An Empirical Study of Common Challenges in
Developing Deep Learning Applications

Tianyi Zhang'* Cuiyun Gao%*

Lei Mat

Michael R. Lyu} Miryung Kim®

TUniverSity of California, Los Angeles §The Chinese University of Hong Kong iKyushu University
{tianyi.zhang, miryung} @cs.ucla.edu {cygao, lyu} @cse.cuhk.edu.hk malei@ait.kyushu-u.ac.jp

Abstract—Recent advances in deep learning promote the in-
novation of many intelligent systems and applications such as
autonomous driving and image recognition. Despite enormous
efforts and investments in this field, a fundamental question
remains under-investigated—what challenges do developers com-
monly face when building deep learning applications? To seek an
answer, this paper presents a large-scale empirical study of deep
learning questions in a popular Q&A website, Stack Overflow.
We manually inspect a sample of 715 questions and identify
seven kinds of frequently asked questions. We further build a
classification model to quantify the distribution of different kinds
of deep learning questions in the entire set of 39,628 deep learning
questions. We find that program crashes, model migration, and
implementation questions are the top three most frequently asked
questions. After carefully examining accepted answers of these
questions, we summarize five main root causes that may deserve
attention from the research community, including API misuse,
incorrect hyperparameter selection, GPU computation, static
graph computation, and limited debugging and profiling support.
Our results highlight the need for new techniques such as cross-
framework differential testing to improve software development
productivity and software reliability in deep learning.

Index Terms—deep learning, Stack Overflow, programming
issues, software reliability

I. INTRODUCTION

Deep learning has been successfully applied to many do-
mains and has gained a lot of attention from both industry
and academia. In the software engineering community, there
is an increasing interest in applying deep learning to important
software engineering problems, e.g., code completion [1], [2],
code search [3], clone detection [4], [5], type inference [6], and
bug prediction [7], [8]. Despite recent advances in testing deep
learning applications [9]-[14], it is still unclear what kinds of
programming obstacles and challenges developers face when
building deep learning applications. It is also unclear how
software engineering researchers should provide better tool
support to address those programming pain points and im-
prove the productivity of data scientists and machine learning
engineers who build and integrate deep learning models.

Deep learning engineering significantly differs from tra-
ditional software engineering in terms of its programming
paradigm and practice. Deep learning applications are data-
driven, where developers define a desired neural network
and let it automatically learn model parameters from a huge
amount of training data. However, traditional software systems
are logic-driven, where developers directly specify program

* The first two authors contributed equally.

logic in source code. Since model training requires heavy
computation, deep learning developers often exploit data paral-
lelism and accelerate model training using GPUs. As a result,
software correctness and robustness in deep learning are more
subject to training data quality, network architectures, hyper-
parameter selections, and configurations of computation units.

Shifting from traditional software development to deep
learning engineering poses unique challenges [15]. Nowadays,
developers often resort to online Q&A forums such as Stack
Overflow to find solutions to programming issues they have
encountered during software development. As of July 2018,
Stack Overflow has accumulated 16 million programming
questions and 26 million answers. Prior work has leveraged
Stack Overflow to study trending topics in mobile app de-
velopment [16], web development [17], and security [18]. In
this paper, we analyze and mine deep learning questions asked
in Stack Overflow to discover and understand common chal-
lenges in developing deep learning applications. We focus on
three popular deep learning frameworks, TensorFlow, PyTorch,
and Deeplearning4j, and extract 39,628 relevant deep learning
questions in Stack Overflow.

Due to the large number of deep learning questions in Stack
Overflow, it is challenging to manually analyze all of them.
Therefore, we first manually inspect a sample of 715 deep
learning questions and classify them based on Q&A contents
and underlying programming issues. We identify seven kinds
of programming questions—program crash, model migration
and deployment, implementation, training anomaly, compre-
hension, installation, and performance. Then we build a
keyword-based classification model to quantify the distribution
of different kinds of deep learning questions in Stack Overflow.
Among all types, program crash and model migration are
the top two most frequently asked questions. In addition,
performance questions are the most difficult to answer—only
25% performance questions have accepted answers compared
with 34% in all other categories. Performance questions also
take a longer time (4.3 hrs vs. 2.5 hrs in other categories) to
receive a correct answer. We further examine the accepted or
endorsed answer posts under each question to understand the
root cause of underlying programming issues. We highlight
five root causes that may deserve attention from the research
community—API misuse, incorrect hyperparameter selection,
GPU computation, static graph computation, and limited de-
bugging and profiling support.

This study shows several development pain points in the

construction, training, migration, and deployment of deep
neural networks. Our findings motivate further investigation
on debugging and profiling machine learning based systems
as well as extending and inventing new differential testing
for cross-framework model migration. The heavy utilization
of GPUs also calls for new techniques that expose implicit
programming constraints enforced by GPU computation.

The rest of the paper is organized as follows. Section II
describes the data collection, the manual inspection proce-
dure, and the automated classification technique. Section III
describes our major findings. Section IV offers a discussion
about the opportunities and challenges of extending software
engineering techniques for deep learning. Section V discusses
threats to validity and Section VI discusses related work.
Section VII concludes this work and discusses future work.

II. STUDY METHODOLOGY

This section presents research questions of this study, fol-
lowed by a description of data collection and analysis methods.

A. Research Questions

This study investigates the following research questions.

e RQI: What kinds of questions are frequently asked in
deep learning? This question aims to discover common
programming issues and obstacles in the development of
deep learning applications.

o RQ2: Which kinds of deep learning questions are hard
to resolve? This question aims to examine the difficulty
of resolving different kinds of programming issues by
measuring the number of correct answers and the time it
takes to receive those answers.

e RQ3: What are the main root causes? This question aims
to understand the reasons for those programming issues,
in order to inform software engineering researchers to de-
sign better approaches and tool support for deep learning
engineering.

B. Data Collection

To identify common programming issues in deep learning,
we collect Stack Overflow (SO) questions related to three
representative and popular deep learning frameworks, Ten-
sorFlow [19], PyTorch [20], and Deeplearning4j [21]. These
frameworks are widely adopted in practice but differ in their
computation paradigm and architecture design. TensorFlow
and Deeplearning4j adopt static computation graphs, where
a neural network must be defined first before training (i.e.,
define-and-run). However, PyTorch adopts dynamic compu-
tation graphs and defines a neural network on-the-fly (i.e.,
define-by-run). Both TensorFlow and PyTorch provide Python
APIs, while Deeplearning4j provides Java and Scala APIs.
Compared with TensorFlow and PyTorch, Deeplearning4;j is
tightly integrated with distributed computing platforms such
as Apache Spark and therefore supports distributed training by
nature. From the SO data dump taken in December 2018 [22],
we extract 39,628 questions that are tagged with tensorflow,
pytorch, or deeplearning4ij. Table I shows the number of
questions related to each framework and their view counts.

