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Abstract

In this paper, we show the existence of the first non trivial family of classical
global solutions of the inviscid surface quasi-geostrophic equation.
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CHAPTER 1

Introduction

We consider the initial value problem for the inviscid surface quasi-geostrophic
equation (SQG):

∂tθ(x, t) + u(x, t) · ∇θ(x, t) = 0, (x, t) ∈ R
2 × R+(1.1)

u(x, t) = (−R2(θ), R1(θ))(x, t)

θ(x, 0) = θ0(x),

where Rj is the j-th Riesz transform:

Rj(θ)(x) =
1

2π
P.V.

∫

R2

(xj − yj)

|x− y|3 θ(y)dy.

This equation is derived considering small Rossby and Ekman numbers and
constant potential vorticity. It models the evolution of the temperature from a
general quasi-geostrophic system for atmospheric and oceanic flows (see [15, 33,
44,49] for more details). The numerical and analytical study of the equation was
started by Constantin, Majda and Tabak in [15], since the SQG system presents
an analogy with the 3D Euler equations.

The aim of this paper is to address the main problem of whether its classical
solution corresponding to given initial data θ(x, 0) = θ0(x) with finite energy exists
for all time or not. We remark that both the Lp norms of theta (1 ≤ p ≤ ∞) and
the L2 norm of u (the energy of the system) are conserved quantities. Moreover,
the Lp norms of u obey the following bounds:

||u(·, t)||Lp ≤ Cp||θ0||Lp 1 < p < ∞.

Local existence of solutions for (1.1) was first shown in [15] in Sobolev spaces. By
using different functional frameworks local existence has been also addressed in
several papers, see for example [9,43,56,57].

Resnick, in his thesis [50], showed global existence of weak solutions in L2 using
an extra cancellation due to the oddness of the Riesz transform. Marchand [46]
extended Resnick’s result to the class of initial data belonging to Lp with p > 4/3.
The question of non-uniqueness for weak solutions in L2 is still a challenging open
problem (see [1,37,52] and references therein).

The problem of whether the SQG system presents finite time singularities or
there is global existence is open for the smooth case. Kiselev and Nazarov [39] con-
structed solutions that started arbitrarily small but grew arbitrarily big in finite
time, and Friedlander and Shvydkoy [28] showed the existence of unstable eigen-
values of the spectrum. Castro and Córdoba constructed singular solutions with
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2 1. INTRODUCTION

infinite energy in [5] and Dritschel [25] constructed global solutions that have C1/2

regularity.
The numerical simulations in [15] indicated a possible singularity in the form

of a hyperbolic saddle closing in finite time. Ohkitani and Yamada [48] and Con-
stantin et al [16] suggested that the growth was double exponential. The question
was settled by Cordoba [17] who bounded the growth by a quadruple exponential
and further improved by Cordoba and Fefferman [18] to a double exponential (see
also [24]). The same scenario was recomputed almost 20 years with bigger com-
putational power and improved algorithms by Constantin et al. [14], yielding no
evidence of blowup and the depletion of the hyperbolic saddle past the previously
computed times. In [45], Majda and Tabak compared simulations for the SQG
scenario with the Euler case. Scott, in [53], starting from elliptical configurations,
proposed a candidate that develops filamentation and after a few cascades, blowup
of ∇θ.

Several criteria of blowup have been found and blowup can only occur through
the blowup of either some geometric quantities or certain space-time norms. For
more details see [4,10–13,19,36,38].

A different approach for the study of the formation of singularities for SQG
comes from the patch-problem, i.e., “sharp fronts” . In this problem one considers
that the scalar θ(x, t) is the characteristic function of some compact and simple
connected domain which depends on time and with smooth boundary. Local exis-
tence for the patch was proven by Rodrigo [51] for a C∞ boundary and by Gancedo
[29] in Sobolev spaces. Córdoba et al. found, in [21], strong numerical evidences of
the formation of a singularity in the boundary of the patch. For further numerical
simulations addressing formation of singularities see [54] and [53]. The possibility
of a splash singularity scenario (i.e. when the interface touches itself on a point but
the curve does not lose regularity) was ruled out by Gancedo and Strain [30].

Through a different motivation, Cordoba et al. [20], Fefferman and Rodrigo
[27] and Fefferman et al. [26] studied the existence of a special type of solutions
that are known as “almost sharp fronts” for SQG. These solutions can be thought
of as a regularization of a front, with a small strip around the front in which the
solution changes (reasonably) from one value of the front to the other. These are

strong solutions of the equation with large gradient (∼ (Width of the strip)
−1

).
The main purpose of the paper is to show the following theorem:

Theorem 1.1. There is a nontrivial global smooth solution for the SQG equa-
tions that has finite energy.

It is well known that radial functions are stationary solutions for (1.1) due to
the structure of the nonlinear term. The solutions that will be constructed in this
paper are a smooth perturbation in a suitable direction of a specific radial function.
The smooth profile we will perturb satisfies (in polar coordinates)

θ(r) ≡

⎧

⎨

⎩

1 for 0 ≤ r ≤ 1− a
smooth and decreasing for 1− a < r < 1

0 for 1 ≤ r < ∞
,

where a is a small number (below we will impose some more constraints in this
profile). In addition the dynamics of these solutions consist of global rotating level
sets with constant angular velocity. These level sets are a perturbation of the circle.
The limit case a = 0 gives rise to the well known V-state solution for SQG, i.e.,



1. INTRODUCTION 3

a global rotating patch which solves weakly (1.1). The existence of V-states with
C∞ boundary for SQG was proven in [7]. It was shown in [8] that the boundary
of these solutions is actually analytic.

The proofs of these results are motivated by the ones for 2D incompressible
Euler in the simply connected case; Burbea in [3] proved the existence of V-states
for Euler and C∞-regularity for its boundary was proved by Hmidi at al. in [34]
(see also [32]).

The paper is organized as follows: section 2 is devoted to the reformulation of
the equations (1.1) in new variables. In section 3 we state the main theorem and
present the Crandall-Rabinowitz (C-R) theorem which will be the main tool in our
proof. In section 4 we check that our equation satisfies the hypotheses of the C-R
theorem. This will be the main part of our work.

In particular section 4.3 is different from previous analysis. We stress the
following main differences:

• The study of the linear problem is now reduced to a functional equation,
as opposed to a scalar equation (which was in the patch case). Even
the existence of nontrivial elements in the kernel of the linear part is not
evident a priori.

• There is no algebraic formula for neither the eigenvalue nor the eigenvec-
tor, not even in an implicit way (such as in [8]). This makes the proof
of the dimensionality of the kernel much harder since one needs to show
that the eigenvalue is simple and have some control of the rest of the
eigenvalues.

Remark 1.2. In a forthcoming paper [6], by using the same techniques, we are
able to extend our construction to the 2D Incompressible Euler equations.

Finally, in Appendix A, we compute the asymptotics and bounds on the error
terms of some of the elliptic integrals that appear and Appendix B is devoted to
discuss the details of the computer-assisted code and its implementation, as well as
to show the rigorous numerical bounds used in the theorems. Appendix C contains
an explicit description of two big matrices used in the proofs.

A major theme of our work is the interplay between rigorous computer calcu-
lations and traditional mathematics. We use interval arithmetics as part of a proof
whenever they are needed.

Advances in computing power have made rigorous computer-assisted proofs
realizable. Naturally, floating-point operations can result in numerical errors. In
order to overcome these, we will employ interval arithmetics to deal with this issue.
The main paradigm is the following: instead of working with arbitrary real numbers,
we perform computations over intervals which have representable numbers by the
computer as endpoints in order to guarantee that the true result at any point
belongs to the interval by which is represented. On these objects, an arithmetic is
defined in such a way that we are guaranteed that for every x ∈ X, y ∈ Y

x ⋆ y ∈ X ⋆ Y,

for any operation ⋆. For example,

[x, x] + [y, y] = [x+ y, x+ y]

[x, x]× [y, y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}].
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We can also define the interval version of a function f(X) as an interval I that
satisfies that for every x ∈ X, f(x) ∈ I. Rigorous computation of integrals has
been theoretically developed since the seminal works of Moore and many others (see
[2,22,40,41,47,55] for just a small sample). In our computations, all arithmetic
will be double precision (64 bits).



CHAPTER 2

The equations

In this chapter we describe the equation that a global rotating solution with
constant angular velocity of SQG must satisfy. We will look to the level sets of
this solution rather than the solution itself. Let’s assume that θ(x, t) is a smooth
solution of (1.1) with initial data θ0(x). On θ0(x) we will assume that its level sets
can be parameterized by z0(α, ρ) in such a way that

θ0(z0(α, ρ)) = f(ρ)

for some smooth and even function f : R → R. The application z0(α, ρ) satisfies:

(1) It is one to one from {(α, ρ) ∈ R2 : −π ≤ α < π, 0 < ρ < ∞} to R2 \ {0}.
(2) For all α, z0(α, 0) = (0, 0).
(3) For fixed ρ > 0, zi0(α, ρ), with i = 1, 2, are 2π-periodic and z0(α, ρ), with

−π ≤ α < π, is a closed and C1 curve in R2 satisfying the chord-arc
condition. Also we parametrize this curve counterclockwise with α.

(4) It is differentiable with respect to α and ρ in T×[0,∞), |z0 ρ(α, ρ)| > c > 0
in T × [0,∞), |z0α(α, ρ)| > 0 in T × (0,∞) and z⊥0α(α, ρ) · z0 ρ(α, ρ) <
0 for −π ≤ α < π and 0 < ρ < ∞.

Because of the transport character of the equation (1.1) and by continuity we
can assume that the level sets of the solution θ(x, t) at time t can be parameterized
by an application z(α, ρ, t) such that

θ(z(α, ρ, t), t) = f(ρ),(2.1)

and it satisfies properties 1, 3 and 4.
Property 2 changes to

z(α, 0, t) = c(t) for all α ∈ T,

where, here, c(t) is a vector in R2.
Differentiating (2.1) with respect to α and with respect to ρ we have that

zα(α, ρ, t) · ∇θ(z(α, ρ, t), t) = 0

zρ(α, ρ, t) · ∇θ(z(α, ρ, t), t) = fρ(ρ).

Therefore

∇θ(z(α, ρ, t)) =
fρ(ρ)

z⊥α · zρ(α, ρ, t)
z⊥α (α, ρ, t),(2.2)

5



6 2. THE EQUATIONS

Taking a time derivative in (2.1) and using (1.1) and (2.2) yields

0 =
d

dt
θ(z(α, ρ, t), t) = ∂tθ(z(α, ρ, t), t) + zt(α, ρ, t) · ∇θ(z(α, ρ, t), t)

=(−u(z(α, ρ, t), t) + zt(α, ρ, t)) · ∇θ(z(α, ρ, t), t)

= (−u(z(α, ρ, t), t) + zt(α, ρ, t)) · z⊥α (α, ρ, t)
fρ(ρ)

z⊥α · zρ(α, ρ, t)
.

This last expression is the equation that the level sets z(α, ρ, t) of the solutions
θ(x, t) satisfy.

Notice that since u(x, t) = R⊥θ(x, t) we can also write u(x, t) = −Λ−1∇⊥θ(x, t)
and therefore

u(z(α, ρ, t), t) = − 1

2π

∫

R2

1

|z(α, ρ, t)− y|∇
⊥θ(y, t)dy

= − 1

2π

∫ ∞

0

∫ π

−π

1

|z(α, ρ, t)− z(α′, ρ′, t)|fρ(ρ
′)zα(α

′, ρ′)dα′dρ′.

where we just did the change of variables y = z(α′, ρ′, t) and used (2.2).
Conversely, if z(α, ρ, t) satisfies the equation

(−u(z(α, ρ, t), t) + zt(α, ρ, t)) · z⊥α (α, ρ, t)
fρ(ρ)

z⊥α · zρ(α, ρ, t)
= 0(2.3)

z(α, ρ, 0) = z0(α, ρ)

with

u(z(α, ρ, t), t) = − 1

2π

∫ ∞

0

∫ π

−π

1

|z(α, ρ, t)− z(α′, ρ′, t)|fρ(ρ
′)zα(α

′, ρ′)dα′dρ′,(2.4)

we can prove that the function θ : R2×R → R defined by (2.1) is a solution of the
equation (1.1).

Let us assume now that supp (fρ) ⊂ [1− a, 1], where 0 < a < 1 will be chosen
later. Then, in order to find a solution for SQG, we can solve the equation

(zt(α, ρ, t)− u(z(α, ρ, t), t)) · z⊥α (α, ρ, t) = 0,

with u(z(α, ρ, t), t) given by (2.4), in the domain ρ ∈ (1− a, 1), α ∈ T. After that
we extend the solution z(α, ρ, t) to the domain 0 ≤ ρ < ∞, −π ≤ α < π in a
smooth way and finally define θ(x, t) through equation (2.1).

In addition, we will assume that our solution rotates with angular velocity λ,
counterclockwise. Hence

z(α, ρ, t) = O(t)x(α, ρ), O(t) =

(
cos(λt) − sin(λt)
sin(λt) cos(λt)

)

This implies on one hand

zt(α, ρ, t) = Ot(t)x(α, ρ)

= λ

(
− sin(λt) − cos(λt)
cos(λt) − sin(λt)

)

x(α, ρ),

zα(ρ, α, t) = O(t)xα(α, ρ),
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and

zt · z⊥α (α, ρ, t) = 〈Ot(t)x(α, ρ), (O(t)xα(α, ρ))
⊥〉

= 〈Ot(t)x(α, ρ),O(t)x⊥
α (α, ρ)〉

= 〈OTOt(t)x(α, ρ), x
⊥
α (α, ρ)〉

= −λ〈x(α, ρ), xα(α, ρ)〉.
On the other hand from (2.4) we see that

u(z(α, ρ, t), t) = −O 1

2π

∫ ∞

0

∫ π

−π

1

|x(α, ρ)− x(α′, ρ′)|fρ(ρ
′)xα(α

′, ρ′)dα′dρ′

≡ Ou(x(α, ρ)).

Thus

〈u(z(α, ρ, t), t), z⊥α (α, ρ, t)〉 = 〈O(t)u(x(α, ρ)),O(t)x⊥
α (α, ρ)〉 = 〈u(x(α, ρ)), x⊥

α 〉,
which yields having to solve, for the pair (x(α, ρ), λ),

− λx(α, ρ) · xα(α, ρ)

+
1

2π
x⊥
α (α, ρ) ·

∫ ∞

0

∫ π

−π

fρ(ρ
′)

|x(α, ρ)− x(α′, ρ′)|xα(α
′, ρ′)dα′dρ′ = 0.

(2.5)

We now write x(α, ρ) in polar coordinates

x(α, ρ) = r(α, ρ)(cos(α), sin(α)).(2.6)

This choice restricts the class of functions we are considering. However this restric-
tion will not be strong enough and we will be able to find a solution.

We have the following relations:

xα(α, ρ) = rα(α, ρ)(cos(α), sin(α)) + r(α, ρ)(− sin(α), cos(α))

= rα(α, ρ)n(α) + r(α, ρ)t(α)

x⊥
α (α, ρ) = rα(α, ρ)n

⊥(α) + r(α, ρ)t⊥(α) = rα(α, ρ)t(α)− r(α, ρ)n(α)

xα(α
′, ρ′) · x⊥

α (α, ρ) = rα(α, ρ)rα(α
′, ρ′)n(α′) · t(α)− rα(α

′, ρ′)r(α, ρ)n(α) · n(α′)

+ rα(α, ρ)r(α
′, ρ′)t(α′) · t(α)− r(α, ρ)r(α′, ρ′)n(α) · t(α′),

where

n(α) · n(α′) = cos(α− α′)

t(α) · t(α′) = cos(α− α′)

n(α′) · t(α) = − sin(α− α′)

n(α) · t(α′) = sin(α− α′).

Moreover, we have that

x(α, ρ) · xα(α, ρ) = r(α, ρ)n(α) · (rα(α, ρ)n(α) + r(α, ρ)t(α)) = r(α, ρ)rα(α, ρ).

Therefore, equation (2.5) reads

F [r, λ] = 0 in ρ ∈ (1− a, 1), α ∈ T,(2.7)
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with

F [r, λ]

(2.8)

≡ λrα(α, ρ)−
1

2π

∫ ∞

0

∫ π

−π

fρ(ρ
′)

|x(α, ρ)− x(α′, ρ′)| cos(α− α′)(rα(α
′, ρ′)

− rα(α, ρ))dα
′dρ′

+
rα(α, ρ)

2πr(α, ρ)

∫ ∞

0

∫ π

−π

fρ(ρ
′)

|x(α, ρ)− x(α′, ρ′)| cos(α− α′)(r(α′, ρ′)− r(α, ρ))dα′dρ′

− 1

2πr(α, ρ)

∫ ∞

0

∫ π

−π

fρ(ρ
′)

|x(α, ρ)− x(α′, ρ′)| sin(α− α′)(r(α, ρ)r(α′, ρ′)

+ rα(α, ρ)rα(α
′, ρ′))dα′dρ′,

where x(α, ρ) is given by (2.6) and we have added and subtracted

rα(α, ρ)

2πr(α, ρ)

∫ ∞

0

∫ π

−π

fρ(ρ
′)

|x(α, ρ)− x(α′, ρ′)| cos(α− α′)r(α, ρ)dα′dρ′

for cosmetic reasons.
The rest of the paper consists in finding a nontrivial solution (r(α, ρ), λ) of

(2.7) and with rρ(α, ρ) > c > 0.



CHAPTER 3

Main theorem and Crandall-Rabinowitz (C-R)
theorem

This chapter is devoted to state the main theorem of the paper. But firstly,
we will fix the function f(ρ). The derivative of this function will be given by the
expression

a

2
fρ (ρ)(3.1)

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 1
2β9 (126β

4 − 420β3(1 + ρ̃) + 540β2(1 + ρ̃)2

−315β(1 + ρ̃)3 + 70(1 + ρ̃)4)(1 + ρ̃)5 if − 1 ≤ ρ̃ ≤ −1 + β

−0.5 if − 1 + β ≤ ρ̃ ≤ 1− β
1

2β9 (126β
4 + 420β3(−1 + ρ̃) + 540β2(−1 + ρ̃)2

+315β(−1 + ρ̃)3 + 70(−1 + ρ̃)4)(−1 + ρ̃)5 if 1− β ≤ ρ̃ ≤ 1

where β will be chosen later and ρ̃ = 2
a (ρ − 1) + 1. We take f(1) = 0. This

expression will be used in order to compute some integrals where fρ(ρ) arises. Next
we describe the main properties of this function:

(1) The function f(ρ) defined in (1−a, 1) admits a C4-extension (we still call
it f) to R. This extension is given by

f(ρ) =

⎧

⎨

⎩

1 ρ ≤ 1− a
f(ρ) 1− a < ρ < 1
0 ρ ≥ 1

⎫

⎬

⎭
.

(2) It is strictly decreasing in (1− a, 1).

(3) The derivative fρ(ρ) is constant for 1− a+ aβ
2 ≤ ρ ≤ 1− aβ

2 .

Remark 3.1. Due to the computer-assisted nature of some parts of the proof,
the choice of f(ρ) and all the parameters of the problem (n, a, β) need to be ex-
plicit. A similar strategy works for other n-fold symmetric solutions, and more
regular solutions can be obtained by choosing more regular (explicit) profiles f if
the computer-assisted parts of the proof yield suitable numbers.

Theorem 3.2. Let a = 0.05 and β = 2
512 = 2−8 and consider the domain

Ωa ≡ {(α, ρ) : α ∈ T, 1− a < ρ < 1}
and f ∈ C4([1− a, 1]) as in (3.1). Then there exists a branch of nontrivial smooth
solutions, with 3−fold symmetry, of equation (2.7), in H4,3(Ωa), bifurcating from
r(α, ρ) = ρ and λ = λ3 for some λ3 ∈ R.

Remark 3.3. Nontrivial solutions means that the function r(α, ρ) depends
on α in a nontrivial way. See Definition 4.5 for a precise definition of the space
Hk,l(Ωa).

9



10 3. MAIN THEOREM AND CRANDALL-RABINOWITZ (C-R) THEOREM

From chapter 2 is clear that Theorem 1.1 follows from Theorem 3.2.
The proof of Theorem 3.2 relies on the Crandall-Rabinowitz theorem. We recall

here the statement of this theorem from [23] for expository purposes.

Theorem 3.4 (Crandall-Rabinowitz). Let X, Y be Banach spaces, V a neigh-
borhood of 0 in X and

F :V × (−1, 1) → Y

(r, μ) → F [r, μ]

have the properties

F [0, μ] = 0 for any |μ| < 1.(3.2)

The partial derivatives ∂µF , ∂rF and ∂2
µrF exist and are continuous.(3.3)

N (∂rF [0, 0]) and Y/R(∂rF [0, 0]) are one-dimensional.(3.4)

∂2
µrF [0, 0]r0 �∈ R(∂rF [0, 0]), where N (∂rF [0, 0]) = span r0.(3.5)

(Here N and R denote the kernel and range respectively). If Z is any complement
of N (∂rF (0, 0)) in X, then there is a neighborhood U of (0, 0) in X×R, an interval
(−b, b), and continuous functions

φ : (−b, b) → R ψ : (−b, b) → Z

such that φ(0) = 0, ψ(0) = 0 and

F−1(0) ∩ U = {(ξr0 + ξψ(ξ), φ(ξ)) : |ξ| < b} ∪ {(0, t) : (0, t) ∈ U}.
We will check in the following section the hypotheses of the C-R theorem.



CHAPTER 4

Checking the hypotheses of the C-R theorem for
the equation 2.7

In this chapter we will check the hypotheses of the C-R theorem in suitable Ba-
nach spaces X and Y in order to find a nontrivial branch of the solution (r(α, ρ), λ)
of (2.7). In order to be able to apply this theorem in the way that it is written in
chapter 3 we will define new variables:

r(α, ρ) ≡ r(α, ρ)− ρ(4.1)

μ ≡ λ− λ3(4.2)

F [r, μ] ≡ F [r + ρ, λ3 + μ](4.3)

with λ3 to be fixed later. Thus we understand (2.7) as an equation for (r, μ) rather
that for (r, λ). In fact, we look for solutions of

F [r, μ] = 0 in Ωa.(4.4)

Let us also define the spaces Hk,l(Ωa) for k, l ∈ N and k ≥ l as follows:
⎧

⎨

⎩
r ∈ L2(Ωa) : ||r||2L2(Ωa)

+ ||∂l
ρr||2L2(Ωa)

+

l∑

j=0

||∂k−j
α ∂j

ρr||2L2(Ωa)
< ∞

⎫

⎬

⎭
.(4.5)

We will work in the space H4,3 and notice that H4,3 ⊂ C2. This is shown
below. The reason why we work with this space is because the functional F takes
1 derivative in α but no derivatives in ρ. Due to this anisotropy we would not be
able to apply the C-R theorem by solely using homogeneous spaces (see [42] for
additional information).

Lemma 4.1. Let Ω ∈ [0, 1]× [−π, π] and f : Ω → R ∈ H4,3(Ω). Then:

‖f‖L∞(Ω) + ‖∂2
xf‖L∞(Ω) + ‖∂2

αf‖L∞(Ω) ≤ C‖f‖H4,3(Ω)

Proof. If f ∈ H4,3(Ω), then:

‖f‖2L2(Ω) + ‖∂3
xf‖2L2(Ω) + ‖∂4

αf‖2L2(Ω) + ‖∂3
α∂xf‖2L2(Ω)

+ ‖∂2
α∂

2
xf‖2L2(Ω) + ‖∂α∂3

xf‖2L2(Ω) < C

On one hand, fα ∈ H3(Ω), since

‖fα‖2H3(Ω) = ‖fα‖2L2(Ω) + ‖∂3
xfα‖2L2(Ω) + ‖∂3

αfα‖2L2(Ω)

� ‖f‖2L2(Ω) + ‖∂4
αf‖2L2(Ω) + ‖∂3

x∂αf‖2L2(Ω) + ‖∂4
αf‖2L2(Ω) � ‖f‖H4,3(Ω)

11
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This implies that fα ∈ C1+γ(Ω), yielding ‖fαα‖L∞(Ω) ≤ C and ‖fαx‖L∞(Ω) ≤
C for some constant C.

On the other hand, if we define

g(α) =

∫ 1

0

∂2
xf(x, α)dx,

we claim that g ∈ H1([−π, π]). In order to see this, we can compute

‖g‖2L2([−π,π]) =

∫ π

−π

(∫

∂2
xf(x, α)dx

)2

dα

≤
∫ π

−π

∫ 1

0

|∂2
xf(x, α)|2dxdα ≤ ‖f‖H4,3(Ω).

In addition

‖gα‖2L2([−π,π]) =

∫ π

−π

(∫

∂2
x∂αf(x, α)dx

)2

dα

≤
∫ π

−π

∫ 1

0

|∂2
x∂αf(x, α)|2dxdα ≤ ‖f‖H4,3(Ω).

Therefore

‖g‖L∞(Ω) ≤ ‖g‖L∞([−π,π]) ≤ ‖g‖H1([−π,π]) ≤ C‖f‖H4,3(Ω).

We have that

∂2
xf(x, α) = ∂2

xf(x, α)−
∫ 1

0

∂2
xf(x

′, α)dx′ + g(α),

which we can bound in the following way:

‖∂2
xf‖L∞(Ω) ≤

∥
∥
∥
∥

∫ 1

0

∂2
xf(x, α)− ∂2

xf(x
′, α)dx′

∥
∥
∥
∥
L∞(Ω)

+ ‖g‖L∞(Ω).

