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Abstract

In this paper, we show the existence of the first non trivial family of classical
global solutions of the inviscid surface quasi-geostrophic equation.
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CHAPTER 1

Introduction

We consider the initial value problem for the inviscid surface quasi-geostrophic
equation (SQG):

(1.1) 0i0(x,t) +u(z,t) - VO(x,t) =0, (2,t) € R? xRy

where R; is the j-th Riesz transform:

1 (x5 —y5)
R;(0)(x) = gp.V. . WQ(y}dy.

This equation is derived considering small Rossby and Ekman numbers and
constant potential vorticity. It models the evolution of the temperature from a
general quasi-geostrophic system for atmospheric and oceanic flows (see [15,33,
44,49] for more details). The numerical and analytical study of the equation was
started by Constantin, Majda and Tabak in [15], since the SQG system presents
an analogy with the 3D Euler equations.

The aim of this paper is to address the main problem of whether its classical
solution corresponding to given initial data 6(x,0) = 0y(x) with finite energy exists
for all time or not. We remark that both the LP norms of theta (1 < p < co0) and
the L? norm of u (the energy of the system) are conserved quantities. Moreover,
the LP norms of u obey the following bounds:

[lus )llr < Cpllfollr 1 <p < oo

Local existence of solutions for (1.1) was first shown in [15] in Sobolev spaces. By
using different functional frameworks local existence has been also addressed in
several papers, see for example [9,43,56,57].

Resnick, in his thesis [50], showed global existence of weak solutions in L? using
an extra cancellation due to the oddness of the Riesz transform. Marchand [46]
extended Resnick’s result to the class of initial data belonging to LP with p > 4/3.
The question of non-uniqueness for weak solutions in L? is still a challenging open
problem (see [1,37,52] and references therein).

The problem of whether the SQG system presents finite time singularities or
there is global existence is open for the smooth case. Kiselev and Nazarov [39] con-
structed solutions that started arbitrarily small but grew arbitrarily big in finite
time, and Friedlander and Shvydkoy [28] showed the existence of unstable eigen-
values of the spectrum. Castro and Coérdoba constructed singular solutions with
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2 1. INTRODUCTION

infinite energy in [5] and Dritschel [25] constructed global solutions that have C'*/2
regularity.

The numerical simulations in [15] indicated a possible singularity in the form
of a hyperbolic saddle closing in finite time. Ohkitani and Yamada [48] and Con-
stantin et al [16] suggested that the growth was double exponential. The question
was settled by Cordoba [17] who bounded the growth by a quadruple exponential
and further improved by Cordoba and Fefferman [18] to a double exponential (see
also [24]). The same scenario was recomputed almost 20 years with bigger com-
putational power and improved algorithms by Constantin et al. [14], yielding no
evidence of blowup and the depletion of the hyperbolic saddle past the previously
computed times. In [45], Majda and Tabak compared simulations for the SQG
scenario with the Euler case. Scott, in [53], starting from elliptical configurations,
proposed a candidate that develops filamentation and after a few cascades, blowup
of V.

Several criteria of blowup have been found and blowup can only occur through
the blowup of either some geometric quantities or certain space-time norms. For
more details see [4,10-13,19, 36, 38|.

A different approach for the study of the formation of singularities for SQG
comes from the patch-problem, i.e., “sharp fronts” . In this problem one considers
that the scalar 6(z,t) is the characteristic function of some compact and simple
connected domain which depends on time and with smooth boundary. Local exis-
tence for the patch was proven by Rodrigo [51] for a C* boundary and by Gancedo
[29] in Sobolev spaces. Cérdoba et al. found, in [21], strong numerical evidences of
the formation of a singularity in the boundary of the patch. For further numerical
simulations addressing formation of singularities see [54] and [53]. The possibility
of a splash singularity scenario (i.e. when the interface touches itself on a point but
the curve does not lose regularity) was ruled out by Gancedo and Strain [30].

Through a different motivation, Cordoba et al. [20], Fefferman and Rodrigo
[27] and Fefferman et al. [26] studied the existence of a special type of solutions
that are known as “almost sharp fronts” for SQG. These solutions can be thought
of as a regularization of a front, with a small strip around the front in which the
solution changes (reasonably) from one value of the front to the other. These are
strong solutions of the equation with large gradient (~ (Width of the strip)_l).

The main purpose of the paper is to show the following theorem:

THEOREM 1.1. There is a nontrivial global smooth solution for the SQG equa-
tions that has finite energy.

It is well known that radial functions are stationary solutions for (1.1) due to
the structure of the nonlinear term. The solutions that will be constructed in this
paper are a smooth perturbation in a suitable direction of a specific radial function.
The smooth profile we will perturb satisfies (in polar coordinates)

1 for0<r<1l-a
6(r) = < smooth and decreasing forl—a<r<1 ,
0 for 1 <r < oo

where a is a small number (below we will impose some more constraints in this
profile). In addition the dynamics of these solutions consist of global rotating level
sets with constant angular velocity. These level sets are a perturbation of the circle.
The limit case a = 0 gives rise to the well known V-state solution for SQG, i.e.,



1. INTRODUCTION 3

a global rotating patch which solves weakly (1.1). The existence of V-states with
C* boundary for SQG was proven in [7]. It was shown in [8] that the boundary
of these solutions is actually analytic.

The proofs of these results are motivated by the ones for 2D incompressible
Euler in the simply connected case; Burbea in [3] proved the existence of V-states
for Euler and C*°-regularity for its boundary was proved by Hmidi at al. in [34)]
(see also [32]).

The paper is organized as follows: section 2 is devoted to the reformulation of
the equations (1.1) in new variables. In section 3 we state the main theorem and
present the Crandall-Rabinowitz (C-R) theorem which will be the main tool in our
proof. In section 4 we check that our equation satisfies the hypotheses of the C-R
theorem. This will be the main part of our work.

In particular section 4.3 is different from previous analysis. We stress the
following main differences:

e The study of the linear problem is now reduced to a functional equation,
as opposed to a scalar equation (which was in the patch case). Even
the existence of nontrivial elements in the kernel of the linear part is not
evident a priori.

e There is no algebraic formula for neither the eigenvalue nor the eigenvec-
tor, not even in an implicit way (such as in [8]). This makes the proof
of the dimensionality of the kernel much harder since one needs to show
that the eigenvalue is simple and have some control of the rest of the
eigenvalues.

REMARK 1.2. In a forthcoming paper [6], by using the same techniques, we are
able to extend our construction to the 2D Incompressible Euler equations.

Finally, in Appendix A, we compute the asymptotics and bounds on the error
terms of some of the elliptic integrals that appear and Appendix B is devoted to
discuss the details of the computer-assisted code and its implementation, as well as
to show the rigorous numerical bounds used in the theorems. Appendix C contains
an explicit description of two big matrices used in the proofs.

A major theme of our work is the interplay between rigorous computer calcu-
lations and traditional mathematics. We use interval arithmetics as part of a proof
whenever they are needed.

Advances in computing power have made rigorous computer-assisted proofs
realizable. Naturally, floating-point operations can result in numerical errors. In
order to overcome these, we will employ interval arithmetics to deal with this issue.
The main paradigm is the following: instead of working with arbitrary real numbers,
we perform computations over intervals which have representable numbers by the
computer as endpoints in order to guarantee that the true result at any point
belongs to the interval by which is represented. On these objects, an arithmetic is
defined in such a way that we are guaranteed that for every x € X,y € Y

zxy € X +Y,
for any operation x. For example,
[z,7] + [y, 9] = [z +y, T+
7f )

[z, 7] x [y, 7] = [min{zy, 27, Ty, Ty}, max{zy, 27, Ty, Ty}
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We can also define the interval version of a function f(X) as an interval I that
satisfies that for every x € X, f(x) € I. Rigorous computation of integrals has
been theoretically developed since the seminal works of Moore and many others (see
[2,22,40,41,47,55] for just a small sample). In our computations, all arithmetic
will be double precision (64 bits).



CHAPTER 2

The equations

In this chapter we describe the equation that a global rotating solution with
constant angular velocity of SQG must satisfy. We will look to the level sets of
this solution rather than the solution itself. Let’s assume that 6(z,t) is a smooth
solution of (1.1) with initial data fg(x). On 0y(z) we will assume that its level sets
can be parameterized by z¢(a, p) in such a way that

b0(z0(cx, p)) = f(p)

for some smooth and even function f : R — R. The application zp(c, p) satisfies:

(1) It is one to one from {(a,p) ER? : -7 < a <7, 0 < p < oo} to R?\ {0}.

(2) For all o, zo(cx,0) = (0,0).