TABLE I: The number of SO questions and their view count

. #View Count
Framework #Questions Max 3rd Quartile | Median
TensorFlow 37,565 | 205,910 5,725 158
PyTorch 1,828 | 22,264 385 139
Deeplearning4j 235 5,685 362 131

C. Manual Inspection

We follow an open coding method [23] to inspect and clas-
sify deep learning questions collected from Stack Overflow.
The first two authors first jointly inspect 50 deep learning
questions from each framework and distill an initial set of
categories based on underlying programming issues and symp-
toms. A question is assigned to all related categories if it
is related to multiple programming issues. The two authors
then independently classify more questions based on the initial
categories. If one author finds a question that does not belong
to an existing category, the author discusses with the other
author and adds a new category as needed. It requires to
sample 380 posts to achieve 95% confidence level and 5%
confidence interval in the population of 39,628 SO posts
related to deep learning. Yet we continue to inspect more
posts till we do not find new frequent categories. This is a
standard procedure in qualitative analysis to stop collecting
new data when insights are converged. Finally, the authors
compare their labeling results, discuss any disagreement, and
refine the categories. At the end, the two authors inspect
715 SO questions and identify seven categories (discussed in
Section III-A).

To understand the root cause of a deep learning question,
we carefully examine the accepted answer (if any) under the
question post and summarize its explanation and solution as
the root cause. Though not suggested by Stack Overflow, some
SO users may also endorse a correct answer by commenting
under a post and expressing gratitude. Therefore, if there is no
explicitly accepted answer, we go through the comments under
an answer post to identify such endorsed answers. The entire
manual inspection and root cause analysis process takes about
400 man-hours for the sample of 715 deep learning questions.

D. Automated Classification

To quantify the entire set of deep learning questions, we
build a classification model that automatically classifies a deep
learning question to one of the seven categories identified
in the previous manual inspection step. This model uses a
combination of word frequency and a set of manually selected
keywords in each category for classification. The first two au-
thors manually inspected top 200 frequent words appeared in
each category and selected representative keywords together,
following the same method as in prior work [24], [25]. To
measure the contribution of a word to each category, we assign
each word w{ a weight 65 and ¢ = ¢f(wS)/ Zj\;l tf(w$),
where ¢f(w) means the term frequency of the term w in the
posts. For manually selected keywords, we assign extra weight
a (a € [0,1]) to emphasize their contribution to a category.

Given a deep learning question, we compute its score with
respect to each category,

N
sk:Z(GerManual*a)*tf(wf). (1
i=1
where k refers to the k-th category and Manual is a binary
variable that indicates whether a keyword is a manually se-
lected representative keyword. We split the manually classified
715 question posts into 429 training instances (60%) and
286 test instances (40%). We fine-tune the parameter o with
0.01 granularity. When setting o to 0.18, the classification
model achieves the best test accuracy with 79.6% precision
and 80.3% recall. Table II shows the precision and recall for
individual categories. Though a deep learning question may
be related to multiple categories, it is often hard to decide a
proper threshold for relevant categories. Thus, we consider the
most relevant categories (i.e., the ones with the highest score)
in automated classification.

TABLE II: Classification Accuracy of Different Categories

Category #Training data | #Test data | Precision | Recall
Implementation 166 108 0.875 | 0.824
Program Crash 134 78 0.853 | 0.829
Performance 49 27 0.733 | 0.786
Installation 55 38 0.903 | 0.903
Comprehension 59 28 0.750 | 0.706
Training Anomaly 45 45 0.773 | 0810
Model Migration 34 28 0.684 | 0.765
[Overall | 542 | 352] 0.796 | 0.803]

Using this automated technique, we are able to quantify the
overall distribution of programming issues in the entire set
of deep learning questions in Stack Overflow. We experiment
with other document classification models such as using
tf-idf in conjunction with SVM but find that those models
do not behave well, since many SO posts are short documents
and there is also a lack of training data. Nevertheless, we do
not argue that this classification algorithm is the best algorithm
nor claim it as a novel contribution. We adopt this algorithm
because it is simple to build and also achieves reasonable
accuracy (79.6% precision and 80.3% recall), which could
provide a good estimation about the prevalence of different
kinds of deep learning questions asked in Stack Overflow.

Replication package. The entire dataset of 39,628 deep
learning questions, the manual inspection spreadsheet, and the
automated classification tool are publicly available.! Software
engineering researchers who wish to conduct similar analysis
on deep learning could use this replication package and the
dataset.

III. ANALYSIS OF THE RESULTS
A. RQI: What deep learning questions are frequently asked?
Figure 1 shows the distribution of different kinds of deep

learning questions in the entire set of 39,628 SO posts.

Uhttps://github.com/tianyi- zhang/deep-learning- stack-overflow

Comprehension
10%

Installation
11%

Program Crash
20%

Fig. 1: Distribution of frequently asked deep learning questions
in different categories

Overall, program crash, model migration, and implementation
are the top three most frequently asked DL questions, while
comprehension and performance are less frequently asked.
Categories such as training anomaly and model migration
represent emerging programming issues that are unique to
deep learning applications. Though other categories such as
program crashes and implementation are well-known software
engineering problems, their questions still exhibit new aspects
of programming challenges due to the data-driven computation
paradigm and GPU utilization in deep learning systems.

Implementation. Questions in this implementation category
concern how to implement desired functionality or how to use
an API of interest. Developers also wonder how to adapt the
implementation of a desired neural network for a different task
or a different dataset. Since deep learning heavily use GPUs
for model training, many implementation questions involve
how to use GPUs effectively, e.g., how to allocate a specific
amount of GPU memory, how to separate the computation
between CPU and GPU, etc. For instance, a developer asked
how to properly assign data preprocessing operations to CPU
so that GPU can focus on training only (Post 46001982).