In addition:

∫ 1

0

∂2
xf(x, α)− ∂2

xf(x
′, α)dx′ =

∫ 1

0

∫ x

x′
∂3
xf(x

′′, α)dx′′dx′ = h(α, x)

We now fix x and we show that ‖g(α, x)‖H1([−π,π]) is uniformly bounded. We
achieve that by using the following estimate:
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‖h(α, x)‖L2([−π,π]) ≤
∫ 1

0

∫ x

x′

(∫ π

−π

|∂3
xf(x

′′, α)|2dα
) 1

2

dx′′dx′

≤
∫ 1

0

|x− x′| 12
(∫ x

x′

∫ π

−π

|∂3
xf(x

′′, α)|2sign(x− x′)dαdx′′
) 1

2

dx′

≤ C

(
∫ 1

0

(∫ 1

0

∫ π

−π

|∂3
xf(x

′′, α)|2dαdx′′
) 1

2

dx′
)

≤ C‖f‖H4,3(Ω),

where C is independent of x. We can do the same procedure with ∂αh(α, x),
getting

‖h(α, x)‖L∞([−π,π]) ≤ ‖h(α, x)‖H1([−π,π]) ≤ C‖f‖H4,3(Ω)

Taking the supremum over x yields the desired result. �

The theorem we will prove is the following:

Theorem 4.2. Let f and a be as in Theorem 3.2. Then there exist

(r0(α, ρ), λ3) ∈ H4,3(Ωa)× R,

an interval (−b, b), and continuous functions

φ : (−b, b) → R ψ : (−b, b) → Z

with φ(0) = 0, ψ(0) = 0, such that, if Z is any complement of span{r0} in H4,3(Ωa),

F [ξr0 + ξψ(ξ), φ(ξ)] = 0,

for |ξ| < b.
In addition these solutions will have 3−fold symmetry.

Here it is important to remark that this theorem provides a nontrivial solution
r(α, ρ) = ρ + ξr0 + ξψ(ξ) of (2.7) with λ = λ3 + φ(ξ) satisfying |rρ(α, ρ)| > c > 0
if we take ξ small enough. Theorem 3.2 follows from Theorem 4.2.

4.1. Step 1. The functional setting and the hypothesis 1

Our first step is to define the spaces we will work with in order to apply the

C-R theorem. The spaces Hk,l
3,even(Ωa) and Hk,l

3,odd(Ωa) will be given by
{

r ∈ Hk,l(Ωa) : r(α, ρ) =
∞∑

m=1

r̂m(ρ) cos(3mα)

}

,

and
{

r ∈ Hk,l(Ωa) : r(α, ρ) =

∞∑

m=1

r̂m(ρ) sin(3mα)

}

,

respectively.
One of the purposes to introducing these spaces, which only represent frequen-

cies multiples of 3, is to be able to show the 3−fold symmetry of the solution. Our
starting space X will be H4,3

3,even(Ωa).
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The target space Y will be H3,3
3,odd(Ωa). Notice that a function in H4,3(Ωa)

belongs to C2,2(Ωa) = C1(Ωa). Finally we take the neighbourhood V of 0 in X to
be

V ≡
{

r ∈ H4,3
3,even(Ωa) : ||r||H4,3

3,even(Ωa)
< δ
}

for δ > 0. The parameter δ will be fixed later (small enough).
Given these definitions we need to show the following lemma:

Lemma 4.3. Let F [r, μ] be as in (4.3). Then, for fixed a ∈ (0, 1), there exists
δ > 0 small enough so that

F : V × [−1, 1] → H3,3
3, odd (Ωa).

Proof. Here we recall the definition of the functional

F [r, λ]

≡ λrα(α, ρ)−
1

2π

∫ ∞

0

∫ π

−π

fρ(ρ
′)

|x(α, ρ)− x(α′, ρ′)| cos(α− α′)(rα(α
′, ρ′)

− rα(α, ρ))dα
′dρ′

+
rα(α, ρ)

2πr(α, ρ)

∫ ∞

0

∫ π

−π

fρ(ρ
′)

|x(α, ρ)− x(α′, ρ′)| cos(α− α′)(r(α′, ρ′)− r(α, ρ))dα′dρ′

− 1

2πr(α, ρ)

∫ ∞

0

∫ π

−π

fρ(ρ
′)

|x(α, ρ)− x(α′, ρ′)| sin(α− α′)(r(α, ρ)r(α′, ρ′)

+ rα(α, ρ)rα(α
′, ρ′))dα′dρ′

≡ F1[r, λ] + F2[r] + F3[r] + F4[r],

with r = ρ + r and x = r(cos(α), sin(α)). It is easy to check that F1[r, λ] = λ∂αr

belongs to H3,3
3, odd(Ωa).

Next we show that

Fi[r] ∈ H3,3(Ωa), i = 2, 3, 4.(4.6)

In order to do it we notice that, since || · ||C2(Ωa)
≤ C|| · ||H4,3(Ωa), we can choose, for

fixed a ∈ (0, 1), δ small enough to have that r(α, ρ) > c0(a, δ) > 0 and rρ(α, ρ) >
c1(a, δ) > 0, for every (α, ρ) ∈ Ωa. By comparing equations (2.5) and (2.7) we see
that

(F2[r] + F3[r] + F4[r]) (α, ρ) =− x⊥
α (α, ρ)

2πr(α, ρ)
·
∫ ∞

0

∫ π

−π
fρ(ρ

′)
xα(α′, ρ′)

|x(α, ρ)− x(α′, ρ′)|dα
′dρ′

=
x⊥
α (α, ρ)

2πr(α, ρ)
·
∫ ∞

0

∫ π

−π
fρ(ρ

′)
xα(α, ρ)− xα(α′, ρ′)

|x(α, ρ)− x(α′, ρ′)| dα′dρ′.

with x(α, ρ) = r(α, ρ)(cos(α), sin(α)) and r(α, ρ) = ρ+ r(α, ρ). We will extend the
restriction of the function fρ to the positive real axis fρ|R+ to R by zero. We still
call this extension fρ. Thus, a change of variables yields,

(F2[r] + F3[r] + F4[r]) (α, ρ)

=
x⊥
α (α, ρ)

2πr(α, ρ)
︸ ︷︷ ︸

g(α,ρ)

·
∫ ∞

−∞

∫ π

−π

fρ(ρ− ρ′)
xα(α, ρ)− xα(α− α′, ρ− ρ′)

|x(α, ρ)− x(α− α′, ρ− ρ′)| dα
′dρ′

︸ ︷︷ ︸

B[f,x](α,ρ)

.
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We will use the following notation. For a general function h(α, ρ) we define

h =h(α, ρ)

h′ =h(α′, ρ′)

h′′ =h(α− α′, ρ− ρ′)

Δh =h− h′

Δh′ =h− h′′

Thus we can write

B[f, x] =

∫ ∞

−∞

∫ π

−π

f ′′
ρ

Δx′
α

|Δx′|dα
′dρ′.

Next we look at
3∑

j=0

∂3−j
α ∂j

ρ (g(α, ρ)B[f, x](α, ρ)) .(4.7)

We will consider two groups of terms. Group 1 consists of the terms

g∂3
αB, ∂αg∂

2
αB, ∂αg∂

2
αρB, ∂ρg∂

2
αB, g∂2

α∂ρB

∂αg∂
2
ρB, ∂ρg∂

2
αρB, g∂2

ρ∂αB, ∂ρg∂
2
ρB, g∂3

ρB.

Group 2 consists of the terms

∂3
αgB, ∂2

αg∂αB, ∂2
αg∂ρB, ∂2

αρg∂αB, ∂2
ρ∂αgB,

∂2
ρg∂αB, ∂2

αρg∂ρB, ∂2
ρg∂ρB, ∂3

ρgB.

It is easy to check that expression (4.7) is given by a linear combination of the
terms in group 1 and group 2. On one hand, since in group 1 there is no more than
one derivative acting on g and

||g||L∞(Ωa)
, ||∂αg||L∞(Ωa)

, ||∂ρg||L∞(Ωa)
≤ C(δ, a)

in order to bound its terms we need to estimate

∂3
αB, ∂2

αB, ∂2
αρB, ∂2

α∂ρB, ∂2
ρB, ∂2

ρ∂αB, ∂3
ρB.

On the other hand, since

∂2
αg, ∂2

ρg, ∂2
αρg, ∂3

αg, ∂3
ρg, ∂2

α∂ρg, ∂2
ρ∂αg,

have L2-norms bounded by some constant depending on δ and a, in order to esti-
mate the terms in group 2 we just need to control the L∞ norms of B, ∂αB, ∂ρB.
These norms are bounded by ||B||H3(Ωa)

.

In addition since the L2-norm of B[f, x] is easy to control we just have to
estimate the L2-norms of the derivatives of order 3 of B[f, x].

Lemma 4.4. Let r = ρ + r, where r ∈ V , and x = r(cos(α), sin(α)), the
derivatives ∂3

σ1,σ2,σ3
B[f, x] where σi is either α or ρ, with i = 1, 2, 3, are in L2 with

norm bounded by a constant C just depending on δ, a and ||f ||C4 .

Proof. This lemma will be proved by using the following lemma:

Lemma 4.5. Let r = ρ+ r, where r ∈ V , and x = r(cos(α), sin(α)), then there
exists a constant c(a, δ) > 0 such that

|x(α, ρ)− x(α− α′, ρ− ρ′)|2 ≥ c(a, δ)
(
α′2 + ρ′2

)
.
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Proof. Because of the definition we have that

|Δx′|2 = r2 + r′′2 − 2rr′′ cos(α′) = (Δr′)2 + 4rr′′ sin2
(
α′

2

)

.

Now we notice that r = ρ+ r and then, for ρ ∈ (1− a, 1), there exists c0(a, δ) > 0
such that r ≥ c0(a, δ), where c0(a, δ) is increasing with a and decreasing with δ.
Since ρ− ρ′ belongs to (1−a, 1), r′′ ≥ c0(a, δ) too. Both inequalities together yield

|Δx′|2 ≥ (r − r′′)2 + c0(a, δ) sin
2

(
α′

2

)

.

In addition, r − r′ = ρ′ + Δr′, and |r′| ≤ C(δ)(|α′| + |ρ′|) where C(δ) → 0 when
δ → 0. Then

(r − r′′)2 ≥ ρ′2 − C(δ)
(
α′2 + ρ′2

)

where C(δ) → 0 when δ → 0. Therefore we obtain that, by making δ small enough

|Δx′|2 ≥ c(a, δ)
(
α′2 + ρ′2

)
. �

Let ∂ mean differentiation with respect to either α or ρ. Then, the derivatives

∂3
(

f ′′
ρ

Δx′
α

|Δx′|

)

, consist of terms of the form

∂3f ′′
ρ

Δx′
α

|Δx| , f ′′
ρ ∂

3Δx′
α

1

|Δx′| , f ′′
ρΔx′

α∂
3 1

|Δx′| ,

∂2f ′′
ρ ∂Δx′

α

1

|Δx′| , ∂2f ′′
ρΔx′

α∂
1

|Δx′| , ∂f ′′
ρ ∂

2Δx′
α

1

|Δx′| ,

f ′′
ρ ∂

2Δx′
α∂

1

|Δx| , ∂f ′′
ρΔx′

α∂
2 1

|Δx′| , f ′′
ρ ∂Δx′

α∂
2 1

|Δx′|

∂f ′′
ρ ∂Δx′

α∂
1

|Δx′| .

Since f ∈ C4, Lemma 4.5, the fact that

∫ ρ−(1−a)

ρ−1

∫ π

−π

1
√

α′2 + ρ′2
dα′dρ′ ≤ C

and that ||r||C2 ≤ C(δ) we obtain that the terms in ∂3B coming from ∂3f ′′
ρ

Δx′
α

|Δx′|
and ∂2f ′′

ρ ∂Δx′
α

1
|Δx′| are in L∞ with L∞−norm bounded by some constant

C
(

a, δ, ||f ||C4(Ωa)

)

.

The terms in ∂3B coming from f ′′
ρ ∂

3Δx′
α

1
|Δx′| and ∂f ′′

ρ ∂
2Δx′

α
1

|Δx′| all can be

bounded in L2 in the following way. Again we will use the bound for f in C4 and
Lemma 4.5. Let us focus on

∫ ∞

−∞

∫ π

−π

f ′′
ρ

∂3Δxα

|Δx′| dα′dρ′ = ∂3xα

∫ ρ−(1−a)

ρ−1

∫ π

−π

f ′′
ρ

1

|Δx′|dα
′dρ′

−
∫ ∞

−∞

∫ π

−π

f ′′
ρ

∂3x′′
α

|Δx′|dα
′dρ′ ≡ I1 + I2.

(4.8)
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Since
∣
∣
∣
∣
∣

∫ ρ−(1−a)

ρ−1

∫ π

−π

f ′′
ρ

1

|Δx′|dα
′dρ′

∣
∣
∣
∣
∣
≤ C (a, δ, ||f ||C4)

we have that ||I1||L2(Ωa)
≤ C (a, δ, ||f ||C4) ||∂3xα||L2(Ωa)

.

In order to bound I2 we notice that, after a change of variables,

|I2| =
∣
∣
∣
∣

∫ 1

1−a

∫ π

−π

f ′
ρ

|Δx|∂
3x′

αdα
′dρ′
∣
∣
∣
∣

≤ C(a, δ)

∫ 1

1−a

∫ π

−π

|f ′
ρ|

|
√

(α− α′)2 + (ρ− ρ′)2|
|∂3x′

α|dα′dρ′

and therefore Young’s inequality applies to yield

||I2||L2(Ωa)
≤ C (a, δ, ||f ||C4) ||∂3xα||L2(Ωa)

.

It remains to bound the terms with derivatives acting on the factor 1
|Δx′| .

We first will deal with the terms in ∂3B with a factor ∂ 1
|Δx′| i.e., the terms

coming from ∂2
ρf

′′
ρΔx′

α∂
1

|Δx′| , f
′′
ρ ∂

2Δx′
α∂

1
|Δx′| and ∂f ′′

ρ ∂Δx′
α∂

1
|Δx′| . Just a compu-

tation shows that

∂
1

|Δx′| = −∂Δx′ ·Δx′

|Δx′|3

and therefore by Lemma 4.5 and because of x ∈ C2 we have that
∣
∣
∣
∣
∂

1

|Δx′|

∣
∣
∣
∣
≤ C(a, δ)

1
√

α′2 + ρ′2
.

Therefore the terms in ∂3B coming from ∂2
ρf

′′
ρΔx′

α∂
1

|Δx′| , and ∂f ′′
ρ ∂Δx′

α∂
1

|Δx′| are

actually bounded in L∞. The term coming from f ′′
ρ ∂

2Δx′
α∂

1
|Δx′| is bounded as we

did before for I1 + I2 in (4.8).
The term with two derivatives of the factor 1

|Δx′| which causes more difficulties

is f ′′
ρ ∂Δxα∂

2 1
|Δx′| . We will use the following embedding: since xα ∈ H3,3(Ωa) =

H3(Ωa) we know that xα ∈ C1+γ(Ωa) with C1+γ(Ωa)−norm bounded for some
constant C(δ). Then, since,

∂2 1

|Δx′| = −∂2Δx′ ·Δx′

|Δx′|3 − ∂Δx′ · ∂Δx′

|Δx′|3 + 3
∂Δx′ ·Δx′∂Δx′ ·Δx′

|Δx′|5

we can use the previous embedding to estimate

∣
∣
∣
∣
∂Δx′

α∂
2 1

|Δx′|

∣
∣
∣
∣
≤ C(a, δ)

(

1

(α′2 + ρ′2)1−
α
2
|∂2Δx′|+ 1

√

α′2 + ρ′2
|∂Δx′

α|
)

.

Therefore by using again Young’s inequality we bound the term
∫ ∞

−∞

∫ π

−π

f ′
ρΔx′

α∂
2 1

|Δx′|dα
′dρ′ ≤ C(a, δ, ||f ||C4).



18 4. CHECKING THE HYPOTHESES OF THE C-R THEOREM FOR THE EQUATION 2.7

Finally we compute three derivatives of the factor 1
|Δx′| . The terms arising from

these derivatives are linear combinations of terms with the structures

∂3Δx′ ·Δx′

|Δx′|3 ,
∂2Δx′ · ∂Δx′

|Δx′|3 ,
∂2Δx′ ·Δx′∂Δx′ ·Δx′

|Δx′|5 ,

∂Δx′ · ∂Δx′∂Δx′ ·Δx′

|Δx′|5 ,
∂Δx′ ·Δx′∂Δx′ ·Δx′∂Δx′ ·Δx′

|Δx′|7

and then, a similar analysis we did before helps us to prove that

∫ ∞

−∞

∫ π

−π

f ′
ρΔx′

α∂
3 1

|Δx′|dα
′dρ′,

is bounded in L2 for a constant C(a, δ, ||f ||C4). This concludes the proof of Lemma
4.4. �

Thus we have proven that (4.6) holds. This finishes the proof of Lemma 4.3. �

Therefore, in order to prove that,

F : V × (−1, 1) → H3,3
3,odd(Ωa)

we just need to show that if

r(−α, ρ) =r(α, ρ)

and

r

(

α+
2nπ

3
, ρ

)

=r(α, ρ)

for n ∈ N, then

F (−α, ρ) = −F (α, ρ)

and

F

(

α+
2nπ

3
, ρ

)

=F (α, ρ)

for n ∈ N. These two properties are easy to check.
The last part of this section will be to check that the hypothesis 1 in the C-

R theorem holds. This fact is a consequence of radial functions being stationary
solutions of the SQG equation but let us check it on (2.8). If we take r = 0, i.e.,
r = ρ, the only term in (2.8) that is not trivially zero is the last integral. In order
to check that this integral is zero we just notice that the integrand is odd in α.

4.2. Step 2. The partial derivatives of the functional F

We need to prove the existence and the continuity of the Gateaux derivatives
∂rF [r, λ],∂λF [r, λ] and ∂2

rλF [r, λ]. We have the following lemma
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Lemma 4.6. For all r ∈ V δ and μ ∈ R the partial derivatives ∂rF [r, λ],∂λF [r, λ]
and ∂2

rλF [r, λ] exist and are continuous. In addition

∂rF [0, μ]r̃(α, ρ) = ∂rF [ρ, λ]r̃(α, ρ)

= λr̃α(α, ρ)−
1

2π

∫ ∫
fρ(ρ

′) cos(α− α′)(r̃α(α′, ρ′)− r̃α(α, ρ))
√

ρ2 + (ρ′)2 − 2ρρ′ cos(α− α′)
dα′dρ′

+
r̃α(α, ρ)

2π

∫ ∫
fρ(ρ

′) cos(α− α′)(ρ′ − ρ)

ρ
√

ρ2 + (ρ′)2 − 2ρρ′ cos(α− α′)
dα′dρ′

− 1

2π

∫ ∫
fρ(ρ

′)(ρ− ρ′ cos(α− α′)) sin(α− α′)(ρr̃(α′, ρ′)− ρ′r̃(α, ρ))

(ρ2 + (ρ′)2 − 2ρρ′ cos(α− α′))
3
2

dα′dρ′

≡ I0[r̃, λ](α, ρ) + I1[r̃](α, ρ) + I2[r̃](α, ρ) + I3[r̃](α, ρ).

Proof. The lemma is trivial for the derivatives involving λ. The continuity
of the derivative with respect to r also follows since f ∈ C4 and is compactly
supported. �

4.3. Step 3. Analysis of the linear operator

Now we have to study the dimension of both the kernel and image of the
operator ∂rF [ρ, λ]. We will first show that for a certain value of λ that we will call
λ3 the kernel of the operator ∂rF [ρ, λ3] is one dimensional. After that we will show
that the codimension of the image of ∂rF [ρ, λ3] is also one dimensional. This will
finish the checking of the hypothesis 3 in the C-R theorem. Propositions 4.7 and
4.35 are the main results of this section.

Proposition 4.7. There exists a pair (r̃0, λ3) ∈ H4,3
3,even(Ωa)× R, with r̃0 not

identically zero, such that

∂rF [ρ, λ3]r̃0(α, ρ) = 0.(4.9)

Moreover r̃0 is unique modulo multiplication by constant.

Proof. The proof of Proposition 4.7 consists of the following steps:

(1) The equation for the radial part. We introduce in (4.9) the m-fold
ansatz:

r̃(α, ρ) = ρB(ρ) cos(3mα)

and we obtain an equation for the pair (B(ρ), λ), which we will write in
the following form:

ΘmB − λB = 0 in (1− a, 1).(4.10)

(See the equation (4.14) below).
(2) Existence of solutions of equation (4.9). We solve the equation (4.10)

for m = 3 and find a solution (B3, λ3) ∈ H3((1 − a, 1)) × R of (4.10).

Therefore r̃0 = ρB3(ρ) cos(3α) ∈ H4,3
3,even(Ωa) satisfies (4.9).

(3) Uniqueness for the equation (4.9). We notice that we still need to
show uniqueness for (4.9), since, until now, we have that, given λ3 there
is a unique B3 such that (4.10) holds. But this fact does not imply that
there is only one solution (modulo multiplication by constants), r̃0, to
(4.9). Indeed, we need to show that the equation

∂rF [ρ, λ3]
(
b3m(ρ) cos(3mα)

)
= 0 for m > 1

implies b3m(ρ) = 0 for m > 1.
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4.3.1. The equation for the radial part. Taking r̃(α, ρ) = ρB(ρ) cos(mα)
we have that ∂rF [ρ, λ]r̃(α, ρ) is given by the following terms:

I0[r̃, λ](α, ρ) = −λmρB(ρ) sin(mα)

I2[r̃](α, ρ) = − m

2π
B(ρ) sin(mα)

∫ ∞

−∞

∫ π

−π

fρ(ρ′) cos(α− α′)(ρ′ − ρ)
√

ρ2 + (ρ′)2 − 2ρρ′ cos(α− α′)
dα′dρ′

= − m

2π
B(ρ) sin(mα)

∫ ∞

−∞
fρ(ρ

′)(ρ′ − ρ)

(

∫ π

−π

cos(x)
√

ρ2 + (ρ′)2 − 2ρρ′ cos(x)
dx

)

dρ′

We move on to I1[r̃, λ](α, ρ). We have that

r̃α(α
′, ρ′)− r̃α(α, ρ) = −m(ρ′B(ρ′) sin(mα′)− ρB(ρ) sin(mα))

= −m(ρ′B(ρ′) sin(mα) cos(m(α− α′))

− ρ′B(ρ′) cos(mα) sin(m(α− α′))
︸ ︷︷ ︸

will integrate to 0

−ρB(ρ) sin(mα)).

Therefore

I1[r̃](α, ρ) = −m

2π
sin(mα)

∫ ∞

−∞

∫ π

−π

fρ(ρ
′)
(ρB(ρ)− ρ′B(ρ′) cos(mx)) cos(x)
√

ρ2 + (ρ′)2 − 2ρρ′ cos(x)
dxdρ′

Finally, we develop I3[r̃](α, ρ). Using:

ρr̃(α′, ρ′)− ρ′r̃(α, ρ) = ρρ′(B(ρ′) cos(mα′)−B(ρ) cos(mα))

= ρρ′(B(ρ′) sin(m(α− α′)) sin(mα)

+B(ρ′) cos(m(α− α′)) cos(mα)−B(ρ) cos(mα)
︸ ︷︷ ︸

will integrate to 0

)

This implies that

I3[r̃](α, ρ) = − 1

2π
sin(mα)

∫ ∞

−∞
fρ(ρ

′)B(ρ′)

(

∫ π

−π

sin(mx)(ρ− ρ′ cos(x))ρρ′ sin(x)

(ρ2 + (ρ′)2 − 2ρρ′ cos(x))
3
2

dx

)

dρ′

Integrating by parts, using that

ρρ′ sin(x)

(ρ2 + (ρ′)2 − 2ρρ′ cos(x))
3
2

= −∂x

(
1

(ρ2 + (ρ′)2 − 2ρρ′ cos(x))
1
2

)

we get that I3[r̃](α, ρ) is given by:

I3[r̃](α, ρ) = −m

2π
sin(mα)

∫ ∞

−∞

fρ(ρ
′)B(ρ′)

(

∫ π

−π

cos(mx)(ρ− ρ′ cos(x))
√

ρ2 + (ρ′)2 − 2ρρ′ cos(x)
dx

)

dρ′

− 1

2π
sin(mα)

∫ ∞

−∞

fρ(ρ
′)ρ′B(ρ′)

(

∫ π

−π

sin(mx) sin(x)
√

ρ2 + (ρ′)2 − 2ρρ′ cos(x)
dx

)

dρ′

Putting all the pieces together and dividing by sin(mα), the equation we want
to solve is:
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B(ρ)

(

−λmρ− m

2π

∫ ∞

−∞
fρ(ρ

′)ρ′
(
∫ π

−π

cos(x)
√

ρ2 + (ρ′)2 − 2ρρ′ cos(x)
dx

)

dρ′
)

(4.11)

+
2m

2π

∫ ∞

−∞
fρ(ρ

′)ρ′B(ρ′)

(
∫ π

−π

cos(mx) cos(x)
√

ρ2 + (ρ′)2 − 2ρρ′ cos(x)
dx

)

dρ′

− m

2π

∫ ∞

−∞
fρ(ρ

′)ρB(ρ′)

(
∫ π

−π

cos(mx)
√

ρ2 + (ρ′)2 − 2ρρ′ cos(x)
dx

)

dρ′

− 1

2π

∫ ∞

−∞
fρ(ρ

′)ρ′B(ρ′)

(
∫ π

−π

sin(mx) sin(x)
√

ρ2 + (ρ′)2 − 2ρρ′ cos(x)
dx

)

dρ′ = 0.