(3) For fixed p > 0, z8(a, p), with i = 1,2, are 27-periodic and zo(a, p), with
-1 < a < 7, is a closed and C! curve in R? satisfying the chord-arc
condition. Also we parametrize this curve counterclockwise with a.

(4) Tt is differentiable with respect to a and p in T x [0, 00), |20 ,(a, p)| > ¢ >0
in T x [0,00), [20a(a,p)] > 0 in T x (0,00) and 2z, (v, p) - 20,(c, p) <
0 for —mr<a<mand0<p< oo.

Because of the transport character of the equation (1.1) and by continuity we
can assume that the level sets of the solution 0(z, ) at time ¢ can be parameterized
by an application z(a, p,t) such that

(21) Q(Z(Oé,p, t)at) = f(p),

and it satisfies properties 1, 3 and 4.
Property 2 changes to

2(a,0,t) = ¢(t) forall a €T,

where, here, c(t) is a vector in R2.
Differentiating (2.1) with respect to o and with respect to p we have that

za(a, p,t) - VO(z(a, p,t),t) =0
zp(, p,t) - VO(z(a, p, 1), 1) = fp(p)-

Therefore

(2.2 V(e(0 1) = 2ozt o),

5



6 2. THE EQUATIONS

Taking a time derivative in (2.1) and using (1.1) and (2.2) yields

d
0 :EQ(Z(CL 12 t)v t) = 6t9(z(a7 12 t)v t) + Zt(a7 P t) . Vﬁ(z(a, |2 t)7 t)
=(—u(z(a, p,t), 1) + z(a, p, 1)) - VO(2(r, p, 1), )
_ 1 fp(p)
=(—u(z(a, p, 1), 1) + 2e(, p, 1)) - 25 (e, P,t)m~
This last expression is the equation that the level sets z(a, p,t) of the solutions
0(x,t) satisfy.
Notice that since u(z,t) = R+6(x,t) we can also write u(z,t) = —A~'VL0(x,t)
and therefore

w(z(c, pyt), ) = — ;ﬁ/ ﬁwa(y, B)dy

= / ro N
- 277/ / z(a, p,t) (a/’p/,t”fp(p)za(a,p)dadp_

where we just did the change of variables y = z(a/, p/,t) and used (2.2).
Conversely, if z(a, p, t) satisfies the equation

fp(P)

=0
Zé ' Zp(aa 12 t)

(23) (—U(Z(Oz7 P t)7 t) + zt(a> Ps t)) ’ Zi (Oé, Ps t)
Z(Oé,p, O) = ZO(a7p)

with

1 o T 1 / ! / ! /
(24) w(z(op,0),1) =~ /0 / i sy e ey

we can prove that the function 6 : R? x R — R defined by (2.1) is a solution of the
equation (1.1).

Let us assume now that supp (f,) C [1 — a, 1], where 0 < a < 1 will be chosen
later. Then, in order to find a solution for SQG, we can solve the equation

(ze(a, p,t) — u(z(ay p,t),t)) - zi(a,p, t) =0,

with u(z(a, p,t),t) given by (2.4), in the domain p € (1 —a,1), « € T. After that
we extend the solution z(a, p,t) to the domain 0 < p < oo, —7 < a < 7 in a
smooth way and finally define 6(z,t) through equation (2.1).

In addition, we will assume that our solution rotates with angular velocity A,
counterclockwise. Hence

Haup ) = 0t 00 = (o) o))

This implies on one hand

zi(a, p, t) = Oc(t)x(ax, p)

_ —sin(At) —cos(At) 2o
_)\< cos(At)  —sin(Af) ) (@, p),

za(p,a,t) = O()zala, p),
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and
2 2y (a, p ) = (Oy(H)z(e, p), (O(H)za(a, p) ™)
= (O () (@, p), O(t)ay (v, p))
= (0T 0y(H)a(a, p), x5 (@, p))
:_)‘< ( a, p )vxa(av )>
On the other hand from (2.4) we see that
u(z(a, p,t),t) = —(’)271_/ /—71— DR p)‘fp(p/)wa(a/,pl)da/dpl
= Ou(x(a, p)).
Thus

(u(z(a, p, 1), 1), 25 (0, p, 1)) = (O(B)a(z(ex, p), O(t)ay (o, p)) = (U(x(er, p)), 23,),

which yields having to solve, for the pair (z(«, p), ),

— Az(a, P) Ta(, p)
2.5
(2:3) + —x (o, p) / / 2o (!, p')dd dp’ = 0.
= [z (e, p "0
We now write z(c, p) in polar coordinates
(2.6) 2(e, p) = 1@, p) (cos(a), sin(a)).

This choice restricts the class of functions we are considering. However this restric-
tion will not be strong enough and we will be able to find a solution.
We have the following relations:

T, p) = ro(a, p)(cos(a),sin(a)) + r(a, p)(— sin(a), cos())
= ra(a, p)n(a) + r(a, p)t(c)
w5 (a, p) = rala, p)nt(@) +r(a, )t (@) = ra(a, p)t(@) — r(a, p)n(a)
za(' ) x5 (a, p) = ralas p)ra(e’, p)n(a) - t(e) = ra(d, p')r(a, pn(e) - n(a’)
+rala, p)r(e, p)t(d) - t(a) — (e, p)r(a, p)n(a) - t(d),

where
n(a) - n(a’) = cos(a — ')
t(a) - t(a') = cos(a — a')
n(a’) - t(a) = —sin(a — o)
n(a) - t(a’) = sin(a — o)

Moreover, we have that

20, ) - ale, p) = (0, p)n(@) - (ralas pn(a) + r(a, p)E(@)) = (@, p)rales ).
Therefore, equation (2.5) reads
(2.7) Fir,\]=0 inpe(l—a,1),a€eT,
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with
(2.8)

Flr, A

_ 1 <" fo(p) o —aVr(a. o
=it =z [ | e sty e =0l

—ro(a, p))da’dp’

rala,p) / / £

27Trap ,,T|xap
i s

27rrap ,,,|xap

T ralas p)ralels p))doldp,
where z(q, p) is given by (2.6) and we have added and subtracted

!

o p')]

sin(a — o) (r(e, p)r(e’, o)

(¢)
a(
(¢)
a(

o, p')]

Ta a p / 13
- do'd
2mr(av, p) / /_W|xap _xa,vp”cos(a (e, p)da’dp
fOI' COSmeth reasons.

The rest of the paper consists in finding a nontrivial solution (r(c,p), A)
(2.7) and with 7,(ct, p) > ¢ > 0.

cos(a — ') (r(d', p') — r(a, p))da’dp’

of



CHAPTER 3

Main theorem and Crandall-Rabinowitz (C-R)
theorem

This chapter is devoted to state the main theorem of the paper. But firstly,
we will fix the function f(p). The derivative of this function will be given by the
expression

(31 5700

— 55 (1268 — 4208%(1 + §) + 54087 (1 + 5)*
=3158(1 + 5)® + 70(1 + p)*) (1 + p)° if —1<p<—1+8
= —0.5 if —14+8<p<1-8
555 (12634 + 42033 (~1 + ) + 54082(—1 + )
+3158(—1+p)2 +70(—1+p)*)(—1+p)° if1-8<p<1

where 8 will be chosen later and p = 2(p — 1) + 1. We take f(1) = 0. This

expression will be used in order to compute some integrals where f,(p) arises. Next
we describe the main properties of this function:

(1) The function f(p) defined in (1 —a, 1) admits a C*-extension (we still call
it f) to R. This extension is given by

1 p<l—a
flp)=19 flp) 1—a<p<1
0 p=>1

(2) It is strictly decreasing in (1 — a, 1).
(3) The derivative f,(p) is constant for 1 — a + % <p<1l-— %

REMARK 3.1. Due to the computer-assisted nature of some parts of the proof,
the choice of f(p) and all the parameters of the problem (n,a, ) need to be ex-
plicit. A similar strategy works for other n-fold symmetric solutions, and more
regular solutions can be obtained by choosing more regular (explicit) profiles f if
the computer-assisted parts of the proof yield suitable numbers.

THEOREM 3.2. Let a = 0.05 and 8 = % =278 and consider the domain

Qe={(a,p) :aeT, 1-a<p<l}

and f € C*([1 — a,1]) as in (3.1). Then there exists a branch of nontrivial smooth
solutions, with 3—fold symmetry, of equation (2.7), in H*3(Q,), bifurcating from
r(a,p) = p and A = A3 for some A3 € R.

