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Abstract—We are at an inflection point where software engineering meets the data-centric world
of big data, machine learning, and artificial intelligence. As software development gradually
shifts to data analytics development with Al and ML technologies, existing software engineering
techniques must be re-imagined to provide the productivity gains that developers desire. In this
article, | summarize findings from our studies of professional data scientists—what a data
scientist is, what data scientists do, and what challenges they face. | discuss a few examples of

my group’s research projects that adapted existing debugging and testing techniques to the
domain of big data analytics. Based on these experiences, | discuss my perspectives on open
research problems to improve the productivity of data-centric software development.

B Software engineering (SE) is currently meet-
ing the data-centric discipline of AI, ML, and
Big Data. Almost on a daily basis, we hear about
self driving cars and drones enabled by Al, and
companies hiring data scientists. Data analytics
are in high demands and the growth of data
analytics related hiring has more than doubled
since 2014.!

Similar to how bugs are problems in large
software systems, defects could inevitably appear
in data-centric software. In case of Uber’s self-
driving vehicle, the consequence of inaccuracy
was fatal. In March 2018, Elaine Herzberg was
the first recorded case of a pedestrian fatality
involving a self-driving autonomous car, after a

Uhttps://www.hiringlab.org/2018/03/15/
data-science-job-postings- growing-quickly
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collision that occurred late in that evening.’
While bugs in data analytics pose increas-
ing risks, the SE research community somehow
gravitated to applying data analytic techniques
to software engineering problems, as opposed
to enhancing software engineering techniques to
improve data-centric development. In preparation
for my keynote at Automated Software Engineer-
ing in 2019, T did a manual analysis of 285
papers over 10 pages from the last 4 years of
ASE proceedings (2016 to 2019), categorizing
each paper’s problem and approach. I found that
the percentage of papers that employ Al, ML,
or Big Data has grown significantly from 2016
to 2019 (Figure 1). In fact, in 2019, there are
more data analytics related papers, compared to
the rest. However, most of these are about solving

Zhttps://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg
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Data Analytics (Al, Big Data, ML) Growth
in ASE Papers
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Figure 1. Data Analytics Growth in SE (ASE 2016
to 2019). SE4DA is under-investigated, compared to
DA4SE.

existing SE problems such as defect prediction,
bug finding, document summarization, code rec-
ommendation, and testing, using data analytics
techniques such as deep learning, NLP, heuristic-
based search, multi-objective search, classifica-
tion, information retrieval, etc. Very few papers,
only 13 out of 285 papers (4% of research papers
in ASE 2016-2019) focused on improving SE for
DA (Figure 1).

In this article, I hope to make a case that
we, the software engineering research community,
should expand its research scope to extend and
adapt existing software engineering to meet the
new demands of data-centric software develop-
ment and to improve the productivity of Al
ML, and Big Data engineers. I will summarize
findings from empirical studies of professional
data scientists in collaboration with Microsoft
Research [7, 8]. In my opinion, key differences
exist between traditional software development
vs. data centric development, which makes it
hard for software engineers to debug and test
data-centric software or AI/ML-based software
systems. I will then share a few example research
projects that I have worked on with my students
and collaborators that adapted existing software
debugging and testing techniques to the domain
of big data analytics [3, 2, 4, 12, 5, 6]. T will
then sketch open research directions in SE4DA
that are based on my personal experience and

observations of professional data scientists.

Data scientists in software teams

We are at a tipping point where software com-
panies are generating large-scale telemetry, ma-
chine, quality and user data. Similar to how soft-
ware developers and testers are established roles,
data scientists are becoming a part of software
teams. To understand what a data scientist is,
what they do, and what challenges they face, we
conducted the first in-depth interview study [7]
and a large scale survey [8]. We interviewed 16
data scientists and identified emerging themes
from the transcripts, clustered the themes. Then
to quantify and generalize their skills, working
styles, tool usage, and challenges, we conducted
a survey with almost 800 data scientists. Figure 2
summarizes our two-phase study method and
study participants.

