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Distortion in laser-based additive manufacturing (LBAM) is a critical issue that adversely
affects the geometric integrity of additively manufactured parts and generally exhibits a
complicated dependence on the underlying material. The differences in properties
between distinct materials prevent the immediate application of a distortion model
learned for one material to another, which introduces the challenge in LBAM of learning
a distortion model for a new material system given past experiments. Current methods
for investigating the distortion of different material systems typically involve finite
element analysis or a large number of experiments in an empirical study. However, these
methods do not learn from previous experiments and can incur significant costs in terms
of computation, time, or resources. We propose a Bayesian model transfer methodology
that is both physics-based and data-driven to leverage past experiments on previously
studied material systems for more efficient distortion modeling of new systems. This
method transfers distortion models across distinct materials based on the statistical effect
equivalence framework by formulating the differences between two materials as a lurking
variable. Our method reduces the experimentation and effort needed for specifying distor-
tion models for new material systems. We validate our methodology in a case study of dis-
tortion model transfer from Ti–6Al–4V disks to 316L stainless steel disks. This case study is
the first instance of model transfer between material systems and illustrates the ability of the
Bayesian model transfer methodology to address the issue of comprehensive distortion
modeling across varying material systems in LBAM. [DOI: 10.1115/1.4046408]
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1 Introduction
The objective of this work is to develop a model transfer frame-

work that is both physics-based and data-driven for sharing process-
related information across distinct material systems in laser-based
additive manufacturing (LBAM). Our methodology provides a
new approach to specify process-property models for key process
outcome variables of material systems in LBAM with reduced
experimentation. Specifying statistical models for key outcome var-
iables is an important objective, because the differences in material
properties (e.g., melting point, strength, and thermal conductivity)
make the selection of optimum process inputs difficult. Statistical
models provide a path for the selection of optimum process
inputs with reduced experimentation. Currently, if a practitioner
aims to predict the outcomes of parts manufactured using new mate-
rials in LBAM and identify the inputs that can optimize the
outcome, then they would need to conduct a large number of trial
and error experimental studies separately for each material to
obtain their corresponding process-property models. Our methodol-
ogy can fill the gap for the efficient establishment of input–outcome
relationships in new material systems by leveraging data and other
information (e.g., prior information and other sources of informa-
tion besides observed data) from similar experiments involving dif-
ferent materials that were previously studied and modeled. This is
expected to significantly reduce the time and effort needed for mate-
rial certification and product development.

In this article, the distortion of a part manufactured under LBAM
is taken as the key outcome variable. Distortion is the geometric dif-
ference in the z direction between the original part design and the
fabricated part. Current approaches to model and predict distortion
for new material systems typically involve finite element analysis
(FEA) and/or empirical studies and are reviewed in Sec. 2.2.
Although these approaches can provide real-world insights into
the behaviors of materials, they typically require multiple experi-
ments to yield conclusive results on different material systems,
which incurs significant costs of time and effort on the part of
LBAM users. Conducting full-scale empirical studies for each
material and manufacturing system is not feasible due to the high
costs of materials and machine operation.
Our proposed methodology for transferring models between dis-

tinct material systems addresses this challenge via three key steps.
The first step is to specify a “baseline” outcome model that incorpo-
rates the relationships between observed input process variables and
the outcome under a particular choice of material. In the second
step, the established baseline model for the first type of material
is used in combination with data on a small sample of parts manu-
factured using a new material to infer and model the total equivalent
amount (TEA) of the lurking variables and properties associated
with the new material in terms of the observed inputs under the
baseline model. The concept of the TEA was first formalized in
the statistical effect equivalence framework in Ref. [1]. In contrast
to that model transfer scheme, the TEA that is specified in our meth-
odology can directly integrate potential property differences that are
known a priori to be critical to predict the outcome. Furthermore,
the TEA can implicitly capture the large number of varying, and
complicated, material properties by considering them as a lurking
variable. Finally, in the third step, the TEA model is incorporated
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into the baseline model to specify a model for the new material, and
thereby transfer a distortion model from one material to another
while accounting for lurking variables.
An illustration of this methodology is provided in Fig. 1 for a

proof-of-concept case study of distortion modeling of a 316L stain-
less steel disk, given a baseline distortion model for Ti–6Al–4V
disks. Distortion is defined for each point on the surface of a disk
as the difference between the measured height of the point after
the part on which it resides is removed from the build plate and
the nominal height of the point in the computer-aided design
(CAD) model. The latter is constant for all points on a disk as the
top surface is designed to be flat. The disks are scanned using a
coordinate measurement machine (CMM) to obtain their pointwise
distortions. The baseline distortion model is specified to fit the dis-
tortions of the fabricated Ti–6Al–4V disks (as described in Secs. 3
and 4). An illustration of the inferred TEA of the 316L stainless
steel disk in terms of an input of the baseline distortion model for
Ti–6Al–4V alloy (described more formally in Secs. 3 and 4) is in
Fig. 1(c). This inferred TEA implicitly captures lurking differences
between the two material systems (e.g., in terms of their phase trans-
formation, melting point, and other properties). Thus, the key
lurking variable effect of interest is that of changing material
systems on distortion. We directly incorporate the critical, physics-
based parameter of thermal conductivity when modeling the TEA.
This is a key to our proposed methodology because the incorpora-
tion of physics-based parameters provides an avenue for practition-
ers to directly incorporate domain understanding into the statistical
model. Other parameters that practitioners could integrate into the

TEA model include the build setup and processing parameters.
By means of our physics-based and data-driven model for the
TEA (described in Secs. 3 and 4), we then transfer the distortion
model specified for Ti–6Al–4V alloy to 316L stainless steel and
form predictions accordingly. Sample predictions obtained by
means of this transferred model are in Fig. 1(d ).
Our proposed model transfer framework for using process-related

information across distinct material systems provides practitioners
with three key benefits.

(1) The expected time needed for material certification and
product development will be reduced due to the reduction
in the number of experiments needed to understand a new
material system. The cost and time reduction in material
certification will lead to practitioners being able to more effi-
ciently test new material systems for new LBAM applica-
tions, ultimately leading to greater adoption of LBAM
across various industries.

(2) Our statistical modeling framework allows the direct incor-
poration of practitioners’ domain knowledge. This will lead
to higher quality distortion models that can be geared
toward specific machines or process designs.

(3) Our framework provides a first step toward a more general
transfer learning-based approach for other key quality charac-
teristics, such as porosity, density, and strength. Ultimately, the
general model transfer framework aligns with the objective of
Industry 4.0 to have a connected workplace that improves mul-
tiple different processes through continuous learning [2].

Fig. 1 (a) The observed distortion (denoted by Δz) of a 55 mm diameter 316L stainless steel disk under the Car-
tesian coordinate system. (b) Visualization of the predicted distortion of the 55 mm316L stainless steel disk using
the baseline distortionmodel that was fitted tomultiple Ti–6Al–4V disks. (c) Visualization of the TEAmodel for the
cross section of the 316L stainless steel disk that is defined by X=0. The TEAs are inferred and modeled by
means of a pointwise discrepancy measure between the baseline model predictions and actual distortions.
(d ) Visualization of predicted distortions from the transferred model for the same cross section of X=0 when
the TEA model is added to the baseline model.
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The remainder of the article is structured as follows. Section 2
contains a review of distortion in LBAM, transfer learning, and
model transfer and challenges in applying transfer learning and
model transfer to different materials. The Bayesian model transfer
framework and baseline distortion model for Ti–6Al–4V disks are
in Sec. 3. The experimental setup of the case study on Ti–6Al–4V
and 316L stainless steel disks and the results of the study are in Sec.
4. Section 5 concludes with our major findings.