One interesting sub-category of implementation questions
is about distributed training. Training a large neural network
with a large volume of data can take an impractically long
time on a single GPU. Therefore, developers often resort to
distributed training with multiple GPUs. A typical question in
distributed training is about optimizing its parameter sharing
strategy when a neural network is replicated on each GPU
(i.e., data parallelism). Post 39595747 asks about how to first
aggregate gradients among GPUs in the same machine before
synchronizing with the parameter server to avoid bandwidth
saturation. Compared with data parallelism, model parallelism
requires developers to manually partition a neural network to
different pieces and assign them to different devices (CPU
and GPU), which is more tricky due to data dependencies
between neurons (e.g., Post 42069147). The more dependencies
a partitioning breaks, the more communication may be intro-
duced to transfer data across devices. Overall, given a network

def conv2d(x, W):
return tf.nn.conv2d(x,

adding=’ SAME’)

w o

W, strides=[1, 1, 1, 1],

wn

def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1l, 2, 2,
[1, 2, 2, 1], padding=’SAME’)

EN

1], strides =

8 mnist=input_data.read_data_sets (’MNIST _data’,one_hot=
True)

9 x=tf.placeholder ("float",shape=[None, 784])

10 y=tf.placeholder ("float", shape=[None,10])

11 x_image=tf.reshape(x, [-1,28,28,1])

13 #Layer 1: convolutional + max pooling

14 W_conv2=weight_variable([5,5,1,64])

15 b_conv2=bias_variable ([64])

16 h_conv2=tf.nn.relu(conv2d(x_image,W_conv2)+b_conv2)
17 h_pool2=max_pool_2x2 (h_conv2)

19 #Layer 2: ReLU+Dropout

20 W_fcl=weight_variable ([7+7x64,1024])

21 b_fcl=bias_variable ([1024])

22 h_pool2_flat=tf.reshape(h_pool2, [-1,7+7x64])

23 h_fcl=tf.nn.relu(tf.matmul (h_pool2_flat,W_£fcl)+b_£fcl)

Fig. 2: A code example with shape inconsistency between the
convolutional layer and the ReLU layer (Post 35138131)

architecture and a distributed environment, it is challenging to
figure out how to partition data and operations across multiple
devices to achieve optimal and reliable training performance.

Program Crash. Questions in this program crash category
concern about runtime exceptions that crash a program. We
mainly discuss three types of crash errors—shape inconsis-
tency, numerical error, CPU/GPU incompatibility, which are
frequently asked in deep learning applications but not so often
in traditional software systems.

Shape Inconsistency. Shape inconsistency refers to runtime
errors caused by unmatched multi-dimensional arrays between
operations and layers. Figure 2 shows an example of shape
inconsistency in a convolutional neural network. Given an
input tensor in the shape of [?,28,28,1], the first convo-
lutional layer (lines 13-17) produces a tensor in the shape of
[?,14,14,64] after striding and max pooling. However, the
second ReLu layer expects an input tensor in the shape of
[?,7,7,641, leading to the shape inconsistency. To reduce
the output tensor to the right shape, the stride of the first
convolutional layer (line 3) should be set to [1,2,2,1]
instead of [1,1,1,1]. When shape inconsistency occurs,
developers often express the desire to view the input and
output tensor shapes among network layers (Post 51460835).
However, deciding tensor shapes is not straightforward, since
the high-level network construction APIs in modern DL
frameworks hide everything behind the scene. Furthermore,
since tensors can have dynamic shapes, shape inconsistency
cannot be simply detected via static type checking. Instead,
it requires customized dataflow analysis accounting for both
layer connectivity and operations that transform tensor shapes.

Numerical Errors. Since deep neural networks extensively
use floating point computation [26], they can be highly vul-

1 ys_reshape = tf.reshape(ys, [-1,1])
2 prediction = tf.reshape(relu4, [-1,1])

3 - gross entropy =
tf.reduce_mean (- (ys_reshapextf.log(prediction)))

4 + cross_entropy = tf.reduce_mean (- (ys_reshapextf.log(
prediction+le-5)))
5 train_step = tf.train.AdamOptimizer (0.01) .minimize (
cross_entropy)

Fig. 3: An NaN error occurs at line 4 when computing cross
entropy with logits (Post 40192728).

nerable to numerical errors in both training and evaluation.
Numerical errors are notoriously hard to debug, partly be-
cause they may only be triggered by a small set of rarely
encountered inputs. One typical numerical error is not-a-
number (NaN) values. For example, in Figure 3, the ex-
pression ys_reshapextf.log(prediction) (line 3) may
yield 0 % log(0) and further produces NaN values, since
the previous ReLU layer can output zero. Adding a small
positive value (line 4) can prevent this error. In Tensor-
Flow, it is generally recommended to use another function,
tf.nn.softmax_cross_entropy_with_logits, to com-
pute cross entropy, since this function properly handles corner
cases that may cause NaN errors.

CPU/GPU Incompatibility. GPU/CPU incompatibility often
occurs when switching model training from CPU to GPU. As a
common practice, developers often run and test their deep neu-
ral networks on CPU first and then port them to GPU to speed
up training. Compared with CPU, GPU supports different data
types and operations that are customized and optimized for
parallel computation across GPU kernels. To perform training
on GPU, developers must make sure all data and operations in
their neural networks are compatible with GPU. Modern DL
frameworks often hide such implicit design decisions nicely
and expose global flags and APIs to automatically transfer
data between CPU and GPU. Therefore, developers only need
to make small changes to their existing code to port it to
GPU. However, making such subtle changes is error-prone. In
Figure 4, even though the programmer converts the input data
to its GPU-compatible version by calling cuda () at line 3, the
code snippet will throw TypeError at line 12 when running
on GPU, since the programmer forgets to convert other data
(e.g., decoder_hidden, decoder_context) to GPU. Such
mistakes can be hard to catch in a large and complex neural
network, leading to a program crash.

Training Anomaly. This category is related to unreliable
training behaviors. Neural network training is essentially a
process of continuously adjusting model parameters based on
previous predication errors measured by a loss function. To
achieve high prediction accuracy, the training process often
involves a huge amount of training data and a collection of
optimization tricks such as mini-batching and feature scaling.
Any training data errors or mis-conducted optimization tricks
could cause training anomalies. Various training anomalies are
reported on Stack Overflow, including extremely low or high

-

encoder_hidden = encoder_test.init_hidden ()
2 if USE_CUDA:
word_inputs = Variable (torch.LongTensor ([1, 2, 3]).

w

cuda ())
4 else:
5 word_inputs = Variable (torch.LongTensor ([1, 2, 3])
6
7 encoder_outputs, encoder_hidden = encoder_test (

word_inputs, encoder_hidden)
decoder_attns = torch.zeros (1, 3, 3)
1o decoder context = Varisble (torch.zeros(l,

e o

11

12 decoder_output, decoder_context, decoder_hidden,
decoder_attn = decoder_test (word_inputs[0],
decoder_context, decoder_hidden, encoder_outputs)

Fig. 4: TypeError occurs at line 12 when running the
PyTorch model on GPU due to incompatible float tensor types
between CPU and GPU (Post 46704352)

accuracy, loss values never dropping, overfitting, discontinuous
accuracy values between iterations, unstable loss values, etc.
Here, we discuss one representative example that is frequently
asked in Stack Overflow. In Post 34743847, the training loss
was initially low but quickly increased to a large value and
kept bouncing back and forth without converging. The reason
is that the learning rate is 0.1, which is too high for this
specific task. A high learning rate can cause drastic updates
on network parameters, leading to a vicious cycle of ever-
increasing gradient values (i.e., gradient exploding). Besides,
exploding gradients can also be caused by improper weight
initialization. For instance, in Post 36565430, for a deep neural
network with more than 10 layers, the extra layers could make
the gradients too unstable, making the loss function quickly
devolve to NaN. The best way to fix this is to use Xavier
initialization [27]. Otherwise, the variance of initial values
tends to be too high, causing instability.