The readers may ask, “what does a data
scientist actually mean?” To deeply characterize
this workforce, we clustered participants using a
K-means algorithm based relative time spent on
different activities. Nine categories emerged from
the clustering analysis [8] and below describes
three example categories.

e Data Sharper: Data shapers spend a signifi-
cant amount of time in analyzing and preparing
data. They have a higher representation of
post-graduate degrees compared to the rest.
They are skilled in algorithms, machine learn-
ing, and numerical optimizations, but they are
rather unfamiliar with front end programming,
required for instrumentation for data collec-
tion. We named this category as data shapers,
because they extract and model relevant fea-
tures from data.

e Platform Builder: Platform builders develop
platforms to instrument code to collect data,
spending 49% of time. They have a strong
background in big data distributed systems,
back-end and front-end programming, and
main stream languages like C, C++, and C#.
Platform builders identify as engineers who
contribute to a data engineering platform and
pipeline. They frequently mention the chal-
lenge of data cleaning.

e Data Analyzer: Data analyzers are often hold
a job title as a data scientist and are familiar
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In-Depth Interviews [ICSE 2016]

16 data scientists

5 women and 11 men from eight different

it S demographics
Microsoft organizations

self-perception
working styles
time spent

Snowball sampling

data-driven engineering meet-ups and
technical community meetings

word of mouth

Codingwith Atlas.TI

Sent to 2397 employees

Clustering of participants

Questionsabout

skills and tool usage

challenges and best practices

* 599 data scientists

e 1798 data enthusiast:
subscribed to mailing

lists on data science

Survey [TSE 2018]

793 responses (response rate 33%)
Job title. 38% data scientists, 24%
software engineers, 18% program
managers, and 20% others
Experience. 13.6 years on average
(7.4 years at Microsoft)

Education. 34% bachelor’s degrees,
» 41% have master’s degree, and 22%
s

have PhDs

Gender. 24% female, 74% male

Figure 2. Methodology for Studying Professional Data Scientists and Participants Demographic

with statistics, math, Bayesian statistics, and
data manipulation. Many are R users and men-
tion transforming data as a challenge.

Among all categories of data scientists, when
we asked them, “how do you ensure correctness
of your input and correctness of analytics?”’, many
have said that validation is a major challenge.
Explainability is important—“to gain insights,
you must go one level deeper,” but they expressed
the general lack of confidence on analytics: “Hon-
estly, we don’t have a good method for this.” and
“Just because the math is right, doesn’t mean that
the answer is right.”

How is traditional development different
from big data analytics development?

In the previous section, I discussed how data
scientists often have little confidence about their
analytics software. By contrasting traditional de-
velopment and data-centric development, 1 will
try to explain why data-centric software develop-
ment is challenging. This explanation is based on
both our prior studies of data scientists [8] and
other studies on ML development practices [10,
1]. Data scientists develop an application and test
it with only samples using a local machine. Then
they execute this application on much larger data
on a cluster. Several hours later, when the job
crashes or produces a wrong or suspicious output,
they repeat a trial and error debugging process.
Differences summarized below contribute to the
challenge of data-centric software development.

1) Data is huge, remote, and distributed.
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2)

3)

4)

5)

Writing tests is hard. Developers often
start writing analytics without seeing the
entire, original input data, located in stor-
age services such as Amazon S3. Because
they write software based on a downloaded
sample, which shows only the excerpt of
the original data, it is difficult to write test
oracles for the entire original input.
Failures are hard to define, in part due to
lack of tests and corresponding oracles.
System stacks are complex with little vis-
ibility, because underlying distributed sys-
tems and ML frameworks have complex
scheduling, cluster management, data parti-
tioning, job execution, fault tolerance, and
straggler management.

There is a gap between the physical
vs. logical execution, because analytics
applications are highly optimized, lazily
evaluated, and the user-defined application
logic is interwoven with the execution of
the framework code. For example, DISC
systems such as Spark provide execution
logs of submitted jobs. However, these logs
present only the physical view of Big Data
processing, as they report the number of
worker nodes, the job status at individual
nodes, the overall job progress rate, the
messages passed between nodes, etc. These
logs do not provide the logical view of
program execution e.g., system logs do
not convey which intermediate outputs are
produced from which inputs, nor do they
indicate what inputs are causing incorrect
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Figure 3. Traditional development vs. big data analyt-
ics development

results or delays, etc.

