
PerfDebug: Performance Debugging of Computation Skew in
Dataflow Systems

Jason Teoh
jteoh@cs.ucla.edu

University of California, Los Angeles

Muhammad Ali Gulzar
gulzar@cs.ucla.edu

University of California, Los Angeles

Guoqing Harry Xu
harryxu@cs.ucla.edu

University of California, Los Angeles

Miryung Kim
miryung@cs.ucla.edu

University of California, Los Angeles

ABSTRACT

Performance is a key factor for big data applications, and much

research has been devoted to optimizing these applications. While

prior work can diagnose and correct data skew, the problem of

computation skew—abnormally high computation costs for a small

subset of input data—has been largely overlooked. Computation

skew commonly occurs in real-world applications and yet no tool

is available for developers to pinpoint underlying causes.

To enable a user to debug applications that exhibit computa-

tion skew, we develop a post-mortem performance debugging tool.

PerfDebug automatically finds input records responsible for such

abnormalities in a big data application by reasoning about devia-

tions in performance metrics such as job execution time, garbage

collection time, and serialization time. The key to PerfDebug’s

success is a data provenance-based technique that computes and

propagates record-level computation latency to keep track of abnor-

mally expensive records throughout the pipeline. Finally, the input

records that have the largest latency contributions are presented to

the user for bug fixing. We evaluate PerfDebug via in-depth case

studies and observe that remediation such as removing the single

most expensive record or simple code rewrite can achieve up to

16X performance improvement.

CCS CONCEPTS

• Information systems → MapReduce-based systems; • The-

ory of computation → Data provenance; • Software and its

engineering → Software testing and debugging; Software per-

formance; • General and reference → Performance.

KEYWORDS

Performance debugging, big data systems, data intensive scalable

computing, data provenance, fault localization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00
https://doi.org/10.1145/3357223.3362727

ACM Reference Format:

Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim.

2019. PerfDebug: Performance Debugging of Computation Skew in Dataflow

Systems. In ACM Symposium on Cloud Computing (SoCC ’19), November

20–23, 2019, Santa Cruz, CA, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3357223.3362727

1 INTRODUCTION

Dataflow systems are prevalent in today’s big data ecosystems and

continue to grow in popularity. Since these systems ingest terabytes

of data as input, they inherently suffer from long execution times

and it is important to optimize their performance. Consequently,

studying and improving the performance of dataflow systems such

as Apache Hadoop [2] and Apache Spark [4] has been a major

research area. For example, Ousterhout et al. [23] study perfor-

mance across system resources such as network, disk, and CPU and

conclude that CPU is the primary source of performance bottle-

necks. Several prior works aim to optimize system configurations

to achieve better resource utilization [7, 10, 26, 27], while others

improve parallelization of workloads [17]. To find the source of

performance bottlenecks, PerfXplain [15] performs a differential

analysis across several Hadoop workloads.

Computation Skew. When an application shows signs of poor

performance through an increase in general CPU time, garbage

collection (GC) time, or serialization time, the first question a user

may ask is “what caused my program to slow down?” While strag-

glers—slow executors in a cluster—and hardware failures can often

be automatically identified by existing dataflow system monitors,

many real-world performance issues are not system problems; in-

stead, they stem from a combination of certain data records from

the input and specific logic of the application code that incurs much

longer latency when processing these records—a phenomenon re-

ferred to as computation skew. Computation skew commonly occurs

in real-world applications [16, 18]. For example, in a StackOverflow

post [1] a Stanford Lemmatizer pre-processes customer reviews.

The task fails to process a relatively small dataset because certain

sentences trigger excessive memory consumption and garbage col-

lection, leading to large memory usage and execution time. This

example is described in detail in Section 2.1. Although there is a

body of work [6, 16, 17] that attempts to mitigate data skew, compu-

tation skew has been largely overlooked and tools that can identify

and diagnose computation skew, unfortunately, do not exist.

465

https://doi.org/10.1145/3357223.3362727
https://doi.org/10.1145/3357223.3362727

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

PerfDebug. The pervasive existence of computation skew in

real-world applications as well as the lack of effective tooling

strongly calls for development of new debugging techniques that

can help developers quickly identify skew-inducing records. In

response to this call, we developed PerfDebug, a novel runtime

technique that aims to pinpoint expensive records (“needles") from

potentially billions (“haystack") of records in the input.

In this paper, we focus on Apache Spark as it is the de-facto

data-parallel framework deployed widely in industry. Spark hosts a

range of applications in machine learning, graph analytics, stream

processing, etc., making it worthwhile to build a specialized per-

formance debugging tool which can provide immediate benefit

to all applications running on it. Although PerfDebug was built

for Spark, our idea is applicable to other dataflow systems as well.

PerfDebug provides fully automated support for postmortem de-

bugging of computation skew. At its heart are a novel notion of

record-level latency and a data-provenance-based technique that

computes and propagates record-level latency along a dataflow

pipeline.

A typical usage scenario of PerfDebug consists of the follow-

ing three steps. First, PerfDebug monitors coarse-grained per-

formance metrics (e.g., CPU, GC, or serialization time) and uses

task-level performance anomalies (e.g., certain tasks have much

lower throughput than other tasks) as a signal for computation

skew. Second, upon identification of an abnormal task, PerfDebug

re-executes the application in the debugging mode to collect data

lineage as well as record-level latency measurements. Finally, using

both lineage and latency measurements, PerfDebug computes the

cumulative latency for each output record and isolates the input

records contributing most to these cumulative latencies.

We have performed a set of case studies to evaluate PerfDebug’s

effectiveness. These case studies were conducted on three Spark

applications with inputs that come from industry-standard bench-

marks [5], public institution datasets [22], and prior debugging

work [8]. For each application, we demonstrate how PerfDebug

can identify the source of computation skew within 86% of the

original job time on average. Applying appropriate remediations

such as record removal or application rewriting leads to 1.5X to 16X

performance improvement across three applications. On a locally

simulated setting, PerfDebug identifies delay-inducing records

with 100% accuracy while achieving 102 to 106 orders of magnitude

precision improvement compared to an existing solution [12], at

the cost of 30% instrumentation overhead. To the best of our knowl-

edge, PerfDebug is the first debugging technique to diagnose and

reason about computation skew in dataflow applications.

Large performance gains can be obtained by appropriately re-

mediating expensive records (e.g., breaking a long sentence into

multiple short ones or even deleting them, if appropriate). PerfDe-

bug delegates repair efforts to the user. In many cases, simple

modifications of expensive data records do not have much impact

on the correctness of program results for two major reasons: (1)

many big data workloads use sampled data as input and hence

their results are approximate anyway; and (2) the number of such

expensive records is often small and hence the delta in the final

result that comes from altering these records is marginal.

The rest of the paper is organized as follows: Section 2 provides

necessary background. Section 3 motivates the problem and Section

1 val data = "hdfs://nn1:9000/movieratings/*"
2 val lines = sc.textFile(data)
3 val ratings = lines.flatMap(s => {
4 val reviews_str = s.split(":")(1)
5 val reviews = reviews_str.split(",")
6 val counts = Map().withDefaultValue(0)
7 reviews.map(x => x.split("_")(1))
8 .foreach(r => counts(r) += 1)
9 return counts.toIterable
10 })
11 ratings.reduceByKey(_+_).collect()

Figure 1: Alice’s program for computing the distribution of

movie ratings.