2 Literature Review
2.1 Material Systems and Distortion in Laser-Based

Additive Manufacturing. Many studies have been conducted on
distinct materials to understand how they are affected during the
LBAM process [3–13]. Two of the most commonly used materials
for LBAM fabrication are Ti–6Al–4V alloy and 316L stainless
steel. The key benefits of these materials include their strengths at
high temperatures and improved corrosion resistance. Their key dif-
ferences include melting points, strengths, and thermal conductivi-
ties. Differences in thermal conductivities play a significant role in
the different distortion behaviors of material systems. The thermal
conductivity of Ti–6Al–4V alloy is reported as 6.7 W/(m K) [14],
while that for 316L stainless steel is reported as 16.3 W/(m K)
[15]. The distortion of parts manufactured using LBAM is primarily
caused by large thermal gradients from the laser [16]. The continu-
ous heating and cooling in the process leads to a build-up of residual
stress, and upon the manufactured part’s removal from the LBAM
machine’s build plate, the relaxation of residual stress introduces
part distortions. The thermal conductivity of the material identifies
the speed with which heating and cooling occurs for a given mate-
rial. Thus, the incorporation of thermal conductivity is critical in
predicting distortion. We describe in Secs. 3 and 4 how we are
able to incorporate different thermal conductivities in model
transfer.

2.2 Methods for Modeling and Predicting Distortion

2.2.1 Finite Element Analysis. Many research studies on distor-
tionmodeling employfinite elementmodels to simulate the effects of
thermal deformation layerwise. One example is themodel developed
by Roberts [17] based on the ANSYS software platform to investigate
thermal and residual stresses during laser melting. Roberts found that
residual stress increases as the number of layers increases for
Ti–6Al–4V parts. However, this model does not scale well to large
parts, and its lack of scalability due to excessive computational
memory and time was identified by Paul et al. [18]. To address this
issue, a modified finite element model was proposed by Paul et al.
[18] (2014) that is able to predict maximum vertical thermal distor-
tionwithin 7%of themodel inRef. [17]. It is based on the recognition
that deformation is dominated by shrinkage ofmetal volume until the
part cools, which enables an analytical deformation calculation for
most of the part.
Another approach is the work by Mukherjee et al. [19] on deriv-

ing a non-dimensional thermal strain parameter ɛ* using the
Buckingham-π theorem to represent the maximal thermal strain.
Effects of laser power and scan speed in the finite element model
were also studied. This formulation led to the general results that
distortion is positively correlated with large volumetric change,
Ti–6Al–4V alloy has higher thermal strain than 316L stainless
steel and Inconel 625 superalloy, and that low heat input per unit
length yields decreased thermal distortion for Ti–6Al–4V alloy,
316L stainless steel, and Inconel 625 superalloy. The finite
element model in Ref. [19] requires significant computation time
(e.g., 7 min for a deposition of 1 cm), which limits its applicability
for quickly learning about new materials.
Peng et al. [20] recently developed a rapid approach to predict

thermal history based on a thermal circuit network (TCN) model.
This reduces the number of layers needed to model heat transfer by
grouping adjacent build layers into a “superlayer.” In comparison

with existing finite element models, the TCN model was signifi-
cantly faster (e.g., over 99% faster) for the superlayer case, and
its error was within 15% of the existing model. In the second part
of Ref. [21], a quasi-static thermo-mechanical (QTM) model was
introduced that can be used in tandem with the TCN to predict
distortion for AlSi10Mg and 316L stainless steel disks. The
TCN-QTMmethod was demonstrated to result in relative distortion
prediction errors of 20% in terms of the radius of curvature for a
wide range of test cases (e.g., disks, prisms, and triangular
shapes). Although QTM is computationally efficient compared to
traditional finite element models, it can incur significant time
costs (e.g., 70 min) for larger parts (e.g., disks with thicknesses of
at least 30 mm). Additionally, the models in Ref. [20] have a
large percentage error (20%) in distortion prediction in terms of
the radius of curvature, which may be unacceptable for the tight tol-
erances in LBAM.
The previously described models and methods highlight the key

trade-off between computational efficiency and predictive perfor-
mance in practice. Highly accurate models necessarily incur large
computational costs due to the enormous number of equations
that must be solved to model heat transfer. Alternatively, models
that are more rapidly executable invoke assumptions (e.g., similar
part designs or groupings of layers) that reduce overall accuracy.

2.2.2 Empirical Studies. Unlike FEA, empirical studies fabri-
cate real-world parts with varying process parameters to understand
their effects on part distortions. Denlinger et al. [22] studied the
effects of inter-layer dwell time on the distortion of Ti–6Al–4V
alloy and Inconel 625 superalloy in a direct energy deposition
LBAM process. They obtained the interesting result that dwell
time affects these materials differently. Specifically, as dwell time
increases, the residual stress and distortion of Ti–6Al–4V alloy
increase, whereas the residual stress and distortion of Inconel 625
superalloy decrease. While Denlinger et al. [22] provided key
insights into the process-distortion relationship, their method was
not immediately applicable to other LBAM processes due to the
unique setup. The work of Dunbar et al. [16] involved the develop-
ment of a “vault,” attached below the substrate, for in situ tempera-
ture and distortion measurements for a laser-based powder bed
fusion system. Based on the vault measurements, the researchers
concluded that a constant scan pattern led to more distortion com-
pared to a rotating scan pattern. The vault setup in this study was
unique and specialized, which limits its immediate application to
other LBAM systems for in situ distortion prediction. Corbin et al.
[23] investigated the effect of preheating the substrate and substrate
thickness on distortion. Experiments using Ti–6Al–4V on a Laser
Engineered Net Shaping (LENS) machine were completed with
varying substrates to identify the effect on distortion. The authors
find a strong relationship between distortion and the thickness of
the substrate. Surprisingly, they find that substrate preheating tends
to increase distortion on thicker Ti–6Al–4V substrates. Levkulich
et al. [24] performed experimental studies on the effect of varying
process parameters on residual stress and distortion. The investigated
process parameters included build height, scan speed, laser power,
substrate condition, and build plan area. The authors find that sub-
strate distortion increases as the substrate is thicker (similar to the
finding of Ref. [23]). In addition, a number of experimental builds
were completed to identify the relationship between residual stress
and the previously mentioned process parameters. Ghasri-Khouzani
et al. [25] performed an experimental study on the effects of thickness
and diameter for the distortion and residual stress of 316L stainless
steel disk-shaped parts. Over 70 disk-shaped parts were fabricated
to understand the relationships between distortion and build design
parameters. Ghasri-Khouzani et al. [25] concluded that disk thick-
ness significantly affects distortion, with distortion decreasing as
thickness increases. It is important to recognize that these conclu-
sions and understanding of the process-distortion relationship for
316L stainless steel were obtained by manufacturing a large
number of disks. This further highlights the need to more efficiently
infer process-distortion relationships by leveraging previous studies,
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so as to reduce the manufacture of parts. In general, experimental
studies tend to fabricate a large number of parts to understand the
process-distortion relationship, which leads to prohibitively high
costs for material certification.