REMARK 3.3. Nontrivial solutions means that the function r(a, p) depends

on « in a nontrivial way. See Definition 4.5 for a precise definition of the space
HRHQ,).
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From chapter 2 is clear that Theorem 1.1 follows from Theorem 3.2.
The proof of Theorem 3.2 relies on the Crandall-Rabinowitz theorem. We recall
here the statement of this theorem from [23] for expository purposes.

THEOREM 3.4 (Crandall-Rabinowitz). Let X, Y be Banach spaces, V' a neigh-
borhood of 0 in X and

F:Vx(-1,1)=>Y
(r, ) — Flr, p]
have the properties

(3.2) F[0, p] =0 for any |u| < 1.
(3.3) The partial derivatives 9, F', 0, F and 8l2”F exist and are continuous.
(3.4) N (8, F[0,0]) and Y/R(9,F]0,0]) are one-dimensional.
(3.5) 92, F[0,0]rg & R(,F[0,0]), where N'(8,F[0,0]) = span ro.

(Here N and R denote the kernel and range respectively). If Z is any complement
of N(8,F(0,0)) in X, then there is a neighborhood U of (0, 0) in X xR, an interval
(=b,b), and continuous functions

¢ : (—=bb) >R Y (=bb) > Z
such that $(0) = 0,4 (0) =0 and
F7H0)NU = {(€ro +€¥(€),6(€)) : €] <b}U{(0,1) : (0,¢) € U}.
We will check in the following section the hypotheses of the C-R theorem.



CHAPTER 4

Checking the hypotheses of the C-R theorem for
the equation 2.7

In this chapter we will check the hypotheses of the C-R theorem in suitable Ba-
nach spaces X and Y in order to find a nontrivial branch of the solution (r(a, p), \)
of (2.7). In order to be able to apply this theorem in the way that it is written in
chapter 3 we will define new variables:

(4.1) T(a,p) =r(a,p) —p
(4.2) [h=A— A
(4.3) FF,u] = F[F 4 p, As + 4]

with A3 to be fixed later. Thus we understand (2.7) as an equation for (7, ) rather
that for (r, \). In fact, we look for solutions of

(4.4) Fr,ul =0 in Q.

Let us also define the spaces H*!(Q,) for k, I € N and k > [ as follows:

!
(4.5)  qre L) : lIrllieq,) + 1057l72,) + D 108700l Z2q,) < o0
j=0

We will work in the space H*3 and notice that H*3 C C?. This is shown
below. The reason why we work with this space is because the functional F takes
1 derivative in o but no derivatives in p. Due to this anisotropy we would not be
able to apply the C-R theorem by solely using homogeneous spaces (see [42] for
additional information).

LEMMA 4.1. Let Q € [0,1] x [-7, 7] and f: Q — R € H*3(Q). Then:

1 fll 2o (@) + 1102 fll o @) + 105 fll ) < Cllfll e
ProoOF. If f € H*3(Q), then:
Hf||%2(9) + ||32f\|%2(9) + ||3§f||2L?(Q) + HagafoQB(Q)
+ 10292 flI72(0) + 19003 fl172(q) < C
On one hand, f, € H3(Q), since

H.fa”%—ﬂ(ﬂ) = ||fa\|%2(9) + ||3§fa|\2L2(Q) + HaifaHQL?(Q)
S ||f|\2L2(Q) + \|3§f||%2(9) + HaiaafHQL?(Q) + HaﬁfH%Z(Q) S 1 fllgas @)

11



12 4. CHECKING THE HYPOTHESES OF THE C-R THEOREM FOR THE EQUATION 2.7

This implies that f, € C1*7(Q), yielding [faallpe@ < C and |[fazll Lo @) <
C for some constant C'.
On the other hand, if we define

1
o) = / 32 f(z, a)dr,

we claim that g € H'([—m,7]). In order to see this, we can compute

T 2
191 ey = | ( / a;ff@,a)dx) da
T 1
< / / 02 (. 0)Pdader < || £ g0,

In addition

T 2
PN ( 3§5af(x,a)dx> do

T 1
< [ [ 1e20usc)ldsda < 5o
0

Therefore

lgllze () < llgllzee ((—mm)) < gl (—mm)) < Clf 2500

We have that

1
D2 f(w,a) = 02 f(w, ) — / D2 f(2, a)dx’ + g(a),
0

which we can bound in the following way:

+ gl Loe (-
Lo (Q)

1
102 e e < H | 1) - 21 a)a
0

In addition:

1 1 T
/ D2 f(x,0) — 02 f(2,a)dx’ = / / D2 f(2", a)dx"dx’ = h(a, )
0 0 Ja

We now fix x and we show that ||g(a, )| g1 (= )y is uniformly bounded. We
achieve that by using the following estimate:
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1 T ™ %
Hh(a, ,T)HLz([,ﬂ.’ﬂ.]) < / / (/ |8§f(x//7 a)|2da> da" da!
0 Ja’ —7
1 . T s %
< / |z — 2’|z (/ / |03 (2", o) *sign(z — x')dadw") dx’
0 z J—m
1 1 ™ %
<C (/ </ / |8§f(x",a)|2dadx”> d:z:')
0 0 -7

< Clfllass@),

where C is independent of . We can do the same procedure with d,h(c, z),
getting

1Pc, )| oo ((—m,mp) < 1P @) 2 (1= 1) < ClF 230

Taking the supremum over z yields the desired result. ]

The theorem we will prove is the following:

THEOREM 4.2. Let f and a be as in Theorem 3.2. Then there exist

(Fo(a, p), A3) € H*(Q,) x R,
an interval (—b,b), and continuous functions
¢ :(=bb) =R P (=bb) = Z

with ¢(0) = 0,(0) = 0, such that, if Z is any complement of span{To} in H3(,),

Flero + £9(€), ¢(6)] = 0,
for |€] < b.
In addition these solutions will have 3—fold symmetry.

Here it is important to remark that this theorem provides a nontrivial solution
(o, p) = p+ EFo + EP(E) of (2.7) with A = A3 + ¢(€) satisfying |r,(c, p)| > ¢ >0
if we take £ small enough. Theorem 3.2 follows from Theorem 4.2.

4.1. Step 1. The functional setting and the hypothesis 1

Our first step is to define the spaces we will work with in order to apply the
C-R theorem. The spaces HY!  (€,) and Hg_”cl)dd(Qa) will be given by

3,even
{F € H'(Q,) : 7(a,p) = 3 P () cos(3ma)} )
m=1
and
{F € H(Q,) : 7a, p) = i Fm () sin(3ma)} ,
respectively. "

One of the purposes to introducing these spaces, which only represent frequen-
cies multiples of 3, is to be able to show the 3—fold symmetry of the solution. Our
starting space X will be Hg:j’ven (D).
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The target space Y will be H;”g’dd(ﬂ ). Notice that a function in H*3(£,)

belongs to C%2(Q,) = C'(Q,). Finally we take the neighbourhood V of 0 in X to
be

3,even

V={re B9« Flluss, o, <0

for 6 > 0. The parameter § will be fixed later (small enough).
Given these definitions we need to show the following lemma:

LEMMA 4.3. Let F[F, ] be as in (4.3). Then, for fived a € (0,1), there exists
6 > 0 small enough so that

F:Vx[-1,1] = Hy? (Q).
PROOF. Here we recall the definition of the functional

Flr, A

— ]‘ > T f (p/) ! / /
= Aro(a, p) — %/ /7T () p—x(o/,p’)| cos(a — o) (ro(a/, p')
—ra(a, p))da’dp’

Lo ap P/) / A VRN
/ /,,T lz(a, p) — z(a, p')] cos(a — ') (r(/, p') — 7(e, p))da'dp

)

(

27Trap

“wwal ey p—i

+ rala, pralel, p))dedy’
= Fy[r, \| + Far] + F3[r] + Fy[r],
with r = p+ 7 and = = r(cos(),sin(a)). It is easy to check that Fi[r, \] = Aar
belongs to H3 idd(Q ).

Next we show that

(4.6) Fir] € H*3(Q), i=2,3,4.