The inner integrals can be explicitly calculated in terms of EllipticE and El-
lipticK functions for any m. We can simplify the equation (4.11) in the following
way. Letting s(ρ, ρ′) = ρ

ρ′ , we obtain

1
√

ρ2 + (ρ′)2 − 2ρρ′ cos(x)
=

1

ρ′
1

√

1 +
(

ρ
ρ′

)2

− 2 ρ
ρ′ cos(x)

=
1

ρ′
1

√

1 + s2 − 2s cos(x)
,

thus equation (4.11) reads:

B(ρ)

(

−λρ− 1

2π

∫ ∞

−∞
fρ(ρ

′)

(
∫ π

−π

cos(x)
√

1 + s2 − 2s cos(x)
dx

)

dρ′
)

(4.12)

+
2

2π

∫ ∞

−∞
fρ(ρ

′)B(ρ′)

(
∫ π

−π

cos(mx) cos(x)
√

1 + s2 − 2s cos(x)
dx

)

dρ′

− 1

2π

∫ ∞

−∞
fρ(ρ

′)
ρ

ρ′
B(ρ′)

(
∫ π

−π

cos(mx)
√

1 + s2 − 2s cos(x)
dx

)

dρ′

− 1

2mπ

∫ ∞

−∞
fρ(ρ

′)B(ρ′)

(
∫ π

−π

sin(mx) sin(x)
√

1 + s2 − 2s cos(x)
dx

)

dρ′ = 0.

We focus on the term

∫ π

−π

2 cos(mx) cos(x)− s cos(mx)− 1
m sin(mx) sin(x)

√

1 + s2 − 2s cos(x)
dx ≡ T (s).

We remark that cos(mx) = 1
m∂x sin(mx). This implies, on the one hand:

∫ π

−π

2 cos(mx) cos(x)
√

1 + s2 − 2s cos(x)
dx =

1

m

∫ π

−π

2 cos(x)∂x sin(mx)
√

1 + s2 − 2s cos(x)
dx

=
1

m

∫ π

−π

2 sin(x) sin(mx)
√

1 + s2 − 2s cos(x)
dx +

1

m

∫ π

−π

2s cos(x) sin(mx) sin(x)

(1 + s2 − 2s cos(x))3/2
dx

On the other

s

∫ π

−π

cos(mx)
√

1 + s2 − 2s cos(x)
dx =

s2

m

∫ π

−π

sin(mx) sin(x)

(1 + s2 − 2s cos(x))3/2
dx
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Therefore, T (s) can be transformed into

T (s) =
1

m

∫ π

−π

sin(x) sin(mx)
√

1 + s2 − 2s cos(x)
dx+

1

m

∫ π

−π

2s cos(x) sin(mx) sin(x)

(1 + s2 − 2s cos(x))3/2
dx

− s2

m

∫ π

−π

sin(mx) sin(x)

(1 + s2 − 2s cos(x))3/2
dx

=
1

m

∫ π

−π

sin(mx) sin(x)

(1 + s2 − 2s cos(x))3/2
dx =

1

s

∫ π

−π

cos(mx)
√

1 + s2 − 2s cos(x)
dx.

Substituting into (4.12), we have to solve:

B(ρ)

(

−λρ− 1

2π

∫ ∞

−∞
fρ(ρ

′)

(
∫ π

−π

cos(x)
√

1 + s2 − 2s cos(x)
dx

)

dρ′
)

(4.13)

+
1

2π

∫ ∞

−∞
fρ(ρ

′)B(ρ′)
ρ′

ρ

∫ π

−π

cos(mx)
√

1 + s2 − 2s cos(x)
dxdρ′ = 0.

From now on, we will call

I(ρ) = − 1

2π

∫ ∞

−∞
fρ(ρ

′)

⎛

⎜
⎜
⎝

∫ π

−π

cos(x)
√

1 +
(

ρ
ρ′

)2

− 2
(

ρ
ρ′

)

cos(x)

dx

⎞

⎟
⎟
⎠

dρ′

TmB(ρ) =
1

2π

∫ ∞

−∞
fρ(ρ

′)B(ρ′)
ρ′

ρ

∫ π

−π

cos(mx)
√

1 +
(

ρ
ρ′

)2

− 2
(

ρ
ρ′

)

cos(x)

dxdρ′

We will also define

Km(s) =
1

2πs

∫ π

−π

cos(mx)
√

1 + s2 − 2s cos(x)
dx

TmB(ρ) =

∫ ∞

−∞
fρ(ρ

′)B(ρ′)Km

(
ρ

ρ′

)

dρ′

This allows us to write (4.13) as:

Ĩ(ρ)B(ρ) + T̃mB(ρ) = λB(ρ), in (1− a, 1),(4.14)

where T̃m = 1
ρT

m and Ĩ = 1
ρI(ρ). Thus, using the notation of (4.10),

ΘmB(ρ) ≡ Ĩ(ρ)B(ρ) + T̃mB(ρ).

4.3.1.1. Existence of an element in the kernel of ∂rF [ρ, λ3]. In this part we will
study the equation (4.14) in order to obtain an element in the kernel or ∂rF [ρ, λ3]
for some value λ3 ∈ R . We shall show the following proposition:

Proposition 4.8. There exists a solution (B3, λ3) ∈ H3((1− a), 1)×R to the
equation (4.14). In addition, λ3 is simple.

We remark that this proposition yields the next corollary:
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Corollary 4.9. The function r̃0(α, ρ)=ρB3(ρ) cos(3α) belongs to H4,3
3,even(Ωa)

and solves (4.9).

Proof. The proof of Proposition 4.8 is divided in two parts. In the first one
we deal with the operator T̃ in (4.14). In the second one we show existence of pair
(B3, λ3) ∈ H3((1− a, 1))× R solving (4.14) and that λ3 is simple.

(1) Study of the operator T̃m. This part is devoted to studying the oper-

ator T̃m and its derivatives until order 3. Here we recall its definition:

T̃mB(ρ) =
1

ρ

∫ ∞

−∞
fρ(ρ

′)B(ρ′)Km

(
ρ

ρ′

)

dρ′

with

Km(s) =
1

2πs

∫ π

−π

cos(mx)
√

1 + s2 − 2s cos(x)
dx.

The main results here are Corollary 4.15 and Lemma 4.18 that state that
the operator T̃m and its adjoint T̃m∗ are compact operators acting from
Hk to Hk+1 for k = 0, 1, 2.

Let’s compute the derivatives of T̃ 3m.

Lemma 4.10. Let B ∈ C3 then the following equalities hold:

∂ρT̃
mB(ρ) =T̃m

1 ∂ρB(ρ) +
1

ρ

∫ ∞

−∞
∂2
ρf(ρ

′)B(ρ′)
ρ′

ρ
Km

(
ρ

ρ′

)

dρ′,

∂2
ρ T̃

mB(ρ) =Tm
2 ∂2

ρB(ρ) +
1

ρ

2∑

j=1

∫ ∞

−∞
∂j+1
ρ f(ρ′)∂2−j

ρ B(ρ′)

(
ρ′

ρ

)2

Km

(
ρ

ρ′

)

dρ′

∂3
ρ T̃

mB(ρ) =Tm
3 ∂3

ρB(ρ) +

3∑

j=1

∫ ∞

−∞
∂j+1
ρ f(ρ′)∂3−j

ρ B(ρ′)

(
ρ′

ρ

)3

Km

(
ρ

ρ′

)

dρ′

where

T̃m
1 B =

1

ρ

∫ ∞

−∞
fρ(ρ

′)B(ρ′)
ρ′

ρ
Km

(
1

γ

)

dρ′(4.15)

T̃m
2 B(ρ) =

1

ρ

∫ ∞

−∞
fρ(ρ

′)B(ρ′)

(
ρ′

ρ

)2

Km

(
ρ

ρ′

)

dρ′(4.16)

T̃m
3 B(ρ) =

1

ρ

∫ ∞

−∞
fρ(ρ

′)B(ρ′)

(
ρ′

ρ

)3

Km

(
ρ

ρ′

)

dρ′.(4.17)

Proof. We notice that after the change of variable γ = ρ′

ρ we have

that

T̃mB(ρ) =

∫ ∞

−∞
g(ργ)Km

(
1

γ

)

dγ

where g = fρB. Taking one derivative we have that

∂ρT̃
mB(ρ) =

∫ ∞

−∞
(∂ρg)(γρ)γK

m

(

1

γ

)

dγ

=
1

ρ

∫ ∞

−∞
∂ρg(ρ

′)
ρ′

ρ
Km

(

1

γ

)

dρ′

=
1

ρ

∫ ∞

−∞
∂2
ρf(ρ

′)B(ρ′)
ρ′

ρ
Km

(

1

γ

)

dρ+
1

ρ

∫ ∞

−∞
fρ(ρ

′)∂ρB(ρ′)
ρ′

ρ
Km

(

1

γ

)

dρ′,
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so that

∂ρT̃
mB(ρ) = T̃m

1 ∂ρB(ρ) +
1

ρ

∫ ∞

−∞
∂2
ρf(ρ

′)B(ρ′)
ρ′

ρ
Km

(
1

γ

)

dρ′.

Computing in a similar way, by taking two derivatives, we have that

∂2
ρT̃

mB(ρ) =
1

ρ

∫ ∞

−∞
∂2
ρg(ρ

′)

(
ρ′

ρ

)2

Km

(
ρ

ρ′

)

dρ′

∂3
ρT̃

mB(ρ) =
1

ρ

∫ ∞

−∞
∂3
ρg(ρ

′)

(
ρ′

ρ

)3

Km

(
ρ

ρ′

)

dρ′.

And we can write

∂2
ρ T̃

mB(ρ) =T̃m
2 ∂2

ρB(ρ) +
1

ρ

2∑

j=1

∫ ∞

−∞
∂j+1
ρ f(ρ′)∂2−j

ρ B(ρ′)

(
ρ′

ρ

)2

Km

(
ρ

ρ′

)

dρ′

∂3
ρ T̃

mB(ρ) =T̃m
3 ∂3

ρB(ρ) +
3∑

j=1

∫ ∞

−∞
∂j+1
ρ f(ρ′)∂3−j

ρ B(ρ′)

(
ρ′

ρ

)3

Km

(
ρ

ρ′

)

dρ′.

�

Some of the properties of the operator T̃m come from the sign of its
kernel. We study this sign in the following lemma.

Lemma 4.11. Let Tm
(

ρ
ρ′

)

be defined as:

Tm

(
ρ

ρ′

)

=
1

2π

∫ π

−π

cos(mx)
√

1 +
(

ρ
ρ′

)2

− 2
(

ρ
ρ′

)

cos(x)

dx

Then, we have that, for every (ρ, ρ′) ∈ R2, ρ �= ρ′

(a) Tm
(

ρ
ρ′

)

> 0

(b) Tm+1
(

ρ
ρ′

)

< Tm
(

ρ
ρ′

)

.

Proof. Let r = ρ
ρ′ . We have that

Tm

(
ρ

ρ′

)

=
1

2π

∫ π

−π

cos(mx)

(1 + r2 − 2r cos(x))
1
2

dx

We do first the r < 1 case. The r > 1 case follows from the property

Tm

(

ρ

ρ′

)

=

(

ρ

ρ′

)3

Tm

(

ρ′

ρ

)
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Tm

(

ρ

ρ′

)

=
1

1 + r

∫ π

−π

cos(mx)
(

1− 4r
(1+r)2

cos2
(

x
2

)

) 1
2

=
1

2π

2

1 + r

∫ π
2

−π
2

cos(2mx)
(

1− 4r
(1+r)2

cos2 (x)
) 1

2

=
1

2π

4

1 + r

∞
∑

k=0

∫ π
2

0

cos(2mx)

(

4r

(1 + r)2

)k

cos2k (x)
1

k!
(1/2)k dx

=
1

2π

4

1 + r

∞
∑

k=0

(

4r

(1 + r)2

)k
1

k!
(1/2)k

∫ π
2

0

cos(2mx) cos2k (x) dx

=
1

2π

4

1 + r

∞
∑

k=m

(

4r

(1 + r)2

)k
1

k!
(1/2)k

π

22k+1

Γ(2k + 1)

Γ(1 + k +m)Γ(1 + k −m)

=

∞
∑

k=m

Ak
1

Γ(1 + k +m)Γ(1 + k −m)
.

Since Ak > 0 for every k, this shows the first item. Next, we compute
for r < 1:

Tm

(

ρ

ρ′

)

− Tm+1

(

ρ

ρ′

)

=
Am

Γ(1 + 2m)

+
∞
∑

k=m+1

Ak

(

1

Γ(1 + k +m)Γ(1 + k −m)
− 1

Γ(2 + k +m)Γ(k −m)

)

=
Am

Γ(1 + 2m)
+

∞
∑

k=m+1

Ak

Γ(1 + k +m)Γ(1 + k −m)

(

1 + 2m

1 + k +m

)

> 0.

This completes the proof of the lemma. �

In order to prove the compactness of the operator T̃m we will use the
following decomposition:

Lemma 4.12. The function Tm(s) satisfies

Tm(s) = − 2√
s
log(|1− s|) + Em(s)

where Em(s) is a C1−function with

||Em||C1 ≤ C(m).

Proof. We will split Tm(s) in two parts

Tm(s) =

∫ π

−π

1
√

(1− s)2 + 4s sin2
(
x
2

)dx+

∫ π

−π

cos(mx)− 1

(1− s)2 + 4s sin2
(
x
2

)dx

≡T1(s) + Tm
2 (s).
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We now focus on the term T1(s). By making the change y = sin
(
x
2

)
yields

T1(s) =4

∫ 1

0

1
√

(1− s)2 + 4s sin2
(
x
2

)

dy
√

1− y2

=
2√
s

∫ 1
ε

0

1√
1 + z2

dz√
1− ε2z2

,

with ε = |1−s|
2
√
s
. We will break T1(s) in two parts

T1(s) =
2√
s

∫ 1
ε

0

1√
1 + z2

(
1√

1− ε2z2
− 1

)

dz

+
2√
s

∫ 1
ε

0

1√
1 + z2

dz

≡T11(s) + T12(s).

The integral in the term T12(s) can be computed exactly. We obtain that

T12(s) =
2√
s
arcsinh

(
1

ε

)

,(4.18)

where we recall that

arcsinh(x) = log
(

x+
√

x2 + 1
)

and then,

arcsinh

(
1

ε

)

= log

(

2
√
s

|1− s| +
√

4s

|1− s|2 + 1

)

= − log (|1− s|) + 2 log(1 +
√
s).

Finally,

T12(s) =− 2√
s
log(|1− s|) + 4√

s
log(1 +

√
s) = − 2√

s
log(|1− s|) + S(s).

where S(s) is an smooth function. Next we will show that the first de-
rivative of the function T11(s) is continuous. We notice that undoing the
change of variable we can write

T11(s) = 4

∫ 1

0

1
√

(1− s)2 + 4sy2

(

1
√

1− y2
− 1

)

dy

= 4

∫ 1

0

1
√

(1− s)2 + 4sy2

⎛

⎝
y2

√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy

Since the function

y2
√

(s− 1)2 + 4sy2

is in L∞, by the dominated convergence theorem (DCT), T11(s) is con-
tinuous at s = 1. In addition, for s �= 1, we can differentiate to get that
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in a weak sense

∂sT11(s) =− 4

∫ 1

0

(s− 1) + 2y2

((1− s)2 + 4sy2)
3
2

⎛

⎝
y2

√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy

= T111(s) + T112(s)

where

T111(s) = −4

∫ 1

0

(s− 1)

((1− s)2 + 4sy2)
3
2

⎛

⎝
y2

√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy

and

T112(s) = −8

∫ 1

0

y4

((1− s)2 + 4sy2)
3
2

⎛

⎝
1

√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy

where we can prove that T112(s) is a continuous function at s = 1 by
DCT. To analyze T111(s) we split this term into two parts

T111(s) =− 2

∫ 1

0

(s− 1)y2

((1− s)2 + 4sy2)
3
2

dy

− 4

∫ 1

0

(s− 1)y2

((1− s)2 + 4sy2)
3
2

⎛

⎝
1

√

1− y2
(

1 +
√

1− y2
) − 1

2

⎞

⎠ dy.

The second integral is continuous at s = 1 again by DCT. The first integral
can be computed analytically. We obtain that

−2

∫ 1

0

(s− 1)y2

((1− s)2 + 4sy2)
3
2

dy =
1− s

3s

(

− 2
√
s

1 + s
+ arcsinh

(
2
√
s

|1− s|

))

,

to show that T111(s) is also a continuous function at s = 1. Therefore we
have that

T1(s) = − 2√
s
log(|1− s|) + E(s)

where E(s) is a C1 function.
For Tm

2 (s) we use Taylor’s integral remainder formula to show that

cos(mx)− 1 = −m2x2

2
+m4x4

∫ 1

0

γ3

∫ 1

0

μ2

∫ 1

0

ν

∫ 1

0

cos(mγμντx)dνdμdγdτ

≡ m2x2

2
+m4x4Rm(x),

and that

2 sin2
(x

2

)

= (1− cos(x)) =
x2

2
− x4R1(x)

Therefore

cos(mx)− 1 = 2m2 sin2
(x

2

)

+ x4R̃m(x).
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where R̃m(x) is a bounded function. We now can write Tm
2 (s) as follows

Tm
2 (s) =

∫ π

−π

2m2 sin2
(
x
2

)

√

(1− s)2 + 4s sin2
(
x
2

)dx+

∫ π

−π

x4R̃m(x)
√

(1− s)2 + 4s sin2
(
x
2

)dx

By DCT Tm
2 (s) is continuous at s = 1. For s �= 1 we differentiate to

get

∂sT
m
2 (s) =−

∫ π

−π

(s− 1) + 2 sin2
(
x
2

)

(
(1− s)2 + 4s sin2

(
x
2

)) 3
2

sin2
(x

2

)

dx

−
∫ π

−π

(s− 1) + 2 sin2
(
x
2

)

(
(1− s)2 + 4s sin2

(
x
2

)) 3
2

x4R̃m(x)dx.

The second integral on the right hand side is a continuous function. In
the first one we make the change of variables y = sin

(
x
2

)
to get that

∫ π

−π

(s− 1) + 2 sin2
(
x
2

)

(
(1− s)2 + 4s sin2

(
x
2

)) 3
2

sin2
(x

2

)

dx = 4

∫ 1

0

(s− 1) + 2y2

((1− s)2 + 4sy2)
3
2

y2
√

1− y2
dy.

Here, the difficulty to show continuity comes from the integral
∫ 1

0

(s− 1)

((1− s)2 + 4sy2)
3
2

y2
√

1− y2
dy

but it has been already proven that this integral is continuous in the
analysis of T111(s). This concludes the proof of the lemma. �

We also need to study the derivatives of the function T̃ 3∗B(ρ). We
start with the following lemma:

Lemma 4.13. The function (1− s)3T 3(s) is C2 in a neighbourhood of
s = 1.

Proof. In order to prove the lemma we will split T 3(s) in different
parts and we will deal with every one separately. We first notice that we
can write

T 3(s) =

∫ π

−π

cos(3x)
√

(1− s)2 + 4s sin
(
x
2

)2
dx

We will use the formula

cos(3x) = 1− 18 sin2
(x

2

)

+ 48 sin4
(x

2

)

− 32 sin6
(x

2

)

and make the change y = sin
(
x
2

)
to get

T 3(s) =2

∫ 1

−1

1− 18y2 + 48y4 − 32y6
√

(1− s)2 + 4sy2
dy

√

1− y2

=4

∫ 1

0

1− 18y2 + 48y4 − 32y6
√

(1− s)2 + 4sy2
dy

√

1− y2
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In addition we change again of variable by making z = 2
√
s

|1−s|y so that

T 3(s) =
2√
s

∫ 1
ε

0

1− 18ε2z2 + 48ε4z4 − 32ε6z6√
1 + z2

dz√
1− ε2z2

,

where ε = |1−s|
2
√
s
. Now we define

T1(s) =
2√
s

∫ 1
ε

0

1√
1 + z2

dz√
1− ε2z2

T 3
2 (s) =

2√
s

∫ 1
ε

0

−18ε2z2 + 48ε4z4 − 32ε6z6√
1 + z2

dz√
1− ε2z2

.

Thus T 3(s) = T1(s) + T 3
2 (s) and T1(s) is the same function that in the

proof of Lemma 4.12. Then we know that T1(s) = T11(s) + T12(s), where

T12(s) = − 2√
s
log(|1− s|) + S(s),

with S(s) a smooth function. Therefore (1− s)3T12(s) is a C2−function.
Also we know that T11(s) is a C1− function. In order to analyze two
derivatives of T11(s) we differentiate for s �= 1 to get

∂2
sT11(s) =− 4

∫ 1

0

1

((1− s) + 4sy2)
3
2

⎛

⎝
y2

√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy

+ 12

∫ 1

0

(
(s− 1)2 + 4y2

)2

((1− s)2 + 4sy2)
5
2

⎛

⎝
y2

√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy.

Multiplying by (1− s) we have that

(1− s)∂2
sT

3
11(s) = −T 3

111(s) + 6

∫ 1

0
(1− s)

(

(s− 1) + 4y2
)2

((1− s)2 + 4sy2)
5
2

⎛

⎝

y2
√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy,

where we have already checked that T 3
111(s) is continuous. Next we check

that this function is also continuous. This will be a consequence of the
continuity of the following terms

∫ 1

0

(1− s)
(s− 1)2

((1− s)2 + 4sy2)
5
2

⎛

⎝
y2

√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy

∫ 1

0

(1− s)
(s− 1)y2

((1− s)2 + 4sy2)
5
2

⎛

⎝
y2

√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy

∫ 1

0

(1− s)
y4

((1− s)2 + 4sy2)
5
2

⎛

⎝
y2

√

1− y2
(

1 +
√

1− y2
)

⎞

⎠ dy.

The last term is continuous just by applying DCT. The other two terms
can be treated in a similar way we did before to show continuity.

In addition the analysis of T 3
2 (s) does not introduce any new difficulty

and we will not give the details here. This concludes the proof of the
lemma. �
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Lemma 4.14. The function (1− s)Tm(s) satisfies

∂s ((1− s)Tm(s)) = −Tm(s) + Em(s)

where Em(s) is a continuous function with L∞−norm independent on m.

Proof. By Lemma 4.12 (1 − s)Tm(s) is a continuous function. For
s �= 1 we can differentiate to get

∂s ((1− s)Tm(s)) = −Tm(s) + Em(s)

with

Em(s) =

∫ π

−π

−(1− s)2 + 2(1− s) sin2
(
x
2

)

(
(1− s)2 + 2 sin2

(
x
2

)) 3
2

cos(mx)dx.

In addition we have that

|Em(s)| ≤
∫ π

−π

(1− s)2 + 2|1− s| sin2
(
x
2

)

(
(1− s)2 + s sin2

(
x
2

)) 3
2

dx.

For the first integral we have that

∫ π

−π

(1− s)2

(
(1− s)2 + 4s sin2

(
x
2

)) 3
2

dx =
2√
s

∫ 2
√

s
|1−s|

0

1

(1 + y2)
3
2

dy
√

1− |1−s|2
2s y2

=
2√
s

∫ 2
√

s
|1−s|

0

1

(1 + y2)
3
2

dy +
2√
s

∫ 2
√

s
|1−s|

0

1

(1 + y2)
3
2

⎛

⎝
1

√

1− |1−s|2
2s y2

− 1

⎞

⎠ dy

=
2√
s

∫ 2
√

s
|1−s|

0

1

(1 + y2)
3
2

dy + 4

∫ 1

0

|1− s|
((1− s)2 + 4sy2)

3
2

(

1
√

1− y2
− 1

)

dy.

(4.19)

In addition, the second integral, can be written

∫ π

−π

2|1− s| sin2
(
x
2

)

(
(1− s)2 + 2 sin2

(
x
2

)) 3
2

dx = 8

∫ 1

0

|1− s|y2

(|1− s|2 + 4sy2)
3
2

dy
√

1− y2

=
|1− s|
s

3
2

∫ 2
√

s
|1−s|

0

y2

(1 + y2)
3
2

dy
√

1− |1−s|2
4s y2

=
|1− s|
s

3
2

∫ 2
√

s
|1−s|

0

y2

(1 + y2)
3
2

dy

+
|1− s|
s

3
2

∫ 2
√

s
|1−s|

0

y2

(1 + y2)
3
2

⎛

⎝
1

√

1− |1−s|2
4s y2

− 1

⎞

⎠ dy

|1− s|
s

3
2

∫ 2
√

s
|1−s|

0

y2

(1 + y2)
3
2

dy + 8

∫ 1

0

|1− s|y2

(|1− s|2 + 4sy2)
3
2

(

1
√

1− y2
− 1

)

dy.(4.20)

From expression (4.19), (4.20) and DCT it is easy to achieve the conclusion
of the lemma. �

Now we can state and prove the main lemmas of this section.
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Lemma 4.15. Let f ∈ C4(R+) and m ≥ 1. Then, T̃m and T̃m
i , with

i = 1, 2, 3 are a compact operators, acting between L2 and H1, with

||T̃m
i v||L2 ≤ C||v||L2 ,

‖T̃m
i v‖H1 ≤ C(m)‖v‖L2 ,

where the constant C in the first inequality only depends on ‖f‖C4 and
Ωa and the constant C(m) in the second one also depends on m.