4 describes the implementation of PerfDebug. Section 5 presents

experimental details and results.We conclude the paper with related

works and a conclusion in Sections 6 and 7 respectively.

2 BACKGROUND

In this section, we explain the difference between computation and

data skew along with a brief overview of the internals of Apache

Spark and Titian.

2.1 Computation Skew

Computation skew stems from a combination of certain data records

from the input and specific logic of the application code that incurs

much longer latency when processing these records. This definition

of computation skew includes some but not all kinds of data skew.

Similarly, data skew includes some but not all kinds of computation

skew. Data skew is concerned primarily with data distribution—e.g.,

whether the distribution has a long (negative or positive) tail—and

has consequences in a variety of performance aspects including

computation, network communication, I/O, scheduling, etc. In con-

trast, computation skew focuses on record-level anomalies—a small

number of data records for which the application (e.g., UDFs) runs

much slower, as compared to the processing time of other records.

As previously described, a StackOverflow question [1] employs

the Stanford Lemmatizer (i.e., part of a natural language processor)

to preprocess customer reviews before calculating the lemmas’

statistics. The task fails to process a relatively small dataset because

of the lemmatizer’s exceedingly large memory usage and long

execution time when dealing with certain sentences: due to the

temporary data structures used for dynamic programming, for

each sentence processed, the amount of memory needed by the

lemmatizer is three orders of magnitude larger than the sentence

itself. As a result, when a task processes sentences whose length

exceeds some threshold, its memory consumption quickly grows

to be close to the capacity of the main memory, making the system

suffer from extensive garbage collection and eventually crash. This

problem is clearly an example of computation skew, but not data

skew. The number of long sentences is small in a customer review

and different data partitions contain roughly the same number of

long sentences. However, the processing of each such long sentence

has a much higher resource requirement due to the combinatorial

effect of the length of the sentence and the exponential nature of

the lemmatization algorithm used in the application.

466

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

As another example of pure computation skew, consider a pro-

gram that takes a set of (key, value) pairs as input. Suppose that the

length of each record is identical, the same key is never repeated,

and the program contains a UDF with a loop where the iteration

count depends on f (value), where f is an arbitrary, non-monotonic
function. There is no data skew, since all keys are unique. A user

cannot simply find a large value v , since latency depends on f (v)
rather thanv and f is non-monotonic. However, computation skew
could exist because f (v) could be very large for some value v .

As an opposite example of data skew without computation skew,

a key-value system may encounter skewed partitioning and eventu-

ally suffer from significant tail latency if the input key-value pairs

exhibit a power-law distribution. This is an example of pure data

skew, because the latency comes from uneven data partitioning

rather than anomalies in record-level processing time.

Computation skew and data skew do overlap. In the above

review-processing example, if most long sentences appear in one

single customer review, the execution would exhibit both data skew

(due to the tail in the sentence distribution) and computation skew

(since processing these long sentences would ultimately need much

more resources than processing short sentences).

2.2 Apache Spark and Titian

Apache Spark [4] is a dataflow system that provides a program-

ming model using Resilient Distributed Datasets (RDDs) which

distributes the computations on a cluster of multiple worker nodes.

Spark internally transforms a sequence of transformations (logi-

cal plan) into a directed acyclic graph (DAG) (physical plan). The

physical plan consists of a sequence of stages, each of which is

made up of pipelined transformations and ends at a shuffle. Using

the DAG, Spark’s scheduler executes each stage by running, on

different nodes, parallel tasks each taking a partition of the stage’s

input data.

Titian [12] extends Spark to provide support for data prove-

nance—the historical record of data movement through transforma-

tions. It accomplishes this by inserting tracing agents at the start

and end of each stage. Each tracing agent assigns a unique identifier

to each record consumed or produced by the stage. These identifiers

are collected into agent tables that store the mappings between

input and output records. In order to minimize the runtime trac-

ing overhead, Titian asynchronously stores agent tables in Spark’s

BlockManager storage system using threads separated from those

executing the application. Titian enables developers to trace the

movement of individual data records forward or backward along

the pipeline by joining these agent tables according to their input

and output mappings.

However, Titian has limited usefulness in debugging computa-

tion skew. First, it cannot reason about computation latency for any

individual record. In the event that a user is able to isolate a delayed

output, Titian can leverage data lineage to identify the input records

that contribute to the production of this output. However, it falls

short of singling out input records that have the largest impact on

application performance. Due to the lack of a fine-grained com-

putation latency model (e.g., record-level latency used in PerfDe-

bug), Titian would potentially find a much greater number of input

records that are correlated to the given delayed output, as measured

Figure 2: An example screenshot of Spark’s Web UI where

each row represents task-level performance metrics. From

left to right, the columns represent task identifier, the ad-

dress of the worker hosting that task, running time of the

task, garbage collection time, and the size (space and quan-

tity) of input ingested by the task, respectively.

in Section 5.5, while only a small fraction of them may actually

contribute to the observed performance problem.

3 MOTIVATING SCENARIO

Suppose Alice acquires a 21GB dataset of movies and their user

ratings. The dataset follows a strict format where each row consists

of a movie ID prefix followed by comma-separated pairs of a user

ID and a numerical rating (1 to 5). A small snippet of this dataset is

as follows:
127142:2628763_4,2206105_4,802003_3,...
127143:1027819_3,872323_3,1323848_4,...
127144:1789551_3,1764022_5,1215225_5,...

Alice wishes to calculate the frequency of each rating in the

dataset. To do so, she writes the two-stage Spark program shown

in Figure 1. In this program, line 2 loads the dataset and lines 3-10

extract the substring containing ratings from each row and finds the

distribution of ratings only for that row. Line 11 aggregates rating

frequencies from each row to compute the distribution of ratings

across the entire dataset. Alice runs her program using Apache

Spark on a 10-node cluster with the given dataset and produces the

final output in 1.2 minutes:

Rating Count

1 99487661

2 217437722

3 663482151

4 771122507

5 524004701

At first glance, the executionmay seem reasonably fast. However,

Alice knows from past experience that a 20GB job such as this

should typically complete in about 30 seconds. She looks at the

Spark Web UI and finds that the first stage of her job amounts for

over 98% of the total job time. Upon further investigation into Spark

performance metrics as seen in Figure 2, Alice discovers that task

33 of this stage runs for 1.2 minutes while the rest of the tasks finish

much early. The median task time is 11 seconds, but task 33 takes

over 50% longer than the next slowest task (51 seconds) despite

processing the same amount of input (128MB). She also notices

that other tasks on the same machine perform normally, which

467

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

Figure 3: The physical execution of the motivating example

by Apache Spark.

eliminates existence of a straggler due to hardware failures. This is

a clear symptom of computation skew where the processing times

for individual records differs significantly due to the interaction

between record contents and the code processing these records.