2.3 Scope of Transfer Learning for Additive
Manufacturing

2.3.1 Transfer Learning Methods. Transfer learning can
provide a methodological framework for learning about new mate-
rial systems in LBAM. Methods from this domain generally enable
the leveraging of information collected from distinct environments
by reweighing or transforming data from previously modeled set-
tings [26]. The main benefit of transfer learning is that when one
domain is expensive for inference or prediction, either in terms of
resources, computation, or time, a similar, but cheaper, domain
can be used to accelerate or facilitate learning in the expensive
domain. One frequently used transfer learning method is TrAda-
Boost [27], which generates predictions for a new environment
by modifying the relative weights of data across settings at each
step of a boosting algorithm, so as to identify and utilize data
from those settings that are most similar to the new environment
[28]. The effective application of transfer learning methods often
requires a large amount of data [26,29,30]. Furthermore, the
purely data-driven perspective of transfer learning ignores lurking
variables and the insights on AM processes that can be obtained
from them [26,31]. These features of current transfer learning
methods limit their applicability for LBAM.
In the field of statistics, another transfer learning approach has

been advanced under the concept of transportability or the extrapo-
lation of experimental finding across domains that differ both in
their distributions and in their inherent causal characteristics
[32,33]. Transportability is formalized using causal diagrams and
the do-calculus [34]. Current methods in transportability involve
transport formulae for causal inference from heterogeneous data
[32,33]. However, these methods primarily focus on nonparametric
inference and cannot address the task of transferring more interpret-
able, parametric models across distinct environments. In addition,
they may be limited in practice to linear structural equation
models, whereas it is important to accommodate nonlinear models
for real-life problems in LBAM.

2.3.2 Transfer Learning in Additive Manufacturing. Several
applications in AM of methods related to transfer learning have
recently been conducted. These generally focus on accelerating
process optimization or transferring geometric deviation models
across different settings of lurking variables in stereolithography.
An example of the first type of application is the work by Abou-

taleb et al. [35] on developing a statistical framework for incorpo-
rating data from previous studies. Their framework is based on an
extension of the sequential minimum energy design (SMED) devel-
oped by Joseph et al. [36] that captures the difference between pre-
vious data and current studies in a statistical distribution. This
distribution is updated as studies are completed so as to explain
the difference between similar studies. Three features of this frame-
work and the corresponding method are (1) prior studies, even those
with varying processing parameters, can be incorporated as initial
experiments, (2) there are no limitations to individual builds, and
(3) updates can be made based on batch design. An advantage of
these features is that they can accelerate convergence to the
optimum parameter design selection, which was verified in compar-
isons with full factorial designs and SMED [35]. However, the
methodology in Ref. [35] is ultimately limited to finding optimum
processing parameters and is not applicable to understanding
process-distortion relationships across distinct materials.
A framework to transfer geometric shape deviation models across

distinct AM processes was recently developed by Sabbaghi and
Huang [1]. This framework is based on effect equivalence, which
is a common phenomenon in manufacturing systems in which dif-
ferent process variables, including lurking variables, yield identical

effects [37–40]. Under this framework, which we formally describe
in Sec. 3.5, lurking differences in process settings are modeled
using TEAs in terms of an observable input whose effect on the
outcome was modeled under a previously studied process. A
TEA yields the same outcome under a previous process as that
observed in a new process. The utility of effect equivalence for
stereolithography processes was demonstrated via several case
studies [1,41,42]. In all of these works, only polymer-based parts,
and either their in-plane or out-of-plane boundary deviations,
were considered. However, due to the complex thermal interactions
in LBAM, and the need to model the entire surface of a fabricated
part (not just its boundary), it remains to be seen whether the
effect equivalence framework can be used to understand process-
distortion relationships across different materials in LBAM. The
previous works also do not account for material differences or
physics-based parameters when transferring models. Incorporating
physics-based parameters for material systems (e.g., thermal con-
ductivity) is critical due to their significant effects on distortions.

2.4 Contributions of Our Work on Distortion Model
Transfer Across Materials. We extend the model transfer
method in Ref. [1] so as to address the challenges introduced for
predicting distortions of different material systems in LBAM. The
key technical contributions of our work in this regard are summa-
rized as follows:

(1) Our work is the first to establish an equivalency of process-
distortion relationships between two distinct material
systems in LBAM. The advantage of this is that it enables
practitioners to more rapidly learn about new materials at a
reduced cost compared to existing approaches that typically
involve numerous experiments or computationally expensive
FEA.

(2) Our methodology extends the framework in Ref. [1] for
LBAM by generalizing the notion of the TEA to account
for the entire surface of a part. Under this generalization,
we are able to predict the distortion of 316L stainless steel
disks on a powder-bed fusion system with a root mean
squared error (RMSE) of less than 13 μm based on data
from three shapes fabricated using this material and four
Ti–6Al–4V disks. This predictive accuracy level meets the
tolerance limits of many AM applications, including biome-
dical implants [43] and Deloitte-identified tolerances [44].
Details on the validation experiment are in Sec. 4.

(3) In addition to its predictive performance, our framework can
also enable the incorporation of basic principles of physics.
In particular, we incorporate the thermal conductivity of
each material in our TEA model for distortion prediction.
This enables our model to better capture the effects of mate-
rial properties on final part distortions. It also stands in stark
contrast to current data-driven transfer learning approaches.

3 Distortion Model Transfer for Laser-Based Additive
Manufacturing Processes
3.1 Outline of the Model Transfer Procedure. Our Bayesian

model transfer procedure proceeds via six steps. Details for these
steps are provided in the following sections:

(1) Fabricate products using the first material system. In our case
study, the first material system is Ti–6Al–4V alloy.

(2) Develop a baseline statistical distortion model for the first
material system that captures the relationship between distor-
tion and various specified inputs.

(3) Fabricate a small sample of new parts using the second mate-
rial system. In our case study, the second material system is
316L stainless steel.

(4) Compute discrepancy measures utilizing the fitted baseline
distortion model and data from the new material system to
obtain point estimates of the TEA of the change in the
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material system in terms of an input for all new parts. The
concepts of effect equivalence and TEA are formally
described in Sec. 3.5, and the specific discrepancy measure
we utilize to yield a point estimate of the TEA is specified
in Eq. (4) in Sec. 3.6.

(5) Develop a statistical model for the TEA based on the point
estimates from the discrepancy measures. This TEA model
is a function of the inputs utilized in distortion modeling.
Further details on modeling the TEA are in Sec. 3.6.

(6) Fit the combination of the baseline model with the TEA
model specified in Step 5 to data from both the previous
and new material systems via Eq. (1) in Sec. 3.3 and
Eq. (8) in Sec. 3.6. Our specified baseline model for Ti–
6Al–4V disks is in Eq. (2) in Sec. 3.4.

The fifth step can be accomplished in part based on domain knowl-
edge of LBAM. For example, we accomplish this in our case study in
Sec. 4 by including the different thermal conductivities of the mate-
rials. The combined model in the sixth step corresponds to the trans-
fer of the baseline model to the new material system.