Proof. Because of Lemma 4.12 T̃ 3
i is bounded from L2 to L2. Then,

by Lemma 4.11 and the monotonicity of f(ρ), every T̃m
i is also bounded

from L2 to L2 by the same constant as T̃ 3
i . In order to show the bounded-

ness from L2 to H1 we first show the estimate for smooth functions. This
is done just using Lemma 4.12 and the L2−boundedness of the Hilbert
transform. Finally we proceed by a density argument. �

Corollary 4.16. The operator T̃m is bounded from Hk to Hk+1, for
k = 0, 1, 2, with norm depending only on m, ||f ||C4 and a.

Proof. We first prove the bound for smooth functions. This can
be done by using Lemma 4.10 and 4.15. Then we proceed by a density
argument. �

Finally, we will study the adjoint operator of T̃ 3 given by the expres-
sion

T̃ 3∗B(ρ) = fρ(ρ)

∫ 1

1−a

B(ρ′)K3

(
ρ′

ρ

)
dρ′

ρ′
.

Lemma 4.17. Let B ∈ C3 then the following equalities hold:
(a)

∂ρT̃
3∗B(ρ)

= ∂2
ρf(ρ)

∫ 1

1−a

K3

(
ρ′

ρ

)
dρ′

ρ′
− 1

ρ′
V.P.

∫ 1

1−a

B(ρ′), ∂ρ′

(

K3

(
ρ′

ρ

))

dρ′

(b)

∂
2
ρT̃

3∗
B(ρ)

= ∂
3
ρf(ρ)

∫ 1

1−a

B(ρ
′
)K

3

(

ρ′

ρ

)

dρ′

ρ′

−
∂2
ρf(ρ)

ρ
P.V.

∫ 1

1−a

B(ρ
′
)∂ρ′K

3

(

ρ′

ρ

)

dρ
′ − ∂ρ

⎛

⎝B(1)
fρ(ρ)K

3
(

1
ρ

)

ρ
− B(1 − a)

fρ(ρ)K
3
(

1−a
ρ

)

ρ

⎞

⎠

−
∂2
ρf(ρ)

ρ

∫ 1

1−a

B′(ρ′)K3

(

ρ′

ρ

)

+
fρ(ρ)

ρ
P.V.

∫ 1

1−a

B′(ρ′)∂ρ′

(

ρ′K3

(

ρ′

ρ

))

dρ′,
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(c)

∂
3
ρT̃

3∗
(s)

= ∂4
ρf(ρ)

∫ 1

1−a

B(ρ′)K3

(

ρ′

ρ

)

dρ′

ρ′ +
∂3
ρf(ρ)

ρ

(

−B(1)K3

(

1

ρ

)

+ B(1 − a)K3

(

1 − a

ρ

))

+ ∂3
ρf(ρ)

∫ 1

1−a

B′(ρ′)K3

(

ρ′

ρ

)

dρ′

ρ

+ ∂ρ

(

∂2
ρf(ρ)

ρ

(

−B(1)K3

(

1

ρ

)

+ B(1 − a)K3

(

1 − a

ρ

))

)

+ 2∂
3
ρf(ρ)

∫ 1

1−a

B
′′
(ρ

′
)K

3

(

ρ′

ρ

)

dρ′

ρ
+ +2

∂2
ρf(ρ)

ρ2

(

−B
′
(1)K

3

(

1

ρ

)

+ (1 − a)K
3

(

1 − a

ρ

))

+ 2∂
2
ρf(ρ)

∫ 1

1−a

B
′′
(ρ

′
)K

3

(

ρ′

ρ

)

ρ′

ρ

dρ′

ρ
− ∂

2
ρ

⎛

⎝B(1)
fρ(ρ)K

3
(

1
ρ

)

ρ
− B(1 − a)

fρ(ρ)K
3
(

1−a
ρ

)

ρ

⎞

⎠

∂2
ρf(ρ)

∫ 1

1−a

B′′(ρ′)K3

(

ρ′

ρ

)

ρ′

ρ

dρ′

ρ
− fρ(ρ)P.V.

∫ 1

1−a

∂ρ′

(

ρ′2K3

(

ρ′

ρ

))

dρ′

ρ
.

Proof. First we notice that, after a change of variables,

T̃ 3∗B(ρ) = fρ(ρ)

∫ 1
ρ

1−a
ρ

B(sρ)K3 (s)
ds

s
.

Then, taking a derivative yields,

∂ρT̃
3∗B(ρ) = ∂2

ρf(ρ)

∫ 1
ρ

1−a
ρ

B(ρs)K3(s)
ds

s
+

1

ρ
fρ(ρ)

(

B(1)K3

(

1

ρ

)

− B(1− a)K3

(

1− a

ρ

))

+ fρ(ρ)

∫ 1
ρ

1−a
ρ

K3(s)B′(ρs)ds

(4.21)

and changing variable we have that

∂ρT̃
3∗B(ρ) = ∂2

ρf(ρ)

∫ 1

1−a
B(ρ′)K3

(

ρ′

ρ

)

dρ′

ρ′
+

1

ρ
fρ(ρ)

(

B(1)K3

(

1

ρ

)

−B(1− a)K3

(

1− a

ρ

))

− fρ(ρ)

∫ 1

1−a
K3

(

ρ′

ρ

)

B′(ρ′)
dρ′

ρ
.

And integration by parts in the last integral yields

∂ρT̃
3∗B(ρ) = ∂2

ρf(ρ)

∫ 1

1−a

B(ρ′)K3

(
ρ′

ρ

)
dρ′

ρ′

+ fρ(ρ)V.P.

∫ 1

1−a

∂ρ′K3

(
ρ′

ρ

)

B(ρ′)
dρ′

ρ
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Taking a derivative on the equation (4.21) we obtain

∂2
ρ T̃

3∗B(ρ) = ∂3
ρf(ρ)

∫ 1
ρ

1−a
ρ

B(ρs)K3(s)
ds

s
+ ∂2

ρf(ρ)
1

ρ

(

−B(1)K3

(

1

ρ

)

+B(1− a)K3

(

1− a

ρ

))

+ ∂2
ρf(ρ)

∫ 1
ρ

1−a
ρ

B′(ρs)K3(s)ds− ∂ρ

⎛

⎝B(1)
fρ(ρ)K3

(

1
ρ

)

ρ
−B(1− a)

fρ(ρ)K3
(

1−a
ρ

)

ρ

⎞

⎠

+ ∂2
ρf(ρ)

∫ 1
ρ

1−a
ρ

B′(ρs)K3(s)ds+
fρ(ρ)

ρ2

(

B′(1)K3

(

1

ρ

)

−B′(1− a)K3

(

1− a

ρ

))

+ fρ(ρ)

∫ 1
ρ

1−a
ρ

K3(s)B′′(ρs)sds

(4.22)

A change of variable and integration by parts then yield

∂2
ρT̃

3∗B(ρ) = ∂2
ρf(ρ)

∫ 1

1−a

B(ρ′)K3

(

ρ′

ρ

)

dρ′

ρ′

−
∂2
ρf(ρ)

ρ
P.V.

∫ 1

1−a

B(ρ′)∂ρ′K
3

(

ρ′

ρ

)

dρ′ − ∂ρ

⎛

⎝B(1)
fρ(ρ)K

3
(

1
ρ

)

ρ
− B(1 − a)

fρ(ρ)K
3
(

1−a
ρ

)

ρ

⎞

⎠

+
∂2
ρf(ρ)

ρ

∫ 1

1−a

B′(ρ′)K3

(

ρ′

ρ

)

+
fρ(ρ)

ρ
P.V.

∫ 1

1−a

B′(ρ′)∂ρ′

(

ρ′K3

(

ρ′

ρ

))

dρ′.

Finally we take a derivative of the equation 4.22. We have that

∂3
ρT̃

3∗ = ∂4
ρf(ρ)

∫ 1
ρ

1−a
ρ

B(ρs)K3(s)
ds

s
+

∂3
ρf(ρ)

ρ

(

−B(1)K3

(

1

ρ

)

+ B(1 − a)K3

(

1 − a

ρ

))

+ ∂3
ρf(ρ)

∫ 1
ρ

1−a
ρ

B′(ρs)K3(s)ds

+ ∂ρ

(

∂2
ρf(ρ)

ρ

(

−B(1)K
3

(

1

ρ

)

+ B(1 − a)K
3

(

1 − a

ρ

))

)

+ 2∂3
ρf(ρ)

∫ 1
ρ

1−a
ρ

B′(ρs)K3(s)ds + 2
∂2
ρf(ρ)

ρ2

(

−B′(1)K3

(

1

ρ

)

+ (1 − a)K3

(

1 − a

ρ

))

+ 2∂
2
ρf(ρ)

∫ 1
ρ

1−a
ρ

B
′′
(ρs)K

3
(s)sds − ∂

2
ρ

⎛

⎝B(1)
fρ(ρ)K

3
(

1
ρ

)

ρ
− B(1 − a)

fρ(ρ)K
3
(

1−a
ρ

)

ρ

⎞

⎠

+ ∂
2
ρf(ρ)

∫ 1
ρ

1−a
ρ

K
3
(s)B

′′
(ρs)sds − fρ(ρ)

(

− 1

ρ3
B

′′
(1)K

3

(

1

ρ

)

+
(1 − a)2

ρ3
B

′′
(1 − a)K

3

(

1 − a

ρ

)

)

fρ(ρ)

∫ 1
ρ

1−a
ρ

K3(s)B′′′(ρs)s2ds.
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And a change of variable and an integration by parts yield

∂
3
ρT̃

3∗
(s) = ∂

4
ρf(ρ)

∫

1

1−a

B(ρ
′
)K

3

(

ρ′

ρ

)

dρ′

ρ′ +
∂3
ρf(ρ)

ρ

(

−B(1)K
3

(

1

ρ

)

+ B(1 − a)K
3

(

1 − a

ρ

))

+ ∂
3
ρf(ρ)

∫

1

1−a

B
′
(ρ

′
)K

3

(

ρ′

ρ

)

dρ′

ρ

+ ∂ρ

(

∂2
ρf(ρ)

ρ

(

−B(1)K
3

(

1

ρ

)

+ B(1 − a)K
3

(

1 − a

ρ

))

)

+ 2∂3
ρf(ρ)

∫ 1

1−a

B′′(ρ′)K3

(

ρ′

ρ

)

dρ′

ρ
+ +2

∂2
ρf(ρ)

ρ2

(

−B′(1)K3

(

1

ρ

)

+ (1 − a)K3

(

1 − a

ρ

))

+ 2∂
2
ρf(ρ)

∫ 1

1−a

B
′′
(ρ

′
)K

3

(

ρ′

ρ

)

ρ′

ρ

dρ′

ρ
− ∂

2
ρ

⎛

⎝B(1)
fρ(ρ)K

3
(

1
ρ

)

ρ
− B(1 − a)

fρ(ρ)K
3
(

1−a
ρ

)

ρ

⎞

⎠

∂
2
ρf(ρ)

∫ 1

1−a

B
′′
(ρ

′
)K

3

(

ρ′

ρ

)

ρ′

ρ

dρ′

ρ
− fρ(ρ)P.V.

∫ 1

1−a

∂ρ′

(

ρ
′2
K

3

(

ρ′

ρ

))

dρ′

ρ
. �

Lemma 4.18. The operator T̃ 3∗ is bounded from Hk to Hk+1, for
k = 0, 1, 2, with norm depending only on ||f ||C4 and a.

Proof. In order to prove this lemma we prove the estimates for
smooth functions. This can be done by using Lemma 4.17. Indeed, in or-
der to control the evaluations of B and its derivatives we use the standard
Sobolev embedding Hk ⊂ Cl, for k > l + 1

2 in one dimension (H3 ⊂ C2).

In addition we use Lemmas 4.12, 4.13, together with the L2-boundedness
of the Hilbert transform to control the terms involving the derivative of
the kernel K3. Finally we proceed by a density argument. �

Finally, we finish this section by studying the regularity of Ĩ(ρ).

Lemma 4.19. Let f ∈ C4(R+). Then, Ĩ(ρ) ∈ C3(1− a, 1).

Proof. The proof follows easily by the fact that f ∈ C4 and Lemma
4.12. �

(2) Existence of a solution for the equation (4.14). We will regard our
operator Θ3 as a perturbation of its symmetric part Θ3

S (which we can do
by taking a and β small enough). Then we estimate the first and second
eigenvalues (and the first eigenfunction) and see that there is a gap. If
the antisymmetric perturbation is small enough, then there is still a gap
and we are good. The strategy is to use a computer-assisted proof for
the estimation of the eigenvalue-eigenvector pair and the norms of the
different operators that appear.

Let (Bsj , λ
∗) be the approximate eigenvector-eigenvalue pair for the

symmetric operator Θ3
S , satisfying

Θ3
SBsj = λ∗Bsj + e,(4.23)

where e is small (see the next lemma for an explicit bound on e).

Lemma 4.20. Let Bsj = 1√
a−aβ

1[1−a+aβ
2 ,1− aβ

2 ] and λ∗ = 0.3482.

Then:

‖e‖L2 < 0.0905

|〈e,Bsj〉| < 0.0101
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Proof. The proof is computer-assisted and the code can be found in
the supplementary material. We refer to the appendix for details about
the implementation. �

The symbol B⊥
sj will denote the orthogonal space to Bsj in L2((1 −

a, 1)), i.e.

B⊥
sj ≡ {v ∈ L2((1− a, 1)), 〈Bsj , v〉L2((1−a,1)) = 0}.

Let us find a solution (B3, λ) such that

Θ3B3 = λB3, B = Bsj + v, v ∈ B⊥
sj .(4.24)

We expect v to be small if (Bsj , λ
∗) is an accurate enough approxima-

tion to the true eigenpair. Plugging this ansatz for B3 into the previous
equation and using the equation (4.23), we obtain

Θ3v = Θ3B3 −Θ3Bsj

= λBsj + λv − λ∗Bsj − e−Θ3
ABsj

= (λ− λ∗)Bsj + λv − e−Θ3
ABsj ,

where Θ3
A = Θ3 −Θ3

S is the antisymmetric part of Θ3. From now on,
the pairing 〈·, ·〉 is assumed to be taken in L2((1− a, 1)). Let us consider
the functional equation

〈Θ3v − λv, u〉 = −〈e+Θ3
ABsj , u〉 ∀u ∈ B⊥

sj ,

and let c∗ be defined by

c∗ = inf
v∈B⊥

sj

〈Θ3v, v〉
‖v‖2L2

.

A rigorous bound for c∗ will be given in the next lemma:

Lemma 4.21. Let Bsj =
1√

a−aβ
1[1−a+aβ

2 ,1− aβ
2 ]. Then:

c∗ ≥ 0.8526

Proof. The proof is computer-assisted and the code can be found in
the supplementary material. We refer to the appendix for details about
the implementation. �

Then, if λ < c∗ the operator Θ3 − λ is coercive in B⊥
sj . By Lax-

Milgram, for every λ < c∗ there exists a function vλ ∈ B⊥
sj such that

〈Θ3vλ − λvλ, u〉 = −〈e+Θ3
ABsj , u〉 ∀u ∈ B⊥

sj .(4.25)

Thus, there exists a function d(λ) such that

Θ3vλ = (λ− λ∗)Bsj + λvλ − e−Θ3
ABsj + d(λ)Bsj .(4.26)
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By computing the scalar product of (4.26) with vλ we obtain

(c∗ − λ)‖vλ‖2L2 ≤ 〈(Θ3 − λ)vλ, vλ〉
= −〈Θ3

ABsj , v
λ〉 − 〈e, vλ〉

≤ |〈Θ3
ABsj + e, vλ〉|

≤ ‖Θ3
ABsj + e‖L2‖vλ‖L2 .

This inequality implies

‖vλ‖L2 ≤ ‖Θ3
ABsj + e‖L2

c∗ − λ
.(4.27)

In addition, using that

〈Θ3vλ, Bsj〉 = 〈Θ3
Sv

λ, Bsj〉+ 〈Θ3
Av

λ, Bsj〉
= 〈vλ,Θ3

SBsj〉 − 〈vλ,Θ3
ABsj〉

= 〈vλ, e〉 − 〈vλ,Θ3
ABsj〉,

taking the scalar product with Bsj of the equation (4.26) yields

d(λ)‖Bsj‖2L2 = 〈Θ3vλ, Bsj〉+ (λ∗ − λ)‖Bsj‖2L2 + 〈e,Bsj〉
= 〈vλ, e〉 − 〈vλ,Θ3

ABsj〉+ (λ∗ − λ)‖Bsj‖2L2 + 〈e,Bsj〉.
An important fact, that will be used, is the continuity of this function

d(λ):

Lemma 4.22. The function d(λ) defined in (4.26) is continuous.

Proof. Let λ, γ < c∗. By definition of d(λ) we have that

|d(λ)− d(γ)| ≤ C
(
||Bsj ||L2 , ||e||L2 , ||Θ3||L2→L2

)
||vλ − vγ ||L2 + ||Bsj ||2L2 |λ− γ|.

For every u ∈ B⊥
sj we know from (4.25) that

〈Θ3vλ − λvλ, u〉 =〈f, u〉
〈Θ3vγ − γvγ , u〉 =〈f, u〉,

where f ∈ L2. And then

〈Θ3(vλ − vγ)− λ(vλ − vγ), u〉 = (γ − λ)〈vγ , u〉.
Taking u = vλ − vγ ∈ B⊥

sj yields

(c∗ − λ)||vλ − vγ ||2L2 ≤ |γ − λ| ||vγ ||L2 ||vλ − vγ ||L2 .

Thus

||vλ − vγ ||L2 ≤ C

c∗ − λ
|γ − λ| ||vγ ||L2 .

We achieve the conclusion of the lemma from the inequality (4.27). �

Our purpose is now to show that there exists a value of λ = λ∗∗ < c∗

such that d(λ∗∗) = 0. We have the following upper bound for d(λ):

d(λ) ≥ −‖vλ‖L2‖e−Θ3
ABsj‖L2

‖Bsj‖2L2

+ (λ∗ − λ)− |〈e,Bsj〉|
‖Bsj‖2L2

(4.28)

≥ −‖Θ3
ABsj + e‖L2

c∗ − λ

‖e−Θ3
ABsj‖L2

‖Bsj‖2L2

+ (λ∗ − λ)− |〈e,Bsj〉|
‖Bsj‖2L2

.
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We observe that limλ→−∞ d(λ) = +∞. Hence, there exists a λ sufficiently
small for which d(λ) > 0. Similarly:

d(λ) ≤ ‖Θ3
ABsj + e‖L2

c∗ − λ

‖e−Θ3
ABsj‖L2

‖Bsj‖2L2

+ (λ∗ − λ) +
|〈e,Bsj〉|
‖Bsj‖2L2

(4.29)

The objective is to use the previous inequality to show that there exist a
value of λ smaller than c∗, such that d(λ) < 0. We will use the following
lemma.

Lemma 4.23. Let h(x) = A− x+ B
C−x , where A,B, C > 0. If

C > A+ 2
√
B,

then there exists an x < C such that h(x) < 0.

Proof. It is easy to notice that h(x) is concave up since h′′(x) > 0
for x < C. Thus, it is enough to check that the minimum of h is negative.
We calculate the point xm where the minimum is attained.

h′(xm) = 0 ⇔ (C − xm)2 = B ⇔ xm = C −
√
B.

Evaluating at x = xm:

h(xm) = A− C + 2
√
B < 0,

by hypothesis. �

Lemma 4.24. Let Bsj = 1√
a−aβ

1[1−a+aβ
2 ,1− aβ

2 ], λ
∗ = 0.3482 and let

us define:

A = λ∗ +
|〈e,Bsj〉|
‖Bsj‖2L2

, B =
‖Θ3

ABsj + e‖L2‖e−Θ3
ABsj‖L2

‖Bsj‖2L2

Then, we have the following bounds:

A < 0.3583
√
B < 0.1534

Proof. The proof is computer-assisted and the code can be found in
the supplementary material. We refer to the appendix for details about
the implementation. �

Finally, by applying Lemma 4.23 to the right hand side of (4.29) with

A = λ∗ +
|〈e,Bsj〉|
‖Bsj‖2L2

, B =
‖Θ3

ABsj + e‖L2‖e−Θ3
ABsj‖L2

‖Bsj‖2L2

, C = c∗
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and by the bounds given by Lemma 4.24, we obtain that there exists a λ0

for which d(λ0) < 0. More precisely, we have that

λ0 ≤ C +A
2

−

√

(C − A
2

)2

− B =
AC + B

A+C
2

+

√

(

A−C
2

)2
− B

=

c∗ + λ∗ +
|〈e,Bsj〉|

‖Bsj‖
2
L2

2
−

√

√

√

√

√

√

⎛

⎜

⎝

c∗ − λ∗ − |〈e,Bsj〉|

‖Bsj‖
2
L2

2

⎞

⎟

⎠

2

−
‖Θ3

ABsj + e‖L2‖e−Θ3
ABsj‖L2

‖Bsj‖2L2

By the continuity of d(λ) proved in Lemma 4.22, there has to be a
λ∗∗ ≤ λ0 < c∗ for which d(λ∗∗) = 0 and therefore

Θvλ
∗∗

= (λ∗∗ − λ∗)Bsj + λ∗∗vλ
∗∗ − e−ΘABsj .

which means that (Bsj + vλ
∗∗
, λ∗∗) is the eigenvalue-eigenvector pair,

(B3, λ3) ∈ L2((1− a, 1))× R, we were looking for.

Corollary 4.25. We have just shown that λ3 ≤ λ0 < 0.4117.

Proof. Follows from the numerical bounds obtained in Lemma 4.24
and Lemma 4.23. �

Next we show that B3 is unique modulo multiplication by constants.
In order to prove it, let us assume that w ∈ L2((1− a, 1)) satisfies

Θ3w = λ3w.

Now we write w = Bsj + (w − Bsj) and we notice we can decompose
w −Bsj = αBsj + v where α ∈ R and v ∈ B⊥

sj . Then w = (1 + α)Bsj + v

and by linearity we have that w
1+α = Bsj + u, with u = v

1+α ∈ B⊥
sj , is

also a solution. Then the uniqueness of the solutions in the Lax-Milgram
theorem implies w

1+α = B3. If α = −1 the previous argument fails. But,

in this case, w ∈ B⊥
sj and then c∗ ≤ λ3 which has already been proven to

be false.
In conclusion, we have shown that dim(N (Θ3 − λ3)) = 1.

Lemma 4.26. We have that Ĩ(ρ)−λ3 > 0. In particular, we have the
following bounds:

Ĩ(ρ)− λ3 > 0.8526

Proof. The proof is computer-assisted and the code can be found in
the supplementary material. We refer to the appendix for details about
the implementation. �

Then it remains to prove the regularity of B3, the solution of equation
(4.24). To do this we will bootstrap using Lemma 4.15. Since

Ĩ(ρ)B3(ρ)− λ3B
3(ρ) = −T̃ 3B3(ρ)(4.30)

by Lemma 4.15 the function (Ĩ(ρ) − λ3)B
3(ρ) ∈ H1((1 − a, 1)). Since

Ĩ ∈ C3 and Lemma 4.26 we have that B3(ρ) is in H1. Let’s take two
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derivatives on equation (4.30), by Lemma 4.10 we have that

Ĩ(ρ)∂2
ρB

3(ρ)− λ3∂
2
ρB

3(ρ) =−
2∑

j=1

∂j)
ρ Ĩ(ρ)∂2−j)

ρ B3(ρ)− ∂ρT
3
1 ∂ρB

3(ρ)

− ∂ρ

(
1

ρ

∫ ∞

−∞
∂2
ρf(ρ

′)B(ρ′)
ρ′

ρ
Km

(
ρ

ρ′

)

dρ′
)

Then using that Ĩ(ρ) ∈ C3, f ∈ C4, Ĩ−λ3 > 0, Lemma 4.15 and B3 ∈ H1

we have that B3 ∈ H2. Finally, taking three derivatives yields

Ĩ(ρ)∂3
ρB

3(ρ)− λ3∂
3
ρB

3(ρ) =−
3

∑

j=1

∂
j)
ρ Ĩ(ρ)∂

3−j)
ρ B3(ρ)− ∂ρT

3
2 ∂

2
ρB

3(ρ)

− ∂ρ

⎛

⎝

2
∑

j=1

1

ρ

∫ ∞

−∞
∂
j+1)
ρ f(ρ′)∂

2−j)
ρ B(ρ′)

(

ρ′

ρ

)2

Km

(

ρ

ρ′

)

dρ′

⎞

⎠

Then using, again, that Ĩ(ρ) ∈ C3, f ∈ C4, Ĩ − λ3 > 0, Lemma 4.15 and
B3 ∈ H2 we have that B3 ∈ H3.

This concludes the proof of Proposition 4.8.
�

A similar proof as in Proposition 4.8 also works to show:

Proposition 4.27. There exists a solution (B3
∗ , λ3) ∈ H3((1−a), 1)×R to the

equation

Θ3∗B3
∗ = λ3B

3
∗ ,

where λ3 is the same eigenvalue as in Proposition 4.8 and Θ3∗ is the adjoint operator
of Θ3. In addition, λ3 is simple and we can decompose

B3
∗ = Bsj + vλ3

∗ ,

where vλ3∗ ∈ (Bsj)
⊥

and

||vλ3
∗ ||L2 ≤ || −Θ3

ABsj + e||L2

c∗ − λ3

Proof. The proof that there exists a pair (B3
∗ , λ

∗
3) ∈ L2 × R satisfying

(Θ3∗ − λ∗
3)B

3
∗ = λ∗

3B
3
∗

runs the same steps than the proof of Proposition 4.8. The only modification
is the change Θ3

A → −Θ3
A. In order to check that, in fact, λ∗

3 = λ3 we notice that

λ3〈B3, B3
∗〉 = 〈Θ3B3, B3

∗〉 = 〈B3,Θ3∗B∗
3〉 = λ∗

3〈B3, B3
∗〉.