To investigate which characteristics of the dataset caused her

program to show disproportionate delays, Alice requests to see a

subset of original input records accountable for the slow task. Since

she has identified the slow task already, she may choose to inspect

the data partition associated with that task manually. Figure 3 il-

lustrates how this job is physically executed on the cluster. For

example, Alice identifies task 1 of stage 0 as the slowest correspond-

ing partition (i.e., Data Partition 1). Since it contains 128MB of
raw data and comprises millions of records, this manual inspection

is infeasible.

As Alice has already identified the presence of computation

skew, she enables PerfDebug’s debugging mode. PerfDebug re-

executes the applications and collects lineage as well as record-level

latency information. After collecting this information, PerfDebug

reports each output record’s computation time (latency) and its

corresponding slowest input:

Rating Count Latency (ms) Slowest Input

1 99487661 28906 “129707:..."

2 217437722 28891 “129707:..."

3 663482151 28920 “129707:..."

4 771122507 28919 “129707:..."

5 524004701 28842 “129707:..."

Alice notices that the reported latencies are fairly similar for

all output records. Furthermore, all five records report the same

slowest delay-inducing input record with movie id 129707. She
inspects this specific input record and finds that it has far more

ratings (91 million) than any other movie. Because Alice’s code

iterates through each rating to compute a per-movie rating count

(lines 6-9 of Figure 1), this particular movie significantly slows

down the task in which it appears. Alice suspects this unusually

high rating count to be a data quality issue of some sort. As a result,

she chooses to handle movie 129707 by removing it from the input

dataset. In doing so, she finds that the removal of just one record

decreases her program’s execution time from 1.2 minutes to 31

seconds, which is much closer to her initial expectations.

Note that Alice’s decision to remove movie 129707 is only one
example of how she may choose to address this computation skew.

PerfDebug is designed to detect and investigate computation skew,

but appropriate remediations will vary depending on use cases and

must be determined by the user.

4 APPROACH

When a sign of poor performance is seen, PerfDebug performs

post-mortem debugging by taking in a Spark application and a

dataset as inputs, and pinpoints the precise input record with the

most impact on the execution time. Once PerfDebug is enabled, it

is fully automatic and does not require any human judgment. Its ap-

proach is broken down into three steps. First, PerfDebug monitors

coarse-grained performance metrics as a signal for computation

skew. Second, PerfDebug re-executes the application on the entire

input to collect lineage information and latency measurements. Fi-

nally, the lineage and latency information is combined to compute

the time cost of producing individual output records. During this

process, PerfDebug also assesses the impact of individual input

records on the overall performance and keeps track of those with

the highest impact on each output.

Sections 4.2 and 4.3 describe how to accumulate and attribute

latencies to individual records throughout the multi-stage pipeline.

This record level latency attribution differentiates PerfDebug from

merely identifying the top-N expensive records within each stage

because the mappings between input records and intermediate

output records are not 1:1 in modern big data analytics. Operators

such as join, reduce, and groupByKey generate n:1 mappings,

while flatmap creates 1:n mappings. Thus, finding the top-N slow

records from each stage may work on a single stage program but

does not work for multi-stage programs with aggregation and data-

split operators.

4.1 Performance Problem Identification

When PerfDebug is enabled on a Spark application, it identifies

irregular performance by monitoring built-in performance metrics

reported by Apache Spark. In addition to the running time of in-

dividual tasks, we utilize other constituent performance metrics,

such as GC and serialization time, to identify irregular performance

behavior. Several prior works, such as Yak [21], have highlighted

the significant impact of GC on Big Data application performance.

They also report that GC can even account for up to 50% of the

total running time of such applications.

A high GC time can be observed due to two reasons: (1) millions

of objects are being created within a task’s runtime and (2) by the

sheer size of individual objects created by UDFs while processing

the input data. Similarly, a high serialization/deserialization time

is usually induced for the same reasons. In both cases, high GC or

serialization times are usually triggered by a specific characteristic

of the input dataset. Referring back to our motivating scenario, a

single row in the input dataset may comprise a large amount of

information and lead to the creation of many objects. As a dataflow

framework handles many such objects within a given task, both GC

and serialization for that particular task soar. Since stage bound-

aries represent blocking operations (meaning that each task has

to complete before moving to the next stage), the high volume

of objects holds back the whole stage and leads to slower appli-

cation performance. This effect can be propagated over multiple

468

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

Figure 4: During program execution, PerfDebug also stores

latency information in lineage tables comprising of an addi-

tional column of ComputationLatency.

stages as objects are passed around and repeatedly serialized and

deserialized.

PerfDebug applies lightweight instrumentation to the Spark ap-

plication by attaching a custom listener that observes performance

metrics reported by Spark such as (1) task time, (2) GC time, and

(3) serialization time. Note that PerfDebug is not limited to only

these metrics and can be extended to support other performance

measurements. For example, we can implement a custom listener

to measure additional statistics described in [20] such as shuffle

object serialization and deserialization times. This lightweight mon-

itoring enables PerfDebug to avoid unnecessary instrumentation

overheads for applications that do not exhibit computation skew.

When an abnormality is identified, PerfDebug starts post-mortem

debugging to enable deeper instrumentation at the record level and

to find the root cause of performance delays. Alternatively, a user

may manually identify performance issues and explicitly invoke

PerfDebug’s debugging mode.

4.2 Capturing Data Lineage and Latency

As the first step in post-mortem debugging, PerfDebug re-executes

the application to collect latency (computation time of applying a

UDF) of each record per stage in addition to data lineage informa-

tion. For this purpose, PerfDebug extends Titian [12] and stores

the per-record latency alongside record identifiers.

4.2.1 Extending Data Provenance.

PerfDebug adopts Titian [12] to capture record level input-output

mapping. However, using off-the-shelf Titian is insufficient as it

does not profile the compute time of each intermediate recordwhich

is crucial for locating the expensive input records. To enable perfor-

mance profiling in addition to data provenance, PerfDebug extends

Titian by measuring the time taken to compute each intermediate

record and storing these latencies alongside the data provenance

information. Titian captures data lineages by generating lineage

tables that map the output record at one stage to the input of the

next stage. Later, it constructs a complete lineage graph by join-

ing the lineage tables, one at a time, across multiple stages. While

Titian generates lineage tables, PerfDebug measures the computa-

tional latency of executing a chain of UDFs in a given stage on each

record and appends it to the lineage tables in an additional column

as seen in Figure 4. This extension produces a data provenance

graph that exposes individual record computation times, which is

used in Section 4.3 to precisely identify expensive input records.

Titian stores each lineage table in Spark’s internal memory layer

(abstracted as a file system through BlockManager) to lower run-

time overhead of accessing memory. However, this approach is

not feasible for post-mortem performance debugging as it hogs the

memory available for the application and restricts the lifespan of lin-

eage tables to the liveliness of a Spark session. PerfDebug supports

post-mortem debugging in which a user can interactively debug

anytime without compromising other applications by holding too

many resources. To realize this, PerfDebug stores lineage tables

externally using Apache Ignite [3] in an asynchronous fashion. As

a persistent in-memory storage, Ignite decouples PerfDebug from

the session associated to a Spark application and enables PerfDe-

bug to support post-mortem debugging anytime in the future. We

choose Ignite for its compatibility with Spark RDDs and efficient

data access time, but PerfDebug can also be generalized to other

storage systems.