In order to do it we notice that, since ||-|| 2@y < Cl|-|[g23(0,), We can choose, for
fixed a € (0,1), 6 small enough to have that r(a, p) > co(a,d) > 0 and r,(c, p) >
c1(a, 6) > 0, for every (a, p) € Q,. By comparing equations (2.5) and (2.7) we see
that

(Falr] + Fs[r] + Fulr]) (a0, p) = 2m o / / . \m(a%fm?a) e’ d’

ak(ap) / / J30(s) = 0 @sp) 41

(o) ) el@, p) = (e, )]

with z(a, p) = (e, p)(cos(a), sin(a)) and r(«, p) = p + F(a, p). We will extend the
restriction of the function f, to the positive real axis f,|g+ to R by zero. We still
call this extension f,. Thus, a change of variables yields,

(Fo[r] + Fs[r] + Fu[r]) (o, p)

s [ Fa(0,p) = ala = ', p = )

— le% ] . f p_p/ b) ) ; daldpl-
21r(0,p) oo ) 7 T Yl p) —ala— ol p = )
———

g(a,p) Blf,z](a,p)
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We will use the following notation. For a general function h(c, p) we define

h =h(«a, p)
h' =h(c, p)
W' =h(a—a',p—p')
Ah =h—h
Ah =h —h"
Thus we can write
Blf,z] = /OO /Tr Iy AT, do/dp’.
oo P A
Next we look at
3
(4.7) > 9579) (g, p)Blf, 2](c, p)) -
§=0

We will consider two groups of terms. Group 1 consists of the terms
g03B, 0,90°B, 8agaipB, 0,902B, ¢029,B
&XgaﬁB, apgaipB, g@iaaB, 8,;93§B, gagB.
Group 2 consists of the terms
8293, 82g8aB, (?gg(?pB, (?gpgaaB, 8§8agB,
2 2 2 3
0,90.B, 0,,90,B, 0,90,B, 0,9B.
It is easy to check that expression (4.7) is given by a linear combination of the
terms in group 1 and group 2. On one hand, since in group 1 there is no more than
one derivative acting on g and
||gHL°°(Q_a)a ||8ag||LOC(Q_a)a ||8p9‘|L°°(Q_a) < C(d,a)
in order to bound its terms we need to estimate
BB, 02B, 02,B, 020,B, 9B, 0:0.B, 03B.
On the other hand, since
2 2 2 3 3 2 2
059, 0,9, 05,9, 0.9, 0,9, 0,0,9, 0,049,

have L?-norms bounded by some constant depending on ¢ and a, in order to esti-
mate the terms in group 2 we just need to control the L*° norms of B, d,B, 0,B.
These norms are bounded by ||B|| s &)

In addition since the L?-norm of B[f,z] is easy to control we just have to
estimate the L?-norms of the derivatives of order 3 of B[f, z].

LEMMA 44. Let r = p+ T, where 7 € V, and x = r(cos(a),sin(c)), the
derivatives 831’02’03B[f, x| where o; is either a or p, with i = 1,2,3, are in L? with
norm bounded by a constant C just depending on 6, a and || f||ca.

PrOOF. This lemma will be proved by using the following lemma:

LEMMA 4.5. Let r = p+ T, where T € V, and x = r(cos(a),sin(«)), then there
exists a constant c(a,d) > 0 such that

z(a, p) —z(a—a’,p = p')|* > c(a,6) (a + p?).
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PROOF. Because of the definition we have that
/
|AZ' |2 =72 72 — 21" cos(a/) = (Ar)? + 4’ sin? (%) .

Now we notice that r = p 4+ 7 and then, for p € (1 — a, 1), there exists ¢y(a,d) > 0
such that r > ¢g(a,d), where cy(a,d) is increasing with a and decreasing with 4.
Since p — p’ belongs to (1 —a,1), 7" > ¢o(a, d) too. Both inequalities together yield

/
|AZ'[2 > (r —")? + cola, §) sin? <%> .

In addition, r — 7' = p’ + AF, and |[F'| < C(0)(|/| + |p’|) where C(5) — 0 when
6 — 0. Then

(7‘ _ T//)Q Z p/2 _ 0(5) (04/2 4 pl2)
where C'(§) — 0 when § — 0. Therefore we obtain that, by making ¢ small enough

80/2 > c(a,0) (” + ). 0

Let 0 ‘mean differentiation with respect to either o or p. Then, the derivatives
(f” A ), consist of terms of the form

/
3 g1/ A.’L‘a 1

3 3
Ve WOy A
1 1
02 f19AT, IA o A, 8|A o 080 A ’—|A ;
f;/52AJ;:15—| ‘, 8f”A /82|A /| f”@A 82\A /|
1!
of! 0! a‘A T

Since f € C*, Lemma 4.5, the fact that

p—(1—a) pm 1
/ / - _dddf <C
o—1 o a/2 +pl2

and that |[F||c> < C(6) we obtain that the terms in §°B coming from 9?f//
and 82f”8A3¢

Azl
P TAa]

are in L*>° with L°°—norm bounded by some constant

C (a, 3, ||f|‘c4(f7a)) :

The terms in 83B coming from f”B?’Azx(y a7 and Bf’/(?‘zAxa ]

bounded in L? in the following way. Again we will use the bound for f in C* and
Lemma 4.5. Let us focus on

B Ax p—(1-a)
// a I3/ _ 93
IR~ ‘M“/ i e

,,83 "
f * Az ,‘dadp =L+ L.

\AJL”\

all can be

(4.8)
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Since

p—(1-a)
do'dp'| <

(av 5’ Hf||C4)

P|A /|

we have that ||11HL2(Q_a) < C(a,d,||fllc1) ||83xa|\L2(Q—a).
In order to bound I we notice that, after a change of variables,

, 3! da'dp’
[

/
< C’(a,é)/ / | |03! |do dp’
1-aJx [\/(a=a)2 + (p = )]

and therefore Young’s inequality applies to yield

1l 2y < C (@, | flleo) 1%l oy

|Io] =

It remains to bound the terms with derivatives acting on the factor ﬁ.
We first will deal with the terms in 03B with a factor 3ﬁ i.e., the terms

coming from 82f/’Ax 8‘Aw T f”(‘?QAx 8‘Ax,‘ and aﬂ;am;a@. Just a compu-
tation shows that
9 1 0Az" - Ax
|Ax/| |Az’|3

and therefore by Lemma 4.5 and because of x € C? we have that

1
/O/Z + p/2 ’
Therefore the terms in 9B coming from 82f”Ax 8‘Az,‘, and df) 0Axy, 8‘Az,‘ are

actually bounded in L*°. The term coming from f ;’ 0?Ax! 0t AT is bounded as we

did before for I; + I3 in (4.8).
The term with two derivatives of the factor ﬁ which causes more difficulties

;’8Az(y82@. We will use the following embedding: since z, € H>3(Q,) =

H3(Q,) we know that z, € C**7(Q,) with C'*7(Q,)—norm bounded for some
constant C'(0). Then, since,

< C(a,9)

1
|A '

1 O?Ax - Ax' OAL - OAL 0Nz - Az'0Ax" - Az’

92 - _ _
A A AP Az’

we can use the previous embedding to estimate

1 1
OAZ! 2 <) | — L _jPAr |+ ——joAs| ) |
|A | (a2 + p2) 2 /a2 + p? o

Therefore by using again Young’s inequality we bound the term

/ " fAo? (a6, || fllcs)-

—0o0 —T | ‘
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Finally we compute three derivatives of the factor |L\1—x,|. The terms arising from
these derivatives are linear combinations of terms with the structures

PBAL - Az’ PAz - OAL O?2Ax’ - Ax'OAZ - Ax!

|Az/[3 7 A3 7 |Az’[> ’
OAZ - OAx'OAZ - Ax' OAz - Ax'OAx' - Ax'OAx - Ax!
|Ax’|5 ’ |Ax’|7

and then, a similar analysis we did before helps us to prove that

oo s 1
/ [y Az, AL do/dp’,

is bounded in L? for a constant C(a,d, || f||c4). This concludes the proof of Lemma
4.4. ]
Thus we have proven that (4.6) holds. This finishes the proof of Lemma 4.3. O

Therefore, in order to prove that,
F iV ox(=1,1) = Hy ()
we just need to show that if

F(_O‘> P) :F(a7 P)
and

2nm

T (a + R p) =7(a, p)

for n € N, then

F(—Oé,p) = —F(O&,p)

and
_ 2 _
F <a+ %m) =F(a, p)

for n € N. These two properties are easy to check.

The last part of this section will be to check that the hypothesis 1 in the C-
R theorem holds. This fact is a consequence of radial functions being stationary
solutions of the SQG equation but let us check it on (2.8). If we take 7 = 0, i.e.,
r = p, the only term in (2.8) that is not trivially zero is the last integral. In order
to check that this integral is zero we just notice that the integrand is odd in a.