Therefore it is enough to show that 〈B3, B3
∗〉 �= 0. We prove this result in the

following lemma:

Lemma 4.28. The following inequality holds:

〈B3, B3
∗〉 > 0.
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Proof. We can decompose B3 and B3
∗ in the following way

B3 =Bsj + vλ3

B3
∗ =Bsj + vλ3

∗

where vλ3 , vλ3∗ ∈ B⊥
sj . Thus

〈B3, B3
∗〉 = ||Bsj ||2L2 + 〈vλ3 , vλ3

∗ 〉 ≥ ||Bsj ||2L2 − || −Θ3
ABsj + e||L2 ||Θ3

ABsj + e||L2

(c∗ − λ3)2
.

(4.31)

Using the notation from Lemma 4.23, we can bound

c∗ − λ3 ≥ c∗ − λ0 =
C −A

2
+

√
(
C −A

2

)2

−B.

This implies that the RHS of (4.31) is bounded below by

||Bsj ||2L2

⎛

⎜
⎜
⎜
⎝
1− B

(

C−A
2 +

√
(
C−A

2

)2 −B

)2

⎞

⎟
⎟
⎟
⎠

> 0,

where in the last inequality we have used the already checked condition that

C −A

2
>

√
B.

�

Finally we prove that B3
∗ is in H3 in the same way we did for B3 by using

Lemma 4.18. �

4.3.1.2. One-dimensionality of the kernel of ∂rF [ρ, λ3]. Until now, it has al-
ready been proven that there exists an element in the kernel of the operator
∂rF [ρ, λ3]. In this section we will prove that this kernel is the span of this ele-
ment. As commented in point 3 at the beginning of the proof of Proposition 4.7 it
is enough to prove that the equation

Θ3nu = λ3u

implies that u = 0 for n > 1.

Lemma 4.29. Let m > 1 and

λs
3m = inf

u∈L2

||u||L2=1

〈Θ3mu, u〉

Then, if the pair (u3m, λ3m) ∈ L2 × R (with u3m not identically zero) satisfies

Θ3mu3m = λ3m,

we have that

λs
3m ≤ λ3m
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Proof. Since we can take u3m with norm 1 we have that

λ3m = 〈Θ3mu3m, u3m〉 ≥ λs
3m,

by definition of λs
3m. �

Lemma 4.30. Let m > n and let λs
3m, λs

3n be given by

λs
3m = inf

u∈L2

||u||L2=1

〈Θ3mu, u〉 and λs
3n = inf

u∈L2

||u||L2=1

〈Θ3nu, u〉.

Then

λs
3m ≥ λs

3n

Proof. First we will show that for every m ≥ 1 and u ∈ L2 the following
inequality holds

〈Θ3mu, u〉 ≥ 〈Θ3m|u|, |u|〉.
By using the positivity of T 3m(ρ, ρ′) proved in Lemma 4.11 we have that

〈Θ3m|u|, |u|〉 =
∫

Ĩ(ρ)|u(ρ)|2dρ+
∫ ∫

1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)|u(ρ)||u(ρ′)|dρdρ′

=

∫

I(ρ)|u(ρ)|2dρ+
∫ ∫

1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)u+(ρ)u+(ρ′)dρdρ′

+

∫ ∫
1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)u−(ρ)u−(ρ′)dρdρ′

+

∫ ∫
1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)u+(ρ)u−(ρ′)dρdρ′

+

∫ ∫
1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)u−(ρ)u+(ρ′)dρdρ′

≤
∫

I(ρ)|u(ρ)|2dρ+
∫ ∫

1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)u+(ρ)u+(ρ′)dρdρ′

+

∫ ∫
1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)u−(ρ)u−(ρ′)dρdρ′

−
∫ ∫

1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)u+(ρ)u−(ρ′)dρdρ′

−
∫ ∫

1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)u−(ρ)u+(ρ′)dρdρ′

=

∫

I(ρ)u(ρ)2dρ+

∫ ∫
1

ρ

(
ρ′

ρ

)

T 3m(ρ, ρ′)fρ(ρ
′)u(ρ)u(ρ′)dρdρ′

= 〈Θ3mu, u〉
Then

inf
u∈L2

||u||
L2=1

〈Θ3mu, u〉 = inf
u∈L2

||u||
L2=1, u≥0

〈Θ3mu, u〉,

Now, for a positive u ∈ L2, we write

〈Θ3mu, u〉 = 〈
(
Θ3m −Θ3n

)
u, u〉+ 〈Θ3mu, u〉.
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where

(
Θ3m −Θ3n

)
u =

1

ρ

∫ ∞

−∞
fρ(ρ

′)
(
K3m −K3n

)
(
ρ

ρ′

)

u(ρ′)dρ′

and notice that

1

ρ

∫ ∞

−∞
fρ(ρ

′)
(
K3m −K3n

)
(
ρ

ρ′

)

u(ρ′)dρ′ ≥ 0

by Lemma 4.11.
We then obtain that

〈Θ3mu, u〉 ≥ 〈Θ3nu, u〉,

for every positive u ∈ L2. This concludes the proof of the lemma. �

Now our purpose is to find a bound from below for the number λ6
s defined by

λ6
s = inf

u∈L2

||u||
L2=1

〈Θ6u, u〉.

In order to do this we will need Lemmas 4.31 and 4.32 below.

Lemma 4.31. Let B6aprox
s = 1√

a−aβ
1[1−a+aβ

2 ,1− aβ
2 ] and λs

6aprox = 0.573. Then

Θ6
SB

6aprox
s − λs

6aproxB
6aprox
s = e6

with

||e6||L2 < 0.0893.

Proof. The proof is computer-assisted and the codes can be found in the
supplementary material. We refer to the appendix for the implementation. �

Lemma 4.32. Let B6aprox
s be the approximation in Lemma 4.31. Then, if we

define the number c6∗ by

c6∗ = inf
v∈(B6aprox

s )⊥
||v||

L2=1

〈Θ6v, v〉,

the following bound holds

c6∗ > 0.8355.

Proof. The proof is computer-assisted and the codes can be founded in the
supplementary material. We refer to the appendix for details on the implementa-
tion. �

Lemma 4.33. Let λs
6 ∈ R given by

λs
6 = inf

u∈L2

||u||
L2=1

〈Θ6u, u〉.

Then, we have the following bound:

λs
6 > 0.4837.
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Proof. For a generic B ∈ L2 with ||B||L2 = 1 we can decompose B =

αB6aprox
s + βv, where v ∈

(
B6aprox

s

)⊥
, ||v||L2 = 1 and α2 + β2 = 1. Therefore

〈Θ6
SB,B〉 = α2λs

6aprox + β2〈Θ6
Sv, v〉+ 2αβ〈e6, v〉

≥ α2λs
6aprox + β2〈Θ6

Sv, v〉 − 2α
√

1− α2〈e6, v〉.
Finally we obtain that

〈Θ6
SB,B〉 ≥ λs

6aprox − ||e6||L2 ,

since

inf
v∈(B6aprox

s )
⊥

||v||
L2=1

〈Θ6
Sv, v〉 ≥ c6∗ > λs

6aprox

by Lemmas 4.31 and 4.32. �

Using Lemmas 4.29, 4.30 and 4.33 we can prove the following proposition:

Proposition 4.34. The bilinear forms 〈(Θ3m − λ3)v, v〉 are coercive in L2 for
m > 1. In addition

〈(Θ3m − λ3)v, v〉 ≥
1

λs
6 − λ3

||v||2L2 .

Therefore, if u ∈ L2 satisfies

Θ3mu = λ3u,

for m > 1 then u = 0.

Proposition 4.7 is then proven.
�

To finish this section we study the codimension of the image of the operator
∂rF [ρ, λ3].

Proposition 4.35. The space H3,3
3,odd(Ωa)/R (∂rF [ρ, λ3]) has dimension one.

Proof. In order to prove this proposition we will study the range of ∂rF [ρ, λ3].

Let G(α, ρ) ∈ H3,3
3,odd(Ωa). We shall try to find g(α, ρ) ∈ H4,3

3,even(Ωa) such that

∂rF [ρ, λ3]g(α, ρ) = G(α, ρ)(4.32)

By using the expansions

g(α, ρ) =

∞∑

m=1

ρg3m(ρ) cos(3mα)

G(α, ρ) =

∞∑

m=1

ρG3m(ρ) sin(3mα)

in (4.32) we have that
∞∑

m=1

3mρ
(
Θ3mg3m(ρ)− λ3g

3m(ρ)
)
sin(3mα) =

∞∑

m=1

ρG3m(ρ) sin(3mα).

Taking the projection onto the 3m−mode yields

3m
(
Θ3mg3m − λ3g

3m(ρ)
)
= G3m(ρ) for m = 1, 2, 3, ...(4.33)
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Next we shall study the existence of solutions for the equation (4.33) in L2 and
after that the H3-regularity.

(1) Existence in L2. We will deal separately with two cases: in Lemma 4.36
we take m > 1 and in Lemma 4.37 m = 1.

Lemma 4.36. For m > 1 there exists an inverse operator
(
Θ3m − λ3

)−1
: L2 → L2

with norm bounded independently of m.

Proof. By Lemmas 4.29, 4.30 and the explicit bound for λs
6 in

Lemma 4.33 we have that the bilinear form 〈(Θ3m − λ3)v, v〉 is coercive
in L2 with

〈(Θ3m − λ3)v, v〉 ≥
1

λs
6 − λ3

||v||2L2 for m > 1.

Since G3m ∈ H3 ⊂ L2 we can apply Lax-Milgram theorem in order to
obtain the existence of an inverse operator

(Θ3m − λ3)
−1 : L2 → L2.

�

Lemma 4.37. Let B3
∗ be defined by Proposition 4.27. Then, if G3 ∈

(B3
∗)

⊥, there exists a solution, g3 ∈ L2, to the equation (4.33) with m = 1.
However, if G3 ∈ span

{
B3

∗
}

there is no function in L2 satisfying the
equation (4.33) with m = 1.

Proof. First we notice that we have already checked that 〈(Θ3 −
λ3)v, v〉 is coercive in the space B⊥

sj . In the next lemma we prove that it

is also coercive in (B3
∗)

⊥.

Lemma 4.38. There exists a constant c > λ3 such that

inf
v∈(B3)⊥
||v||L2

=1

〈(Θ3 − λ3)v, v〉 ≥ c− λ3.

Proof. We take v ∈ (B3
∗)

⊥, with L2−norm equal to 1. We can
decompose v in the following form v = αBsj + βh where h ∈ B⊥

sj and

||h||L2 = 1. Since B3
∗ = Bsj + vλ3∗ we have that

α||Bsj ||2L2 + β〈h, vλ3
∗ 〉 =0

α2||Bsj ||2L2 + β2 = 1.

Therefore, we can write,

〈(Θ3 − λ3)v, v〉 = 〈(Θ3
S − λ3)v, v〉,

using that Θ3
SBsj = λ∗Bsj + e,

〈(Θ3
S − λ3)v, v〉 = α2〈(Θ3

S − λ3)Bsj , Bsj〉+ 2αβ〈(Θ3
S − λ3)Bsj , h〉+ β2〈(Θ3

S − λ3)h, h〉
= α2〈(λ∗ − λ3)Bsj + e,Bsj〉+ 2αβ〈(λ∗ − λ3)Bsj + e, h〉+ β2〈(Θ3

S − λ3)h, h〉.
And substituting

α = −β
〈h, vλ3∗ 〉
||Bsj ||2L2
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yields

(4.34) 〈(Θ3
S − λ3)v, v〉

= β2

(

〈h, vλ3
∗ 〉2

||Bsj ||4L2

(

(λ∗ − λ3)‖Bsj‖2L2 + 〈e, Bsj〉
)

+ 〈(Θ3
S − λ3)h, h〉 − 2

〈h, vλ3
∗ 〉

||Bsj ||2L2

〈e, h〉
)

.

Here we recall that

||vλ3
∗ ||L2 ≤|| −Θ3

ABsj + e||L2

c∗ − λ3

〈(Θ3
S − λ3)h, h〉 ≥(c∗ − λ3)

and notice that

β2 ≥ 1

1 +
||−Θ3

ABsj+e||2
L2

(c∗−λ3)2||Bsj ||2
L2

> 0

Therefore, it is enough to show that
(

〈h, vλ3
∗ 〉2

||Bsj ||4L2

(

(λ∗ − λ3)‖Bsj‖2L2 + 〈e, Bsj〉
)

+ 〈(Θ3
S − λ3)h, h〉 − 2

〈h, vλ3
∗ 〉

||Bsj ||2L2

〈e, h〉
)

> 0.

However, the LHS can be bounded from below by

c
∗ − λ0 +

(

|| − Θ3
ABsj + e||L2

‖Bsj‖2
L2 (c

∗ − λ0)

)2
(

((λ
∗ − λ0)‖Bsj‖2

L2 − |〈e,Bsj〉|
)

− 2
|| − Θ3

ABsj + e||L2

‖Bsj‖2
L2 (c

∗ − λ0)
‖e‖L2 ,

since

〈(Θ3
S − λ3)h, h〉 ≥ (c∗ − λ3) ≥ c∗ − λ0

〈h, vλ3∗ 〉2
||Bsj ||4L2

(λ∗ − λ3)‖Bsj‖2L2 ≥
( || −Θ3

ABsj + e||L2

(c∗ − λ3)‖Bsj‖2L2

)2

(λ∗ − λ3)‖Bsj‖2L2

≥
( || −Θ3

ABsj + e||L2

(c∗ − λ0)‖Bsj‖2L2

)2

(λ∗ − λ0)‖Bsj‖2L2

〈h, vλ3∗ 〉2
||Bsj ||4L2

〈e,Bsj〉 ≥ −
( || −Θ3

ABsj + e||L2

(c∗ − λ3)‖Bsj‖2L2

)2

|〈e,Bsj〉|

≥ −
( || −Θ3

ABsj + e||L2

(c∗ − λ0)‖Bsj‖2L2

)2

|〈e,Bsj〉|

−2
〈h, vλ3∗ 〉
||Bsj ||2L2

〈e, h〉 ≥ −2
|| −Θ3

ABsj + e||L2

‖Bsj‖2L2(c∗ − λ3)
‖e‖L2

≥ −2
|| −Θ3

ABsj + e||L2

‖Bsj‖2L2(c∗ − λ0)
‖e‖L2

Using Lemmas 4.21 and Corollary 4.25, we get

c∗ − λ0 ≥ 0.8526− 0.4117 = 0.4409.

Via Lemmas 4.20 and 4.24 we obtain

( || −Θ3
ABsj + e||L2

(c∗ − λ0)‖Bsj‖2L2

)2

(λ∗ − λ0)‖Bsj‖2L2 ≥
(
0.1534

0.4409

)2

(0.3482− 0.4117) ≥ −0.01
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and similarly:

−
( || −Θ3

ABsj + e||L2

(c∗ − λ0)‖Bsj‖2L2

)2

|〈e,Bsj〉| ≥ −
(
0.1534

0.4409

)2

0.0101 ≥ −0.002

Finally, the last term can be bounded by:

−2
|| −Θ3

ABsj + e||L2

‖Bsj‖2L2(c∗ − λ0)
‖e‖L2 ≥ (−2)

0.1534

0.4409
0.0905 ≥ −0.013

Adding all the numbers we get the desired positivity result. This
finishes the proof. �

By Lemma 4.38 and Lax-Milgram theorem we find g3 ∈ (B3
∗)

⊥ such
that

〈(Θ3 − λ3)g
3, v〉 =

〈
1

3
G3, v

〉

for all v ∈ (B3
∗)

⊥ and then, there exists a real γ ∈ R such that

(Θ3 − λ3)g
3 =

1

3
G3 + γB3

∗ .

But taking scalar product with B3
∗ we have that

||B3
∗ ||2L2γ = 〈(Θ3 − λ3)g

3, B3
∗〉 = 〈g3, (Θ3∗ − λ3)B

3
∗〉 = 0.

This last equality implies that γ = 0 and therefore

(Θ3 − λ3)g
3 =

1

3
G3.

However the equation

(Θ3 − λ3)g
3 = B3

∗(4.35)

does not have any solution in L2. In order to check it let us assume that
there exists g3 ∈ L2 such that the equation (4.35) is satisfied. Multiplying
(4.35) by B3

∗ and integrating yields

〈(Θ3 − λ3)g
3, B3

∗〉 = ||B3
∗ ||2L2 = 〈g3, (Θ3∗ − λ3)B

3
∗〉 = 0,

which is a contradiction. �

(2) H3−regularity. We again deal separately with two cases: in Lemma 4.39
we take m > 1 and in Lemma 4.40 m = 1.

Lemma 4.39. The solution g3m ∈ L2 to the equation (4.33) given by
Lemma 4.36 is actually in H3 with the bound

||g3m||H3 ≤ C

3m
||G3m||H3 ,

where C does not depend on m.

Proof. For m > 1 let us consider the equation (4.33). We split the
proof in two steps: in the first one we will show that g3m ∈ H3 but its
H3−norm will depend on m; in the second one we will prove that the
H3−norm is actually independent of m.
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(a) Step 1. Since Θ3mg3m −λ3g
3m = 1

3mG3m and 1
3mG3m is H1, we can

take a derivative on both sides to obtain

(Ĩ(ρ)− λ3)∂ρg
3m(ρ) = − 1

3m
∂ρG

3m(ρ)− ∂ρĨ(ρ)g
3m(ρ)− ∂ρT̃

3mg3m,

where we remark that ∂ρT̃
3mg3m ∈ L2 since we know that g3m ∈

L2 and T̃ 3m : L2 → H1. The problem here is that ||T̃ 3m||L2→H1

depends on m. In addition, since Ĩ(ρ) ∈ C3 and Ĩ − λ3 > 0, we have
that ∂ρg

3m is L2 with norm bounded by a constant depending on m.
Taking 2 derivatives in the equation (4.33) we have that

(Ĩ(ρ)− λ3)∂
2
ρg

3m(ρ) =
1

3m
∂ρG

3m(ρ)−
2∑

j=1

∂j)
ρ Ĩ(ρ)∂2−j)

ρ g3m − ∂2
ρ T̃

3mg3m(ρ).

By Lemma 4.10 we know that

∂ρT̃
3mg3m(ρ) =T̃ 3m

1 ∂ρg
3m(ρ) +

1

ρ

∫ ∞

−∞
∂2
ρf(ρ

′)g3m(ρ)(ρ′)
ρ′

ρ
K3m

(
1

γ

)

dρ′.

Thus we can write

∂2
ρT̃

3mg3m(ρ) =∂ρT̃
3m
1 ∂ρg

3m(ρ) + ∂ρ
1

ρ

∫ ∞

−∞
∂2
ρf(ρ

′)g3m(ρ)(ρ′)
ρ′

ρ
K3m

(
1

γ

)

dρ′.

Then, by Lemma 4.15 we know that ∂ρT̃
3m
1 ∂ρg

3m ∈ H3 (with norm

depending on m) and therefore ∂2
ρT̃

3mg3m(ρ) ∈ L2. Again, using

that Ĩ ∈ C3, Ĩ(ρ)− λ3 > 0, and g3m ∈ H2 we have that ∂2
ρg

3m ∈ L2

with L2−norm depending on m. Finally since

(Ĩ(ρ)− λ3)∂
3
ρg

3m =
1

3m
∂3
ρG

3m(ρ)−
3∑

j=1

∂j)
ρ Ĩ(ρ)∂3−j)

ρ g3m(ρ)− ∂3
ρ T̃

3mg3m(ρ)

and

∂2
ρ T̃

3mg3m(ρ) = T 3m
2 ∂2

ρB(ρ)

+
1

ρ

2∑

j=1

∫ ∞

−∞
∂j+1)
ρ f(ρ′)∂2−j)

ρ B(ρ′)

(
ρ′

ρ

)2

K3m

(
ρ

ρ′

)

dρ′,

and T̃ 3m
2 is compact from L2 → H1, a similar argument yields that

∂3
ρg

3m ∈ L2 with L2−norm depending on m.
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(b) Step 2. Now, taking one, two and three derivatives on the equation
(4.33) and applying Lemma 4.10 we have that,

(Θ3m − λ3)∂ρg
3m(ρ) =

1

3m
∂ρG

3m(ρ)− ∂ρĨ(ρ)g
3m(ρ)

− 1

ρ

∫ ∞

−∞
∂2
ρf(ρ

′)g3m(ρ′)
ρ′

ρ
K3m

(
1

γ

)

dρ′

+
1

ρ

∫ ∞

−∞
fρ(ρ

′)∂ρg
3m(ρ′)

(

1− ρ′

ρ

)

Km

(
1

γ

)

dρ′(4.36)

(Θ3m − λ3)∂
2
ρg

3m(ρ) =
1

3m
∂2
ρG

3m(ρ)−
2∑

j=1

∂j)
ρ Ĩ(ρ)∂2−j)

ρ g3m(ρ)

− 1

ρ

2∑

j=1

∫ ∞

−∞
∂j+1)
ρ f(ρ′)∂2−j)

ρ g3m(ρ′)

(
ρ′

ρ

)2

K3m

(
ρ

ρ′

)

dρ′

+
1

ρ

∫ ∞

−∞
fρ(ρ

′)∂2
ρg

3m(ρ′)

(

1−
(
ρ′

ρ

)2
)

Km

(
ρ

ρ′

)

dρ′(4.37)

(Θ3m − λ3)∂
3
ρg

3m(ρ) =
1

3m
∂3
ρG

3m(ρ)−
3∑

j=1

∂j)
ρ Ĩ(ρ)∂3−j)

ρ g3m(ρ)

− 1

ρ

3∑

j=1

∫ ∞

−∞
∂j+1)
ρ f(ρ′)∂3−j)

ρ g3m(ρ′)

(
ρ′

ρ

)3

K3m

(
ρ

ρ′

)

dρ′

+
1

ρ

∫ ∞

−∞
fρ(ρ

′)∂3
ρg

3m(ρ′)

(

1−
(
ρ′

ρ

)3
)

Km

(
ρ

ρ′

)

dρ′.(4.38)

Since g3m ∈ H3, by the step 1 above, the coercivity property in
Proposition 4.34 applies. We first apply it to (4.36), then to (4.37)
and (4.38) yielding the bound

||g3m||H3 ≤ C

m
||G3m||H3

with C independent of m. The only problem comes from the last
term on (4.36), (4.37) and (4.38). In order to bound these terms we
apply an integration by parts, Lemma 4.14 and the same argument
that we used in Lemma 4.15 to control the L2−norm.

�

Lemma 4.40. The solution, g3 ∈ L2 of the equation (Θ3 − λ3)g
3 =

1
3G

3 with G3 ∈ H3 ∩ (B3
∗)

⊥ given by Lemma 4.37 is actually in H3.

Proof. We can show that g3 ∈ H3 in the same way we did in the
proof of the first part of Lemma 4.39. �

Then Proposition 4.35 is already proven. �
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4.4. Step 4. The transversality property 4

In this section we prove the transversality condition (3.5) of the C-R theorem,
i.e., the fourth hypothesis. In order to do this is enough to show that

(Θ3 − λ3)b
3 = B3(4.39)

does not have a solution in b3 ∈ L2.
Let’s suppose that there exists b3 ∈ L2 such that (4.39) holds. Then, taking

scalar product in L2 with B3
∗ , we have that

〈B3, B3
∗〉 = 0.

This is impossible as it was proved in Lemma 4.28.
This concludes the proof of Theorem 3.2.
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APPENDIX A

Asymptotics

Part of the computer-assisted proof involves having to compute the kernels
T 1, T 3 and T 6, which are given by elliptic integrals. As far as we know, we are
not aware of any rigorous implementation of them in any library. One possibility
could be to leave the (singular) integrals as they are and integrate over a domain of
one more dimension. This would be very time consuming in terms of the computer
performance. Instead, we do the laborious work of deriving explicit approxima-
tions (to order 0) of the kernels by hand, with computable error bounds of order
greater than 1. Once we do this, whenever we have to code either T 1, T 3 or T 6, we
substitute it by the explicit expression found here.

We start with the elliptic integral

I =

∫ π

−π

cos(x)
√

1 + r2 − 2r cos(x)
dx.

Taking u =
1− r

1 + r
:

I =
1

1 + r

∫ π

−π

cos(x)dx
√

sin2
(
x
2

)
+ u2 cos2

(
x
2

) =
4

1 + r

∫ π
2

0

cos(2y)dy
√

sin2(y) + u2 cos2(y)

=
4

1 + r

∫ π
2

0

1− 2 sin2(y)
√

sin2(y) + u2 cos2(y)
dy =

{
z = tan(y)
dz

1+z2 = dy

}

=
4

1 + r

∫ ∞

0

1− z2

(1 + z2)3/2
dz√

z2 + u2
.

We remark that u will be close to zero. We need to derive the asymptotics in
powers of u as u → 0 of

I =
4

1 + r

∫ ∞

0

1− z2

(1 + z2)3/2
dz√

z2 + u2

=
4

1 + r

∫ |u|

0

1− z2

(1 + z2)3/2
dz√

z2 + u2
+

4

1 + r

∫ 1

|u|

1− z2

(1 + z2)3/2
dz√

z2 + u2

+
4

1 + r

∫ ∞

1

1− z2

(1 + z2)3/2
dz√

z2 + u2

= I1 + I2 + I3.