Since training anomalies do not crash a program, there
are no error messages or stack traces that a developer can
start investigation from. To debug such anomalous behavior,
experienced developers may print parameters and gradients to
console and observe how their values change over training
epochs. Then they may decide which hyperparameter to tune
based on their own heuristics. However, such trail-and-error
method is tedious and cumbersome when debugging a large
neural network with thousands of neurons and millions of pa-
rameters. Existing visualization tools such as TensorBoard [28]
and Visdom [29] can provide a bird’s-eye view of the entire
training process. However, these tools only plot high-level
quantitative metrics over training epochs but lack the traceabil-
ity to pinpoint which statement, operation, or hyperparameter
could cause such an anomaly.

Model Migration and Deployment. Questions in this cate-
gory concern about porting model implementations between
different frameworks or deploying saved models across dif-
ferent frameworks or platforms. In such a migration or de-
ployment process, behavior inconsistency often occurs due to

variations or incompatibilities between different frameworks,
platforms, or library versions. For instance, in Post 49447270,
the developer wanted to import the weights of a Theano-based
CNN model into a predictor written in PyTorch. As Theano
and PyTorch adopt different matrix formats in a convolutional
layer by default, the predictor could not behave properly with-
out matrix format conversion. As another example, a developer
found that the output quality was much lower when restoring
a saved model that was trained on a server in a mobile device
(Post 49454430). It is critical to ensure behavior consistency of
the same model in different settings for deployment. However,
such behavior inconsistency is often hard to diagnose due to a
lack of tool support for systematically testing and comparing
model behavior between different platforms or frameworks.

To deploy a neural model on mobile devices or embedded
systems, quantization techniques are commonly used to reduce
model size [30]. However, quantization can cause various
errors such as program crashes and performance issues. For
instance, after reducing floating point precision to 8 bit, a
developer found that the quantized model was about 20X
slower than the original one (Post 39469708). With an increas-
ing demand of migrating a deep learning model from cloud
servers to mobile devices and IoT devices, a differential testing
framework that systematically detects behavior consistency of
the same model in different settings is necessary for improving
the robustness of a model.

Performance. Questions in this performance category concern
about training time and memory usage of deep learning mod-
els. Training neural networks is computationally demanding.
Therefore, developers often concern about training perfor-
mance in terms of execution time and memory usage. Many
performance questions in Stack Overflow ask for advice on
how to optimize model implementation and how to fix perfor-
mance bugs such as memory leaks. Developers also ask about
the performance difference between different platforms, frame-
works, and GPUs. For instance, a developer implemented an
image recognition model for ImageNet using both MXNet and
TensorFlow but found that, when training using four GPUs,
TensorFlow was much slower than MXNet (Post 36047937).
There are similar questions about TensorFlow vs. Caffe
(Post 37255626), PyTorch vs. TensorFlow (Post 50784130), etc.
When such divergent behavior occurs in different settings or
frameworks, developers often wonder whether it is caused by
framework differences or implementation bugs in their own
code. This indicates a need for diagnosing and empirically
benchmarking performance differences among different plat-
forms and frameworks.

In addition to training time, GPU utilization ratio is an-
other important metric that developers often use to diagnose
performance bugs in deep learning. GPU usage depends on
many factors including the size of a neural network, batch
size, and data pre-processing. For instance, using GPUs can
actually slow down the overall training process for small
neural networks with light computation, since the overhead
of memory allocation and data transferring can overwhelm

the speed-up benefit (e.g., Post 38688777, Post 47900761). Mini-
batch gradient descent is a common trick to exploit the full
power of GPUs by feeding multiple training instances to train
a neural network all at once. Developers often encounter a
low GPU usage rate due to small batch sizes (Post 47971512,

B Installation & Performance

Model Migration

Olmplementation EProgram Crash

Training Anomaly B Comprehension

2015] 346

2016 5006

Post 52159053). Using a large batch size can make the training
process converge more quickly by computing gradients from
multiple training instances in parallel. On the other hand,
a large batch size can also lead to out-of-memory errors,
since it requires a lot of memory to hold such large batches
and corresponding tensors (Post 38010666, Post 45916769). CPU
computation can also become a bottleneck of GPU usage. For
instance, in Post 35274405, the developer found that the GPU
usage rate always bounced back and forth between 0% and
80% during training. The reason is that each training iteration
starts from fetching and preprocessing a batch of training
instances from a queue, which is really slow and thus blocks
GPU computation.

Comprehension. Questions in this comprehension category
ask for clarifications on concepts, algorithms, and frame-
work APIs in deep learning. Oftentimes, these comprehension
questions are simply answered by quoting or summarizing
existing learning resources. Yet just like any other emerging
techniques, a large portion of SO posts are about the clarity
of documentations and the lack of code examples in deep
learning. For example, in Post 34240703, the developer is
confused about the usage of logits in the cross-entropy
functions and asks for code examples to illustrate the dif-
ference between two similar functions, tf.nn.softmax and
tf.nn.softmax_cross_entropy_with_logits.

Installation. Questions in this installation category are related
to software reliability issues caused by incompatible library
installation. Deep learning frameworks are notoriously hard to
install due to complex software and hardware dependencies
and version incompatibilities. For example, each TensorFlow
version is only compatible with certain cuDNN library ver-
sions, which further depends on certain CUDA versions and
Nvidia GPU models. Due to the rapid evolution in DL
frameworks, many framework versions are not backward com-
patible. Package managers such as conda and pip do not al-
ways make installation easier, especially when DL framework
dependencies are cluttered with other software. Upgrading a
single library can become catastrophic, breaking the entire
dependency chain and affecting other installed software.