4.2. Step 2. The partial derivatives of the functional F'

We need to prove the existence and the continuity of the Gateaux derivatives

-F[7, A\l,OAF[F, \] and 02, F[F, \]. We have the following lemma
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LEMMA 4.6. For allT € V? and p € R the partial derivatives O=F [F, \],OnF [T, \]
and 02, F[F, ] exist and are continuous. In addition
OrF[0, pl(ax, p) = OrFlp, N, p)
= Al p) / folp/ COS(O‘ —a )(fa(a/,P/) - fa(a’p))do/dp/
S or Vet ( — 2pp’ cos(a — )

map cosa—a)(p—p) '
//p\/p + (p')? — 2pp’ cos(a—a)dadp
fo(P)p—p COS(a — o)) sin(a — o) (pr(d, p') = p'T(@, p) ;10 s
o / / (0 + (¢')? — 200/ cos(a — ')} ’
= Io[7, A(ev, p) + L[], p) + L2[7](ev, p) + I3[F] (c, p).-

PROOF. The lemma is trivial for the derivatives involving A. The continuity
of the derivative with respect to 7 also follows since f € C* and is compactly
supported. O

4.3. Step 3. Analysis of the linear operator

Now we have to study the dimension of both the kernel and image of the
operator 0, F[p, A]. We will first show that for a certain value of A that we will call
As the kernel of the operator 9, F[p, A3] is one dimensional. After that we will show
that the codimension of the image of 9, F[p, As] is also one dimensional. This will
finish the checking of the hypothesis 3 in the C-R theorem. Propositions 4.7 and
4.35 are the main results of this section.

PROPOSITION 4.7. There exists a pair (7o, A3) € H;"’Sven(ﬂa) x R, with 7o not
identically zero, such that

(4.9) O, Flp, As]ro(a, p) = 0.
Moreover 7y is unique modulo multiplication by constant.

PROOF. The proof of Proposition 4.7 consists of the following steps:

(1) The equation for the radial part. We introduce in (4.9) the m-fold
ansatz:

#(a, p) = pB(p) cos(3ma)

and we obtain an equation for the pair (B(p), A), which we will write in
the following form:

(4.10) ©"B—-AB=0 in(1-a,l).

(See the equation (4.14) below).

(2) Existence of solutions of equation (4.9). We solve the equation (4.10)
for m = 3 and find a solution (B3,\3) € H3((1 — a,1)) x R of (4.10).
Therefore 7y = pB3(p) cos(3a) € Hg 3 0 (Q,) satisfies (4.9).

(3) Uniqueness for the equation (4 9). We notice that we still need to
show uniqueness for (4.9), since, until now, we have that, given A3 there
is a unique B such that (4.10) holds. But this fact does not imply that
there is only one solution (modulo multiplication by constants), 7o, to
(4.9). Indeed, we need to show that the equation

O, Flp, As] (b°™(p) cos(3ma)) =0 for m > 1
implies b3 (p) = 0 for m > 1.
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4.3.1. The equation for the radial part. Taking 7(«, p) = pB(p) cos(ma)
we have that 9, F[p, A\]F(c, p) is given by the following terms:

Io[7, N|(e, p) = =AmpB(p) sin(ma)

_ ) sin(ma )COS(CY—O/)(P —~) o dp’
B[, p) = — 2= B(p )/ / N AT

- %B(p) sin(ma) /700 1) = p) </7r N (pf(;ZS(_$;ppf cos(z) dac) af

We move on to I1[7, A](«, p). We have that

ala, ) — Pl p) = —m(p' B(p) sin(ma) — pB(p) sin(ma)
—m(p'B(p") sin(ma) cos(m(a — a'))
— p'B(p’) cos(ma) sin(m(a — o)) —pB(p) sin(ma)).

will integrate to O

Therefore
. m . o B(p) — p'B(p’) cos(mz)) cos(x
Bl p) = —pesintma) [ [ g, P LB ) o)
o ol VT (7 — 24 cos(@)
Finally, we develop I3[7](«, p). Using:

dxdp’

pi(a’, p") = p'i (e, p) = pp' (B(p') cos(ma’) — B(p) cos(ma))
— o0/ (B(g") sin(m(a — o’)) sin(ma)
+ B(p') cos(m(a — ') cos(ma) — B(p) cos(ma))

will integrate to 0

This implies that

) 1 o (7 sin(ma)(p — o cos(@)pp'sin(@) |\
I3[7](a, p) = —— sin(ma B =—dz | d
31700 = =g sinma) [~ 1y(0!) (p></ﬂ E R Rwa—LY: ) p

Integrating by parts, using that

pp sin(zx) _ ( 1 )
(p% + (p')% — 2pp/ cos(x))? "\ (02 + (p)2 = 2pp/ cos(x))*

we get that I5[7](«a, p) is given by:

. LU, o° / / ™ cos(mz)(p — p’ cos(x)) - )
Bffl(a,p) = ~ % sin(ma) [ Oofp(p)B(p)<_w s (p,)2_2pp,cos($)d)dp

1 . i N Ty " sin(m:c) sin(x) ,
— —sin(ma o B dz | d
5. sin )/mf(p)p (p)<ﬂ\/p 200 conle) ) P

Putting all the pieces together and dividing by sin(ma), the equation we want
to solve is:
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(4.11) B(p )( Amp — —/ fo0 ( v COS(x;pp,COS(x)dx> dp/>

cos(m:t) cos(x) ,
'B( dr | d
/ elele )< —n /P2 + ()% = 2pp’ cos(x) ) ’

cos(mx) ,
/ Jole)PB (o < VPP — 2pp’ cos(x) dac) ar

sin(mx) sin(zx) ,
_ o 'B( dx | dp’ = 0.
/ oo Bl ( —n /P2 + ()% = 2pp/ cos(x) ) g

The inner integrals can be explicitly calculated in terms of EllipticE and El-
lipticK functions for any m. We can simplify the equation (4.11) in the following

way. Letting s(p, p’) = 5, we obtain

1 1 1 3 1

1
VP24 (p)2 —2pp cos(z) P \/1 N (%)2 24 cos(a) P \/1+ 82 — 2scos(x)

thus equation (4.11) reads:

cos(z) !
(4.12) B(p) ( )‘P_ / folp < —r /1 + 5% —2scos(x )dx> dp)
+ % /o; fo(0")B(p) < : \/1C(ji(:;x—) ;Zsc(js)(w)dx> "
IR N S A cos{ma) /
o /;oo folp )?B(P ) < r 1+ 82— 2SCOS($)dx> dp

T sin(mx) sin(x) ;o
 2mm / Jol ( —n /14 82 —2scos(x) dx) dp =0.

We focus on the term

/’T 2 cos(ma) cos(z) — s cos(ma) — L sin(mz) sin(z)

V/1+ 82— 2scos(z)

We remark that cos(mx) = -0, sin(ma). This implies, on the one hand:

dz =T(s).

™ 2cos(ma) cos(x) 1 ™ 2cos(x)dy sin(me)
—n \/1+ 82 — 2scos(x) TmJ T+ 2 — 2scos(z)
1 (7  2sin(z)sin(mz) 1 ™ 2scos(z)sin(ma) sin(z)
= — —_— _dr + — dz
m J_n \/1+ s2 — 2scos(z) m J_, (14 s2 — 2scos(z))3/2

On the other

T

cos(max) / sin(mz) sin(x)
5 = dx
—r /14 5% —2scos(x m (1+ s2 — 2scos(x))3/2
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Therefore, T'(s) can be transformed into

1 /7 sin(x) sin(mx 1 [ 2scos(x)sin(mz) sin(x
T(s)=— (z) sin(ma) dr + — (2) (ma) §/2)
m J_x \/1+ 82 —2scos(x) m J_, (142 —2scos(z))

B / sin(ma) sin(z) g
m

dx

(1+ s2 — 2scos(x))3/2
sin(ma) sin(z) 1 [ cos(mzx)
= Xr = — dCU.
m J_. (1+ 82— 2scos(x))3/2 s )z /14 s —2scos(x)

Substituting into (4.12), we have to solve:

(4.13) B(p) ( A= oo / (0 <_ \/1+sc208—(2¢os( )dac) dp/>

cos(mx) ,
+ — dzdp’ = 0.
/ fol —x /14 82 —2scos(x) P

From now on, we will call

_ - cos(a) .
2m / G /—77 \/1 + (5)2 -2 (ﬁ) cos(z)d v
5) = 5 [ 8% [ cos(ma) dudp

We will also define

1 [7 cos(max)
27s \/1 + 52 — 2scos(x)

o[ o (2)os

This allows us to write (4.13)

K™(s) =

(4.14) I(p)B(p) +T™B(p) = AB(p), in (1 —a,1),
where T™ = %Tm and [ = %I(p). Thus, using the notation of (4.10),
0" B(p) = I(p)B(p) + T B(p).

4.3.1.1. Euxistence of an element in the kernel of 0, F[p, A3]. In this part we will
study the equation (4.14) in order to obtain an element in the kernel or 9, F[p, A3]
for some value A3 € R . We shall show the following proposition:

PROPOSITION 4.8. There exists a solution (B3,A3) € H3((1 —a),1) x R to the
equation (4.14). In addition, A3 is simple.