51
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We start with I1:

I1 =
4

1 + r

∫ 1

0

1− u2w2

(1 + u2w2)3/2
dw√
1 + w2

.

We expand (1 + u2w2)−3/2 as a power series around w = 0:

(1 + u2w2)−3/2 = 1− 3

2
u2w2 +

1

2

15

4
(u2w2)2E1

2 ,

where (1 + u2)−7/2 ≤ E1
2 ≤ 1. A naive integration and bounding then yields:

I1 =
4

1 + r

(∫ 1

0

1− u2w2

√
1 + w2

dw − 3

2
u2

∫ 1

0

1− u2w2

√
1 + w2

w2dw +
15

8
u4Ẽ1

2

)

=
4

1 + r

(

arcsinh(1) + u2

(
5

4
(−

√
2 + arcsinh(1))

)

+u4

(

− 3

16

(√
2− 3 arcsinh(1)

)

+
15

8
Ẽ1

2

))

,

where

1√
2

1− u2

(1 + u2)7/2
≤ Ẽ1

2 ≤ 1.

Next, we proceed with I3. We can write it as:

I3 =
4

1 + r

∫ 1

0

w2 − 1

(w2 + 1)3/2
dw√

1 + w2u2
.

Expanding in series (1 + w2u2)−1/2:

(1 + u2w2)−1/2 = 1− 1

2
u2w2 +

1

2

3

4
(u2w2)2E2

2 ,

where 1
(1+u2)5/2

≤ E2
2 ≤ 1. A naive integration and bounding then yields:

I3 =
4

1 + r

(∫ 1

0

w2 − 1

(w2 + 1)3/2
dw − 1

2
u2

∫ 1

0

w2 w2 − 1

(w2 + 1)3/2
dw +

3

8
u4Ẽ2

2

)

=
4

1 + r

(

arcsinh(1)−
√
2 +

1

4
u2
(

−3
√
2 + 5 arcsinh(1)

)

+
3

8
u4Ẽ2

2

)

,

and

−1 ≤ Ẽ2
2 ≤ 0.
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Finally, we do the asymptotics for I2. This is the most careful part. We start
by writing

I2 =
4

1 + r

1

2

∫ 1

u2

1

w

1− w

(1 + w)3/2
dw

√

1 + u2

w

=
4

1 + r

1

2

∫ 1

u2

1

w

1

(1 + w)3/2
dw

√

1 + u2

w

− 4

1 + r

1

2

∫ 1

u2

1

w

w

(1 + w)3/2
dw

√

1 + u2

w

= I21 + I22.

Next, we expand the term
(

1 + u2

w

)−1/2

, but we do not truncate. Hence

I21 =
2

1 + r

⎛

⎜
⎜
⎜
⎝

∑

k≥0

(−1/2

k

)

u2k

∫ 1

u2

1

w1+k

dw

(1 + w)3/2
︸ ︷︷ ︸

Fk

⎞

⎟
⎟
⎟
⎠

.

Using the following integration by parts formula for k > 0:
∫ 1

u2

w−k(1 + w)−3/2dw = (−2)(1 + w)−1/2w−k
∣

∣

∣

w=1

w=u2
− 2k

∫ 1

u2

w−k−1(1 + w)−1/2dw

= (−2)(1 + w)−1/2w−k
∣

∣

∣

w=1

w=u2
− 2k

∫ 1

u2

w−k−1(1 + w)−3/2dw

− 2k

∫ 1

u2

w−k(1 + w)−3/2dw,

which implies:
∫ 1

u2

w−k−1(1 + w)−3/2dw = − 1

k
(1 + w)−1/2w−k

∣

∣

∣

∣

w=1

w=u2

− 2k + 1

2k

∫ 1

u2

w−k(1 + w)−3/2dw,

yielding

Fk =
1

k

(
1√

1 + u2
− u2k

√
2

)

− u2

(
2k + 1

2k

)

Fk−1.

We now get back to I21. We have to compute

I21 =
2

1 + r

⎛

⎝

∑

k≥0

(

−1/2

k

)

Fk

⎞

⎠ =

2

1 + r

⎛

⎝F0 +
∑

k≥1

(

−1/2

k

)

1

k

(

1√
1 + u2

− u2k

√
2

)

− u2
∑

k≥1

(

−1/2

k

)

(

2k + 1

2k

)

Fk−1

⎞

⎠ .

We calculate the following explicit numbers:

F0 =
√
2− 2√

1 + u2
− 2 arcsinh(1) + 2 arcsinh

(

1

|u|

)

.

∑

k≥1

(−1/2

k

) 1

k

(

1√
1 + u2

− u2k

√
2

)

=
−2 arcsinh(1) + log(4)√

1 + u2
+

√
2 log

(

1

2
(1 +

√

1 + u2)

)

.

We treat the rightmost sum as an error. Using the fact that the terms are alter-

nating (since

(−1/2

k

)

is alternating and the other factors are positive), and that,
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for k ≥ 1:

Fk−1 =
1

u2

∫ 1

u2

(
u2

w

)k
dw

(1 + w)3/2

≥ 1

u2

∫ 1

u2

(
u2

w

)k+1
dw

(1 + w)3/2
= Fk ∀ 0 < u2 < 1,

∣
∣
∣
∣

(−1/2

k

)∣
∣
∣
∣

2k + 1

2k
=

2(1 + k)2

k(3 + 2k)

∣
∣
∣
∣

(−1/2

k + 1

)∣
∣
∣
∣

2(k + 1) + 1

2(k + 1)
≥
∣
∣
∣
∣

(−1/2

k + 1

)∣
∣
∣
∣

2(k + 1) + 1

2(k + 1)

we can bound the absolute value of the sum by the absolute value of its first
term, yielding:

∣
∣
∣
∣
∣
∣

u2
∑

k≥1

(−1/2

k

)(
2k + 1

2k

)

Fk−1

∣
∣
∣
∣
∣
∣

≤ 3

4
u2|F0|.

We move on to I22. We can write it as:

I22 =
2

1 + r

⎛

⎝−u2F−1 − u2
∑

k≥1

(−1/2

k

)

Fk−1

⎞

⎠ .

Together with the explicit calculation

−u2F−1 =
√
2− 2√

1 + u2
,

and the bound on the last term by the same reason as above:

∣
∣
∣
∣
∣
∣

u2
∑

k≥1

(−1/2

k

)

Fk−1

∣
∣
∣
∣
∣
∣

≤ 1

2
u2|F0|

we can conclude, after gathering all the contributions, that I splits in the
following way:

I = Iho,ns + Iho,s + Ie,s + Ie,ns,
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where

Iho,ns =
4

1 + r

(

arcsinh(1) + u2

(
5

4
(−

√
2 + arcsinh(1))

)

+u4

(

− 3

16

(√
2− 3 arcsinh(1)

)))

+
4

1 + r

(

arcsinh(1)−
√
2 +

1

4
u2
(

−3
√
2 + 5 arcsinh(1)

))

+
2

1 + r

(√
2− 2√

1 + u2
− 2 arcsinh(1)

)

+
2

1 + r

(−2 arcsinh(1) + log(4)√
1 + u2

+
√
2 log

(
1

2
(1 +

√

1 + u2)

))

+
2

1 + r

(√
2− 2√

1 + u2

)

=
4

1 + r

(
1√
2
log

(
1

2
(1 +

√

1 + u2)

)

+
1√

1 + u2

(

−2 +
(

−1 +
√

1 + u2
)

arcsinh(1) + log(2)
))

+
4

1 + r

(

u2

(

−2
√
2 +

5

2
arcsinh(1)

)

− 3

16
u4(

√
2− 3 arcsinh(1))

)

Iho,s =
4

1 + r
arcsinh

(
1

|u|

)

and

|Ie,ns| ≤
4

1 + r

15

8
u4 +

4

1 + r

3

8
u4 +

2

1 + r

5

4
u2

∣
∣
∣
∣

√
2− 2√

1 + u2
− 2 arcsinh(1)

∣
∣
∣
∣

=
4

1 + r

9

4
u4 +

4

1 + r

5

8
u2

∣
∣
∣
∣

√
2− 2√

1 + u2
− 2 arcsinh(1)

∣
∣
∣
∣

|Ie,s| ≤
4

1 + r

5

4
u2 arcsinh

(
1

|u|

)

.

Note that in the computer implementation any error term Ie will be imple-
mented as the interval [−M,M ] whenever |Ie| ≤ M .

We do the same for the other elliptic integral:

J =

∫ π

−π

cos(3x)
√

1 + s2 − 2s cos(x)
dx.

Taking u =
1− r

1 + r
:

J =
1

1 + r

∫ π

−π

cos(3x)dx
√

sin2
(
x
2

)
+ u2 cos2

(
x
2

) =
4

1 + r

∫ π
2

0

cos(6y)dy
√

sin2(y) + u2 cos2(y)

=

{
z = tan(y)
dz

1+z2 = dy

}

=
4

1 + r

∫ ∞

0

1− 15z2 + 15z4 − z6

(1 + z2)7/2
dz√

z2 + u2
.
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We repeat the splitting that we did for I, this time for J :

J =
4

1 + r

∫ ∞

0

1− 15z2 + 15z4 − z6

(1 + z2)7/2
dz√

z2 + u2

=
4

1 + r

∫ |u|

0

1− 15z2 + 15z4 − z6

(1 + z2)7/2
dz√

z2 + u2

+
4

1 + r

∫ 1

|u|

1− 15z2 + 15z4 − z6

(1 + z2)7/2
dz√

z2 + u2

+
4

1 + r

∫ ∞

1

1− 15z2 + 15z4 − z6

(1 + z2)7/2
dz√

z2 + u2
= J1 + J2 + J3.

We start with J1:

J1 =
4

1 + r

∫ 1

0

1− 15u2w2 + 15u4w4 − u6w6

(1 + u2w2)7/2
dw√
1 + w2

.

We expand (1 + u2w2)−7/2 as a power series around w = 0:

(1 + u2w2)−7/2 = 1− 7

2
u2w2F 1

2 ,

where (1 + u2)−9/2 ≤ F 1
2 ≤ 1. A naive integration and bounding then yields:

J1 =
4

1 + r

(∫ 1

0

1− 15u2w2 + 15u4w4 − u6w6

√
1 + w2

dw − 7

2
u2F̃ 1

2

)

=
4

1 + r

(

arcsinh(1)− u2

(
15

2
(
√
2− arcsinh(1))

)

−u4

(
15

8

(√
2− 3 arcsinh(1)

))

− 1

48
u6
(

13
√
2− 15 arcsinh(1)

)

− 7

2
u2F̃ 1

2

)

,

where

0 ≤ F̃ 1
2 ≤ 1,

and we have used that |u| is small enough to guarantee the positiveness of the
integrand.

Next, we proceed with J3. We can write it as:

J3 =
4

1 + r

∫ 1

0

w6 − 15w4 + 15w2 − 1

(w2 + 1)7/2
dw√

1 + w2u2
.

Expanding in series (1 + w2u2)−1/2:

(1 + u2w2)−1/2 = 1− 1

2
u2w2F 2

2 ,
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where 1
(1+u2)3/2

≤ F 2
2 ≤ 1. We use the fact that

max
w∈[0,1]

|w6 − 15w4 + 15w2 − 1| ≤ 176− 80
√
5 < 3,

to obtain, via integration and bounding:

J3 =
4

1 + r

(∫ 1

0

w6 − 15w4 + 15w2 − 1

(w2 + 1)7/2
dw − 1

2
u2F̃ 2

2

)

=
4

1 + r

(

arcsinh(1)− 7

15

√
2− 1

2
u2F̃ 2

2

)

,

and

|F̃ 2
2 | ≤ 3.

We finally move on to J2. As before, we have the following formula obtained
by integration by parts:

∫ 1

u2

w−k−1(1 + w)−7/2dw

= −1

k
w−k(1 + w)−5/2

∣
∣
∣
∣

w=1

w=u2

−
(
2k + 5

2k

)∫ 1

u2

w−k(1 + w)−7/2dw.

Defining now

Gk = u2k

∫ 1

u2

1

w1+k

dw

(1 + w)7/2

we arrive to

Gk =
1

k

(
1

(1 + u2)5/2
− u2k

√
32

)

− u2

(
2k + 5

2k

)

Gk−1.(A.1)

We can write

J2 =
2

1 + r

⎛

⎝
∑

k≥0

(−1/2

k

)

Gk − 15u2
∑

k≥0

(−1/2

k

)

Gk−1

+15u4
∑

k≥0

(−1/2

k

)

Gk−2 − u6
∑

k≥0

(−1/2

k

)

Gk−3

⎞

⎠

= J21 + J22 + J23 + J24.

The last three terms are easier. We deal with them first.

J24 =
2

1 + r

⎛

⎝−u6G−3 − u6
∑

k≥1

(−1/2

k

)

Gk−3

⎞

⎠ .

The first term can be explicitly calculated and it amounts to

−u6G−3 = − 1

60

64 + 160u2 + 120u4 − 43
√
2(1 + u2)5/2

(1 + u2)5/2
.
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The last series is alternating and convergent and we can get the following bound:

∣
∣
∣
∣
∣
∣

u6
∑

k≥1

(−1/2

k

)

Gk−3

∣
∣
∣
∣
∣
∣

≤ u6 1

2
G−2 =

1

120
u2

∣
∣
∣
∣
−7

√
2 +

40

(1 + u2)3/2
− 24

(1 + u2)5/2

∣
∣
∣
∣
.

We move on to J23. By the same reasoning:

J23 =
2

1 + r

⎛

⎝15u4G−2 + 15u4
∑

k≥1

(−1/2

k

)

Gk−2

⎞

⎠

=
2

1 + r

⎛

⎝− 7

2
√
2
+

10

(1 + u2)3/2
− 6

(1 + u2)5/2
+ 15u4

∑

k≥1

(−1/2

k

)

Gk−2

⎞

⎠ ,

and

∣
∣
∣
∣
∣
∣

15u4
∑

k≥1

(−1/2

k

)

Gk−2

∣
∣
∣
∣
∣
∣

≤ u4 15

2
G−1 =

3

8
u2

∣
∣
∣
∣
−
√
2 +

8

(1 + u2)5/2

∣
∣
∣
∣
.

The same applies to J22. We have:

J22 =
2

1 + r

⎛

⎝−15u2G−1 − 15u2
∑

k≥1

(−1/2

k

)

Gk−1

⎞

⎠

=
2

1 + r

⎛

⎝
3

4

√
2− 6

(1 + u2)5/2
− 15u2

∑

k≥1

(−1/2

k

)

Gk−1

⎞

⎠

and

∣

∣

∣

∣

∣

∣

−15u2
∑

k≥1

(

−1/2

k

)

Gk−1

∣

∣

∣

∣

∣

∣

≤ u2 15

2
G0

=
1

8
u2

∣

∣

∣

∣

73
√
2− 24

(1 + u2)5/2
− 40

(1 + u2)3/2
− 120

(1 + u2)1/2

−120 arcsinh(1) + 120 arcsinh

(

1

|u|

)∣

∣

∣

∣

.
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In order to compute J21 we use formula (A.1):

∑

k≥0

(

−1/2

k

)

Gk = G0 +
∑

k≥1

(

−1/2

k

)

Gk

= G0 +
∑

k≥1

(

−1/2

k

)

1

k

(

1

(1 + u2)5/2
− u2k

√
32

)

− u2
∑

k≥1

(

−1/2

k

)

(

2k + 5

2k

)

Gk−1

=
73

30
√
2
− 2√

1 + u2
− 2

3

1

(1 + u2)3/2

− 2

5

1

(1 + u2)5/2
− 2 arcsinh(1) + 2 arcsinh

(

1

|u|

)

+
1

8

(

16(log(2)− arcsinh(1))

(1 + u2)5/2
−

√
2 log(4) + 2

√
2 log(1 +

√

1 + u2)

)

− u2
∑

k≥1

(

−1/2

k

)

(

2k + 5

2k

)

Gk−1.

The last sum can be bounded as usual by

∣
∣
∣
∣
∣
∣

u2
∑

k≥1

(−1/2

k

)(
2k + 5

2k

)

Gk−1

∣
∣
∣
∣
∣
∣

≤ 1

2

7

2
u2G0

=
7

4
u2

∣
∣
∣
∣

73

30
√
2
− 2√

1 + u2
− 2

3

1

(1 + u2)3/2
− 2

5

1

(1 + u2)5/2

−2 arcsinh(1) + 2 arcsinh

(
1

|u|

)∣
∣
∣
∣
.

We finally add everything together to write J as

J = Jho,ns + Jho,s + Je,ns + Je,s

where
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Jho,ns =
4

1 + r

(

arcsinh(1)− u2

(

15

2
(
√
2− arcsinh(1))

)

−u4

(

15

8

(√
2− 3 arcsinh(1)

)

)

− 1

48
u6

(

13
√
2− 15 arcsinh(1)

)

)

+
4

1 + r

(

arcsinh(1)− 7

15

√
2

)

+
2

1 + r

(

− 1

60

64 + 160u2 + 120u4 − 43
√
2(1 + u2)5/2

(1 + u2)5/2

)

+
2

1 + r

(

− 7

2
√
2
− 6

(1 + u2)5/2
+

10

(1 + u2)3/2

)

+
2

1 + r

(

3

4

(√
2− 8

(1 + u2)5/2

))

+
2

1 + r

(

1

8

(

16(log(2)− arcsinh(1))

(1 + u2)5/2
−

√
2 log(4) + 2

√
2 log(1 +

√

1 + u2)

))

+
2

1 + r

(

73

30
√
2
− 2√

1 + u2
− 2

3

1

(1 + u2)3/2
− 2

5

1

(1 + u2)5/2
− 2 arcsinh(1)

)

=
4

1 + r

(

− 46

15(1 + u2)5/2
− 1

48
u6(13

√
2− 15 arcsinh(1)) + arcsinh(1)

)

+
4

1 + r

(

− arcsinh(1)

(1 + u2)5/2
+ u4

(

− 15

4
√
2
− 2

(1 + u2)5/2
+

45

8
arcsinh(1)

))

+
4

1 + r

(

1

6
u2

(

−45
√
2 +

8

(1 + u2)5/2
+ 45 arcsinh(1)

))

+
4

1 + r

(

log(2)

(1 + u2)5/2
+

log
(

1
2

(

1 +
√
1 + u2

))

4
√
2

)

Jho,s =
4

1 + r
arcsinh

(

1

|u|

)

and

|Je,ns| ≤
4

1 + r

(

7

2
u2 +

3

2
u2

)

+
4

1 + r

(

1

240
u2

∣

∣

∣

∣

−7
√
2− 24

(1 + u2)5/2
+

40

(1 + u2)3/2

∣

∣

∣

∣

)

+
4

1 + r

(

3

16
u2

∣

∣

∣

∣

−
√
2 +

8

(1 + u2)5/2

∣

∣

∣

∣

)

+
4

1 + r

(

37

8
u2

∣

∣

∣

∣

73

30
√
2
− 2√

1 + u2
− 2

3

1

(1 + u2)3/2
− 2

5

1

(1 + u2)5/2
− 2 arcsinh(1)

∣

∣

∣

∣

)

|Je,s| ≤
4

1 + r

37

4
u2 arcsinh

(

1

|u|

)

.

Finally, we do K6, corresponding to:

L =

∫ π

−π

cos(6x)
√

1 + s2 − 2s cos(x)
dx.
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Taking u =
1− r

1 + r
:

L =
1

1 + r

∫ π

−π

cos(6x)dx
√

sin2
(
x
2

)
+ u2 cos2

(
x
2

)

=
4

1 + r

∫ π
2

0

cos(12y)dy
√

sin2(y) + u2 cos2(y)

=

{
z = tan(y)
dz

1+z2 = dy

}

=
4

1 + r

∫ ∞

0

1− 66z2 + 495z4 − 924z6 + 495z8 − 66z10 + z12

(1 + z2)13/2
dz√

z2 + u2
.

We repeat the splitting again:

L =
4

1 + r

∫ ∞

0

1− 66z2 + 495z4 − 924z6 + 495z8 − 66z10 + z12

(1 + z2)13/2
dz√

z2 + u2

=
4

1 + r

∫ |u|

0

1− 66z2 + 495z4 − 924z6 + 495z8 − 66z10 + z12

(1 + z2)13/2
dz√

z2 + u2

+
4

1 + r

∫ 1

|u|

1− 66z2 + 495z4 − 924z6 + 495z8 − 66z10 + z12

(1 + z2)13/2
dz√

z2 + u2

+
4

1 + r

∫ ∞

1

1− 66z2 + 495z4 − 924z6 + 495z8 − 66z10 + z12

(1 + z2)13/2
dz√

z2 + u2

= L1 + L2 + L3.

We start with L1:

L1 =
4

1 + r

∫ 1

0

1− 66u2w2 + 495u4w4 − 924u6w6 + 495u8w8 − 66u10w10 + u12w12

(1 + u2w2)13/2
dw√
1 + w2

.

We expand (1 + u2w2)−13/2 as a power series around w = 0:

(1 + u2w2)−13/2 = 1− 13

2
u2w2G1

2,

where (1 + u2)−15/2 ≤ F 1
2 ≤ 1. A naive integration and bounding then yields:

L1 =
4

1 + r

(∫ 1

0

1− 66u2w2 + 495u4w4 − 924u6w6 + 495u8w8 − 66u10w10 + u12w12

√
1 + w2

dw

−13

2
u2G̃1

2

)

=
4

1 + r

(

arcsinh(1)− 33u2(
√
2− arcsinh(1))− u4

(

495

8

(√
2− 3 arcsinh(1)

)

)

−77

4
u6

(

13
√
2− 15 arcsinh(1)

)

− 165

128
u8(43

√
2− 105 arcsinh(1))

− 33

640
u10(257

√
2− 315 arcsinh(1))

− 7

15360
u12(221

√
2− 495 arcsinh(1))− 13

2
u2G̃1

2

)

,

where

0 ≤ G̃1
2 ≤ 1,
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and we have used that |u| is small enough to guarantee the positiveness of the
integrand.

Next, we proceed with L3. We can write it as:

L3 =
4

1 + r

∫ 1

0

1− 66w2 + 495w4 − 924w6 + 495w8 − 66w10 + w12

(w2 + 1)13/2
dw√

1 + w2u2
.

Expanding in series (1 + w2u2)−1/2:

(1 + u2w2)−1/2 = 1− 1

2
u2w2G2

2,

where 1
(1+u2)3/2

≤ G2
2 ≤ 1. We use the fact that

max
w∈[0,1]

|1− 66w2 + 495w4 − 924w6 + 495w8 − 66w10 + w12| = |w(1)| = 64,

to obtain, via integration and bounding:

L3 =
4

1 + r

(∫ 1

0

1− 66w2 + 495w4 − 924w6 + 495w8 − 66w10 + w12

(w2 + 1)13/2
dw − 1

2
u2G̃2

2

)

=
4

1 + r

(

arcsinh(1)− 2182

3465

√
2− 1

2
u2G̃2

2

)

,

and

|G̃2
2| ≤ 64.

We finally move on to L2. As before, we have the following formula obtained
by integration by parts:

∫ 1

u2

w−k−1(1 + w)−13/2dw

= −1

k
w−k(1 + w)−11/2

∣
∣
∣
∣

w=1

w=u2

−
(
2k + 11

2k

)∫ 1

u2

w−k(1 + w)−11/2dw.

Defining now

Hk = u2k

∫ 1

u2

1

w1+k

dw

(1 + w)13/2

we arrive to

Hk =
1

k

(
1

(1 + u2)11/2
− u2k

√
211

)

− u2

(
2k + 11

2k

)

Hk−1.(A.2)

We can write

L2 =
2

1 + r

⎛

⎝

∑

k≥0

(−1/2

k

)

Hk − 66u2
∑

k≥0

(−1/2

k

)

Hk−1

+495u4
∑

k≥0

(−1/2

k

)

Hk−2 − 924u6
∑

k≥0

(−1/2

k

)

Hk−3

⎞

⎠

+
2

1 + r

⎛

⎝495u8
∑

k≥0

(−1/2

k

)

Hk−4 − 66u10
∑

k≥0

(−1/2

k

)

Hk−5 + u12
∑

k≥0

(−1/2

k

)

Hk−6

⎞

⎠

= L21 + L22 + L23 + L24 + L25 + L26 + L27.
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The last six terms are easier. We deal with them first.

L27 =
2

1 + r

⎛

⎝u12H−6 + u12
∑

k≥1

(−1/2

k

)

Hk−6

⎞

⎠ .

The first term can be explicitly calculated and it amounts to

u12H−6 =
1

22176

16384 + 90112u2 + 202752u4 + 236544u6

(1 + u2)11/2

+
1

22176

147840u8 + 44352u10 − 11531
√
2(1 + u2)11/2

(1 + u2)11/2

The last series is alternating and convergent and we can get the following bound:
∣
∣
∣
∣
∣
∣

u12
∑

k≥1

(−1/2

k

)

Hk−6

∣
∣
∣
∣
∣
∣

≤ u12 1

2
H−5 =

1

221760(1 + u2)11/2
u2

×
∣
∣
∣8192 + 45056u2 + 101376u4 + 118272u6 + 73920u8 − 5419

√
2(1 + u2)11/2

∣
∣
∣ .

