the following properties, for i =1,2

lgllze < 5o (1677
and
lgillzqo.61.29) + 19l ooy oty <0772 “Ufllg—er  whend =2
where 4% = % — v and
l9ill L3 ((0,6),9) + lgill L2(j0,5),24) < ﬁf%fﬁ”f”;;rfm when d =3

when § is small enough. Then there exists a weak solution (v,8) in [0,T] for the initial value problem
(5.22).

10



Proof. In the construction of weak solutions, we follow Galerkin approximations approach. We first

construct the solutions (v, M) (where M > 1) of finite dimensional approximation equations as follows

v = AvM + PyPV - (Pugt +o™) @ (Pugy + o)) — PuP((Pargs +0M)es) = 0,
0} — AOM + PV - ((Pargf +oM)(Pargs +0M)) =0, (5.23)
VoM =0, vM(2,00=0, 6(z,0)=0.

Our plan is to obtain the local-in-time well-posedness of the finite approximation equations via the fixed
point argument in the space
Xr = C([0,T],L3) n L*((0, ], H,).

Define
t t
(o™, 0M) = / AvM dt / PyBY - (Parg? +0™) ® (Parg? +0™)) — PuB((Pargs + 0™ )es) dt
0 0
and

t
UM, oM = / AOM dt — Py - ((Pargy + 0™ (Pags +60M)) dt.
0

It’s easy to obtain the following estimates

d
1@ (0™, 0 Leo L2 0,y S MPT|[0™M || oz + M TET 0™ || 2

FMUEATIF oM || oo + MTMD72Y\2 4 T30 4 T | oo .

d
10 (™, 0| oo L2 o,y S MPTN0M (| oo 2 + M2 T[[0M || oo 12 (|0 oo 12
A+ MYFEFTIE (|0M | oo 2 + ([0 ]| o p2) + MTMAO =21\ 4 7178 ),
And
3 d, .3
||‘I>(UM79M)||L§H;([0,T}) S MPT HUMHLchg + M*HET? ||UM||%;>°L3

+ MAEHT DM | 4 MPTPD 2002 TS5\ 4 T)0M | e 2.

R 3 d, .3
||‘1’(UM79M)||L3H;([07T]) S MPT2([0M]| ooz + MPT 2T [0 oo 12 |0 || Lo 12
+ M2+%+T_7+0(d)(||9M||Lg°L§ + ||UM||L;>°L§) + MPTP D=2\ L T8 )

Since Py;g; satisfies the same assumptions as g; in Section 4, we can repeat the proof of Theorem 4.1
and obtain the same energy bounds given in Theorem 4.1 for finite dimensional approximation solutions
(vM M), As a consequence we can use an iteration argument to evolve the solution up to time 7. By
applying a standard compactness argument, together with the fact that Pp;g; strongly converges to g;
for i = 1,2, we obtains a weak solution (v,6) to (5.22) on [0,T]. Since T is arbitrary large, we obtained

a global weak solution. O

11



6 Uniqueness in 2D

In this section, we give the proof of uniqueness of 2D global weak solutions.

Theorem 6.1. Suppose g1 and go satisfy the decay properties in Theorem 4.1. Then, the weak solutions
in L2([0,T); V)N L*([0,T); H) are unique when d = 2.

Proof of Theorem 6.1. Suppose (v1,01) and (vg,03) are two solutions. Then, set
w=v1 — Uy
z =01 — 0s.
Thus, we obtain the equation in terms of w and z
we—Aw+PV - (g1 @w)+PV - (w®g1) +PV - (v @w) +PV - (w ® ve) = P(ze3)

and

21— Az+w-Vgo+w-VO +g7 - Vz4uv,-Vz=0. (6.24)

Now we do the L? energy estimates given w(0) = z(0) = 0. Take the L? inner product on (6.24) with w
and we get that