Figure 5 demonstrates the lineage information collected by

PerfDebug, shown as In and Out. Using this information, PerfDe-

bug can execute backward tracing to identify the input records for

a given output. For example, the output record o3 under the Out
column of � post-shuffle can be traced backwards to [i3,i8]
(In column of �) through the Out column of � pre-shuffle.
We further trace those intermediate records from In column of

pre-shuffle back to the program inputs [h1, h2, h3, h4, h5]
in the Out column of � HDFS.

4.2.2 Latency Measurement.

Data provenance alone is insufficient for calculating the impact of

individual records on overall application performance. As perfor-

mance issues can be found both within stages (e.g., an expensive

filter) and between stages (e.g., due to data skew in shuffling),

PerfDebug tracks two types of latency. Computation Latency is

measured from a chain of UDFs in dataflow operators such as map
and filter, while Shuffle Latency is measured by timing shuffle-

based operations such as reduce and distributing this measurement
based on input-output ratios.

For a given record r , the total time to execute all UDFs of a

specific stage, StaдeLatency(r) is computed as:

StageLatency(r) =

ComputationLatency(r) + ShuffleLatency(r)

Computation Latency. As described in Section 2, a stage con-

sists of multiple pipelined transformations that are applied to input

records to produce the stage output. Each transformation is in turn

defined by an operator that takes in a UDF. To measure computa-

tion latency, PerfDebug wraps every non-shuffle UDF in a timing

function that measures the time span of that UDF invocation for

each record. We define non-shuffle UDFs as those passed as inputs

to operators that do not trigger a shuffle such as flatmap. Since

the pipelined transformations in a stage are applied sequentially

on each record, PerfDebug calculates the computation latency

ComputationLatency(r) of record r by adding the execution times
of each UDF applied to r within the current stage:

ComputationLatency(r) =
∑

f∈UDF

Time(f, r)

For example, consider the following program:

1 val f1 = (x: Int) => List(x, x*2) // 50ms
2 val f2 = (x: Int) => x < 100 // 10ms, 20ms
3 integerRdd.flatMap(f1).filter(f2).collect()

When executing this program for a single input 42, we obtain

outputs of 42 and 84. Suppose PerfDebug observes that f1(42) takes

50 milliseconds, while f2(42) and f2(84) take 10 and 20 milliseconds

469

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

Figure 5: The snapshots of lineage tables collected by PerfDebug. �, �, and � illustrate the physical operations and their

corresponding lineage tables in sequence for the given application. In the first step, PerfDebug captures the Out, In, and Stage

Latency columns, which represent the input-output mappings as well as the stage-level latencies per record. During output

latency computation, PerfDebug calculates three additional columns (Total Latency, Most Impactful Source, and Remediated

Latency) to keep track of cumulative latency, the ID of the original input with the largest impact on Total Latency, and the

estimated latency if the most impactful record did not impact application performance.

respectively. PerfDebug computes the computation latency for the

first output, 42, as 50 + 10 = 60 milliseconds. Similarly, the second

output, 84, has a computation latency of 50 + 20 = 70 milliseconds.

In stages preceding a shuffle, multiple input records may be

pre-aggregated to produce a single output record. In the �-

Pre-Shuffle lineage table shown in Figure 5, the In column and
the left term in the StageLatency column reflect these multiple

input identifiers and computation latencies. As the Spark applica-

tion’s execution proceeds through each stage, PerfDebug captures

StaдeLatency for each output record per stage and includes it into
the lineage tables under the Stage Latency column as seen in Fig-

ure 5. These lineage tables are stored in PerfDebug’s Ignite storage

where each table encodes the computation latency of each record

and the relationship of that record to the output records of the

previous stage.

Shuffle Latency. In Spark, a shuffle at a stage boundary comprises

of two steps: a pre-shuffle step and a post-shuffle step. In the pre-

shuffle step, each task’s output data is sorted or aggregated and then

stored in the local memory of the current node. We measure the

time it takes to perform the pre-shuffle step on the whole partition

as pre-shuffle latency. In the post-shuffle step, a node in the next

stage fetches this remotely stored data from individual nodes and

sorts (or aggregates) it again. Because of this distinction, PerfDe-

bug’s shuffle latency is categorized into pre-shuffle and post-shuffle

estimations.

As both pre- and post- shuffle operations are atomic and per-

formed in batches over each partition, we estimate the latency of an

individual output record in a pre-shuffle step by (1) measuring the

proportion of the input records consumed by the output record and

then (2) multiplying it with the total shuffle time of that partition.

ShuffleLatency(r) =

|Inputsr |

|Inputs|
∗ PartitionLatency(stager)

staдer represents the stage of the record r , |Inputs | is the size of a
partition, and |Inputr | is the size of input consumed by output r . For
example, the topmost lineage table under�-pre-shuffle in Figure
5 has a pre-shuffle latency of 60ms. Because output i1 is computed
from two of the partition’s ten inputs, ShuffleLatency(i1) is

470

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

equal to two tenths of partition latency i.e., 2
10 ∗60. Similarly, output

i3 is computed from three inputs so its shuffle latency is 3
10 ∗ 60.

4.3 Expensive Input Isolation

To identify the most expensive input for a given application and

dataset, PerfDebug analyzes data provenance and latency infor-

mation from Section 4.2 and calculates three values for each output

record: (1) the total latency of the output record, (2) the input record

that contributes most to this latency (most impactful source), and (3)

the expected output latency if that input record had zero latency

or otherwise did not affect application performance (remediated

latency). Once calculated, PerfDebug groups these values by their

most impactful source and compares each input’s maximum latency

with its maximum remediated latency to identify the input with

the most impact on application performance.

Output Latency Calculation. PerfDebug estimates the total la-

tency for each output record as a sum of associated stage latencies

established by data provenance based mappings. By leveraging the

data lineage and latency tables collected earlier, it computes the

latency using two key insights:

• In dataflow systems, records for a given stage are often com-

puted in parallel across several tasks. Assuming all inputs for

a given record are computed in this parallel manner, the time

required for all the inputs to be made available is at least the

time required for the final input to arrive. This corresponds

to the maximum of the dependent input latencies.

• A record can only be produced when all its inputs are made

available. Thus, the total latency of any given record must be

at least the sum of its stage-specific individual record latency,

described in Section 4.2, and the slowest latency of its inputs,

described above.

The process of computing output latencies is inspired by the for-

ward tracing algorithm from Titian, starting from the entire input

dataset.1 PerfDebug recursively joins lineage tables to construct

input-output mappings across stages. For each recursive join in

the forward trace, PerfDebug computes the accumulated latency

TotalLatency(r) of an output r by first finding the latency of the
slowest input (SlowestInputLatency(r)) among the inputs from the

preceding stage onwhich the output depends upon, and then adding

the stage-specific latency StaдeLatency(r) as described in Section
4.2:

SlowestInputLatency(r) =

max(∀i ∈ Inputsprev_stage : TotalLatency(i))

TotalLatency(r) =

SlowestInputLatency(r) + StageLatency(r)

Once TotalLatency is calculated for each record at each step of

recursive join, it is added in the corresponding lineage tables under

the new column, Total Latency. For example, the output record i1
in �-Pre-Shuffle lineage table of Figure 5 has two inputs from
the previous stage, h1 and h2 with their total latencies of 486ms
and 28848ms respectively. Therefore, its SlowestInputLatency(i1)
is the maximum of 70 and 28848 which is then added to its

1PerfDebug leverages lineage-based backward trace to remove inputs that do not
contribute to program outputs while computing output latencies.