3.2 Description of Distortion Data. The distortion for each
point on the surface of a part is defined as the difference between
the scanned height of the point and its nominal height as specified
in the CAD model. We collect distortion data for additively

manufactured parts using a CMM that scans the top surface of a
part. Details on our CMM are in Sec. 4.1. By means of this
CMM, the observed location for a point i on the surface is recorded
in the point cloud format using Cartesian coordinates (xi, yi, zi). The
distortion for point i is then defined as Δzi = zi − znomi , where znomi is
its nominal height as in the CAD model.
The parts we consider in our case study in Sec. 4 are four Ti–6Al–

4V disks (Fig. 2(a)) and three 316L stainless steel disks. All these
parts were manufactured using an EOS M290 machine. These
shapes were selected due to their distortion behavior upon removal
from the build plate. The disks varied in diameter, ranging from
45 mm to 70 mm (Table 1) but were all printed with a constant
thickness of 5 mm and designed in their CAD models to have a
flat top surface. These particular 316L stainless steel disks were
chosen because their nominal diameters correspond to the range
of the Ti–6Al–4V disks’ diameters, which prevents extrapolation
errors due to disk size in our distortion model transfer.
Examples of raw and preprocessed point cloud data for a single

disk are in Figs. 2(b) and 2(c), respectively. We note from the
latter figure that a manufactured disk will resemble a bowl upon
removal from the build plate, i.e., its distortion increases monoton-
ically from the center of the disk to the boundary. This is due to the
residual stress gradient from the disk center to the boundary [25].
The number of measured, sampled points for the manufactured

disks are in Table 1. Some disks had fewer sampled points than

Fig. 2 (a) Build plate locations of the disks manufactured using Ti–6Al–4V alloy. (b) Raw point cloud data for a Ti–6Al–4V disk.
The data that comprise the top surface of the disk are circled. (c) A zoomed-in view of the top surface data after pruning. Points
near the disk boundary that are suspected to be plagued by severe measurement error, or that capture the underlying support
structure, have been removed.
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others due to the occurrence of increased measurement error near
their boundaries that necessitated additional preprocessing of the
point cloud data prior to the analyses. For disk-shaped products,
part distortion leads to a shrinkage in the diameter of the part com-
pared to the nominal diameter in the CAD model. Thus, the CMM
will likely capture points that do not reside on the top surface. The
preprocessing technique we utilized to account for this was data
pruning, and further details on it are in Sec. 4.2.

3.3 Input Variables and Assumptions for Statistical
Distortion Models. The input variables for a particular point in
our statistical distortion models include any function of its location
(xi, yi), characteristics of the design for the part on which it resides,
and observed settings for the LBAM process under which it was
manufactured. We denote the vector of K input variables for a
point i as wi= (wi,1, …, wi,K), and let Wk denote the set of possible
values for input k= 1, …, K. Inputs are chosen according to their
abilities to predict distortion. There exist at least two key
approaches to identify necessary inputs for a distortion model:

(1) scatter plot visualizations of candidate inputs with distortion.
Such plots enable one to assess the strength of the correlations
and trends of the variables. (2) Incorporation of physics-based
parameters that have a known relationship with distortion and that
are a function of the location, part design, or LBAM process
parameters.
Three inputs considered in our case studies are wi,1 = r2i , wi,2= θi,

and wi,3= di, where ri is the radius and θi is the angle for point i
under the polar coordinate transformation of (xi, yi), and di is the
nominal diameter of the disk. Note that ri here captures the distance
of point i from the center of the disk and is distinct from the nominal
diameter di in general. All surface points are uniquely identified
under the polar coordinate transformation. The strong correlations
between the distortions of Ti–6Al–4V disks and r2i are illustrated
in Figs. 3 and 4(a). Figure 4(b) demonstrates the importance of
including θi for distortion modeling. We also observe from
Figs. 3 and 4(a) that the distortion for a point i is a function not
only of r2i but also of the nominal diameter di of the disk on
which it resides. In particular, Fig. 4(a) demonstrates that for a
fixed squared radius, distortion generally decreases as disk diameter
increases. Furthermore, Fig. 5 illustrates how points closer to the
edge of a disk have higher distortions compared to points in the
middle. These observations indicate that the new input r2i /d

2
i ,

which captures the position of a point relative to the nominal dia-
meter of its disk, may play a significant role in a distortion model.
Our selection of inputs can also be motivated by the functional

approach of Huang et al. [45] to model geometric inaccuracies of
an additively manufactured part based on the locations of points
and characteristics of CAD models. It is important to note that the
method in Ref. [45] is not directly applicable for modeling distor-
tion in LBAM. Distortion modeling for shapes that are more geo-
metrically complex than those we consider (e.g., cubes, pyramids,
and freeform shapes with sharp corners) requires additional inputs

Fig. 3 Observed distortions for four Ti–6Al–4V disks of nominal diameters (a) 45 mm, (b) 55 mm, (c) 65 mm, and (d ) 70 mm

Table 1 Number of sampled points for each disk

Material Nominal diameter (mm) Number of sampled points

Ti–6Al–4V alloy 45 1.4 × 104

Ti–6Al–4V alloy 55 2.3 × 104

Ti–6Al–4V alloy 65 3.1 × 104

Ti–6Al–4V alloy 70 3.3 × 104

316L stainless steel 55 3.5 × 104

316L stainless steel 65 4.8 × 104

316L stainless steel 70 4.4 × 104
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that can explain the distinct distortion behaviors arising from their
geometries.
We specify distortion models for distinct LBAM processes that

have the same set of K inputs and satisfy two assumptions. First,
a set of observed inputs P ⊆ {1, . . . , K} can have their values
change within each process. In our context, these inputs are r2i , θi,
and di. Second, the settings of the remaining inputs are fixed within

each individual process and can differ across processes. This
assumption is important for the consideration of lurking variables,
the settings of which are completely unobserved due to infeasibility
of measurement or insufficient knowledge, and which significantly
impact geometric accuracy of additively manufactured parts [1].
Statistical models are generally specified under fixed settings of
lurking variables. Under these assumptions, our distortion model

Fig. 4 (a) Observed distortions of points on four Ti–6Al–4V disks against their squared radii. (b) Observed distortions
against angles for points on the boundaries (i.e., within 1.5 mm of di) of the parts.

Fig. 5 Scatter plots of distortions against the positions of points relative to the nominal diameter of the disks on
which they reside (denoted by r2/d2) for four Ti–6Al–4V disks of nominal diameters (a) 45 mm, (b) 55 mm,
(c) 65 mm, and (d ) 70 mm
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specification for a process is

Δzi = fP wi,P ∣ βP
( )

+ ϵi (1)

where fP wi,P ∣ βP
( )

is the expected distortion of a point i, vector
wi,P contains the values for the inputs in P for point i, the settings
of the remaining inputs are held fixed for the process that manufac-
tured the part on which point i resides, βP is the vector of
(unknown) model parameters for fP , and ϵi are random variables
representing measurement error. We assume ϵi∼N(0, σ2)
independently.