We remark that this proposition yields the next corollary:
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COROLLARY 4.9. The function 7o(a, p) = pB>(p) cos(3a) belongs to H;’Svm(ﬂa)
and solves (4.9).

PROOF. The proof of Proposition 4.8 is divided in two parts. In the first one
we deal with the operator T in (4.14). In the second one we show existence of pair
(B%,)3) € H3((1 —a,1)) x R solving (4.14) and that )3 is simple.

(1) Study of the operator T". This part is devoted to studying the oper-
ator T and its derivatives until order 3. Here we recall its definition:

ot [ oo (2)e

1 (7 cos(mz)
2rs J_x \/1+ 82 — 2scos(x)
The main results here are Corollary 4.15 and Lemma 4.18 that state that
the operator T™ and its adjoint 77 are compact operators acting from
H* to H**! for k= 0,1, 2. )
Let’s compute the derivatives of 73™.

with
dr.

K™(s) =

LEMMA 4.10. Let B € C? then the followmg equalities hold:

8,T™B(p) =T"9,B(p / 921 ( ) e <§)dp/,
O2T™ B(p) =T5"02B( Z/ O F (002 B(p )( )21( < >dp

P
o
3
T B(p) ~TPB() + [ arworne (5) & (4)
j=1 e

where
(415) rs— [ et (L)
(4.16) T B(p / £l ( >2Km (5) dp’
(4.17) 750) 1 [ 1,605 (%)Km (5)ar

PROOF. We notice that after the change of variable v = % we have

that
T B(p) = /Oo glpn) K™ G) dry

— 00

where g = f,B. Taking one derivative we have that

0,17 B(r) = [~ @a) (o)oK (%) d

it e
=2 [T s Zxm (D avt [T om0k (L) ap,
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so that
9,T™B(p) = T"0,B(p / f( ) e (%) dp'.

Computing in a similar way, by taking two derivatives, we have that

2
o [ (2) (2o
’ p
ainsi =, [ o (5) 5 ()
And we can write

02T B(p) =T3" 92 B( Z/ &I f(p)2 7 B(p )( )QK’” <ﬁ> dp'

P
. . : : A% p
T B(p) T B+ S | arawa e (;) K™ (—) af.

j=17 -

Some of the properties of the operator 7™ come from the sign of its
kernel. We study this sign in the following lemma.

LEMMA 4.11. Let T™ (§> be defined as:

» cos(mx) )
( /) 27'('/—71‘\/ (ﬁ)cos(z)d

Then, we have that, for every (p,p') € R%, p # p/
(a) T (ﬁ) >0

(b) Tm+! ( ) <7 (pﬂ)

PROOF. Let r = ﬁ. We have that

m (ﬁ) _ 1 /7r cos(mx) i
2 21 J_n (1 + 72 — 2rcos(z))2

We do first the r < 1 case. The r > 1 case follows from the property

() =(5) ™ (5)
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D=

(2 1 /7r cos(mm) _ 1 2 /% cos(2mzx)
o) 14r ) . T 2ml4r ) 9
( 2 (1 W COs (f))

1 4 & Bl 4Ar k - 1
2_1+rz/0 cos(2ma) 1+r)> cos™ (@) g7 (1/2); de
1 4 < 3 o
T on +rkzo(1+r ) k! (1/2)/0 cos(2mz) cos™" (x) d
4
+

= r 1 I'(2k+ 1)
:Z( +r)) 7 V2 30 T T T T =)

Since Ay > 0 for every k, this shows the first item. Next, we compute
for r < 1:

Tm (ﬁ) _ pm+l (ﬁ) — Aim
o o I'(1+2m)

1 1
T2 A (F(1+k+m)I‘(1+k—m) _F(2+k+m)F(k—m)>

k=m-+1
 Am > Ay 1+ 2m
T T 12m) :g}ﬂ T+ k+m)(1+k—m) (1+k+m) >0
This completes the proof of the lemma. O

In order to prove the compactness of the operator T™ we will use the
following decomposition:

LEMMA 4.12. The function T™(s) satisfies

T (s) = —% log(|1 — s[) + E™(s)

where E™(s) is a C'—function with
IE™[|cr < C(m).

ProOF. We will split 7™ (s) in two parts

_/ 1 a4 /7r cos(mz) — 1 I
— \/(1 — 5)2 + dssin? (2) —r (1 —5)2 +4ssin’® (%)

=Ty (s) + 15" (s).
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We now focus on the term 77 (s). By making the change y = sin (%) yields

L 1 dy
T1 s) =4
o e

B 2/% 1 dz
Vs o V1+22V1—e222

;;Zl. We will break T3 (s) in two parts

Ti(s) _%/0% \/11—22 <\/1—1€222 _1> @

2 [ 1
= 2
Vs /o V1+ 22
ETH(S) + Tlg(s).

with € =

The integral in the term T12(s) can be computed exactly. We obtain that

(4.18) Tia(s) = % arcsinh (%) ,

where we recall that

arcsinh(x) = log (x + Va2 + 1)

and then,
1 2/s 4s
inh (-] =1 1) =-1 1- 2log(1 .
axcsin (5> 0g<|1_8+w/|1_sp " ) og (|1 — ) + 21og(1 + v/5)
Finally,
2 4 2
Tia(s) = — —=log(|1 — s|) + —=log(1 + /s) = ——=log(|1 — s|) + S(s).

1 1 1
Js 8 NChe VT

where S(s) is an smooth function. Next we will show that the first de-
rivative of the function T11(s) is continuous. We notice that undoing the
change of variable we can write

! 1 1
Tii(s) = 4/0 \/(1 — )2 + 4sy? (\/1 2 - 1) dy

y2

! 1
ﬂﬁﬁiﬁﬂfﬁﬁwwcﬁ

Since the function

dy

y2

(s — 1) + 4sy?

is in L*°, by the dominated convergence theorem (DCT), Ty1(s) is con-
tinuous at s = 1. In addition, for s # 1, we can differentiate to get that
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in a weak sense

P =1) 427 y?
0,11 (s) = —4 . d
ne) /o<<1—s>2+4sy2>f V=7 (1+v1=9?) !
=Ti1(s) + Ti12(s)
where
! (s—1) Y2
Ti11(s) = —4 5 d
) /o<<1—s>2+4sy2>5 Vi— (1+vi=g)) "
and
Tha(s) = —8 1 v’ ; 1 d
12(2) /o<<1_s>2+4syz>f VI— (14 V1= 42) !

where we can prove that Ti12(s) is a continuous function at s = 1 by
DCT. To analyze T111(s) we split this term into two parts

T111(s) :—2/0 « (s = 1)y dy

1—5)2+ 4sy2)%

1 s —1)y? 1 1
Y S 1,
0 ((1—5)2+4sy?)> \/1—y2(1—|—\/l—y2)

The second integral is continuous at s = 1 again by DCT. The first integral
can be computed analytically. We obtain that

—2/01(( (s = Dy’ dy—l_s( 2\/§+arcsinh(2\/§)>,

1 - 5)2 + 4sy?)? 3s \ l+s |1 —s]

to show that T711(s) is also a continuous function at s = 1. Therefore we
have that
2

NG
where E(s) is a C! function.
For T4 (s) we use Taylor’s integral remainder formula to show that

2,2 1 1 1 1
cos(max) — 1= —m; —|—m4x4/ 73/ /ﬂ/ V/ cos(mypvtx)dvdudydr
0 0 o Jo
2

m2x

2
and that

Ty(s) log(|1 — s]) + E(s)

+m*z*R™(2),

2 sin’ (g) = (1 - cos(z)) = %2 — 2*R(z)

Therefore
cos(mx) — 1 = 2m? sin® (%) + z*R™(x).
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where R™(z) is a bounded function. We now can write T5"(s) as follows

2m? sin? ziR™
5 ( / (2 dx —|—/ (z) dz
—W\/l—s + 45 sin? —W\/l—s + 45 sin? (%)
By DCT T3"(s) is continuous at s = 1. For s # 1 we differentiate to
get

sin® (f) dx
2

~ziR™(x)dx

Nl

T (s—1)+2sin®(

0sTa*(s) = —
) /— ((1— )% +4ssin® (
(

/ ™ (s—1)+ 2sin?