Shu f f leLatency(i1) = 2
10 ∗ 60ms, making the total latency of i1

28860ms.

Tracing Input Records. Based on the output latency, a user can

select an output and use PerfDebug to perform a backward trace

as described in Section 4.2. However, the input isolated through

this technique may not be precise as it relies solely on data lineage.

For example, Alice uses PerfDebug to compute the latency of

individual output records, shown in Figure 5. Next, Alice isolates

the slowest output record, o3. Finally, she uses PerfDebug to trace
backward and identify the inputs for o3. Unfortunately, all five
inputs contribute to o3. Because there is only one significant delay-
inducing input record (h2) which contributes to o3’s latency, the
lineage-based backward trace returns a super-set of delay-inducing

inputs and achieves a low precision of 20%.

Tracking Most Impactful Input. To improve upon the low pre-

cision of lineage-based backward traces, PerfDebug propagates

record identifiers during output latency computation and retains

the input records with the most impact on an output’s latency.

We define the impact of an input record as the difference between

the maximum latency of all associated output records in program

executions with and without the given input record. Intuitively,

this represents the degree to which a delay-inducing input is a

bottleneck for output record computation.

To support this functionality, PerfDebug takes an approach

inspired by the Titian-P variant described in [12]. In Titian-P (re-

ferred to as Titian Piggy Back), lineage tables are joined together

as soon as the lineage table of the next stage is available during a

program execution. This obviates the need for a backward trace as

each lineage table contains a mapping between the intermediate

or final output and the original input, but also requires additional

memory to retain a list of input identifiers for each intermediate or

final output record. PerfDebug’s approach differs in that it retains

only a single input identifier for each intermediate or final output

record. As such, its additional memory requirements are constant

per output record and do not increase with larger input datasets.

Using this approach, PerfDebug is able to compute a predefined

backward trace with minimal memory overhead while avoiding the

expensive computation and data shuffles required for a backward

trace.

As described earlier, the latency of a given record is dependent

on the maximum latency of its corresponding input records. In

addition to this latency, PerfDebug computes two additional fields

during its output latency computation algorithm to easily support

debugging queries about the impact of a particular input record on

the overall performance of an application.

• Most Impactful Source: the identifier of the input record

deemed to be the top contributor to the latency of an inter-

mediate or final output record. We pre-compute this so that

debugging queries do not need a backward trace and can

easily identify the single most impactful record for a given

output record.

• Remediated Latency: the expected latency of an interme-

diate or final output record ifMost Impactful Source had zero

latency or otherwise did not affect application performance.

This is used to quantify the impact of the Most Impactful

Source on the latency of the output record.

471

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

As with TotalLatency, these fields are inductively updated (as

seen in Figure 5) with each recursive join when computing output

latency. During recursive joins,Most Impactful Source field becomes

theMost Impactful Source of the input record possessing the highest

TotalLatency, similar to an argmax function. Remediated Latency

becomes the current record’s StageLatency plus the maximum la-

tency over all input records except the Most Impactful Source. For

example, the output o3 has the highest TotalLatency with the most

impactful source of h2. This is reported based on the reasoning that,
if we remove h2, the latencies of input i3 and i8 drop the most
compared to removing either h1 or h3.
In addition to identifying the most impactful record for an in-

dividual program output, PerfDebug can also use these extended

fields to identify input records with the largest impact on overall

application performance. This is accomplished by grouping the

output latency table byMost Impactful Source and finding the group

with the largest difference between its maximum TotalLatency and

maximum Remediated Latency. In the case of Figure 5, input record

h2 is chosen because its difference (28906ms - 324ms) is greater

than that of h1 (285ms - 210ms).

5 EXPERIMENTAL EVALUATION

Our applications and datasets are described in Table 1. Our inputs

come from industry-standard PUMA benchmarks [5], public insti-

tution datasets [22], and prior work on automated debugging of

big data analytics [8]. Case studies described in Sections 5.3, 5.2,

and 5.4 demonstrate when and how a user may use PerfDebug.

PerfDebug provides diagnostic capability by identifying records

attributed to significant delays and leaves it to the user to resolve

the performance problem, e.g., by re-engineering the analytical

program or refactoring UDFs.

5.1 Experimental Setup

All case studies are executed on a cluster consisting of 10 worker

nodes and a single master, all running CentOS 7 with a network

speed of 1000 Mb/s. The master node has 46GB available RAM, a

4-core 2.40GHz CPU, and 5.5TB available disk space. Each worker

node has 125GB available RAM, a 8-core 2.60GHz CPU, and 109GB

available disk space.

Throughout our experiments, each Spark Executor is allocated

24GB ofmemory. ApacheHadoop 2.2.0 is used to host all datasets on

HDFS (replication factor 2), with the master configured to run only

the NameNode. Apache Ignite 2.3.0 servers with 4GB of memory

are created on each worker node, for a total of 10 ignite servers.

PerfDebug creates additional Ignite client nodes in the process

of collecting or querying lineage information, but these do not

store data or participate in compute tasks. Before running each

application, the Ignite cluster memory is cleared to ensure that

previous experiments do not affect measured application times.

5.2 Case Study A: NYC Taxi Trips

Alice has 27GB of data on 173 million taxi trips in New York [22],

where she needs to compute the average cost of a taxi ride for

each borough. A borough is defined by a set of points represent-

ing a polygon. A taxi ride starts in a given borough if its starting

coordinate lies within the polygon defined by a set of points, as

1 val avgCostPerBorough = lines.map { s =>
2 val arr = s.split(',')
3 val pickup = new Point(arr(11).toDouble,
4 arr(10).toDouble)
5 val tripTime = arr(8).toInt
6 val tripDistance = arr(9).toDouble
7 val cost = getCost(tripTime, tripDistance)
8 val b = getBorough(pickup)
9 (b, cost)}
10 .aggregateByKey((0d, 0))(
11 {case ((sum, count), next) => (sum + next, count+1)},
12 {case ((sum1, count1), (sum2, count2)) =>

(sum1+sum2,count1+count2)}
13).mapValues({case (sum, count) => sum.toDouble/count}).collect()

Figure 6: A Spark application computing the average cost of

a taxi ride for each borough.

computed via the ray casting algorithm. This program is written as

a two-stage Spark application shown in Figure 6.