We move on to L26. By the same reasoning:

L26 =
2

1 + r

⎛

⎝−66u10H−5 − 66u10
∑

k≥1

(−1/2

k

)

Hk−5

⎞

⎠

=
2

1 + r

(

−8192 + 45056u2 + 101376u4 + 118272u6 + 73920u8 − 5419
√
2(1 + u2)11/2

1680(1 + u2)11/2

)

+
2

1 + r

⎛

⎝−66u10
∑

k≥1

(−1/2

k

)

Hk−5

⎞

⎠ ,

∣

∣

∣

∣

∣

∣

66u10
∑

k≥1

(−1/2

k

)

Hk−5

∣

∣

∣

∣

∣

∣

≤ 33u10H−4

=
1

1120
u2

∣

∣

∣

∣

∣

1024 + 5632u2 + 12672u4 + 14784u6 − 533
√
2(1 + u2)11/2

(1 + u2)11/2

∣

∣

∣

∣

∣

.

The same applies to L25. We have:

L25 =
2

1 + r

⎛

⎝495u8H−4 + 495u8
∑

k≥1

(−1/2

k

)

Hk−4

⎞

⎠

=
2

1 + r

(

3(1024 + 5632u2 + 12672u4 + 14784u6 − 533
√
2(1 + u2)11/2)

224(1 + u2)11/2

+495u8
∑

k≥1

(−1/2

k

)

Hk−4

⎞

⎠
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and
∣
∣
∣
∣
∣
∣

495u8
∑

k≥1

(−1/2

k

)

Hk−4

∣
∣
∣
∣
∣
∣

≤ u8 495

2
H−3

=
5

448
u2

∣
∣
∣
∣
∣

512 + 2816u2 + 6336u4 − 151
√
2(1 + u2)11/2

(1 + u2)11/2

∣
∣
∣
∣
∣
.

The next term is L24. We have:

L24 =
2

1 + r

⎛

⎝−924u6H−3 − 924u6
∑

k≥1

(−1/2

k

)

Hk−3

⎞

⎠

=
2

1 + r

⎛

⎝

−512− 2816u2 − 6336u4 + 151
√
2(1 + u2)11/2)

24(1 + u2)11/2
− 924u6

∑

k≥1

(−1/2

k

)

Hk−3

⎞

⎠

and
∣
∣
∣
∣
∣
∣

924u6
∑

k≥1

(−1/2

k

)

Hk−3

∣
∣
∣
∣
∣
∣

≤ 462u6H−2 =
7

48
u2

∣
∣
∣
∣
−13

√
2− 576

(1 + u2)11/2
+

704

(1 + u2)9/2

∣
∣
∣
∣
.

The term L23 can be decomposed as:

L23 =
2

1 + r

⎛

⎝495u4H−2 + 495u4
∑

k≥1

(−1/2

k

)

Hk−2

⎞

⎠

=
2

1 + r

⎛

⎝− 65

16
√
2
− 90

(1 + u2)11/2
+

110

(1 + u2)9/2
+ 495u4

∑

k≥1

(−1/2

k

)

Hk−2

⎞

⎠

and we have the bound
∣
∣
∣
∣
∣
∣

495u4
∑

k≥1

(−1/2

k

)

Hk−2

∣
∣
∣
∣
∣
∣

≤ 495

2
u4H−1 =

45

64
u2

(

−
√
2 +

64

(1 + u2)11/2

)

.

We can split L22 into:

L22 =
2

1 + r

⎛

⎝−66u2H−1 − 66u2
∑

k≥1

(−1/2

k

)

Hk−1

⎞

⎠

=
2

1 + r

⎛

⎝
3

8
√
2
− 12

(1 + u2)11/2
− 66u2

∑

k≥1

(−1/2

k

)

Hk−1

⎞

⎠
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and bound the second sum by

∣
∣
∣
∣
∣
∣

66u2
∑

k≥1

(−1/2

k

)

Hk−1

∣
∣
∣
∣
∣
∣

≤ 33u2H0

= 33u2

(
137969

55440
√
2
− 2

11(1 + u2)11/2
− 2

9(1 + u2)9/2

− 2

7(1 + u2)7/2
− 2

5(1 + u2)5/2
− 2

3(1 + u2)3/2

− 2√
1 + u2

− 2 arcsinh(1) + 2 arcsinh

(
1

|u|

))

.

In order to compute L21 we use formula (A.2):

∑

k≥0

(−1/2

k

)

Hk = H0 +
∑

k≥1

(−1/2

k

)

Hk

= H0 +
∑

k≥1

(−1/2

k

)
1

k

(
1

(1 + u2)11/2
− u2k

√
211

)

− u2
∑

k≥1

(−1/2

k

)(
2k + 11

2k

)

Hk−1

=
137969

55440
√
2
− 2

11(1 + u2)11/2
− 2

9(1 + u2)9/2

− 2

7(1 + u2)7/2
− 2

5(1 + u2)5/2

− 2

3(1 + u2)3/2
− 2√

1 + u2
− 2 arcsinh(1) + 2 arcsinh

(
1

|u|

)

+
1

64

(
128(log(2)− arcsinh(1))

(1 + u2)5/2
−
√
2 log(4)

+2
√
2 log(1 +

√

1 + u2)
)

− u2
∑

k≥1

(−1/2

k

)(
2k + 11

2k

)

Hk−1.

The last sum can be bounded as usual by

∣
∣
∣
∣
∣
∣

u2
∑

k≥1

(−1/2

k

)(
2k + 11

2k

)

Hk−1

∣
∣
∣
∣
∣
∣

≤ 1

2

11

2
u2H0

=
11

4
u2

∣
∣
∣
∣

137969

55440
√
2
− 2

11(1 + u2)11/2

− 2

9(1 + u2)9/2
− 2

7(1 + u2)7/2
− 2

5(1 + u2)5/2

− 2

3(1 + u2)3/2
− 2√

1 + u2
− 2 arcsinh(1) + 2 arcsinh

(
1

|u|

)∣
∣
∣
∣
.
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We finally add everything together to write L as

L = Lho,ns + Lho,s + Le,ns + Le,s

where

Lho,ns =
4

1 + r

(

arcsinh(1)− 33u2(
√
2− arcsinh(1))− u4

(

495

8

(√
2− 3 arcsinh(1)

)

))

+
4

1 + r

(

−77

4
u6

(

13
√
2− 15 arcsinh(1)

)

− 165

128
u8(43

√
2− 105 arcsinh(1))

− 33

640
u10(257

√
2− 315 arcsinh(1))

)

+
4

1 + r

(

− 7

15360
u12(221

√
2− 495 arcsinh(1))

)

+
4

1 + r

(

arcsinh(1)− 2182

3465

√
2

)

+
2

1 + r

(

u12H(−6)− 66u10H(−5) + 495u8H(−4)

−924u6H(−3) + 495u4H(−2)− 66u2H(−1)
)

+
2

1 + r

⎛

⎝H(0)− 2 arctan

(

1

|u|

)

+
∑

k≥1

(−1/2

k

) 1

k

(

1

(1 + u2)11/2
− u2k

√
211

)

⎞

⎠

=
4

1 + r

(

arcsinh(1) + 33u2(arcsinh(1)−
√
2)− 495

8
u4

(√
2− 3 arcsinh(1)

)

−77

4
u6

(

13
√
2− 15 arcsinh(1)

)

)

+
4

1 + r

(

−165

128
u8

(

43
√
2− 105 arcsinh(1)

)

− 33

640
u10

(

257
√
2− 315 arcsinh(1)

)

− 7u12

15360

(

221
√
2− 495 arcsinh(1)

)

)

+
4

1 + r

(

− 8

3465(1 + u2)11/2
(1627 + 11u2(−604 + 3366u2 − 2268u4 + 945u6))

)

+
4

1 + r

⎛

⎝

log(2)− arcsinh(1)

(1 + u2)11/2
+

log
(

1
2

(

1 +
√
1 + u2

))

32
√
2

⎞

⎠

Lho,s =
4

1 + r
arcsinh

(

1

|u|

)
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and

|Le,ns| ≤
4

1 + r

(

13

2
u2 + 32u2

)

+
4

1 + r

∣

∣

∣

∣

∣

u2

443520

8192 + 45056u2 + 101376u4 + 118272u6 + 73920u8 − 5419
√
2(1 + u2)11/2

(1 + u2)11/2

∣

∣

∣

∣

∣

+
4

1 + r

∣

∣

∣

∣

∣

u2

2240

1024 + 5632u2 + 12672u4 + 14784u6 − 533
√
2(1 + u2)11/2

(1 + u2)11/2

∣

∣

∣

∣

∣

+
4

1 + r

∣

∣

∣

∣

∣

5u2

896

512 + 2816u2 + 6336u4 − 151
√
2(1 + u2)11/2

(1 + u2)11/2

∣

∣

∣

∣

∣

+
4

1 + r

∣

∣

∣

∣

7

96
u
2

(

−13
√
2 − 576

(1 + u2)11/2
+

704

(1 + u2)9/2

)∣

∣

∣

∣

+
4

1 + r

∣

∣

∣

∣

∣

45u2

128

(

−
√
2 +

64

(1 + u2)11/2

)

∣

∣

∣

∣

∣

+
4

1 + r

∣

∣

∣

∣

143

8
u2

(

137969

55440
√
2
− 2

11(1 + u2)11/2
− 2

9(1 + u2)9/2
− 2

7(1 + u2)7/2
− 2

5(1 + u2)5/2

− 2

3(1 + u2)3/2
− 2√

1 + u2
− 2 arcsinh(1)

)∣

∣

∣

∣

|Le,s| ≤
4

1 + r

143

4
u2 arcsinh

(

1

|u|

)

.





APPENDIX B

Implementation of the computer-assisted part and
rigorous numerical results

In this section we will discuss the technical details about the implementation of
the different integrals that appear in the proofs. We remark that we are computing
explicit (but complicated) functions over a one dimensional domain. In order to
perform the rigorous computations we used the C-XSC library [35]. The code can
be found in the supplementary material.

The implementation is split into several files, and many of the headers of the
functions (such as the integration methods) contain pointers to functions (the in-
tegrands) so that they can be reused for an arbitrary number of integrals with
minimal changes and easy and safe debugging. For the sake of clarity, and at the
cost of numerical performance and duplicity in the code, we decided to treat many
simple integrals instead of a single big one.

We will only integrate in ρ′ (or more specifically, in ρ̃′: see below for the change

of variables). We outline the computation for Ĩ(ρ) here but the other parts of the
functions are calculated in the same way.

In order to minimize the impact of a and β being too small, we transform the
original domain [1− a, 1] into a reference one: [−1, 1].

Ĩ(ρ) = − 1

2πρ

∫ 1

1−a

f
′
(ρ

′
)K

1

(

ρ

ρ′

)

dρ
′

= − 1

2π
(

a
2 (ρ̃ − 1) + 1

)

∫

1

−1

a

2
fρ

(

a

2
(ρ̃

′ − 1) + 1

)

K
1

(

(ρ̃ − 1) + 2
a

(ρ̃′ − 1) + 2
a

)

dρ̃
′

= − 1

2π
(

a
2 (ρ̃ − 1) + 1

)

∫ 1

−1

a

2
fρ

(

a

2
(ρ̃

′ − 1) + 1

)

(Iho,s + Iho,ns + Ie,s + Ie,ns)

(

(ρ̃ − 1) + 2
a

(ρ̃′ − 1) + 2
a

)

dρ̃
′

≡ Ĩ(ρ̃),

where ρ̃ = 2
a (ρ− 1) + 1.

There are two basic classes in the programs that enclose all the necessary infor-
mation used throughout the computations. The first one is called ParameterSet

and has the following members: two doubles, abs tol and rel tol, providing
the desired tolerances used to accept or reject the enclosure of the integral in the
adaptive integration scheme described below; two intervals, a and beta, which
are parameters of the system. We take them to be intervals since the actual
value of a is not representable by a computer. A ParameterSet also contains
two intervals, Left and Right, describing the boundaries of the integration re-
gion; two integers, region rho and region rhop, denoting whether ρ̃ and ρ̃′ are in
[−1,−1+ β],[−1+ β, 1− β] or [1− β, 1] respectively. Finally, there is also an inter-
val rho normalized indicating the value of ρ̃ (we remark that we are integrating
in ρ̃′). The second data structure is called IntegrationResult and is composed
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of a ParameterSet, an interval result containing the result of the integration,
an ivector (vector of intervals) error by coordinate which has information about
the error in the different directions and an integer flag which is set to 1 if we ever
encounter an error in the program (e.g. a division by zero due to overestimation).

We now explain how the integrals are calculated. By technical issues explained
below, we will split the integration region [−1, 1] into smaller pieces and sum the
contributions over each piece. Regardless of the domain, the integration is done
in an adaptive way unless specified. We keep track of the regions over which we
need to integrate in a Standard Template Library priority queue, which keeps
the IntegrationResults sorted by absolute width of their member result. We
operate by taking the topmost element (i.e. the one with the highest absolute
width) and deciding to accept the result or reject it. This is done based on the
width of the result in an absolute and a relative (to the length of the integration
region) way (it has to be smaller than abs tol and rel tol respectively). In the
latter case, we split the region and recomputed the integral on both subregions. The
splitting is done by the midpoint. In order to avoid infinite loops – which could
potentially happen since there is uncertainty in the value of ρ̃ –, we repeat this step
at most MAX ELEMENTS EVALUATED times. In our code, MAX ELEMENTS EVALUATED

= 100.000. All integrations are done using a Gauss-Legendre quadrature of order
2, given by:

∫ b

a

f(x)dx ∈ b− a

2

(

f

(

b− a

2

√
3

3
+

b+ a

2

)

+ f

(

−b− a

2

√
3

3
+

b+ a

2

))

+
1

4320
(b− a)5f4([a, b]).

Once we have defined the basic classes and explained the integration method, we
now turn into the discussion of the splitting of the interval [−1, 1]. We will compute
4 different integrals depending on whether we are integrating Iho,ns,Iho,s,Ie,ns,Ie,s
(see Appendix A). On the one hand, the integrals of Iho,ns and Ie,ns will be
performed on the full interval [−1, 1] taking care of adjusting the regions of ρ̃ and
ρ̃′ accordingly (see Figure 1 for a depiction of the different regions) in order to
adjust the expression of fρ accordingly to the region. We remark that because of
the monotonicity of fρ, whenever we want to evaluate fρ in an interval it is enough
to compute it at the endpoints and take the hull of the two results. On the other
hand, the integrals of Iho,s and Ie,s will be split into a staircase domain and a
singularity region depending on (ρ, ρ′). The staircase domain is shown in Figure 2
for N = 20, β = 2

N .
In order to integrate over the singularity region, we will integrate by factoring

out everything out of the factor arcsinh( 1
|u| ) and integrating explicitly.

For example, if we want to integrate

∫

A(ρ, ρ′) arcsinh

(
1

|u|

)

dρ′(B.1)

and we have uniform bounds on A of the type

a ≤ A(ρ, ρ′) ≤ a,
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Figure 1. The 9 different possibilities in (ρ, ρ′) leading to different
values of f ′.

Figure 2. Different integration regions. Colored: singular region,
white: staircase region.

then the integral (B.1) can be bounded by

a

∫

arcsinh

(
1

|u|

)

dρ′ ≤
∫

A(ρ, ρ′) arcsinh

(
1

|u|

)

dρ′ ≤ a

∫

arcsinh

(
1

|u|

)

dρ′,

yielding the enclosure

∫

A(ρ, ρ′) arcsinh

(
1

|u|

)

dρ′ ∈
[

a

∫

arcsinh

(
1

|u|

)

dρ′, a

∫

arcsinh

(
1

|u|

)

dρ′
]

.
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A strightforward but long calculation yields the following lemma, which is useful
for that purpose:

Lemma B.1. Let −1 ≤ ρ̃, ρ̃′ ≤ 1, 0 < a < 1. We have that:
∫ d

c

arcsinh

(

|ρ̃ + ρ̃′ − 2 + 4
a |

|ρ̃ − ρ̃′|

)

dρ̃
′

= −c arcsinh

(

4 + a(−2 + c + ρ̃)

a|c − ρ̃|

)

+ d arcsinh

(

4 + a(−2 + d + ρ̃)

a|d − ρ̃|

)

+ ρ̃ log

( |d − ρ̃|
|c − ρ̃|

)

+

√
2

a
(−2 + a − aρ̃) log

(

2 + a(−1 + c) +
√

8 + 4a(−2 + c + ρ̃) + a2(2 + (−2 + c)c + (−2 + ρ̃)ρ̃)

2 + a(−1 + d) +
√

8 + 4a(−2 + d + ρ̃) + a2(2 + (−2 + d)d + (−2 + ρ̃)ρ̃)

)

+ ρ̃ log

(

4 + a(−2 + c + ρ̃) +
√
2
√

8 + 4a(−2 + c + ρ̃) + a2(2 + (−2 + c)c + (−2 + ρ̃)ρ̃)

4 + a(−2 + d + ρ̃) +
√
2
√

8 + 4a(−2 + d + ρ̃) + a2(2 + (−2 + d)d + (−2 + ρ̃)ρ̃)

)

= −c log

⎛

⎝

4

a
+ (−2 + c + ρ̃) +

√

(c − ρ̃)2 +

(

4

a
+ (−2 + c + ρ̃)

)2

⎞

⎠ + (c − ρ̃) log (|c − ρ̃|)

+ d log

⎛

⎝

4

a
+ (−2 + d + ρ̃) +

√

(d − ρ̃)2 +

(

4

a
+ (−2 + d + ρ̃)

)2

⎞

⎠ − (d − ρ̃) log (|d − ρ̃|)

+

√
2

a
(−2 + a − aρ̃) log

(

2 + a(−1 + c) +
√

8 + 4a(−2 + c + ρ̃) + a2(2 + (−2 + c)c + (−2 + ρ̃)ρ̃)

2 + a(−1 + d) +
√

8 + 4a(−2 + d + ρ̃) + a2(2 + (−2 + d)d + (−2 + ρ̃)ρ̃)

)

+ ρ̃ log

(

4 + a(−2 + c + ρ̃) +
√
2
√

8 + 4a(−2 + c + ρ̃) + a2(2 + (−2 + c)c + (−2 + ρ̃)ρ̃)

4 + a(−2 + d + ρ̃) +
√
2
√

8 + 4a(−2 + d + ρ̃) + a2(2 + (−2 + d)d + (−2 + ρ̃)ρ̃)

)

.

The computations were run on a desktop with 8 cores at 3.10 GHz and 8 GB
of RAM. The different runtimes are described in each of the lemmas separately.

We will explain the algorithms and the procedures of the different lemmas from
easier to harder, irrespective of the order in which the lemmas are found in the main
sections of the paper.

Proof of Lemma 4.26. We compute the hull (an enclosure of the range) of

Ĩ
(
2
a (ρ̃− 1) + 1

)
for ρ̃ ∈ [−1, 1]. To do so, we split the interval [−1, 1] into N =

512 intervals Ij , j = 0 . . . N − 1 of equal size and compute an enclosure IIj =

Ĩ
(
2
a (ρ̃− 1) + 1

)
, for ρ̃ = Ij . We can prove the following estimate:

min
ρ̃∈[−1,1]

Ĩ

(
2

a
(ρ̃− 1) + 1

)

≥ min
j

IIj > 1.2655

The minimum is attained in the last region, ρ̃ ∈
[
1− 2

N , 1
]
. A nonrigorous

computation shows that indeed this minimum is attained at ρ̃ = 1. The detailed
breakdown of the regions can be found in the file output/output Min I 512.out

in the supplementary material. The tolerances abs tol and rel tol were set to
10−5. The computation took approximately 242 minutes, giving an average time
of around 7 seconds per integral.

�

Proof of Lemma 4.20. For every ρ̃ ∈ [−1, 1], we complete an enclosure of
e
(
2
a (ρ̃− 1) + 1

)
. To do so, we split the interval [−1, 1] into N = 512 intervals

Ij , j = 0 . . . N − 1 of equal size and compute an enclosure E3
j = e

(
2
a (ρ̃− 1) + 1

)
,

for ρ̃ = Ij . Finally, we can estimate an enclosure of the L2 norm of e and the scalar
product with Bsj by
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‖e‖L2 ∈

⎛

⎝
a

N

N−1∑

j=0

(E3
j )

2

⎞

⎠

1
2

,

|〈e,Bsj〉| ∈

∣
∣
∣
∣
∣
∣

a

N

N−1∑

j=0

(E3
jBsj(Ij))

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

a

N

N−2∑

j=1

(E3
j )

∣
∣
∣
∣
∣
∣

,

where we have used that Bsj is piecewise constant in each of the Ij : it is zero
if j = 0 or j = N − 1 and 1 otherwise. This yields in this particular case

‖e‖L2 < 0.0905

|〈e,Bsj〉| < 0.0101

The detailed breakdown of the regions can be found in the file
output/output E 3.out in the supplementary material. The tolerances AbsTol

and RelTol were set to 10−5. The computation took approximately 563 minutes,
giving an average time of around 16.5 seconds per integral.

�

Proof of Lemma 4.24. For every ρ̃ ∈ [−1, 1], we complete an enclosure of
Θ3

ABsj

(
2
a (ρ̃− 1) + 1

)
. To do so, we split the interval [−1, 1] into N = 512 intervals

Ij , j = 0 . . . N − 1 of equal size and compute an enclosure

T 3
A,j = Θ3

ABsj

(
2

a
(ρ̃− 1) + 1

)

,

for ρ̃ = Ij . Finally, we can estimate an enclosure of the L2 norm of Θ3
ABsj by

‖Θ3
ABsj‖L2 ∈

⎛

⎝
a

N

N−1∑

j=0

(T 3
A,j)

2

⎞

⎠

1
2

,

yielding in this particular case

‖Θ3
ABsj‖L2 < 0.0629

The detailed breakdown of the regions can be found in the file
output/output Theta A N 512.out in the supplementary material. The tolerances
abs tol and rel tol were set to 10−5. The computation took approximately 405
minutes, giving an average time of around 12 seconds per integral.

�

Proof of Lemma 4.21. To obtain a bound on c∗ we will employ the following
strategy. First, we can bound c∗ in the following way:

c∗ ≥ min Ĩ(ρ) + min
‖u‖L2=1,u∈(Bsj)⊥

〈T 3
Su, u〉,
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where T 3
S is the symmetric part of Θ3 − Ĩ, given by

T 3
Su(ρ) =

1

2

∫ 1

1−a

(

fρ(ρ
′)K3

(
ρ

ρ′

)
1

ρ
+ fρ(ρ)K

3

(
ρ′

ρ

)
1

ρ′

)

B(ρ′)dρ′

We know that T 3
S is symmetric and compact. We approximate it by a finite

rank operator. For any ρ̃ ∈ [−1, 1]:

(T 3
Su)(

a

2
(ρ̃− 1) + 1) = T 3

Su(ρ̃) ≈ T 3
finu(ρ̃)

=

∫ 1

−1

a

2

23∑

i,j=0

(T 3
fin)ijui(ρ̃)uj(ρ̃

′)u(
a

2
(ρ̃′ − 1) + 1)dρ̃′,

The matrix T 3
fin is symmetric and given explicitly in Appendix C. The func-

tions ui are an orthonormal basis chosen in the following way:

ui(ρ̃) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

√
2(2[i/3]+1)

aβ Leg([i/3], 2
β (ρ̃+ 1)− 1)1{−1≤ρ̃≤−1+β} if i ≡ 0(mod 3)

√
2[i/3]+1
a−aβ Leg([i/3], ρ̃

1−β )1{−1+β≤ρ̃≤1−β} if i ≡ 1(mod 3)
√

2(2[i/3]+1)
aβ Leg([i/3], 2

β (ρ̃− 1) + 1)1{1−β≤ρ̃≤1} if i ≡ 2(mod 3)

where Leg(a, x) stands for the standard Legendre polynomial of order a, defined
for x ∈ [−1, 1] by

Leg(0, x) = 1, Leg(1, x) = x,

(n+ 1)Leg(n+ 1, x) = (2n+ 1)xLeg(n, x)− nLeg(n− 1, x), n ≥ 1.

Note that Bsj corresponds to u1. We now decompose T 3
S as:

min
‖u‖L2=1,u∈(Bsj)⊥

〈T 3
Su, u〉 ≥ min

‖u‖L2=1,u∈(Bsj)⊥
〈T 3

finu, u〉

+ min
‖u‖L2=1,u∈(Bsj)⊥

〈(T 3
S − T 3

fin)u, u〉

The first term in the sum is simply the smallest eigenvalue of the matrix T 3
fin

without the second row and the second column. By Gershgorin’s theorem [31], the
eigenvalues of an n× n matrix A lie inside the union of the disks

Di =

⎧

⎪⎪⎨

⎪⎪⎩

z ∈ C, |z −Aii| ≤
∑

j=1
j �=i

|Aij |

⎫

⎪⎪⎬

⎪⎪⎭

, i = 1, . . . , n.