3.4 Baseline Distortion Model Specification. Our model
transfer methodology is performed with respect to a specified distor-
tion model for a previous LBAM process with fixed settings of
inputs {1, . . . , K} − P. This model is referred to as the baseline dis-
tortion model. In our context, the Ti–6Al–4V alloy material system
constitutes the fixed settings of the remaining inputs (including
lurking variables) under which we specify a baseline distortion
model. In general, when defining the baseline model, practitioners
should use inputs that (1) predict the process-distortion relationship
and (2) allow for the explainability of the geometry of the fabricated
part. The former can be identified using scatter plots or a practition-
er’s domain knowledge. The latter allows for the specification of a
model in which part geometry plays a significant role in the result-
ing distortion, such as for a freeform shape with sharp corners and
cavities. The form of fP wi,P ∣ βP

( )
that we adopt for the Ti–6Al–4V

alloy baseline model is motivated by Figs. 3–5 as

fP wi,P ∣ βP
( )

= β0 + β1r
2
i + β2(di − 60)

+ β3(di − 60)2 + β4
r2i
d2i

( )
+ β5hi

+ β6(di − 60)hi + β7(di − 60)2hi (2)

where

hi =
[
I(di = 45) cos θi − ψ45

( )
+ I(di = 55) cos θi − ψ55

( )

+ I(di = 65) cos θi − ψ65

( )
+ I(di = 70) cos 2 θi − ψ70

( ){ }]
(3)

Here, wi,P = (r2i , θi, di) and βP = (β0, β1,…, β7, ψ45, ψ55, ψ65, ψ70).
We utilize the transformation (di− 60) of input di so as to obtain
interpretable regression coefficients corresponding to the linear
and quadratic effects of nominal diameter. Specifically, these
effects are defined with respect to a disk of nominal diameter
60 mm, which lies in the middle of the range of disks considered
in our case study. Furthermore, our use of this transformed input
yields a model that more appropriately captures the curvilinear rela-
tionship between nominal diameter and distortion over the range of
nominal diameters in our case study. Besides having interpretable
linear and quadratic effects of nominal diameter, our model also
entertains the possibility of an interaction between these terms
and the previously described harmonic trends in distortion. The
terms cos(θi−ψ45), cos(θi−ψ55), cos(θi−ψ65), and cos{2(θi−
ψ70)} are introduced to account for possible differences in the har-
monic trends of distortion (Fig. 4(b)). These differences may be due
to inconsistent definitions of starting locations that were adopted
when the disks were scanned. The angle shift parameters ψ45,
ψ55, ψ65, and ψ70 are unique to each disk. This baseline distortion
model performs well for the Ti–6Al–4V disks, with a RMSE
within 20 μm. Further details on the model fit are in Sec. 4.3.

3.5 Distortion Model Transfer via Mean Effect
Equivalence. We develop a model transfer framework based on
the method in Ref. [1] for our transfer of a baseline distortion

model to another LBAM process characterized by a distinct material
system. To facilitate the description of our framework, we consider
the case of K= 2 in the following definition.
DEFINITION 1. Inputs 1 and 2 are equivalent with respect to the

mean if for any point i and fixed settings c1 ∈ W1 and c2 ∈ W2,
functions Ti,1→2: W1 ×W2 → W2 and Ti,2→1: W1 ×W2 → W1
exist such that for all (w1, w2) ∈ W1 ×W2

f{1,2} w1, w2( ) ∣ β{1,2}
( )

= f{2} Ti,1→2 w1, w2( ) ∣ β{2}
( )

f{1,2} w1, w2( ) ∣ β{1,2}
( )

= f{1} Ti,2→1 w1, w2( ) ∣ β{1}
( )

where

• f{1,2} is the expected distortion under any values w1 and w2 of
inputs 1 and 2, respectively, with parameter vector β{1,2},

• f{2} is the expected distortion under any value of input 2 when
the value of input 1 is held fixed at c1, with parameter vector
β{2}, and

• f{1} is the expected distortion under any value of input 1
when the value of input 2 is held fixed at c2, with parameter
vector β{1}.

To explain the notation in Definition 1 for our context, let input 1
be r2i , input 2 be material system, and c2 denote a baseline material
system. Function Ti,2→1 is the TEA of the material system in terms
of squared radius with respect to the mean for point i. For a single
point i on an additively manufactured product, the true TEA Ti,2→1

can be viewed as a parameter that, once it is incorporated into a pre-
vious model, enables predictions for the point under a new setting.
The TEA is an unknown quantity, and we describe in Sec. 3.6 how
the fourth and fifth steps of our methodology are performed using
discrepancy measures to yield point estimates and a model for the
TEA. Our particular choice of TEA here can be motivated by rec-
ognizing that the bowl shape of disk distortions, as described by
the relationship between Δzi and r2i , changes across different mate-
rials. Furthermore, as recognized in Ref. [1], model transfer is facil-
itated in practice by means of equivalencies in terms of an input that
enables flexible modeling. Squared radius r2i is one such convenient
input for distortion modeling. Thus, we consider the TEA of a mate-
rial system in terms of this input. It is important to note that our use
of fP is more general than the models in Definition 1 because it
incorporates more than one input.
The TEA in Definition 1 enables the transfer of the baseline dis-

tortion model to new materials. This is because the model for
expected distortions under the baseline setting c2 can be transferred
to model expected distortions under a distinct material system by
incorporating Ti,2→1 into f{1}, where the effect of squared radius
has been modeled in f{1} under setting c2. Specifically, letting Δzi
denote the observed distortion for a point i under the new material
system, the transferred model will be specified according to Δzi=
f{1}(Ti,2→1(w1, w2)|β{1})+ δi, where δi∼N(0, τ2) independently
and are the error terms for the new material. From this specifica-
tion, we then fit a comprehensive model to data from the two
material systems in the sixth step of our methodology. Data
from the baseline material will be modeled according to the
N( f{1}(wi,1|β{1}), σ

2) statistical distribution, and data from the new
material will be modeled according to the N( f{1}(Ti,2→1(wi,1, wi,2)|
β{1}), τ

2) statistical distribution. These two models, and their corre-
sponding parameters, are fit simultaneously to all of the data, with
the consequence that data from the baseline material are further
leveraged for fitting the transferred model for the new material.
When fitting this comprehensive model, function Ti,2→1 essentially
benchmarks the effect of input 2 on distortion in terms of a previous
setting and the effect of input 1 on the mean under it [1].

3.6 Bayesian Modeling of the Total Equivalent Amount of a
Material System. From Definition 1, model transfer from one
material system to another can be performed when the unknown,
realized TEAs of the change in material system are inferred and
modeled based on the fitted baseline distortion model and data
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from the new material. In the fourth and fifth steps of the method-
ology, we utilize the Bayesian discrepancy measure approach
developed in Ref. [1] to yield point estimates and a model for the
unknown TEAs, respectively. We assume that the baseline model
has been specified under a fixed material system, and that the pos-
terior distribution p βP , σ2 ∣ D1

( )
for the baseline model parameters

based on the data D1 obtained from the corresponding LBAM
process has been calculated. We also assume that data D2 have
been collected for a new material.
In general, to obtain a point estimate of the realized TEA for a

particular point i in D2 in terms of the chosen input wi,1 = r2i , we
construct the discrepancy measure

Ti = argmin
t∈(−r2i ,∞)

Δzi − fP (wi,1 + t, wi,2, wi,3) ∣ β̃P
( ){ }2

(4)

whereP = {1, 2, 3} for the baseline distortion model of Ti–6Al–4V
disks, and β̃P is a random variable distributed according to the mar-
ginal posterior distribution p βP ∣ D1

( )
. From the specified baseline

distortion model in Eqs. (2) and (3), the discrepancy measure for
any point on a 316L stainless steel disk is the random variable

Ti = argmin
t∈(−r2i ,∞)

{
Δzi − β̃0 − β̃1(r

2
i + t) − β̃2(di − 60)

− β̃3(di − 60)2 − β̃4
r2i + t

d2i

( )

− β̃5̃hi − β̃6(di − 60)̃hi − β̃7(di − 60)2̃hi

}2

(5)

where

h̃i = I(di = 45) cos θi − ψ̃45

( )[
+ I(di = 55) cos θi − ψ̃55

( )
+ I(di = 65) cos θi − ψ̃65

( )
+I(di = 70) cos 2 θi − ψ̃70

( ){ }]
(6)