Alice tests this application on a small subset of data consisting

of 800,000 records in a single 128MB partition, and finds that the

application finishes within 8 seconds. However, when she runs the

same application on the full data set of 27GB, it takes over 7 minutes

to compute the following output:

Borough Trip Cost($)

1 56.875

2 67.345

3 97.400

4 30.245

This delay is higher than her expectation, since this Spark appli-

cation should perform data-parallel processing and computation

for each borough is independent of other boroughs. Thus, Alice

turns to the Spark Web UI to investigate this increase in the job

execution time. She finds that the first stage accounts for almost all

of the job’s running time, where the median task takes 14 seconds

only, while several tasks take more than one minute. In particular,

one task runs for 6.8 minutes. This motivates her to use PerfDe-

bug. She enables a post-mortem debugging mode and resubmits

her application to collect lineage and latency information. This

collection of lineage and latency information incurs 7% overhead,

after which PerfDebug reports the computation latency for each

output record as shown below. In this output, the first two columns

are the outputs generated by the Spark application and the last

column, Latency (ms), is the total latency calculated by PerfDebug

for each individual output record.

Borough Trip Cost($) Latency (ms)

1 56.875 3252

2 67.345 2481

3 97.400 2285

4 30.245 9448

Alice notices that borough #4 is much slower to compute than

other boroughs. She uses PerfDebug to trace lineage for borough

#4 and finds that the output for borough #4 comes from 1001 trip

records in the input data, which is less than 0.0006% of the entire

dataset. To understand the performance impact of input data for

borough #4, Alice filters out the 1001 corresponding trips and reruns

the application for the remaining 99.9994% of data. She finds that

the application finishes in 25 seconds, significantly faster than

the original 7 minutes. In other words, PerfDebug helped Alice

472

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

Subject Programs Source
Input

Size

of

Ops
Program Description Input Data Description

S1 Movie Ratings PUMA 21 GB 2

Computes the number of ratings per

rating score (1-5), using flatMap and
reduceByKey.

Movies with a list of corresponding

rater and rating pairs

S2 Taxi

NYC Taxi and

Limousine

Commission
27 GB 3

Compute the average cost of taxi trips

originating from each borough, using

map and aggregateByKey.

Taxi trips defined by fourteen fields, in-

cluding pickup coordinates, drop-off co-

ordinates, trip time, and trip distance.

S3 Weather Analysis Custom 15 GB 3

For each (1) state+month+day and

(2) state+year: compute the median

snowfall reading, using flatMap,
groupByKey, and map.

Daily snowfall measurements per zip-

code, in either feet or millimeters.

Table 1: Subject programs with input datasets.

1 val pairs = lines.flatMap { s =>
2 val arr = s.split(',')
3 val state = zipCodeToState(arr(0))
4 val fullDate = arr(1)
5 val yearSplit = fullDate.lastIndexOf("/")
6 val year = fullDate.substring(yearSplit+1)
7 val monthdate =
8 fullDate.substring(0, yearSplit)
9 val snow = arr(2).toFloat
10 Iterator(((state, monthdate), snow),
11 ((state , year) , snow))}
12 val medianSnowFall =
13 pairs.groupByKey()
14 .mapValues(median).collect()

Figure 7: A weather data analysis application

discover that removing 0.0006% of the input data can lead to an

almost 16X improvement in application performance. Upon further

inspection of the delay-inducing input records, Alice notes that

while the polygon for most boroughs is defined as an array of 3 to

5 points, the polygon for borough #4 consists of 20004 points in a

linked list—i.e., a neighborhood with complex, winding boundaries,

thus leading to considerably worse performance in the ray tracing

algorithm implementation.

We note that currently there are no easy alternatives for iden-

tifying delay-inducing records. Suppose that a developer uses a

classical automated debugging method in software engineering

such as delta debugging (DD) [28] to identify the subset of delay-

inducing records. DD divides the original input intomultiple subsets

and uses a binary-search like procedure to repetitively rerun the

application on different subsets. Identifying 1001 records out of

173 million would require at least 17 iterations of running the ap-

plication on different subsets. Furthermore, without an intelligent

way of dividing the input data into multiple subsets based on the

borough ID, it would not generate the same output result.

Furthermore, although the Spark Web UI reports which task has

a higher computation time than other tasks, the user may not be

able to determine which input records map to the delay-causing

partition. Each input partition could map to millions of records,

and the 1001 delay-inducing records may be spread over multiple

partitions.

5.3 Case Study B: Weather

Alice has a 15GB dataset consisting of 470 million weather data

records and she wants to compute the median snowfall reading

for each state on any day or any year separately by writing the

program in Figure 7.

Alice runs this application on the full dataset, with PerfDebug’s

performance monitoring enabled. The application takes 9.3 minutes

to produce the following output. She notices that there is a straggler

task in the second stage that ran for 4.4minutes, where 2minutes are

attributed to garbage collection time. In contrast, the next slowest

task in the same stage ran for only 49 seconds, which is 5 times

faster than the straggler task. After identifying this computation

skew, PerfDebug re-executes the program in the post-mortem

debugging mode and produces the following results along with the

computation latency for each output record, shown on the third

column:

(State,Date) Median Snowfall Latency (ms)

or (State,Year)

(28,2005) 3038.3416 1466871

(21,4/30) 2035.3096 89500

(27,9/3) 2033.828 89500

(11,1980) 3031.541 67684

(36,3/18) 3032.2273 67684

...

Looking at the output from PerfDebug, Alice realizes that pro-

ducing the output (28,2005) is a bottleneck and uses PerfDebug
to trace the lineage of this output record. It finds that approximately

45 million input records, in other words almost 10% of the input,

map to the key (28, 2005), causing data skew in the intermediate

results. PerfDebug reports that the majority of this latency comes

from shuffle latency, as opposed to the computation time taken

in applying UDFs to the records. Based on this symptom of the

performance delays, Alice replaces the groupByKey operator with
the more efficient aggregateByKey operator. She then runs her

new program, which now completes in 45 seconds. In other words,

PerfDebug aided in the diagnosis of performance issues, which re-

sulted in a simple application logic rewrite with 11.4X performance

improvement.

5.4 Case Study C: Movie Ratings

The Movie Ratings application is described in Section 3 as a moti-

vating example. The numbers reported in Section 3 are the actual

numbers found through our evaluation. To avoid redundancy, this

subsection quickly summarizes the evaluation results from the case

study of this application. The original job time for 21GB data takes

1.2 minutes, which is much longer than what the user would nor-

mally expect. PerfDebug reports task-level performance metrics

such as execution time that indicate computation skew in the first

stage. Collecting latency information during the job execution in-

curs 8.3% instrumentation overhead. PerfDebug then analyzes the

473

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

collected lineage and latency information and reports the computa-

tion latency for producing each output record. Upon recognizing

that all output records have the same slowest input, which has an

abnormally high number of ratings, Alice decides to remove the

single culprit record contributing the most delay. By doing so, the

execution time drops from 1.2 minutes to 31 seconds, achieving

1.5X performance gain.

5.5 Accuracy and Instrumentation Overhead

For the three applications described below, we use PerfDebug to

measure the accuracy of identifying delay-inducing records, the

improvement in precision over a data lineage trace implemented

by Titian, and the performance overhead in comparison to Titian.

The results for these three applications indicate the following: (1)

PerfDebug achieves 100% accuracy in identifying delay-inducing

records where delays are injected on purpose for randomly chosen

records; (2) PerfDebug achieves 102 to 106 orders of magnitude

improvement in precision when identifying delay-inducing records,

compared to Titian; and (3) PerfDebug incurs an average overhead

of 30% for capturing and storing latency information at the fine-

grained record level, compared to Titian.