We also analyze the distribution of deep learning questions
in different issue categories over years, as shown in Figure 5.
Starting from 2015, the number of deep learning questions
increases dramatically each year, indicating the increasing
popularity of deep learning. Although there are no major topic
changes over years, the percentage of installation questions
decreases from 20% in 2015 to 11% in 2018. Similarly, the
percentage of implementation questions also decreases slightly
from 19% to 16%. This can be caused by the fact that DL
frameworks are getting more stable and their documentations
are also getting more comprehensive. For instance, now there

RS
R
K53
e

2%

2017 \ \ 14859

2018 \ \ 18693

0 5000

10000

15000 20000

Fig. 5: Distribution of deep learning questions in different
categories over time

45%

40.93%
40% 3551% 36.97%
350? 28.07% 31.04% 31.30%
309 -
25"/0 ’ 25.27%
b

20%
15%
10%

5%

0%

’390 &00 C}fo“}\ é&?’ q-’\\o° é@*\ ({_1\00
& & A & o S y
Ng & > 0 5 ¥ 3
A & $ Q% & _(.\\QQ o
N Q¢ ¥ & o

Fig. 6: Percentage of deep learning questions with accepted
answers in Stack Overflow

is a TensorFlow webpage that keeps track of build and
installation issues posted on Stack Overflow and GitHub [31].
By contrast, the percentage of model migration questions are
constantly increasing over time, from 14 % in 2015 to 22 % in
2018. Based on manual inspection, the majority of model mi-
gration questions are about migrating from Theano and Caffe
to TensorFlow and PyTorch, rather than the other way around.
This can be caused by the fact that, with strong development
teams devoted from Google and Facebook, TensorFlow and
PyTorch now provide more functionality and tool support
and thus attrack more developers than Theano and Caffe.
In fact, Theano has already stopped active development and
maintenance due to the competition from industry [32].

B. RQ2: Which kinds of deep learning questions are harder
to resolve?

Stack Overflow encourages users to accept an answer, if the
answer is correct or useful to resolve the question. Therefore,
we consider that a Stack Overflow question is resolved, if the
question has an accepted answer. We investigate the difficulty
of resolving different kinds of deep learning questions from
two perspectives. First, we analyze how many deep learning
questions in a category have accepted answers. Among those
questions with accepted answers, we further analyze how long
it takes to receive a correct answer after a question is posted
on Stack Overflow.

Figure 6 shows the percentage of deep learning questions
that have accepted answers in each category. Around 41 %

20-

o

Category

E:EI Comprehension
E3 Implementation
u Installation

u Model_Migration
u Performance

E:EI Program_Crash
E:EI Training_Anomaly

o

Time to Receive Correct Answer (h)

o

Install Mig'rate Perform. Crash Trai'ning

Category

Corﬁpre. Im'pl.

Fig. 7: Distribution of the time length to receive a correct
answer for different kinds of deep learning questions

of comprehension questions have accepted answers, which is
the highest rate among all categories. Based on the manual
inspection, many comprehension questions are asked because
developers are not familiar with machine learning concepts
or because the documentation is unclear. Such comprehension
questions are relatively easy to answer compared with other
kinds of questions. By contrast, only 25% of performance
questions have accepted answers, which is the lowest. Fur-
thermore, among all categories, performance questions also
take the longest time to receive a correct answer. As shown
in Figure 7, performance questions take 4.3 hours on average
to receive a correct answer, while program crash questions
take only 1.7 hours. Compared with other issues such as
program crashes, performance issues do not have error mes-
sages that trace back to specific lines of code. Developers
have to use profiling tools to first diagnose which operation
is the bottleneck in order to further investigate the root cause.
However, profiling support from deep learning frameworks is
still primitive. For instance, since PyTorch does not provide
any profiler, PyTorch developers have to manually instrument
a neural network to gather performance metrics using Python
modules such as time (Post 49989414). In addition, perfor-
mance bugs often occur in the training stage and many of
them require specific GPUs or a distributed environment to
reproduce (e.g., Post 49235599, Post 37255626). On the other
hand, many program crashes such as type errors and shape
inconsistencies often occur in the graph construction stage,
which only requires CPU and is therefore relatively easy to
be reproduced by other developers.

C. RQ3: What are the main root causes?

Certainly, some SO questions are simply because developers
do not have enough machine learning background or do
not read documentations carefully. However, a large portion
of questions are caused by common mistakes that different
developers repetitively make. In addition, the lack of tool
support also makes it hard to diagnose certain types of errors
in deep learning and thus developers have no choice but turn
to online Q&A forums, which may deserve attention from
framework developers and software engineering researchers.
We identify five main root causes of the common programming
issues during the manual inspection.

API misuse. API usage violations are the root cause of various
runtime errors and training anomalies. For instance, developers
must call zero_ () after loss.backward () to zero out gradi-
ents to avoid exceptions in PyTorch (Post 46513276). Some API
usage violations are implicit and hard to spot. For instance,
TensorFlow requires to initialize all tf.variable objects
by calling initialize_all variables, which is easy to
follow for user-defined variables. However, certain functions
such adam and momentum optimizers define variables inter-
nally and thus developers still need to explicitly initialize
variables before training (Posts 33788989, 36007883). In such
cases, it is critical to provide more information transparency
about critical internals of APIs and functions.

GPU computation. Utilizing GPUs raises a spectrum of
programming challenges when building deep learning applica-
tions. GPUs impose critical programming constraints that must
be followed to avoid runtime errors, training anomalies, and
performance bugs. For example, developers cannot directly
convert a PyTorch tensor x to an equivalent NumPy array
by calling x.data.numpy () in GPU. Instead, developers
have to move a tensor to CPU first and then convert it to
NumPy by calling x.data.cpu() .numpy () (Post 44351506).
When porting a deep learning model from CPU to GPU,
such unsupported function calls must be rewritten first before
training. Though GPUs play such an important role in deep
learning, many GPU interfaces and usage scenarios are not
well documented. For example, Post 38580201 illustrates how
to use a function list_local_devices to list available
GPUs in TensorFlow, which receives 128 upvotes. However,
this function is not documented at all.

Incorrect hyperparameter selection. Modeling mistakes
such as improper hyperparameters are often the root cause
of unexpected model behavior such as low accuracy and
overfitting. For example, in Post 37914647, the developer built
a simple neural network to learn arithmetic addition but
found that the training accuracy was always 100 %, even with
garbage data. The reason was that the developer intended to
learn a linear regression model to approximate addition, but
mistakenly used the cross-entropy loss function, which was
designed for classification problems. The developer should use
the mean square error (MSE) loss function instead. Another
developer sets the embedding dimension too high for a small
vocabulary, which causes overfitting (Post 48541336). Thus, it

define a neural network

def train_op():

images, true_labels = inputs()

predictions = NET (images)

true_labels = tf.cast (true_labels, tf.float32)

loss = tf.nn.softmax_cross_entropy_with logits(
predictions, true_labels)

7 return OPTIMIZER.minimize (loss)

8

9 # train the network

10 def train():

11

12 while not coord.should_stop () :

T R R R

13 # i-th training epoch
14 training = train_op ()
15 sess.run(training)

16

Fig. 8: A TensorFlow code snippet that defines a neural
network within the training process and thus hangs forever
during training, simplified from Post 35274405.

can be beneficial to mine common combinations and values
of hyperparameters and show how others set hyperparameters.