-7 ((1 — )2 + 4ssin® ( )

The second integral on the right hand side is a continuous function. In
the first one we make the change of variables y = sin ( ) to get that

™ -1 24i 2 (x 1 _ 2 2
/ (3 ) +2sm (2) _ sin2 (E) do = 4/ (S 1) +2y , Y dy.
(=92 +dssin® () 2 0 ((1-5)2+4sy2)? V112

Here, the difficulty to show continuity comes from the integral

)

5)
5)
3)
5)

1 2
-1
/ (s—1) Y
0o ((1-s)2 +4sy) V1-y?
but it has been already proven that this integral is continuous in the

analysis of T7111(s). This concludes the proof of the lemma. O

We also need to study the derivatives of the function T3*B(p). We
start with the following lemma:

LEMMA 4.13. The function (1 —5)3T3(s) is C? in a neighbourhood of
s=1.

PROOF. In order to prove the lemma we will split 72(s) in different
parts and we will deal with every one separately. We first notice that we
can write

/ cos(3x)
- \/ 1—35)2 +4ssin(%)2

We will use the formula

cos(3x) = 1 — 18 sin? (%) + 48sin* (%) — 32sin® (%)

dx

and make the change y = sin ( ) to get

D1 —18y? +48y* — 3245 dy

-1 /(=82 +4sy> 1 —y?

11— 18y% 4+ 48y — 328 dy

0 VA —s)2+4sy? \J1—1y2

T3(s) =2
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In addition we change again of variable by making z = %y so that

7o) =2 /% 1— 186222 +48e%2% — 32626 dz
S) =—— ,
Vs V14 22 V1 —e222

where ¢ = ‘2 7 Now we define
dz
T =
1(s) \/5 \/1—|—22\/1—5222
/% —186222 + 48c%2% — 32£02 dz
2 \/_ V1+ 22 \/1—6222'

Thus T3(s) = T1(s) + T5(s) and T;(s) is the same function that in the
proof of Lemma 4.12. Then we know that T1(s) = T11(s) + T12(s), where

2
Tha(s) = 7 log(|1 = s) + 5(s),
with S(s) a smooth function. Therefore (1 — 5)3T15(s) is a C?—function.

Also we know that Ty;(s) is a C'— function. In order to analyze two
derivatives of T11(s) we differentiate for s # 1 to get

2 ! 1 y?
0:T11(s) = —4 3 d
S / (=9 + 4 \Vi—g (1+v1=9) )
+12/1 (o= 1"+ 47) v’ dy.
0 ((1=9)2+4s)F \VI—32 (14— 47)

Multiplying by (1 — s) we have that
2

1 s — 2
(1—8)02T} (s) = —T1311(5)+6/0 < _8)(((1( ;jizy : 3 <\/1 <1y+ V1 2)) v
— 5 sy?)2 - v

where we have already checked that 77, (s) is continuous. Next we check
that this function is also continuous. This will be a consequence of the
continuity of the following terms

Lo (s—1) y?
/ (1 S) 5 dy
0 (1= 92 +dsy)? \ VT2 (14 VT— )

/1<1— )— 5=y v d
S 5 Y
0 (1= 92 +dsy)? \ VT 97 (14 VT- )
4 y2

[a-o9—V
0 ((1—s)2+4sy?)2 \/1—y2<1+\/1—y2)

The last term is continuous just by applying DCT. The other two terms
can be treated in a similar way we did before to show continuity.

In addition the analysis of T (s) does not introduce any new difficulty
and we will not give the details here. This concludes the proof of the
lemma. (]
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LEMMA 4.14. The function (1 — s)T™(s) satisfies
9 (1= 5)T™(s)) = =T™(s) + E™(s)
where E™(s) is a continuous function with L>°—norm independent on m.

PROOF. By Lemma 4.12 (1 — s)T™(s) is a continuous function. For
s # 1 we can differentiate to get

Os (1= )T™(s)) = =T™(s) + E™(s)

E™(s) = /7r (L= ) 4+ 2(1 — 5) sin’ 3(%) cos(mx)dz.
-7 ((1—s)2+42sin* (£))?
In addition we have that
™ (1—s)?+2[1— s|sin” (
|E™(s)] <
/*W ((1— )2+ ssin® (2))

For the first integral we have that

Njw SR
~—

[N

J 1/‘14* L
-7 ((1—5)2 + 4ssin® (%)) Vs Jo (L+y2)2 \J1— L=sBye

2s

\1 b\ 1
dy+ / —1]dy
\/_/ (1+4?) (1+y?) % 1_\1—5\2y2

2s

(4.19)

2./5 1
2 [T=sT 1 1- 1

:_/1 sdy+4/ | S| 3 —1/dy.
Vido (142 0 (L= s +dsy) \V1-97

In addition, the second integral, can be written

/7r 2|1 — s|sin” (%) d;v—8/1 11— s|y? dy
SCEDEEE O <|1—s|2+4sy2>%¢—1— 2

i /” v dy |1—s\/u - .
stoho QR S 1+y 7Y
Na
L 1 14
ss Jo (14 y2)% 1— I1Z;|2y2

2.5 1 9
1—s| [T=T 9 11— sly 1
(4.20) ———dy +8 —1|dy.
st o (1423 0 (|12 +4sy2)? \ V142
From expression (4.19), (4.20) and DCT it is easy to achieve the conclusion
of the lemma. O

Now we can state and prove the main lemmas of this section.
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LEMMA 4.15. Let f € CYR*Y) and m > 1. Then, T™ and T , with
i=1,2,3 are a compact operators, acting between L? and H', with

T30l 2 < Cllollre,
T 0]l < C(m) o]l e,

where the constant C' in the first inequality only depends on || f|lca and
Oy and the constant C(m) in the second one also depends on m.

PROOF. Because of Lemma 4.12 T? is bounded from L? to L. Then,
by Lemma 4.11 and the monotonicity of f(p), every Tim is also bounded
from L? to L? by the same constant as 7. In order to show the bounded-
ness from L? to H' we first show the estimate for smooth functions. This
is done just using Lemma 4.12 and the L?—boundedness of the Hilbert
transform. Finally we proceed by a density argument. ([l

COROLLARY 4.16. The operator T™ is bounded from H* to H**', for
k=0,1,2, with norm depending only on m, ||f|lcs and a.

PrOOF. We first prove the bound for smooth functions. This can
be done by using Lemma 4.10 and 4.15. Then we proceed by a density
argument. |

Finally, we will study the adjoint operator of T3 given by the expres-
sion

B() = f,(0) [ B()K® (p) v’

1—a 1Y

LEMMA 4.17. Let B € C3 then the following equalities hold:

)

[ ()%
PV/ B(p)B K (p/)dplfﬁp (B(l)WB(la)JWM>

P
1 ! 1 /

B'(p") K> (p_> L 1) py B'(p)8, <p’K3 <p_>) dp’,
l1—a 4 P l1—a 14
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()

3 3%
9, T (s)

o 1 56 () 2+ 1) o () 0o (52))

p

() ()

dp' 28’;‘f<p>

2B e ) - (52)

1
+202f(p) / B (0K
l—a P 14

1 ’ d 7
L fp(p)PAVA/ 0, <p’2K3 <p_>> o’
pop 1—a p p

PROOF. First we notice that, after a change of variables,

1 ’
oo [ 5K (L

9°5() = f,(0) [ o) ()%

Then, taking a derivative yields,

0,7 B(p) = 92 (p) /i B(PS)K?’(S)% + ,l,f”(p) (B(I)KS (%) e (1—7‘1»
(4.21)

F1lo) [, KB (ps)ds

and changing variable we have that

8,75 B(p) /wB (o) K® (—) -+ fp(p)( (DK (%) - Bl - oK (1_7&))
—fp(p)/llaK3 LGRS

And integration by parts in the last integral yields

9,T* B(p) = 02 (p) /1; B(p")K® <p) Ci,p/

1 /
+ LV [ 0.k (%
1—a

) B0

p
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Taking a derivative on the equation (4.21) we obtain

1

219 8) =331 [, B2 w20 (~mr® (5) + B - o (20
1 l 17_01
VORI [ B K s)ds 0, (B(l UARLS &) B ”Kp<>>

+ 031 (p) [0, B(ps)K3(s)ds + (p)( '(1)K? (%)713’(17@1(3 (1*7“))
422

F1olo) [1, KO OB (p)sds

A change of variable and integration by parts then yield

B 1 , '\ dp’
o B() =021 [ menwt (2) %

o’
) ) 3 (1 3 l—a
82);( PV/ B(p" )0, K*® (%) dp' — 9, (B(l)wlg(l@w>

l1—a

82f(p) ! 1o 3 Pl fp(P) 1 1o /-3 PI ’
+T 1_@3 (pK <?> +TP.V. B'(p")0, (pK (?>>dp
Finally we take a derivative of the equation 4.22. We have that