The three applications we use for evaluation are Movie Ratings,

College Student, andWeather Analysis. Movie Ratings is identical to

that used in Section 3, but on a 98MB subset of input consisting

of 2103 records. College Student is a program that computes the

average student age by grade level using map and groupByKey on a
187MB dataset of five million records, where each record contains

a student’s name, sex, age, grade, and major. Finally,Weather Anal-

ysis is similar to the earlier case study in Section 5.3 but instead

computes the delta between minimum and maximum snowfall read-

ings for each key, and is executed on a 52MB dataset of 2.1 million

records. All three applications described in this section are executed

on a single MacBook Pro (15-inch, Mid-2014 model) running macOS

10.13.4 with 16GB RAM, a 2.2GHz quad-core Intel Core i7 processor,

and 256GB flash storage.

Identification Accuracy. Inspired by automated fault injection

in the software engineering research literature, we inject artificial

delays for processing a particular subset of intermediate records

by modifying application code. Specifically, we randomly select a

single input record r and introduce an artificial delay of ten seconds

for r using a Thread.sleep(). As such, we expect r to be the

slowest input record. This approach of inducing faults (or delays)

is inspired by mutation testing in software engineering, where code

is modified to inject known faults and then the fault detection

capability of a newly proposed testing or debugging technique is

measured by counting the number of detected faults. This method

is widely accepted as a reliable evaluation criteria [13, 14].

For each application, we repeat this process of randomly select-

ing and delaying a particular input record for ten trials and report

the average accuracy in Table 2. PerfDebug accurately identifies

the slowest input record with 100% accuracy for all three applica-

tions.

Precision Improvement. For each trial in the previous section, we

also invoke Titian’s backward tracing on the output record with

Benchmark Accuracy
Precision

Improvement
Overhead

Movie Ratings 100% 2102X 1.04X

College Student 100% 1250000X 1.39X

Weather Analysis 100% 294X 1.48X

Average 100% 417465X 1.30X

Table 2: Identification Accuracy of PerfDebug and instru-

mentation overheads compared to Titian, for the subject

programs described in Section 5.5.

the highest computation latency. We measure precision improve-

ment by dividing the number of delay-inducing inputs reported by

PerfDebug by the total number of inputs mapping to the output

record with the highest latency reported by Titian. We then aver-

age these precision measurements across all ten trials, shown in

Table 2. PerfDebug isolates the delay-inducing input with 102-106

order better precision than Titian due to its ability to refine input

isolation based on cumulative latency per record. This fine-grained

latency profiling enables PerfDebug to slice the contributions of

each input record towards the computational latency of a given

output record substantially to identify a subset of inputs with the

most significant influence on performance delay.

Instrumentation Overhead. To measure instrumentation over-

head, we execute each application ten times for both PerfDebug

and Titian without introducing any artificial delay. To avoid unnec-

essary overheads, the Ignite cluster described earlier is created only

when using PerfDebug. The resulting performance multipliers are

shown in Table 2. We observe that the performance overhead of

PerfDebug compared to Titian ranges from 1.04X to 1.48X. Across

all applications, PerfDebug’s execution times average 1.30X times

as long as Titian’s. Titian reports an overhead of about 30% com-

pared to Apache Spark [12]. PerfDebug introduces additional over-

head because it instruments every invocation of a UDF to capture

and store the record level latency. However, such fine-grained pro-

filing differentiates PerfDebug from Titian in terms of its ability

to isolate expensive inputs. PerfDebug’s overhead to identify a

delay inducing record is small compared to the alternate method of

trial and error debugging, which requires multiple execution of the

original program.

6 RELATED WORK

Kwon et al. present a survey of various sources of performance skew

in [16]. In particular, they identify data-related skews such as expen-

sive record skew and partitioning skew. Many of the skew sources

described in the survey influenced our definition of computation

skew and motivated potential use cases of PerfDebug.

Ernest [26], ARIA [27], and Jockey [7] model job performance

by observing system and job characteristics. These systems as well

as Starfish [10] construct performance models and propose system

configurations that either meet the budget or deadline requirements.

However, these systems focus on performance prediction rather

than performance debugging. Furthermore, none of these systems

focus on computation skew, nor do they provide visibility into

fine-grained computation at the individual record level.

PerfXplain [15] is a debugging tool that allows users to compare

two similar jobs under different configurations through a simple

474

PerfDebug: Performance Debugging of Computation Skew in Dataflow Systems SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

query language. When comparing similar jobs or tasks, PerfXplain

automatically generates an explanation using the differences in

collected metrics. However, PerfXplain does not take into account

the computational latency of individual records and thus does not

report how performance delays could be attributed to a subset of

input records.

Sarawagi et al. [25] propose a discovery-driven exploration ap-

proach that preemptively analyzes data for statistical anomalies

and guides user analysis by identifying exceptions at various lev-

els of data cube aggregations. Later work [24] also automatically

summarizes these exceptions to highlight increases or drops in

aggregate metrics. However, both works focus on OLAP operations

such as rollup and drilldown which are insufficient for processing

the complex mappings between input and output records in a DISC

application. In addition, both of these works do not directly address

debugging of performance skews.

SkewTune [17] is an automatic skew mitigation approach which

elastically redistributes data based on estimated time to completion

for each worker node. It primarily focuses on data skew issues and

provides automatic re-balancing of data rather than providing per-

formance debugging assistance. As a result, application developers

cannot use SkewTune to answer performance debugging queries

about their jobs nor analyze performance or latency at the record

level.

Titian implements data provenance within Apache Spark and is

used as a foundation for PerfDebug. Other systems such as RAMP

[11] and Newt [19] also provide data provenance within dataflow

systems. However, none of these systems measure the performance

latency of individual data records alongside their data provenance.

Extensions of these data provenance tools include use cases such

as interactive debugging [9] and automated fault isolation [8], but

PerfDebug is unique in that it provides visibility into performance

issues at a fine-grained record level and it automates the diagnosis

of interaction between individual records and their influence on

the overall application performance.

7 CONCLUSION AND FUTUREWORK

PerfDebug is the first automated performance debugging tool to

diagnose the root cause of performance delays induced by inter-

action between data and application code. PerfDebug automati-

cally reports the symptoms of computation skew—abnormally high

computation costs for a small subset of data records—in terms of

garbage collection, serialization, and task execution time. It com-

bines a novel latency estimation technique with an existing data

provenance tool. Based on this novel notion of record-level latency,

PerfDebug isolates delay-inducing inputs automatically.

On average, we find that PerfDebug can detect injected delays

with a high accuracy (100%), improves the precision of isolating

delay-inducing records by orders of magnitude (102 to 106), and

incurs a reasonable instrumentation overhead (4% to 48% extra)

compared to an existing data provenance technique, Titian. Our

case studies show a user may achieve performance improvement

of 16X by simply removing the most expensive record from the

input data or through a simple code rewrite by investigating delay-

inducing input records reported by PerfDebug. In the future, we

plan to expand the scope of instrumentation and performance de-

bugging queries to account for performance delays caused by both

framework-level configurations and interaction between data and

application code.