Static graph computation. Unlike PyTorch, TensorFlow
adopts static computation graphs, where a neural network
must be defined before training. Though such define-and-
run paradigm can improve training performance via mini-
batching, it is not straightforward to program with, leading
to many programming mistakes. A common mistake is to
define a neural network within the training process, as shown
in Figure 8. The function call, train_op at line 14 keeps
adding new operations to the neural network in each training
iteration, making the network grow bigger and bigger and thus
quickly draining out the computation power.

Static graph computation also causes difficulty in debugging
training behavior, accounting for many debugging questions
in Stack Overflow. General-purpose debuggers such as pdb’
cannot be used to inspect runtime values when training the
computational graph in TensorFlow. Instead, TensorFlow uses
the tf£.Session interface to communicate between a static
graph and the training process. Developers have to evaluate a
tensor using t £. Session functions first and print its values to
the console for further analysis, which is not straightforward.
In Stack Overflow, many developers feel confused about how
to inspect runtime values in TensorFlow (e.g., Post 47710467,
Post 33679382, Post 33633370). This is very different from
traditional software debugging, where developers can simply
inject a breakpoint and step through the execution. Though
TensorFlow now provides a debugger called t fdbg® for Ten-
sorFlow models, where you can step through the execution
and check values, it is cumbersome to set up as complained
by many developers in Stack Overflow (e.g., Post 44211871,
Post 46025966, Post 46104266).

Limited debugging and profiling support. Debugging a deep

learning model is fundamentally different from debugging a
regular program. Because the decision logic of deep learning

Zhttps://docs.python.org/3/library/pdb.html
3https://www.tensorflow.org/guide/debugger

models is not directly specified by developers, but learned
from training data. The backbone of a deep learning model is a
data-flow graph. Though a stack trace may point to a specific
line of code, the real fault can reside in the training data,
hyperparameter selection, hardware, and versioning. Different
training data and hyperparameters can lead to unexpected be-
havioral divergence, which is hard to debug by just comparing
high-level metrics such as training loss over time. Setting
random seeds, data dropout, and some GPU operations can
cause non-determinism in model training, making it harder
to debug (Post 39938307). When an error occurs in GPU or
in a distributed setting, developers cannot easily track which
operation at which step raises the error (Post 50661415). There
is also limited tool support for runtime monitoring or profiling
in GPU and in a distributed environment (Post 34775522).
Developers cannot do much except for waiting the training
process to finish, staring at log files, and tuning the model via
trial and error.

When performance issues occur, developers find it hard to
identify which line of code or which operation introduces the
bottleneck. The profiling support in PyTorch and Deeplearn-
ing4j is still primitive. In PyTorch, developers have to man-
ually instrument a neural network using the built-in Python
modules such as time* and gc’ to collect the execution time
and memory fingerprint. Similarly, developers also have to use
a general-purpose JVM profiler to profile a Deeplearning4;j
model. TensorFlow provides its own profiling feature, runtime
statistics feature®, which is tightly integrated with its visualiza-
tion tool, TensorBoard. However, TensorBoard is cumbersome
to use, since developers have to write extra boilerplate code
to set up TensorBoard and collect performance metrics. In
Stack Overflow, we observe a variety of errors such as web
browser compatibility errors (Post 33680397) and display errors
(Post 34416702), when setting up and using TensorBoard.

Existing visualization tools such as TensorBoard [28] and
Visdom [29] provide a good summary of high-level metrics
such as training accuracy over iterations. However, these tools
are not suitable for low-level debugging activities such as
inspecting runtime values and setting a watchpoint for NaN
values. A common practice is still to print runtime values
to a console or log files and manually scan for potential
errors such as exploding gradients. Due to the ever-increasing
model complexity and data volume, now it is common to
train deep neural networks with multiple GPUs or a cluster
of workers. Such distributed training brings more challenges
in debugging deep learning models, since runtime errors
and training anomalies are compounded with communication
bandwidth and latency as well as neural network partitioning
and placement in a distributed setting.

IV. RESEARCH OPPORTUNITIES
Certain categories such as installation and comprehension
are general issues in software engineering rather than specific

“https://docs.python.org/3/library/time.html
Shttps://docs.python.org/2/library/gc.html
Shttps://www.tensorflow.org/guide/graph_viz#runtime_statistics

to deep learning applications. However, in deep learning appli-
cations, many issues such as program crashes and unexpected
behavioral inconsistencies after model deployment are due to
the incompatibility between installed libraries and hardware
or a lack of understanding of library functions. Therefore, in
order to build reliable deep learning systems, it is important
to understand commonly asked questions related to those
aspects and think about solutions for better library dependency
management and documentation, especially given the rapid
revolution of deep learning libraries and the heavy utilization
of hardware units compared with traditional software systems.
We briefly discuss three major implications of our findings on
future research below.

Implication 1: Mining implicit API usage protocols and
hyperparameter combinations is needed. There are many
implicit but critical API usage protocols enforced by deep
learning frameworks and GPU computation. Failing to follow
these constraints will lead to program crashes, training anoma-
lies, and performance bugs. Deep learning frameworks often
lack documentations of these API usage protocols. Therefore,
it is beneficial to automatically mine such API usage protocols
from neural network implementations available on GitHub.
In addition, since hyperparameters are often specified as
function parameters, mining common combinations of hyper-
parameters and showing how other developers set them can
provide guidance for model design and tuning.

Implication 2: Facilitating debugging and profiling is
needed. Runtime monitoring and profiling support needs to be
improved, especially when training with multiple GPUs and
machines. Testing and runtime verification techniques could
be useful to detect training anomalies. For instance, an en-
visioned technique should enable data scientists and machine
learning engineers to expressively specify desired high-level
properties as test oracles or assertations that can be propagated
across training iterations. Then, an abnormal training execution
state that violates those properties (e.g., numerical errors,
concurrency issues, incorrect parameter configuration) could
be captured at runtime for further analysis.

Implication 3: Cross-framework and cross-platform differ-
ential testing is needed. Behavior inconsistency often occurs
when migrating a model between different frameworks or
deploying a model to a different platform (e.g., Android, IOS,
web browsers). However, it is hard to uncover and diagnose
such behavioral inconsistency due to a lack of tool support.
Existing testing techniques mainly focus on identifying test
inputs that improve a given test coverage metric for test gener-
ation [9]-[12], [33]. Therefore, a differential testing framework
that systematically tests and uncovers behavior inconsistency
of the same model in different settings is needed, especially
with an increasing demand for migrating and deploying a deep
learning model from cloud servers to mobile devices and other
edge computing devices.