Equation (5) can be immediately solved in closed-form for each set
of posterior draws of the parameters. Similar to the framework in
Ref. [1], we consider the TEA as an additive component to input 1
when we perform this inference. In addition, although point esti-
mates for TEAs in terms of any input can be performed in
general, we calculate the discrepancy measure according to a min-
imization problem relative to only the first input variable. This is
because r2i possesses a more flexible capability for model transfer
compared to the other inputs, in terms of capturing the change in
the bowl shape of disk distortions across the two different materi-
als. Following the general observations made in Ref. [1], obtaining
point estimates for the TEAs via this random variable is computa-
tionally simpler than other Bayesian approaches, such as deriving
the posterior distributions of the high-dimensional TEAs. Discre-
pancy measures are a type of posterior predictive check [46–48]
and have proven to be effective for learning about unknown quan-
tities in previous additive manufacturing studies [1,41,45,49,50].
Also, point estimates obtained via Eq. (4) will in general be
similar to those obtained by means of the posterior distributions
of the TEAs [1].
After we obtain the distributions of the Ti, we examine summa-

ries of them to specify our model for the realized TEAs under the
second setting as a function of the other observable inputs. The spe-
cific summary we examine for each point i is the average value of
its discrepancy measure distribution. If we let p(Ti) denote the
probability density function of Ti, as derived by the representation
of this random variable in Eq. (4), then this average value is�∞
−r2i

Tip(Ti)dTi. In practice, we approximate this integral using
draws T (l)

i generated from the probability density function p(Ti)
according to the combination of Eq. (4) with draws β(l)P from the
posterior distribution p βP ∣ D1

( )
, where l= 1, …, L indexes the

draws. It is important to note that each T (l)
i is constructed according

to a single corresponding draw β(l)P . The mean value of the discre-
pancy measure does not equal the true, unknown TEA but instead
corresponds to one particular point estimator of the TEA. In large
samples, the variability of this point estimator should be negligible,
and the mean value of the discrepancy measure should approximate
the TEA.
We denote the specified TEA model as T wi,P ∣ γ

( )
, where γ

denotes the (unknown) vector of model parameters. The TEA
model can involve functions of the entries in wi besides just wi,1,
which are viewed as covariates. For example, the difference in
thermal conductivities between a new material and the baseline
material can enter as a linear effect in the TEA model and has a cor-
responding parameter γ0 in the γ vector. It is in this way that, unlike
the previous work in Ref. [1], our TEA model allows for the direct
incorporation of physics-based parameters. This fact will play an
important role in our case study in Sec. 4, in which the TEA will
be modeled as a polynomial function of r2i , cos(θi), sin(θi), di, and
the difference in the thermal conductivities of Ti–6Al–4V alloy
and 316L stainless steel. As the TEA model is a function of
inputs to best fit the calculated mean values of the discrepancy mea-
sures, it will not necessarily be equivalent to the mean values. Fur-
thermore, the TEA model approximates the relationship between
the true, unknown TEAs and the input variables in large samples
but again is not necessarily equivalent to the TEAs because it is
specified according to observed data. We summarize all of our pre-
vious notes on the TEAs, the discrepancy measures, and the TEA
model by the equation

Ti,2→1 ≈
∫∞
−r2i

Tip(Ti)dTi ≈ T(wi,P|γ) for each data point i (7)

Model transfer to the new setting will be complete upon incorporat-
ing T wi,P ∣ γ

( )
into fP to obtain the model

Δzi = fP wi,1 + T wi,P ∣ γ
( )

, wi,2, wi,3
( )

∣ βP
( )

+ δi (8)

for each point i in the new setting, with δi∼N(0, τ2) independently,
and where the error terms associated with the two settings are mutu-
ally independent. The results of this model transfer are described in
Secs. 4.4 and 4.5.

4 Case Study of Distortion Model Transfer From Ti–
6Al–4V to 316L Stainless Steel
4.1 Detailed Experimental Setup. Four Ti–6Al–4V disks and

three 316L stainless steel disksweremanufactured for our case study.
The disks varied in diameter, ranging from 45 mm to 70 mm, but
were printed with a constant thickness of 5 mm and designed to
have a flat top surface in their CAD models. The locations of the
Ti–6Al–4V disks in the build are in Fig. 2(a). The build setup for
the 316L stainless steel disks differed from that for the Ti–6Al–4V
disks. The optimized process parameters that were implemented
when manufacturing the disks, as suggested by EOS, are in
Table 2. Ultra-high purity argon gas was purged into the build
chamber to ensure that the oxygen level remained below 0.1%. To
further reduce distortion, all samples were printed on block style
support structures generated via Materialise Magics. The Renishaw

Table 2 Optimized process parameters for the EOS M290
machine that were used to manufacture the disks

Process parameters Ti–6Al–4V alloy 316L stainless steel

Layer thickness 30 μm 20 μm
Laser power 170 W 195 W
Scan speed 1200 mm/s 1083 mm/s
Hatch spacing 100 μm 80 μm
Build plate temperature 35 °C 80 °C
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Cyclone Series 2 CMM was used to collect the disks’ point cloud
surface measurements, and distortions, upon removal from the
build plate. This CMM has a 1 μm position resolution and an axial
repeatability of ±2 μm. Contact scanning was performed using a
touch-trigger probe with a 3 mm tip diameter. RENISHAW TRACECUT

24A software was used for the acquisition of the point cloud data.

4.2 Data Preprocessing. As illustrated in Fig. 2(b), the point
cloud data generated from the CMM for each of the fabricated
disks are dense. We obtained genuine representations of the large
amount of distortion data captured by the CMM, excluding mea-
surements from the scan of the plate and support structures that
are not of interest, by pruning the recorded point clouds. This was
performed systematically and consistently via two steps. First, all
points beyond the boundary (i.e., the diameter) of a disk, and all
points within a short distance of the boundary (which depends on
the nominal diameter), were removed. The latter set of points
were removed because distortion led to the true diameters of the
disks being smaller than their nominal diameters. Smaller boundary
regions were cutoff for smaller disks compared to larger disks,
because the former distorted less overall than the latter. All disks,
excluding the 65 mm and 70 mm Ti–6Al–4V disks, had a cutoff
value of 1 mm. Cutoff values of 1.1 mm and 1.6 mm were used
for the 65 mm and 70 mm Ti–6Al–4V disks, respectively.
Second, a lower bound for the recorded z coordinates was manually
identified for each disk and used to remove points on the support
structure. All points on a disk whose recorded z coordinates were
below the disk’s lower bound were removed. The first step above
helps to minimize measurement errors introduced by the CMM
near the boundaries of disks, and the second removes the vast
majority of points that do not truly reside on the top surface.