6) Data tracing is hard. If there is a failure,
it is hard to know which input contributed
to which output, because the current frame-
works provide no traceability nor prove-
nance support.

Debugging and testing for big data
analytics

For the past five years, our team at UCLA
have worked on extending and adapting soft-
ware debugging and testing techniques to the
domain of big data analytics written in Apache
Spark [3, 2, 4, 12, 5, 6]. From this experience,
we have learned that designing interactive debug
primitives for a dataflow based big data system
requires deep understanding of an internal execu-
tion model, job scheduling, and materialization;
providing traceability requires re-engineering a
underlying data-parallel runtime framework; and
abstraction is a powerful force in simplifying
code paths.

BigDebug: Interactive Debug Primitives for Big
Data Analytics

We have had tools such as GDB for a long
time. So why is hard to build an interactive debug-
ger for Apache Spark? Naive implementation of
breakpoints would not work, because pausing the
entire computation in the data-parallel pipeline
reduces throughput and it is clearly infeasible
for a user to inspect billion of records through
a regular watchpoint. BigDebug [3] does not
pause program execution but instead simulates a
breakpoint through on-demand state regeneration
from the latest checkpoint and delivers program
states in a guarded, stream processing fashion.
By effectively tapping into internal checkpointing

and job scheduling mechanisms, we were able to
implement interactive debugging and repair capa-
bility in Apache Spark efficiently, while adding at
most 34% overhead [3].

Titian: Data Provenance for Apache Spark

Data provenance is a long studied problem in
databases. Given an output of query, data prove-
nance identifies specific inputs contributing to the
query results. The idea is similar to dynamic
taint propagation. For big data analytics with
terabyte data, scalability poses a new challenge.
To provide record level data provenance, we re-
engineered Apache Spark’s runtime by storing
lineage tables (the input and output tag mappings)
at a stage granularity in a distributed manner and
building a distributed optimized join for backward
tracing, which is order of magnitude faster than
alternatives [5].

BigSift: Automated Debugging of Big Data
Analytics

BigSift takes a program and a test function
as inputs, and automatically finds a minimum
subset of inputs producing test failures. BigSift
combines two mature ideas—data provenance in
DB and delta debugging in SE—and implements
several optimizations: (1) test predicate push-
down, (2) prioritizing backward traces, and (3)
bitmap based memorization, which enabled us
to build an automated debugging solution that is
66X faster than delta debugging and takes 62%
less time than the original jobs run [2].

BigTest: White-Box Testing of Big Data
Analytics

Currently, developers sample data (e.g., ran-
dom sampling, top n sampling, and top k% sam-
pling) to test data analytics, which leads to low
code coverage. Another option is to use tradi-
tional test generation such as symbolic execution
but such technique would not scale for Apache
Spark (about 700 KLOC).

To automatically generate tests for a Spark
application, BigTest abstracts dataflow operators,
in terms of clean first order logic [4]. For exam-
ple, join could be defined as three equivalence
classes where a key is only present in the left
table, the right table, and neither. Then for a
user defined application code, BigTest performs

IEEE Software

Authorized licensed use limited to: UCLA Library. Downloaded on June 10,2020 at 10:39:44 UTC from IEEE Xplore. Restrictions apply.



symbolic execution and combines it together
with dataflow logical specifications. Then these
combined constraints are solved using SMT to
create concrete inputs. Only 30 or so records are
required to achieve the same code coverage as
the entire data, implying that testing on the entire
data is not necessary. By automatically generating
data with BigTest, we can reduce the required test
data by 10®, achieving almost 200X speed up [4].

Open research directions in
data-centric development

This section discusses open problems in
SE4DA. In this section, I describe several open
research directions in SE4DA, which emerged
from my observation of professional data sci-
entists [7, 8] and my research experience in
automated debugging and test input generation
for big data analytics [3, 2, 4, 12, 5, 6].

Insight 1: We must expand the scope of de-
bugging to include both code errors and data
errors and combine techniques in code and
data repair.