As future work, we plan to send surveys and conduct
semi-structured interviews with professional machine learning
engineers and data scientists to understand common practices

and principles to address these challenges in industry and
solicit feedback about desired tool support.

V. THREATS TO VALIDITY

Internal Validity. The combination of manual analysis and
automated classification raises several threats to internal va-
lidity. First, the manual analysis of deep learning questions in
Stack Overflow is subjective. To reduce the bias, two authors
independently inspected a total of 715 deep learning questions
and discussed classification disagreements. The taxonomy was
finalized based on the consensus of two authors after resolving
all disagreements.

Since it is challenging to manually inspect all 39,628 deep
learning questions, we develop an automated technique to
classify them to seven categories identified in the manual
analysis. Both the precision and recall of our classification
technique are about 80%, which is commonly acceptable
for automatic natural language analysis in software engineer-
ing [34]-[37]. Nevertheless, questions can still be inevitably
misclassified. The automated classification is based on the
manually identified categories that may not fully cover all
categories in the entire set of 39,628 questions. To mitigate
this issue, the authors followed an open-coding method [23]
to iteratively develop and refine the categories of frequently
asked questions and continued to inspect more SO posts, until
no new programming issue categories were found.

In RQ2, we consider the accepted answer of a SO question
as the correct answer. Yet, some SO users may endorse
correct answers by commenting below answer posts, rather
than explicitly accepting them as correct answers. Therefore,
we may miss correct answers that are not accepted by question
asksers. As a result, the percentage of real correct answers in
each category could be slightly higher in Figure 6.

External Validity. The external validity concerns about the
generalizability of our results. In order to mitigate this issue,
we analyze programming questions related to three popular
and representative deep learning frameworks with different
computation paradigms and infrastructures. But still, we may
miss unique programming issues in other deep learning frame-
works that are not included in our study scope, such as
MXNet [38] and Caffe [39]. Since we only analyze deep
learning questions asked in Stack Overflow, we may overlook
valuable insights from other sources. In future work, we
plan to conduct in-depth interviews with professional deep
learning engineers and solicit their feedback to mitigate this
issue. Furthermore, given the rapid evolution of deep learning
frameworks, it is unclear how long our findings may stay
valid and what new challenges may emerge in the future.
Any breakthrough in industry and academia may significantly
change the way developers write deep learning programs. For
example, Microsoft and Facebook released the first version
of Open Neural Network Exchange (ONNX), a new neural
network exchange format and ecosystem for interchangeable
machine learning models in 2017 [40]. Later, IBM, Huawei,
Intel, AMD, ARM and Qualcomm announced support for the

initiative. Increasing adoption and support for ONNX may
shift the themes of questions related to model migration.

VI. RELATED WORK

The most related work is a recent study on 175 software
bugs in deep learning applications built by TensorFlow [41].
Our work extends this study by identifying seven categories
of frequently asked questions about deep learning. We analyze
715 Stack Overflow questions not just related to TensorFlow,
but also two other popular deep learning frameworks with
different computation paradigm and architecture design. In
addition to software defects, we also identify other develop-
ment issues such as training anomaly and model migration.
We also find that, in addition to enhance fault localization and
repair techniques as suggested in [41], it is also important to
expose implicit API usage constraints, provide more interac-
tive debugging and profiling support, and enable differential
testing for migrating and deploying models across different
frameworks and platforms.

Both Thung et al. [42] and Sun et al. [43] study categories of
software bugs in machine learning libraries and frameworks.
Thung et al. [42] manually inspected a sample of 500 bugs
in Apache Mahout, Lucene, and OpenNLP, and grouped them
based on bug categories proposed by Seaman et al. [44]. They
further analyzed the bug severity, as well as the average time
and effort needed to fix a bug in each category. Sun et al. [43]
manually inspected 328 closed bugs in three machine learning
systems, Scikit-learn, Paddle, and Caffe. They proposed seven
new bug categories and also identified twelve fix patterns
that are commonly used to fix these bugs. Our work differs
by focusing on software development issues and challenges
when using deep learning frameworks, rather than building
and maintaining these frameworks.

Recently, the software engineering community made many
advances in testing deep learning applications [9]-[14], [45]-
[49]. DeepXplore [9] proposes a test effectiveness metric
called neuron coverage and develops a neuron-coverage-
guided differential testing technique that uncovers behav-
ioral inconsistencies between different deep learning models.
DeepTest [10] is a test generation framework that adapts
labeled driving scenes with a set of pre-defined image
transformations in order to increase the neuron coverage of
autonomous driving systems. DeepRoad [13] improves on
DeepTest by leveraging the generative adversarial network
(GAN) to automatically transform images to different driving
scenes, e.g, snowy or rainy conditions. DeepConcolic [12]
is a concolic testing approach that incrementally generates
test inputs for deep neural networks by alternating between
concrete execution and symbolic analysis. DeepGauge [11]
and DeepCT [50] extend the neuron coverage metric by
proposing a set of neuron value-based testing criteria and
neural interaction-based criteria, and demonstrated that the
new criteria were more effective in capturing software defects
caused by adversarial examples. Kim et al. [14] propose a
new test criterion called surprise adequacy that measures how
much input data follows the statistical distribution of training

data in terms of neuron activation status. Note that most of
these techniques focus on improving the robustness of deep
learning models by generating test inputs. In this study, we find
that developers are also likely to make implementation bugs
or choose sub-optimal hyperparameters, leading to various
program crashes and training anomalies that are rarely seen
in traditional software systems. Our findings indicate the need
of testing and fault localization support that allows developers
to systematically check desired behaviors and properties of
deep learning applications, e.g., a gradient should not be
NaN, similar to how developers write unit test cases to check
conventional software systems.

Ma et al. [33] present a debugging technique called MODE
for deep neural networks. MODE performs state analysis of
neural network to identify neurons that are responsible for
incorrectly predicted test data, and selects new input samples
to retrain the faulty neurons. MODE is designed to address
overfitting and underfitting problems caused by inadequate
training data. Our study finds other kinds of bugs such as
numerical errors and performance issues, which requires more
interactive debugging and profiling techniques.

VII. CONCLUSION

This paper presents a large-scale study about programming
issues and mistakes in deep learning. We manually inspect
a sample of 715 deep learning questions in Stack Overflow
and identify seven types of frequently asked questions. We
find that the new data-driven programming paradigm in deep
learning has introduced new software development issues such
as training anomalies and model migration, which has not been
observed in traditional software systems. Based on the insights
from manual inspection, we build an automated classification
technique that quantifies different kinds of deep learning
questions in Stack Overflow. Among all categories, program
crashes and model migration are the top two most frequently
asked topics. We also find that performance questions are
the most difficult deep learning questions to answer in terms
of receiving correct answers and the wait time for correct
answers.