4.3 Fitting the Baseline Distortion Model to Ti–6Al–4V
Disks. We fit the baseline distortion model in Eq. (2) to the
Ti–6Al–4V disks’ data under the Bayesian paradigm. We place
flat priors on β0, …, β7, and log(σ2), Uniform priors on [0, 2π]
for ψ45, ψ55, and ψ65, and a Uniform prior on [0, π] for ψ70. We con-
strain the prior distribution for ψ70 to [0, π] due to our previous
observation from Fig. 4(b) that the harmonic trend for the 70 mm
disk appears to exhibit a period of π, not 2π as for the other
disks. For this choice of period in our baseline model, the use of
a Uniform prior on [0, 2π] for the 70 mm disk would introduce iden-
tifiability issues when performing statistical inferences because
non-zero mass would be given to values in (π, 2π]. All of these
parameters are assumed to be independent a priori. In practice,
the point cloud data collected on each part will be sufficiently
large in size so that the prior distributions of βP and σ2 will not
be of major concern. The joint posterior distribution of the param-
eters is derived by a Metropolis-Hastings-within-Gibbs algorithm.
Further details on our Bayesian computations are provided in the
Supplemental Material on the ASME Digital Collection. Figure 6
displays the posterior predictive means of distortions for the
sampled points under our fitted Bayesian model, and Fig. 7 illus-
trates the residuals for our fitted model. Formal posterior summaries
for the parameters and residual diagnostics are in the Supplemental
Material on the ASME Digital Collection. We observe that this
model provides a good fit to the distortion data of the Ti–6Al–4V
disks, with a RMSE of approximately 16 μm. In addition, we
fitted the model using 80% of the distortion data from the Ti–
6Al–4V disks and used the remaining data for testing. The RMSE
for the test set only slightly increased to 18 μm, which indicates
that the baseline model does not overfit the distortion data of the
Ti–6Al–4V disks. Thus, as the model captures the major associa-
tions between the inputs and distortion, and does not overfit the

Fig. 6 Posterior predictive means of distortions for Ti–6Al–4V disks of nominal diameters (a) 45 mm, (b) 55 mm, (c) 65 mm, and
(d ) 70 mm, as obtained from the baseline distortion model
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data, we will proceed to use it as the baseline model for our model
transfer.

4.4 Distortion Model Transfer From Ti–6Al–4V to 316L
Stainless Steel. We proceed to use the fitted baseline distortion
model for the Ti–6Al–4V disks to infer and model the realized
TEAs of 316L stainless steel disks in terms of squared radius r2i
with respect to the mean. The distortions of the sampled points
for this new material system are in Fig. 8. Three-dimensional
scatter plots of the means of the discrepancy measures for these
TEAs are in Fig. 9. We observe that the trends of the realized
TEAs can be described in terms of location-dependent and
location-independent components. The location-dependent compo-
nent involves r2i and θi and is formulated by recognizing that the
inferred TEAs effectively resemble paraboloids. Accordingly, this
first component is specified by the polar coordinate expression of
a paraboloid. The location-independent component involves prop-
erties of the 316L stainless steel disks besides r2i and θi. Two
such important properties are nominal diameter and thermal
conductivity, where the latter is directly related to the material
difference between Ti–6Al–4V alloy and 316L stainless steel. Fur-
thermore, the TEA may involve interactions between the location-
dependent and location-independent components.
Our previous observations on the point estimates of the TEAs for

the 316L stainless steel disks, which are the means of the discre-
pancy measures, lead to the following TEA model specification

for a point i on a 316L stainless steel disk of nominal diameter di:

T(r2i , θi, di ∣ γ) = γ0(16.3 − 6.7) + γ1(di − 65)

+ γ2(di − 65)2 + γ3ri cos(θi)

+ γ4r
2
i cos(θi)

2 + γ5ri sin(θi)

+ γ6r
2
i sin(θi)

2 + γ7ri(di − 65) cos(θi)

+ γ8r
2
i (di − 65) cos(θi)

2 + γ9ri(di − 65) sin(θi)

+ γ10r
2
i (di − 65) sin(θi)

2 (9)

where γ= (γ0,…, γ10) is the vector of (unknown) parameters for the
TEA model specification. The TEA model captures how the mean
values of the discrepancy measure for points on the stainless steel
disks are related to the input variables, such as di, r2i , and θi. In addi-
tion, key differences that are known a priori to exist between the
materials (e.g., thermal conductivity) can be used in the TEA
model to better model the mean values of the discrepancy
measure. In our model, coefficient γ0 captures the location-indepen-
dent effect of changing the thermal conductivity of a disk from
6.7 W/(m K) for Ti–6Al–4V alloy to 16.3 W/(m K) for 316L stain-
less steel. It is in this manner that the TEA model can accommodate
physically known characteristics between parts that involve multi-
ple different materials and other lurking differences. We again
utilize the transformation (di− 65) of the input di in our TEA
model so as to obtain interpretable regression coefficients

Fig. 7 Residuals for the baseline distortionmodel fitted to the four Ti–6Al–4V disks with a thickness of 5 mm and
nominal diameters (a) 45 mm, (b) 55 mm, (c) 65 mm, and (d ) 70 mm. The residual for a point is defined as the dif-
ference between its observed distortion Δzi and the posterior predictive mean of its distortion as obtained from
the baseline distortion model.
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Fig. 8 Observed distortions for three 316L stainless steel disks of nominal diameters (a) 55 mm, (b) 65 mm, and (c) 70 mm

Fig. 9 Average values of the discrepancy measures that are utilized to yield point estimates of the TEAs of points on the
316L stainless steel disks of nominal diameters (a) 55 mm, (b) 65 mm, and (c) 70 mm
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corresponding to the linear and quadratic effects of nominal dia-
meter with respect to the range of disks considered in our case
study. Furthermore, our use of this transformed input yields a
TEA model that more appropriately captures the exhibited trends
of the realized TEAs.

4.5 Results of the Transferred Model for 316L Stainless
Steel Disks. After modeling the TEA for 316L stainless steel
disks, we simultaneously fit the baseline distortion model and the
transferred distortion model to the Ti–6Al–4V and 316L stainless
steel disks, respectively, under the Bayesian paradigm. Indepen-
dent, flat priors are placed on all of the parameters in γ. The
models were fit by a Metropolis-Hastings-within-Gibbs algorithm,
which is described in the Supplemental Material on the ASME
Digital Collection. Formal posterior summaries for the parameters
in γ and residual diagnostics are in the Supplemental Material on
the ASME Digital Collection.
Distortion predictions for the 316L stainless steel disks are in

Fig. 10, and the corresponding residuals for the transferred model
are in Fig. 11. In Fig. 11, we note a pattern in the residual plot, spe-
cifically parallel lines of higher residuals. These larger residuals can
likely be attributed to the scan pattern of the top layer. We observe
from both figures that the transferred model provides a good fit to
the data for this new material system. The RMSE for the transferred
model is approximately 12 μm, which is lower than the RMSE of
the Ti–6Al–4V disks due to the Ti–6Al–4V disks having larger dis-
tortion than 316L stainless steel disks of similar diameter, as shown
in Figs. 4 and 8. To account for this, we provide in Table 3 each
disk’s “percent error RMSE,” defined as RMSE / max (Δzi).
These values again indicate that our transferred model yields accu-
rate fits for the disks. In addition, each value is below the tolerance
for many of the end-use applications identified by Deloitte [44], and

the prediction errors for 316L stainless steel are acceptable for bio-
medical implant applications [43]. These high-quality predictions
can also provide a means for practitioners to construct effective
compensation plans for distortion control.
To further validate our methodology, we held out the 65 mm

nominal diameter 316L stainless steel disk and used the remaining
disks to train the distortion model. The same procedure as described
in Sec. 3 was implemented. Once model transfer was completed by
incorporating the TEA model into the baseline model, distortion
predictions for the 65 mm nominal diameter disk were then
obtained and compared to the observed distortions. The RMSE of
distortion predictions for this 316 stainless steel disk is 19.8 μm,
which is a relatively slight increase from the result in Table 3.
This indicates that our model is effective for distortion prediction
of new parts.
Our model transfer involved significantly less computational

costs compared to a large number of existing finite element
models. Specifically, transferring the distortion model from Ti–
6Al–4V alloy to 316L stainless steel took a total of 45 min and
45 s on a 2015 MacBook Pro 2.2 GHz Intel Core i7 machine. If
we assume a linear scale-up of the computation speed for FEA as
reported in Refs. [19,51], then FEA would require over seven
days of computation for each of the disks that we considered. It is
important to note that the major computational costs for our
method are incurred only when updating a model with new data.
Minimal computational costs are incurred when making predictions
for a new part under our method. For example, computation on the
order of three seconds is incurred when making predictions for a
new point cloud of 1.3 × 104 observations using our transferred
model. The finite element model in Ref. [21] involves comparable
computational time as that for performing the full model transfer
in this application, but its disadvantage is that it takes this amount
of time for each new part. A comparison of the accuracies of