The SE community traditionally considers
bugs as code defects, while the DB community
considers bugs as data defects based on unex-
pected statistical distribution, functional depen-
dencies, or schema mismatches. My perspective
is that we need to combine insights from both
communities to reason about code errors and
data errors in tandem. This is because data sci-
entists write software systems based on incom-
plete, partial understanding of input data and
thus errors could exist in code that makes wrong
assumptions about data, or new data could have
drifted from the implicit assumptions made about
the original input. Consider the bug reported in
[4] that uses wrong delimiters such as split-
ting a string with “[ ]” instead of “\[\]” lead-
ing to a wrong output (https://stackoverflow.com/
questions/52083828). A user may define this as
a data bug or anomaly but it could be seen as
a coding error based on the wrong assumptions
made about the data. In fact, this error could be
fixed by code update, data cleaning, or both.

Similar to how the SE community has worked
on automated program repair, and the DB com-
munity has worked on automated data cleaning
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and repair. Now is the time to combine these
insights to define what data analytics bugs mean
and how to repair code errors and data errors
together, as they are closely inter-related.

Insight 2: Performance debugging is as im-
portant as correctness debugging and perfor-
mance debugging requires enabling visibility
into system stacks, code, and data.

Based on our studies of data scientists, we
found that the scope of debugging must go be-
yond functional correctness in the domain of
big data analytics. Meeting performance require-
ments—which were often considered as non-
functional, secondary requirements—is as impor-
tant as functional correctness.

Performance debugging, in particular, is often
the biggest painpoint for data analytics devel-
opers, as it depends on configuration, scaling,
unbalanced tasks, 10, and memory related issues
in the cluster. A vertical stack is complex, as it
consists of a development environment, ML/AI
libraries, runtimes, storage services and JVM,
containers and VMs that also run heterogeneous
hardware (e.g., CPU, GPU and FPGA). To di-
agnose and repair performance bottlenecks, we
must consider interaction between code, data, and
system environments across a vertical stack. For
example, debugging computational skews caused
by interaction between code and a subset of data
requires tracking latency information for indi-
vidual inputs throughout various computational
stages [12].

Insight 3: We must design easy-to-use, easy-
to-extend oracle specification techniques for
debugging and testing heuristics-based, prob-
abilistic, and predictive analytics.

Creating oracles for heuristics-based, proba-
bilistic, and predictive data analytics is different
from how we define oracles in traditional unit
testing. Metamorphic testing relates changes be-
tween two inputs to changes between two cor-
responding outputs [11]. Existing techniques for
testing neural networks use metamoprhic testing,
but they are limited to checking whether input
perturbations still produce the same classification
results, testing an equivalence-based metamorphic
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relation only.

Insight 4: We must design new debugging
techniques that quantify the degree of influ-
ence and importance between input distribu-
tions and unexpected behavior.

Traditionally, debugging techniques such as
delta debugging attribute the cause of test failures
to individual failure-inducing inputs equally. We
must quantify the notion of importance when de-
bugging faulty inputs, as a bug is often caused by
a subset of input data near decision boundaries,
a particular data partition, or a particular input
distribution drifted from the original data assump-
tion, as opposed to a single input. For example,
training set debugging in ML identifies a sub-
set of inputs leading to mis-classifications using
mathematical notion of influence functions [9] by
isolating input data near decision boundaries. We
must leverage such idea to extend and adapt exist-
ing software debugging to data-centric software.

Conclusion

By studying professional data scientists and
based on the experience of adapting SE tech-
niques to debug and test big data applications,
I found that data-centric software development is
different from traditional software development in
several ways. To support data-centric software de-
velopment, we must investigate how code errors
and data errors interact and we should not limit
the scope of debugging to correctness debugging,
as performance debugging is as important as
correctness debugging to many data scientists.
Inherently, it is challenging to define what should
be a correct behavior for heuristics-based, prob-
abilistic, and predictive analytics. Therefore, we
must design easy-to-extend, easy-to-use speci-
fication techniques to facilitate debugging and
testing. Solving these open problems requires the
SE community to work together with the AI, ML,
Systems, and DB communities.
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