Despite the successful adoption of deep learning to many
domains, our study reveals that the development tool chain
support is still at an early stage. Our study motivates the need
of debugging and profiling machine learning and Al based
systems as well as extending and inventing new differential
testing for cross-framework model migration, which is a timely
topic and urgent issue to be addressed to impact real-world
systems of today and future.

ACKNOWLEDGMENT

Thanks to anonymous reviewers for their valuable feedback.
This work is supported by NSF grants CCF-1764077, CCF-
1527923, CCF-1460325, CCF-1723773, ONR grant N00014-
18-1-2037, Intel CAPA grant, Hong Kong RGC GRF grant
CUHK-14210717, JSPS KAKENHI Grant-19H04086, and
Qdai-Jump Research Program NO.01277.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]
[22]

REFERENCES

V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Acm Sigplan Notices, vol. 49, no. 6. ACM, 2014,
pp. 419-428.

X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. ACM, 2016, pp. 631-642.

X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of
the 40th International Conference on Software Engineering. ACM,
2018, pp. 933-944.

L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “Cclearner: A deep
learning-based clone detection approach,” in 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), Sep.
2017, pp. 249-260.

G. Zhao and J. Huang, “Deepsim: Deep learning code functional
similarity,” in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 141-151. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236068

V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in Proceedings of the 11th Joint Meeting on Foundations
of Software Engineering. ACM, 2018.

M. Pradel and K. Sen, “Deepbugs: A learning approach to
name-based bug detection,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, pp. 147:1-147:25, Oct. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3276517

S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for
software defect prediction,” IEEE Transactions on Software Engineering,
2018.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017, pp. 1-18.

Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
40th International Conference on Software Engineering. ACM, 2018,
pp. 303-314.

L. Ma, F. Juefei-Xu, and J. S. et al., “DeepGauge: Multi-Granularity
Testing Criteria for Deep Learning Systems,” in The 33rd IEEE/ACM
International Conference on Automated Software Engineering, 2018.
Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,
“Concolic testing for deep neural networks,” in Proceedings of the 33rd
ACMY/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE 2018, 2018, pp. 109-119.

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
2018, pp. 132-142.

J. Kim, R. Feldt, and S. Yoo, “Guiding Deep Learning System Test-
ing using Surprise Adequacy,” in 2019 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), 2019.

S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: A case study,” in Proceedings of the 41th International
Conference on Software Engineering, ICSE 2019, Montral, Canada, May
25 - May 31, 2019, 2019.

C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1192-1223, 2016.

K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked
by web developers,” in Proceedings of the 11th Working Conference on
Mining Software Repositories. ACM, 2014, pp. 112-121.

N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty, “Se-
cure coding practices in java: Challenges and vulnerabilities,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE). 1EEE, 2018, pp. 372-383.

“Tensorflow,” accessed: 2019-01-21.

“Pytorch,” https://pytorch.org/, accessed: 2019-01-21.
“Deeplearning4j,” https://deeplearning4;j.org/, accessed: 2019-01-21.
Stack Overflow data dump, 2018, https://archive.org/details/
stackexchange, accessed on Aug 15, 2018.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

B. L. Berg, H. Lune, and H. Lune, Qualitative Research Methods for
the Social Sciences. Pearson Boston, MA, 2004, vol. 5.

B. Ray, D. Posnett, V. Filkov, and P. T. Devanbu, “A large scale study
of programming languages and code quality in github,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), Hong Kong, China, November 16 -
22, 2014, 2014, pp. 155-165.

P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple
programming languages and code quality,” in /EEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER
2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1, 2016, pp.
563-573.

D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Computing Surveys (CSUR), vol. 23,
no. 1, pp. 548, 1991.

X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
pp. 249-256.

“Tensorboard: Visualizing learning,” https://www.tensorflow.org/guide/
summaries_and_tensorboard, accessed: 2019-01-21.

“Visdom: A flexible tool for creating, organizing, and sharing visual-
izations of live, rich data.” https://github.com/facebookresearch/visdom,
accessed: 2019-01-21.

Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,”
in Proceedings of the 34rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE 2019.

“Build and install error messages,” https://www.tensorflow.org/install/
errors, accessed: 2019-01-21.

“Mila and the future of theano,” https://groups.google.com/forum/#!
topic/theano-users/7Poq8BZutbY, accessed: 2019-01-21.

S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: Automated
neural network model debugging via state differential analysis and
input selection,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 175-186.

B. Lin, F. Zampetti, G. Bavota, M. D. Penta, M. Lanza, and R. Oliveto,
“Sentiment analysis for software engineering: how far can we go?” in
Proceedings of the 40th International Conference on Software Engineer-
ing, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018,
pp. 94-104.

W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is
it really necessary?” Information & Software Technology, vol. 76, pp.
135-146, 2016.

T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. B. Bener,
“Defect prediction from static code features: current results, limitations,
new approaches,” Autom. Softw. Eng., vol. 17, no. 4, pp. 375-407, 2010.
T. B. Le, L. Bao, and D. Lo, “DSM: a specification mining tool
using recurrent neural network based language model,” in Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-
09, 2018, 2018, pp. 896-899.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675-678.

“Facebook and microsoft introduce new open ecosystem for
interchangeable ai frameworks,” https://research.fb.com/blog/2017/
09/facebook-and- microsoft-introduce-new-open-ecosystem-for-
interchangeable-ai-frameworks/, accessed: 2019-01-21.

Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2018, 2018, pp. 129-140.

F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs in
machine learning systems,” in 2012 IEEE 23rd International Symposium
on Software Reliability Engineering, 2012, pp. 271-280.

[43]

[44]

[45]

[46]

(471

X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, and B. Li, “An empirical study
on real bugs for machine learning programs,” in 2017 24th Asia-Pacific
Software Engineering Conference (APSEC), 2017, pp. 348-357.

C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo,
and S. Godfrey, “Defect categorization: making use of a decade of
widely varying historical data,” in Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineering and
measurement. ACM, 2008, pp. 149-157.

J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine Learning Testing:
Survey, Landscapes and Horizons,” arXiv e-prints, Jun 2019.

L. Ma, F Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie,
L. Li, Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep
learning systems,” The 29th IEEE International Symposium on Software
Reliability Engineering (ISSRE), 2018.

X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: A coverage-guided fuzz testing

(48]

[49]

[50]

framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2019, 2019, pp. 146-157.

X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
Model-based quantitative analysis of stateful deep learning systems,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019, 2019, pp. 477-487.

X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li, “Diffchaser: Detecting
disagreements for deep neural networks,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence, 2019.

L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:
Tomographic combinatorial testing for deep learning systems,” in 2079
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), Feb 2019, pp. 614-618.