Fig. 10 Posterior predictive means of distortions derived from our transferred model for 316L stainless steel disks of nominal
diameters (a) 55 mm, (b) 65 mm, and (c) 70 mm
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distortion predictions between our model and that in Ref. [21] is not
immediately available because the radius of curvature approach is
used in Ref. [21] to fit a sphere to the distortion of the disk,
whereas we directly use the pointwise distortion measurements
obtained from the CMM. Model predictions given in Ref. [21]

are reported to be within 20% of the true radius of curvature,
whereas our distortion predictions are within 5% error of the mea-
sured distortion for all disks. A final point to note is that, as our
method leverages past experiments, it can enable faster product cer-
tification of new material systems. Thus, another advantage of our
method compared to existing FEA approaches, besides the
smaller computational costs, is that the models obtained from our
method possess the ability to continue learning and improving
their fits via TEA models as more new parts are manufactured.

5 Concluding Remarks
Laser-based additive manufacturing is a promising technology

that can positively impact a wide range of potential applications,
such as the manufacture of biomedical devices and aerospace com-
ponents. However, an unfortunate feature of current research in
LBAM is that a small number of materials are extensively studied
within each distinct domain due to their particular advantageous
properties for specific end-use applications. For example, Ti–6Al–
4V alloy is the primary focus of study for the manufacture of bio-
medical devices due to its biocompatibility properties. A conse-
quence of this is that much research is conducted that is heavily
dependent on the selected materials. The model transfer methodol-
ogy presented in this paper addresses this problem by bridging the
gaps between different materials in LBAM. It does so by utilizing

Fig. 11 Residuals of the transferred distortion model for the three 316L stainless steel disks with a thickness of 5 mm and
nominal diameters (a) 55 mm, (b) 65 mm, and (c) 70 mm

Table 3 RMSE, percent error, and worst case residual (i.e., the
maximum of the absolute values of the residuals) for each
disk’s distortion predictions as obtained from our fitted models

Material

Nominal
diameter
(mm)

RMSE
(μm)

Total
distortion
(μm)

Percent
error
(%)

Worst
case

residual
(μm)

Ti–6Al–4V alloy 45 12.5 504 2.48 97.15
Ti–6Al–4V alloy 55 18.3 619 2.95 110.57
Ti–6Al–4V alloy 65 18.5 813 2.28 100.41
Ti–6Al–4V alloy 70 18.5 1071 1.73 127.22
316L stainless
steel

55 12.7 302 4.21 54.23

316L stainless
steel

65 13.9 380 3.66 65.32

316L stainless
steel

70 11.8 500 2.36 65.29
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the effect equivalence framework in Ref. [1] to incorporate lurking
differences in new material systems into a model that has already
been specified for a previously studied material, so as to transfer
that model to new materials. Bridging the gap between different
materials in LBAM is made difficult by the significant differences
in their properties. We demonstrated via our case study on distor-
tions in Ti–6Al–4V and 316L stainless steel disks that this task is
not only possible under our method, but that the transferred
model for a new material can be of such high quality so as to
meet end-use tolerances. To the best of our knowledge, our frame-
work is the first to bridge the gaps between different material
systems in LBAM.
Our model transfer method possesses multiple advantages for

practitioners and researchers in LBAM.

(1) Its computational costs for distortion modeling and predic-
tion are significantly less than those associated with most
FEA approaches. This can enable practitioners and research-
ers to quickly test new materials for different end-use
applications.

(2) It leverages past experiments and enables a distortion model
to continuously learn and refine itself as more parts are man-
ufactured. The latter features are made possible by our use of
the Bayesian inferential paradigm. This advantage is particu-
larly helpful for practitioners, who can better determine the
necessary accuracy levels for specific applications. It also
builds upon the smaller computational costs to further
enable faster testing and product certification of new material
systems with less expenditure of efforts and resources.

(3) Our model transfer method is not purely data-driven because
it enables practitioners and researchers to directly incorporate
physical parameters that are known to be significant into the
transferred models. Other approaches cannot easily incorpo-
rate such parameters (e.g., thermal conductivity). These
physical parameters are directly incorporated into the TEA
model, and as more data are collected, additional physics-
based knowledge can be incorporated.

Ultimately, our method can accelerate the study of many novel
materials in LBAM, which previously may have been considered
infeasible due to the extensive amount of computation or number
of experiments that were thought necessary. The efficient use of
past experiments and reduced costs for learning about new materials
that result from our method can then lead to the identification of
new application areas of LBAM and further advance the adoption
of LBAM by industry. One possible example is the investigation
of other Titanium alloys that may be more beneficial for specific
biomedical implants. Today, Ti–6Al–4V alloy is mainly used for
the fabrication of many biomedical implants, but through further
material research, other alloys may be found to better suit specific
individual biomedical implants, leading to greater patient satisfac-
tion overall.
Future work includes the application of transferred distortion

models for the construction of compensation plans in LBAM. By
providing highly accurate distortion predictions based on data
from different materials, more effective compensation plans can
be derived under our method that ultimately improves the quality
of additively manufactured parts. Further investigation is needed
to validate the material transfer methodology for new material
systems in LBAM. While our case study only shows the transfer
from one material system to a second system, we believe that our
methodology will work for other material systems. In general, the
TEA model captures the difference between two material
systems. By adding data from new material systems to refine the
TEA model, the learning error will decrease and thus improve dis-
tortion predictions for a new material system. Another interesting
avenue for future research is to investigate the interaction of thick-
ness and diameter on the distortions of fabricated parts. Interest-
ingly, the distortions of a 75 mm Ti–6Al–4V disk that was also
manufactured was significantly different than the disks used in
the case study. The cause of this is likely the large

diameter-to-thickness ratio and will be explored in future work.
Other quantities of interest, such as residual stress and geometric
deviations in the (x, y) plane, could also be investigated using the
proposed modeling framework. Multiple quantities of interest
could be modeled simultaneously using a multivariate statistical
distribution. Furthermore, with additional parts that possess
varying geometries, the model may be generalized to predict distor-
tions for many types of geometries instead of only the disks consid-
ered in this article. An example of a formulation that could be used
for generalizing our model to various types of geometries can be
found in Refs. [50,52]. The latter article suggests that the distortion
models learned in our case study can serve to capture “global” dis-
tortion features that can be used to facilitate distortion modeling of
more complicated shapes. An additional challenge for more
complex parts is the introduction of cavities, which will alter distor-
tion behaviors. Previous work [41] investigated cavities in small
parts, but the methodology would likely need to be extended to
account for cavities with larger volumes. Ultimately, our methodol-
ogy provides a first step toward a more comprehensive distortion
modeling framework of freeform shapes in LBAM.
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