Acknowledgments.We thank the anonymous reviewers for their

comments and Tim Harris for his guidance as a shepherd. The

participants of this research are in part supported by NSF grants

CCF-1723773, CCF-1764077, CCF-1527923, CCF-1460325, CNS-

1613023, CNS-1703598, CNS-1763172, ONR grants N00014-16-1-

2913, N00014-18-1-2037, Intel CAPA grant, Samsung grant, and

Google PhD Fellowship.

REFERENCES
[1] 2015. Out of memory error in customer review processing.

https://stackoverflow.com/questions/20247185.
[2] 2018. Apache Hadop. https://hadoop.apache.org/
[3] 2018. Apache Ignite. https://ignite.apache.org/
[4] 2018. Apache Spark. https://spark.apache.org/
[5] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi, and TN Vijaykumar. 2012 .

TRECE-12-11. Puma: Purdue mapreduce benchmarks suite. Technical Report.
School of Electrical and Computer Engineering, Purdue University. https://
engineering.purdue.edu/~puma/datasets.htm

[6] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan Lu. 2015. In-
terruptible Tasks: Treating Memory Pressure As Interrupts for Highly Scalable
Data-parallel Programs. In Proceedings of the 25th Symposium on Operating Sys-
tems Principles. 394–409.

[7] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo
Fonseca. 2012. Jockey: Guaranteed Job Latency in Data Parallel Clusters. In
Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys
’12). ACM, New York, NY, USA, 99–112. https://doi.org/10.1145/2168836.2168847

[8] Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li, Tyson
Condie, and Miryung Kim. 2017. Automated debugging in data-intensive scalable
computing. In Proceedings of the 2017 Symposium on Cloud Computing. ACM,
520–534.

[9] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali, Tyson
Condie, Todd D. Millstein, and Miryung Kim. 2016. BigDebug: Debugging Prim-
itives for Interactive Big Data Processing in Spark. In Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016. 784–795. https://doi.org/10.1145/2884781.2884813

[10] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-tuning System for
Big Data Analytics. In In CIDR. 261–272.

[11] Robert Ikeda, Hyunjung Park, and Jennifer Widom. 2011. Provenance for gener-
alized map and reduce workflows. In In CIDR. 273–283.

[12] Matteo Interlandi, Ari Ekmekji, Kshitij Shah, Muhammad Ali Gulzar, Sai Deep
Tetali, Miryung Kim, Todd Millstein, and Tyson Condie. 2018. Adding data
provenance support to Apache Spark. The VLDB Journal 27, 5 (01 Oct 2018),
595–615. https://doi.org/10.1007/s00778-017-0474-5

[13] Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (Sep. 2011),
649–678. https://doi.org/10.1109/TSE.2010.62

[14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
654–665. https://doi.org/10.1145/2635868.2635929

[15] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. 2012. PerfXplain:
Debugging MapReduce Job Performance. Proc. VLDB Endow. 5, 7 (March 2012),
598–609. https://doi.org/10.14778/2180912.2180913

[16] Yongchul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2011. A
study of skew in mapreduce applications. In In the 5th Open Cirrus Summit.
Moskow.

[17] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2012. Skew-
Tune: Mitigating Skew in Mapreduce Applications. In Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data (SIGMOD ’12).
ACM, New York, NY, USA, 25–36. https://doi.org/10.1145/2213836.2213840

[18] YongChul Kwon, Kai Ren, Magdalena Balazinska, and Bill Howe. 2013. Managing
Skew in Hadoop. IEEE Data Eng. Bull. 36 (2013), 24–33.

[19] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. 2013. Scalable
Lineage Capture for Debugging DISC Analytics. In Proceedings of the 4th Annual
Symposium on Cloud Computing (SOCC ’13). ACM, New York, NY, USA, Article
17, 15 pages. https://doi.org/10.1145/2523616.2523619

475

https://hadoop.apache.org/
https://ignite.apache.org/
https://spark.apache.org/
https://engineering.purdue.edu/~puma/datasets.htm
https://engineering.purdue.edu/~puma/datasets.htm
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2884781.2884813
https://doi.org/10.1007/s00778-017-0474-5
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.14778/2180912.2180913
https://doi.org/10.1145/2213836.2213840
https://doi.org/10.1145/2523616.2523619

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung Kim

[20] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Demsky, and
Shan Lu. 2018. Skyway: Connecting Managed Heaps in Distributed Big Data Sys-
tems. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’18). ACM,
New York, NY, USA, 56–69. https://doi.org/10.1145/3173162.3173200

[21] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat
Alamian, and Onur Mutlu. 2016. Yak: A High-Performance Big-Data-Friendly
Garbage Collector. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 349–365. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen

[22] NYC Taxi and Limousine Commission. [n.d.]. NYC Taxi Trip Data 2013 (FOIA/-
FOIL). https://archive.org/details/nycTaxiTripData2013. Accessed: 2019-05-31.

[23] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks.
In 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). USENIX Association, Oakland, CA, 293–307. https://www.usenix.org/
conference/nsdi15/technical-sessions/presentation/ousterhout

[24] Sunita Sarawagi. 1999. Explaining Differences in Multidimensional Aggregates.
In Proceedings of the 25th International Conference on Very Large Data Bases

(VLDB ’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 42–53.
http://dl.acm.org/citation.cfm?id=645925.671500

[25] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. 1998. Discovery-driven
Exploration of OLAP Data Cubes. In In Proc. Int. Conf. of Extending Database
Technology (EDBT’98. Springer-Verlag, 168–182.

[26] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for Large-scale
Advanced Analytics. In Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation (NSDI’16). USENIX Association, Berkeley,
CA, USA, 363–378. http://dl.acm.org/citation.cfm?id=2930611.2930635

[27] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. 2011. ARIA: Auto-
matic Resource Inference and Allocation for Mapreduce Environments. In Pro-
ceedings of the 8th ACM International Conference on Autonomic Computing (ICAC
’11). ACM, New York, NY, USA, 235–244. https://doi.org/10.1145/1998582.1998637

[28] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In Proceedings of the 7th European Software Engineering Conference Held Jointly
with the 7th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE-7). Springer-Verlag, Berlin, Heidelberg, 253–267. http:
//dl.acm.org/citation.cfm?id=318773.318946

476

https://doi.org/10.1145/3173162.3173200
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen
https://archive.org/details/nycTaxiTripData2013
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
http://dl.acm.org/citation.cfm?id=645925.671500
http://dl.acm.org/citation.cfm?id=2930611.2930635
https://doi.org/10.1145/1998582.1998637
http://dl.acm.org/citation.cfm?id=318773.318946
http://dl.acm.org/citation.cfm?id=318773.318946

	Abstract
	1 Introduction
	2 Background
	2.1 Computation Skew
	2.2 Apache Spark and Titian

	3 Motivating Scenario
	4 Approach
	4.1 Performance Problem Identification
	4.2 Capturing Data Lineage and Latency
	4.3 Expensive Input Isolation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Case Study A: NYC Taxi Trips
	5.3 Case Study B: Weather
	5.4 Case Study C: Movie Ratings
	5.5 Accuracy and Instrumentation Overhead

	6 Related Work
	7 Conclusion and Future Work
	References