1d

5 gilwlie + Vel < llwlzaVoale + gl lwlles [Vewllz + [12] g2 llwll 22

1 1 1 1
< fwllZallVoallz + SllorZallwlze + SIVellz: + Slzl7: + 5wz

Therefore, we have

1d 1
5 g 1ellze < CUIVuallze + laallZolwllze + 512117
Next, we consider the energy estimates for z by using Holder’s inequality and Ladyzhenskaya inequality
1d
5@”;;”%2 +|V2||2, = /w -Vzgadx — /w -Vbzdx — /91 Vz-zdx — /vg Vz-zdx
:/w'Vzggdx—/qu@lzdx
< lwllpal|Vzllz2 lgall s + [lwll s [ VO[] L2[|2]] s
1 1 1/2 1/2 1/2 1/2
< Izl + 3 lwlFallgallze) + (el 21Vl 222190 e 2] 221V =175)
= My + Ms.
For M,
1 1
My < 5IIVz|72 + Cllwlzzllgallze + 5[ VewllZe.
For Mg,
My < C|VO| L2 [wlz2][2] 2 + ClI VW] L2]|Vz]| L2
1 1
ClIVOIZellwlzz + CllzlZz + SIVellZ: + S[V2] 2.
Combining the estimates above gives the uniqueness of the solutions. O
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7 Proof of main theorems

We find the solution (u, p) by

u=gy +uv,

p=gs +0,

where ¢g¢ = e!®u¥ and g§ = e'®pg. Then we consider the corresponding system of (v,6): (4.11)-(4.13).

Proof of Theorem 2.1 and 2.2. In Theorem 4.1, Theorem 5.1 and Theorem 6.1, we show that main the-
orems (Theorem 2.1) and (Theorem 2.2) are true when ¢¥ and ¢§ satisfy the following conditions for
1=1,2:

lg?llze < 51+ =)l o, (r1)
and for all 6’ <6
93 [l Laro,6n,20) + 195 Lapo,6, 20+ < ()3 57U fl e,  whend =2, (7.2)
where 4% = % — v and
9% |22 (0.61,29) + 192 2 o.57,L9) < (6) T 57| fllg—a»  when d =3. (7.3)

Define le) ={w e Q:gy,gy satifies (7.1)} and Q((;Q) ={w e Q: gy, gy satifies (7.2)&(7.3)}. It is easy to
see that for any 0 < §; < do, Qg) C Qgi) and ng) c Qg?). Suppose w € Qgooa = (U5>OQ§1)) N (U5>OQ((52)),
for the initial data ug and p§ we can solve the system (1.1)-(1.3) on [0, T']. It remains to show P(Qg00q) =

1. First we have
P(good) = 1= P (Ns=0(24)° UNsso(@47)°)

By Lemma 3.4 and Lemma 3.6, we know that P((le))c) <e 5 and P((Q?))C) < e 5 so we have
(1) @he) o 1 (e @vey o o 2
P (Ns>0(24)7 UNs=02fY)°) < lim PUO)) + P(QF7)) S lim ™% =0

which shows P(Qg00q4) = 1. O

8 Long time behavior of the weak solution

In this section, we address the long time behavior of the weak solution (u,p). We give the growth and

decay rates for u and p, respectively.

Theorem 8.1 (Long time behavior of the weak solution). Let (v,60) be the weak solution provided the

bounds for the energy:

t
By (v,t) = |[v]|32 +/ [Vo||32ds < C + Ct
0

and .
Ex(0,1) = 0]22 + / 16122 ds < [[6o)] 2.

13



We further assume that 8y € L' N L2. Then,
lpll> < Ct=o/? (8.4)

and
|2 < CE' /2, (8.5)

Proof of Theorem 8.1 . Suppose d = 3 (in fact the following proof also works for d > 3 provided the
bounded energy). We know that 0 satisfies the following perturbed density equation: By Lemma 3.2, we
have E < C. Therefore, by the Sobolev embedding H'(R3) < LS(R?), we have

d
201132 < <201 V6II32 < —206]13.
By interpolation we obtain
2/5 3/5 2/5 3/5 3/5
16112 < ClOIZPN013% < Cll6ol2° 1013 < Clo)3s,

Thus,
d
il P —C([101172)>"".

Thus, after integrating we obtain
161> < Ct=#/*,
Combining the estimates above, we obtain
Ipllze < llgs'llze + 16llL2 St2 + Ot/ S/,

Next, we address the growth rate for u. We multiply by u on equation (1.1) and integrate the resulting

equation obtaining

1d

g%ﬂulliz +[IVullz. = /Pezudlf < llpllz2[lull >,

where we used the divergence-free condition of w. Thus,
*dl [ullz2 < |l
u .
; L2 PllL2

Therefore, we get
lull 2 < #1272

The proof is complete. O
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