In this particular case, this implies that

min
‖u‖L2=1,u∈(Bsj)⊥

〈T 3
finu, u〉 > −0.3125,

where the leftmost disk of T 3
fin is D5. The second term can be bounded via

the operator norm
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∣
∣
∣
∣

min
‖u‖L2=1,u∈(Bsj)⊥

〈(T 3
S − T 3

fin)u, u〉
∣
∣
∣
∣
≤ ‖T 3

S − T 3
fin‖L2→L2

≤ max
ρ̃∈[−1,1]

∫ 1

−1

∣
∣
∣
∣

a

2

1

2

(

fρ

(a

2
(ρ̃′ − 1) + 1

)

K3

( a
2 (ρ̃− 1) + 1
a
2 (ρ̃

′ − 1) + 1

)
1

(a2 (ρ̃− 1) + 1)

+fρ

(a

2
(ρ̃− 1) + 1

)

K3

( a
2 (ρ̃

′ − 1) + 1
a
2 (ρ̃− 1) + 1

)
1

(a2 (ρ̃
′ − 1) + 1)

)

−a

2

23∑

i,j=0

(T 3
fin)ijui(ρ̃)uj(ρ̃

′)

∣
∣
∣
∣
∣
∣

dρ̃′

where we have used that the operator is symmetric and the Generalized Young
inequality. We computed the following bound:

‖T 3
S − T 3

fin‖L2 ≤ 0.1004

To do so, we split the subdomains [−1,−1+β], [−1+β, 1−β] and [1−β, 1] for ρ̃′

into a uniform mesh of N1 = 512, N2 = 510 · 16, N3 = 512 subintervals respectively.
Since we are expecting bounds of the order of the width of the integration integral
and we can’t do better (the integrand is not C1), we simply compute the integrand
evaluated in the full interval (a quadrature of order 0). We are careful and the
singular part of the integrand is bounded first (all terms that multiply the arcsinh
term) and then integrated explicitly separately. This is done whenever ρ̃ ∈ Ij , ρ̃

′ ∈
Ik and |j − k| < 2. Otherwise we evaluate the full integrand. For every ρ̃ ∈ Ii
we sum over all j such that ρ̃′ ∈ Ij to obtain the L1 bound. Finally, we take the
maximum over every ρ̃.

Putting everything together we obtain

c∗ > 1.2655− 0.3125− 0.1004 = 0.8526

The detailed breakdown of the regions can be found in the file
output/out L1 Estimates T3 N 512.out in the supplementary material. The com-
putation took approximately 12 hours, 53 minutes, giving an average time of around
5 seconds per subinterval in ρ̃. �

Proof of Lemma 4.31. The proof follows the same strategy as the proof of
Lemma 4.20. We get the following:

||e6||L2 < 0.0893.

The detailed breakdown of the regions can be found in the file
output/output E 6.out in the supplementary material. The tolerances abs tol

and rel tol were set to 10−5. The computation took approximately 604 minutes,
giving an average time of around 17.5 seconds per integral. �
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Proof of Lemma 4.32. The proof follows the same strategy as the proof of
Lemma 4.21. We get the following figures:

min
‖u‖L2=1,u∈(B6aprox

s )⊥
〈T 6

finu, u〉 > −0.3121.

‖T 6
S − T 6

fin‖L2 ≤ 0.1179

c6∗ > 1.2655− 0.3121− 0.1179 = 0.8355

As before, the leftmost disk is D5. The detailed breakdown of the regions can
be found in the file output/out L1 Estimates T6 N 512.out in the supplementary
material. The computation took approximately 13 hours, 3 minutes, giving an
average time of around 5 seconds per subinterval in ρ̃.

�

In summary, we have proved the following bounds (we are using that ‖Bsj‖L2 =
‖B6aprox

s ‖L2 = 1):

• c∗ > 0.8526
• A = λ∗ + |〈e,Bsj〉| < 0.3583

•
√
B ≤ ‖e‖L2 + ‖Θ3

ABsj‖L2 < 0.1534
• λ3 ≤ λ0 < 0.4117
• Ĩ − λ3 > 0.8538
• c6∗ > 0.8355



APPENDIX C

Finite projections

In this section we provide the two matrices of size 24× 24: T 3
fin and T 6

fin used

to approximate the finite dimensional projections of T 3 and T 6 respectively. The
matrices were computed using nonrigorous integration. The matrices (in a slight
different format) can be found in the files input/good projection N 512.out and
input/good projection T6 N 512.out. In order to write the matrices, because of
spacing issues, we will decompose T 3

fin and T 6
fin into the following blocks:

T 3
fin =

(
T 3
fin,1 T 3

fin,2 T 3
fin,3 T 3

fin,4

)

T 6
fin =

(
T 6
fin,1 T 6

fin,2 T 6
fin,3 T 6

fin,4

)
,

where every block is 24× 6. The exact expressions are:
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C
.
F
IN

IT
E
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C
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S
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3
fin,1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−0.00313914631 −0.03306228140 −0.00063757204 −0.00130670573 0.00933189622 0.00027670636
−0.03306228140 −1.12901165788 −0.03145756256 −0.00822746089 0.00729039148 0.00876971358
−0.00063757204 −0.03145756256 −0.00299812421 −0.00022549348 −0.00911506433 0.00124776818
−0.00130670573 −0.00822746089 −0.00022549348 −0.00021202888 0.00270210646 0.00000013750
0.00933189622 0.00729039148 −0.00911506433 0.00270210646 −0.23717252091 0.00223673972
0.00027670636 0.00876971358 0.00124776818 0.00000013750 0.00223673972 −0.00020166430

0.00006084465 −0.00000985095 −5.18229665685 · 10−8 −0.00005068073 0.00001298234 4.63109155689 · 10−11

−0.00402764479 0.06018656936 −0.00384397048 −0.00114915910 0.00170736716 0.00102743751

−4.43314493090 · 10−8 −0.00000908783 0.00005786424 −4.60911625268 · 10−11 −0.00001219458 0.00004810665

0.00033343322 0.00192283641 0.00005295158 0.00004143653 −0.00062130092 −1.82960948332 · 10−8

0.00233871666 −0.00072531006 −0.00222568341 0.00067663595 0.04134607065 0.00062743044

−0.00006498459 −0.00205039765 −0.00031825067 −1.39917284412 · 10−8 −0.00051248314 0.00003940755

0.00000533557 0.00000206570 1.15781378363 · 10−8 0.00003985325 −0.00000267070 −6.84832886920 · 10−12

−0.00155761794 0.00542593789 −0.00148129715 −0.00046479429 −0.00053855113 0.00043588867

9.90200697265 · 10−9 0.00000190393 0.00000505660 5.62487168223 · 10−12 0.00000250964 −0.00003785447

−0.00007592114 −0.00048164344 −0.00001327566 0.00000498929 0.00015501214 4.58706059629 · 10−9

0.00112127249 −0.00008203811 −0.00106597793 0.00034694746 0.00518713553 0.00032698003

0.00001629250 0.00051364377 0.00007249718 3.50789736574 · 10−9 0.00012776307 0.00000473106

0.00000125611 8.65982848231 · 10−8 −3.19226015591 · 10−9 −0.00000437207 −0.00000039251 1.95786950003 · 10−12

−0.00084878958 0.00138998159 −0.00080678323 −0.00027291240 −0.00008220557 0.00025788023

−2.73010821736 · 10−9 1.02554282905 · 10−7 0.00000119690 −1.62202100706 · 10−12 0.00000038596 0.00000415121

0.00001432963 0.00008343141 0.00000227980 0.00000129772 −0.00002784648 −7.87753818442 · 10−10

0.00066557241 −0.00002363432 −0.00063256170 0.00022255360 0.00154868510 0.00021062293

−0.00000279787 −0.00008889372 −0.00001367678 −6.02460704593 · 10−10 −0.00002311176 0.00000123395

⎞
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0.00006084465 −0.00402764479 −4.43314493090 · 10−8 0.00033343322 0.00233871666 −0.00006498459
−0.00000985095 0.06018656936 −0.00000908783 0.00192283641 −0.00072531006 −0.00205039765

−5.18229665685 · 10−8 −0.00384397048 0.00005786424 0.00005295158 −0.00222568341 −0.00031825067

−0.00005068073 −0.00114915910 −4.60911625268 · 10−11 0.00004143653 0.00067663595 −1.39917284412 · 10−8

0.00001298234 0.00170736716 −0.00001219458 −0.00062130092 0.04134607065 −0.00051248314

4.63109155689 · 10−11 0.00102743751 0.00004810665 −1.82960948332 · 10−8 0.00062743044 0.00003940755

−0.00010321148 −0.00001414574 −2.80290333759 · 10−14 −0.00003848684 0.00001470528 −3.67487307816 · 10−12

−0.00001414574 −0.12947879697 −0.00001337930 0.00025555410 0.00095216359 −0.00022761700

−2.80290333759 · 10−14 −0.00001337930 −0.00009797657 4.90797112113 · 10−12 −0.00001393579 0.00003651136

−0.00003848684 0.00025555410 4.90797112113 · 10−12 −0.00006239992 −0.00014435698 −3.49966215326 · 10−15

0.00001470528 0.00095216359 −0.00001393579 −0.00014435698 −0.08886148634 −0.00013349522

−3.67487307816 · 10−12 −0.00022761700 0.00003651136 −3.49966215326 · 10−15 −0.00013349522 −0.00005919817

0.00003020315 0.00000287744 2.98104624843 · 10−15 −0.00001908529 −0.00000297094 1.50361388430 · 10−14

−0.00001495138 0.03027233689 −0.00001418074 0.00009471142 0.00066179035 −0.00008862582

3.14813570358 · 10−15 0.00000272492 0.00002869680 −1.48184820399 · 10−14 0.00000282037 0.00001807875

0.00002961061 −0.00006309436 −1.21506679426 · 10−12 0.00002355898 0.00003503703 −7.01151105584 · 10−16

0.00001500747 −0.00041014040 −0.00001423998 −0.00006730898 0.02375644464 −0.00006331650

9.04914568531 · 10−13 0.00005613296 −0.00002812073 −6.97673484952 · 10−15 0.00003236439 0.00002238336

0.00000406644 0.00000066295 −5.79173351464 · 10−14 0.00002138146 −0.00000090330 −5.68804673351 · 10−14

−0.00001493806 0.00436069767 −0.00001417756 0.00005029006 −0.00032965875 −0.00004744310

−7.69293477455 · 10−14 0.00000063871 0.00000386310 5.43227769034 · 10−14 0.00000086668 −0.00002030190

−0.00000252131 0.00001241650 7.34844588938 · 10−14 0.00000330787 −0.00000788818 8.17156504431 · 10−14

0.00001478127 −0.00007108881 −0.00001403083 −0.00003888592 0.00368849025 −0.00003674960

−4.37312250174 · 10−14 −0.00001114858 0.00000239297 1.14001332420 · 10−13 −0.00000734374 0.00000314218
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0.00000533557 −0.00155761794 9.90200697265 · 10−9 −0.00007592114 0.00112127249 0.00001629250
0.00000206570 0.00542593789 0.00000190393 −0.00048164344 −0.00008203811 0.00051364377

1.15781378363 · 10−8 −0.00148129715 0.00000505660 −0.00001327566 −0.00106597793 0.00007249718

0.00003985325 −0.00046479429 5.62487168223 · 10−12 0.00000498929 0.00034694746 3.50789736574 · 10−9

−0.00000267070 −0.00053855113 0.00000250964 0.00015501214 0.00518713553 0.00012776307

−6.84832886920 · 10−12 0.00043588867 −0.00003785447 4.58706059629 · 10−9 0.00032698003 0.00000473106

0.00003020315 −0.00001495138 3.14813570358 · 10−15 0.00002961061 0.00001500747 9.04914568531 · 10−13

0.00000287744 0.03027233689 0.00000272492 −0.00006309436 −0.00041014040 0.00005613296

2.98104624843 · 10−15 −0.00001418074 0.00002869680 −1.21506679426 · 10−12 −0.00001423998 −0.00002812073

−0.00001908529 0.00009471142 −1.48184820399 · 10−14 0.00002355898 −0.00006730898 −6.97673484952 · 10−15

−0.00000297094 0.00066179035 0.00000282037 0.00003503703 0.02375644464 0.00003236439

1.50361388430 · 10−14 −0.00008862582 0.00001807875 −7.01151105584 · 10−16 −0.00006331650 0.00002238336

−0.00004067472 0.00000301020 −3.70438406451 · 10−15 −0.00001108514 −0.00000301927 3.33415541431 · 10−14

0.00000301020 −0.06718915938 0.00000286072 −0.00002243646 0.00050351668 0.00002096805

−3.70438406451 · 10−15 0.00000286072 −0.00003855497 −4.36948352896 · 10−14 0.00000287165 0.00001047733

−0.00001108514 −0.00002243646 −4.36948352896 · 10−14 −0.00002712959 0.00001542937 5.10048792691 · 10−14

−0.00000301927 0.00050351668 0.00000287165 0.00001542937 −0.05364315620 0.00001449165

3.33415541431 · 10−14 0.00002096805 0.00001047733 5.10048792691 · 10−14 0.00001449165 −0.00002568508

0.00001920997 0.00000111905 −2.13045262845 · 10−15 −0.00000572563 −0.00000131717 −1.45197814251 · 10−14

0.00000301060 0.01951726310 0.00000286489 −0.00001103849 0.00040280165 0.00001039344

2.27927040204 · 10−14 0.00000107185 0.00001825080 3.89829629231 · 10−14 0.00000126051 0.00000538519

0.00001662305 0.00000597029 1.21914579746 · 10−14 0.00001614121 −0.00000498558 −7.83391499939 · 10−14

−0.00000299111 −0.00027523003 0.00000284750 0.00000806555 0.01654806391 0.00000760366

1.26943093273 · 10−14 −0.00000562167 −0.00001578051 −3.69080589571 · 10−14 −0.00000471758 0.00001533483
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0.00000125611 −0.00084878958 −2.73010821736 · 10−9 0.00001432963 0.00066557241 −0.00000279787

8.65982848231 · 10−8 0.00138998159 1.02554282905 · 10−7 0.00008343141 −0.00002363432 −0.00008889372

−3.19226015591 · 10−9 −0.00080678323 0.00000119690 0.00000227980 −0.00063256170 −0.00001367678

−0.00000437207 −0.00027291240 −1.62202100706 · 10−12 0.00000129772 0.00022255360 −6.02460704593 · 10−10

−0.00000039251 −0.00008220557 0.00000038596 −0.00002784648 0.00154868510 −0.00002311176

1.95786950003 · 10−12 0.00025788023 0.00000415121 −7.87753818442 · 10−10 0.00021062293 0.00000123395

0.00000406644 −0.00001493806 −7.69293477455 · 10−14 −0.00000252131 0.00001478127 −4.37312250174 · 10−14

0.00000066295 0.00436069767 0.00000063871 0.00001241650 −0.00007108881 −0.00001114858

−5.79173351464 · 10−14 −0.00001417756 0.00000386310 7.34844588938 · 10−14 −0.00001403083 0.00000239297

0.00002138146 0.00005029006 5.43227769034 · 10−14 0.00000330787 −0.00003888592 1.14001332420 · 10−13

−0.00000090330 −0.00032965875 0.00000086668 −0.00000788818 0.00368849025 −0.00000734374

−5.68804673351 · 10−14 −0.00004744310 −0.00002030190 8.17156504431 · 10−14 −0.00003674960 0.00000314218

0.00001920997 0.00000301060 2.27927040204 · 10−14 0.00001662305 −0.00000299111 1.26943093273 · 10−14

0.00000111905 0.01951726310 0.00000107185 0.00000597029 −0.00027523003 −0.00000562167

−2.13045262845 · 10−15 0.00000286489 0.00001825080 1.21914579746 · 10−14 0.00000284750 −0.00001578051

−0.00000572563 −0.00001103849 3.89829629231 · 10−14 0.00001614121 0.00000806555 −3.69080589571 · 10−14

−0.00000131717 0.00040280165 0.00000126051 −0.00000498558 0.01654806391 −0.00000471758

−1.45197814251 · 10−14 0.00001039344 0.00000538519 −7.83391499939 · 10−14 0.00000760366 0.00001533483

−0.00001787015 0.00000149962 1.79534093854 · 10−14 −0.00000204184 −0.00000166924 −2.11654961276 · 10−13

0.00000149962 −0.04435474412 0.00000143467 0.00000442712 0.00033271878 −0.00000420077

1.79534093854 · 10−14 0.00000143467 −0.00001688740 2.11077743505 · 10−13 0.00000159584 0.00000188523

−0.00000204184 0.00000442712 2.11077743505 · 10−13 −0.00001114387 −0.00000409665 −2.57393155040 · 10−13

−0.00000166924 0.00033271878 0.00000159584 −0.00000409665 −0.03758247246 −0.00000389363

−2.11654961276 · 10−13 −0.00000420077 0.00000188523 −2.57393155040 · 10−13 −0.00000389363 −0.00001049667
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−0.00291345537 −0.02540749127 −0.00041941419 −0.00121786943 0.00933076659 0.00018206274
−0.02540749127 −0.90497888764 −0.02424571525 −0.00635382205 0.00563881494 0.00674636418
−0.00041941419 −0.02424571525 −0.00278371098 −0.00014838001 −0.00907915550 0.00116335903
−0.00121786943 −0.00635382205 −0.00014838001 −0.00021204206 0.00262575863 0.00000013645
0.00933076659 0.00563881494 −0.00907915550 0.00262575863 −0.23685105510 0.00230342523
0.00018206274 0.00674636418 0.00116335903 0.00000013645 0.00230342523 −0.00020165240

0.00006084737 −0.00000978359 −4.86286767418 · 10−8 −0.00005068073 0.00001298540 4.66620681740 · 10−11

−0.00403278487 0.06006461031 −0.00384880693 −0.00114914679 0.00170420893 0.00102804953

−4.61137477934 · 10−8 −0.00000913619 0.00005786179 −4.64964261953 · 10−11 −0.00001219898 0.00004810665

0.00031255555 0.00148247120 0.00003482935 0.00004143807 −0.00060335343 −1.67484077527 · 10−8

0.00233877011 −0.00072279657 −0.00222565755 0.00067668948 0.04134592791 0.00062737193

−0.00004274417 −0.00157496654 −0.00029841490 −1.52922857114 · 10−8 −0.00052815010 0.00003940615

0.00000533496 0.00000205063 1.08637530482 · 10−8 0.00003985325 −0.00000267139 −6.88851803831 · 10−12

−0.00155761678 0.00542592858 −0.00148129586 −0.00046479549 −0.00053855101 0.00043588952

1.03004567414 · 10−8 0.00000191475 0.00000505715 5.72582288790 · 10−12 0.00000251061 −0.00003785447

−0.00007068683 −0.00037123808 −0.00000873218 0.00000498890 0.00015051244 4.19903510403 · 10−9

0.00112127247 −0.00008204165 −0.00106597795 0.00034694746 0.00518713748 0.00032698004

0.00001071653 0.00039444690 0.00006752409 3.83396386458 · 10−9 0.00013169100 0.00000473141

0.00000125628 9.07808750600 · 10−8 −2.99529358660 · 10−9 −0.00000437207 −0.00000039232 1.97070264514 · 10−12

−0.00084878958 0.00138995868 −0.00080678324 −0.00027291241 −0.00008219826 0.00025788023

−2.83996989618 · 10−9 9.96003237305 · 10−8 0.00000119675 −1.65191684991 · 10−12 0.00000038570 0.00000415121

0.00001343075 0.00006447176 0.00000149956 0.00000129779 −0.00002707375 −7.21116613265 · 10−10

0.00066557241 −0.00002363043 −0.00063256170 0.00022255360 0.00154868413 0.00021062293

−0.00000184033 −0.00006842433 −0.00001282276 −6.58453704807 · 10−10 −0.00002378631 0.00000123389
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0.00006084737 −0.00403278487 −4.61137477934 · 10−8 0.00031255555 0.00233877011 −0.00004274417
−0.00000978359 0.06006461031 −0.00000913619 0.00148247120 −0.00072279657 −0.00157496654

−4.86286767418 · 10−8 −0.00384880693 0.00005786179 0.00003482935 −0.00222565755 −0.00029841490

−0.00005068073 −0.00114914679 −4.64964261953 · 10−11 0.00004143807 0.00067668948 −1.52922857114 · 10−8

0.00001298540 0.00170420893 −0.00001219898 −0.00060335343 0.04134592791 −0.00052815010

4.66620681740 · 10−11 0.00102804953 0.00004810665 −1.67484077527 · 10−8 0.00062737193 0.00003940615

−0.00010321148 −0.00001414600 −2.73005911389 · 10−14 −0.00003848684 0.00001470528 −3.71351392015 · 10−12

−0.00001414600 −0.12947857817 −0.00001337906 0.00025555125 0.00095215812 −0.00022776080

−2.73005911389 · 10−14 −0.00001337906 −0.00009797657 4.89450772014 · 10−12 −0.00001393580 0.00003651136

−0.00003848684 0.00025555125 4.89450772014 · 10−12 −0.00006239992 −0.00014436957 −4.92646031077 · 10−15

0.00001470528 0.00095215812 −0.00001393580 −0.00014436957 −0.08886148567 −0.00013348148

−3.71351392015 · 10−12 −0.00022776080 0.00003651136 −4.92646031077 · 10−15 −0.00013348148 −0.00005919817

0.00003020315 0.00000287750 −6.11527496408 · 10−16 −0.00001908529 −0.00000297095 1.88925224729 · 10−14

−0.00001495138 0.03027233185 −0.00001418074 0.00009471169 0.00066178980 −0.00008862601

−3.31589309321 · 10−16 0.00000272488 0.00002869680 −1.82627377477 · 10−14 0.00000282036 0.00001807875

0.00002961061 −0.00006309364 −1.20807810807 · 10−12 0.00002355898 0.00003504019 1.06789333275 · 10−14

0.00001500747 −0.00041014029 −0.00001423998 −0.00006730898 0.02375644411 −0.00006331651

9.12420912576 · 10−13 0.00005616901 −0.00002812073 1.93046228742 · 10−15 0.00003236094 0.00002238336

0.00000406644 0.00000066293 −6.41351673174 · 10−14 0.00002138146 −0.00000090328 −5.54519037512 · 10−14

−0.00001493806 0.00436069008 −0.00001417757 0.00005029007 −0.00032965896 −0.00004744310

−8.14811085733 · 10−14 0.00000063872 0.00000386310 5.45200014040 · 10−14 0.00000086669 −0.00002030190

−0.00000252131 0.00001241640 7.05782109673 · 10−14 0.00000330787 −0.00000788873 8.42888401493 · 10−14

0.00001478127 −0.00007109159 −0.00001403083 −0.00003888592 0.00368849050 −0.00003674960

−4.67295111503 · 10−14 −0.00001115478 0.00000239297 1.14232496671 · 10−13 −0.00000734314 0.00000314218
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0.00000533496 −0.00155761678 1.03004567414 · 10−8 −0.00007068683 0.00112127247 0.00001071653
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[8] A. Castro, D. Córdoba, and J. Gómez-Serrano, Uniformly rotating analytic global patch solu-

tions for active scalars, Ann. PDE 2 (2016), no. 1, Art. 1, 34, DOI 10.1007/s40818-016-0007-3.
MR3462104

[9] D. Chae, The quasi-geostrophic equation in the Triebel-Lizorkin spaces, Nonlinearity 16

(2003), no. 2, 479–495, DOI 10.1088/0951-7715/16/2/307. MR1958612
[10] D. Chae, On the continuation principles for the Euler equations and the quasi-geostrophic

equation, J. Differential Equations 227 (2006), no. 2, 640–651, DOI 10.1016/j.jde.2005.12.013.
MR2237682

[11] D. Chae, The geometric approaches to the possible singularities in the inviscid fluid flows, J.
Phys. A 41 (2008), no. 36, 365501, 11, DOI 10.1088/1751-8113/41/36/365501. MR2447877

[12] D. Chae, On the behaviors of solutions near possible blow-up time in the incompressible Euler

and related equations, Comm. Partial Differential Equations 34 (2009), no. 10-12, 1269–1286,
DOI 10.1080/03605300903079587. MR2581973

[13] D. Chae, P. Constantin, and J. Wu, Deformation and symmetry in the inviscid SQG and the

3D Euler equations, J. Nonlinear Sci. 22 (2012), no. 5, 665–688, DOI 10.1007/s00332-012-
9124-7. MR2982049

[14] P. Constantin, M.-C. Lai, R. Sharma, Y.-H. Tseng, and J. Wu, New numerical results

for the surface quasi-geostrophic equation, J. Sci. Comput. 50 (2012), no. 1, 1–28, DOI
10.1007/s10915-011-9471-9. MR2886317

[15] P. Constantin, A. J. Majda, and E. Tabak, Formation of strong fronts in the 2-D quasi-

geostrophic thermal active scalar, Nonlinearity 7 (1994), no. 6, 1495–1533. MR1304437
[16] P. Constantin, Q. Nie, and N. Schörghofer, Nonsingular surface quasi-geostrophic flow, Phys.

Lett. A 241 (1998), no. 3, 168–172, DOI 10.1016/S0375-9601(98)00108-X. MR1613907
[17] D. Cordoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation,

Ann. of Math. (2) 148 (1998), no. 3, 1135–1152, DOI 10.2307/121037. MR1670077
[18] D. Cordoba and C. Fefferman, Growth of solutions for QG and 2D Euler equations, J. Amer.

Math. Soc. 15 (2002), no. 3, 665–670, DOI 10.1090/S0894-0347-02-00394-6. MR1896236

87



88 BIBLIOGRAPHY

[19] D. Cordoba and C. Fefferman, Scalars convected by a two-dimensional incompressible flow,
Comm. Pure Appl. Math. 55 (2002), no. 2, 255–260, DOI 10.1002/cpa.3007. MR1865416
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Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn, 2020

1282 David Carchedi, Higher Orbifolds and Deligne-Mumford Stacks as Structured
Infinity-Topoi, 2020

1281 S. V. Ivanov, The Bounded and Precise Word Problems for Presentations of Groups,
2020

1280 Michael Handel and Lee Mosher, Subgroup Decomposition in Out(Fn), 2020

1279 Cristian Gavrus and Sung-Jin Oh, Global Well-Posedness of High Dimensional
Maxwell–Dirac for Small Critical Data, 2020
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Complex Upper Half-Plane, 2019
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