1
~a - ds
OPT = 0 1(p) /f_ B(ps)K*(s) 22 4
1—a S
P

1

+0200) [, B oK (s)ds

+0, (@ (—B(l)K3 (;) +B(1 - 1 _“ ))
;
)

B9 (e (2) - (152))

+282f(p)/1; B (ps) K ()ds + 2 ﬁf(p) ( 5K ( >+(1—a K3 (h%))

1

P

K3 (1 K3 (1lza
+26if(p>/éB”<ps>K3<s)sds—8§( lo (" B(l—a)w>

p

—a i 7 : —a

% 3 " 2
1o 7, KO () (ps)s%ds,
P
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And a change of variable and an integration by parts yield

=t [ (£ 4 s () o (12

+9 f(p)/ B'(p)K® (p) dpp

+9, (@ (—B(l)K (%) +B(1-a)K® (%)))

it s () 5+ 2 e () 0o (152)

va0ir) [ Bhwe (2) 2 g <B<1>M_B<l_a>w>
FONSS ; -

P
o [ ()% o [ o (o (5)) % u

LEMMA 4.18. The operator T3 is bounded from H* to H**', for
k=0,1,2, with norm depending only on ||f||cs and a.

p/) p

PROOF. In order to prove this lemma we prove the estimates for
smooth functions. This can be done by using Lemma 4.17. Indeed, in or-
der to control the evaluations of B and its derivatives we use the standard
Sobolev embedding H* C C', for k > [+ 4 in one dimension (H? C C?).
In addition we use Lemmas 4.12, 4.13, together with the L?-boundedness
of the Hilbert transform to control the terms involving the derivative of
the kernel K®. Finally we proceed by a density argument. ]

Finally, we finish this section by studying the regularity of I(p).
LEMMA 4.19. Let f € C*(R"). Then, I(p) € C3(1 —a,1).

PRrROOF. The proof follows easily by the fact that f € C* and Lemma
4.12. O

(2) Existence of a solution for the equation (4.14). We will regard our
operator © as a perturbation of its symmetric part ©% (which we can do
by taking a and 8 small enough). Then we estimate the first and second
eigenvalues (and the first eigenfunction) and see that there is a gap. If
the antisymmetric perturbation is small enough, then there is still a gap
and we are good. The strategy is to use a computer-assisted proof for
the estimation of the eigenvalue-eigenvector pair and the norms of the
different operators that appear.

Let (Bsj;, A*) be the approximate eigenvector-eigenvalue pair for the
symmetric operator ©%, satisfying

(4.23) ©%Bs; = \*Byj + e,
where e is small (see the next lemma for an explicit bound on e).
LEMMA 4.20. Let Byj = ==l , o0, as) and A" = 0.3482.
Then:
llellzz < 0.0905

(e, By;)| < 0.0101



(4.24)

(4.25)

(4.26)
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PROOF. The proof is computer-assisted and the code can be found in
the supplementary material. We refer to the appendix for details about
the implementation. ([l

The symbol Bj} will denote the orthogonal space to Bs; in L*((1 —
a, 1)), i.e.

By ={veL*((1-a,1)), (Bsj,v)r2((1-a,1)) =0}
Let us find a solution (B3, \) such that
©°B*=\B% B=B,+v, v€B;.

We expect v to be small if (Bg;, \*) is an accurate enough approxima-
tion to the true eigenpair. Plugging this ansatz for B® into the previous
equation and using the equation (4.23), we obtain

0’y =©°B’ - 6°B;
= AByj + A — \*Byj — e — ©% By,
= (A= \")By; + \v — e — ©° Byj,
where ©3 = ©3 — 0% is the antisymmetric part of ©3. From now on,

the pairing (-, -) is assumed to be taken in L?((1 — a,1)). Let us consider
the functional equation

(0% — M, u) = —(e + ©% Byj,u) Yue Bi‘j,

and let ¢* be defined by

O3, v

¢ = inf %

ve; vz

A rigorous bound for ¢* will be given in the next lemma:

LEMMA 4.21. Let Byj = ——1 Then:

Va—ap - [1-a+%,1- 47"
¢* > 0.8526

PROOF. The proof is computer-assisted and the code can be found in
the supplementary material. We refer to the appendix for details about
the implementation. O

Then, if A < ¢* the operator ©3 — )\ is coercive in BSL]-. By Lax-
Milgram, for every A < c¢* there exists a function v* € lej such that

(0% — vt u) = —(e + O3 Byj,u) Vue Bj‘j.
Thus, there exists a function d(\) such that

©%* = (A= X*)By; + X’ — e — 04 By + d(V)B.;.
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By computing the scalar product of (4.26) with v* we obtain
(¢ = N[vM72 < (0 = Nt ot
= —(04B;,v*) — (e,v")
(0% Bsj + ¢, v%)|
< 1024 Bs; + el 2llv?]| .

IN

This inequality implies

(a.27) oo < 192 Bea L eller
=

In addition, using that
(0%, Byj) = (0%0*, Byj) + (040*, Byj)
= (", 0§By;) — (v, 0% Byj)
= (' e) — (v}, 03 By),
taking the scalar product with B,; of the equation (4.26) yields

AN Bsjl7> = (©°0*, Byj) + (X" = NI Byl + (e, Bsj)

= (0%, ¢) = (v}, 04 By;) + (A" = V|| ByjllZ + (e, Byj)-
An important fact, that will be used, is the continuity of this function
d()N):
LEMMA 4.22. The function d(\) defined in (4.26) is continuous.
PROOF. Let A, < ¢*. By definition of d(\) we have that
[d(X) = d(y)| < C (IIBsgll2 lellzz, 10| 2 z2) [[0* = 07|22 + [ Byl 22X = 1.

For every u € lej we know from (4.25) that

(030> — Mot u) =(f, u)
(0% — v, u) =(f, u),
where f € L2. And then
(@3 (v =) = A —v7),u) = (v = A\ (07, u).
Taking v = v —v7 € BSJ-j yields
(e =Ml =072 < by = Al 2 [[0* = 07| 2.
Thus

[l0* = 07|z <

C
| [l T
We achieve the conclusion of the lemma from the inequality (4.27). O

Our purpose is now to show that there exists a value of A = \** < ¢*
such that d(A\**) = 0. We have the following upper bound for d(\):

[0z le = ©% Buylu (e, Bey)
(4.28) a\) > — F (A=) = D el
[B.,12 1B,
o _1O%4By teliz o~ O%Bulsz oy lieBo)l
R 13,12



(4.29)

A=)+
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We observe that limy_, o, d(A) = +00. Hence, there exists a A sufficiently
small for which d(\) > 0. Similarly:

) < 1©% Bsj + ellz2 |le — ©% Byl
= A 1Bs;ll7.2

(e, Bsj)|
1Bs; 72
The objective is to use the previous inequality to show that there exist a

value of A\ smaller than ¢*, such that d(\) < 0. We will use the following
lemma.

SO A+

LEMMA 4.23. Let h(z) = A—z+ %, where A,B,C > 0. If

C>A+2VB,
then there exists an © < C such that h(xz) < 0.

PROOF. It is easy to notice that h(z) is concave up since h”(z) > 0
for x < C. Thus, it is enough to check that the minimum of A is negative.
We calculate the point z,, where the minimum is attained.

B(zm)=0s (C—-z,)?=Bsz,=C— VB

Evaluating at © = x,,:

h(zm) =A—C+2VB <0,

by hypothesis. ]
LEMMA 4.24. Let By; = ﬁl[l_aw_ﬁl_%], A* = 0.3482 and let
us define:
Ay i MeBa)l g 10%By +elizlle - 03B
1Bs;ll7.2 1Bl

Then, we have the following bounds:

A < 0.3583
VB < 0.1534

PROOF. The proof is computer-assisted and the code can be found in
the supplementary material. We refer to the appendix for details about
the implementation. O

Finally, by applying Lemma 4.23 to the right hand side of (4.29) with

e, Bsj)l 5 _ [194Bs; +ellrzlle — O3Byl 2

N Zsy/1 = C=c"
1BsjlI32" | Bs;lI72 ’
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and by the bounds given by Lemma 4.24, we obtain that there exists a Ag
for which d(Ag) < 0. More precisely, we have that

Ao <

C+A (cfA){B_ AC+B
A+C

2 2 ate | (#)2—8

[(e;Bsj)| (e, Bsi)| \ 2
4+ A+ J o — \* — J
_ 1Bs; 117 2 B ( 1Bs; 117 ) B 1©% Bsj + ellp2lle — ©3 Bsjll 2

2 2 1B 117

By the continuity of d(\) proved in Lemma 4.22; there has to be a
A** < X\g < ¢* for which d(A\**) = 0 and therefore

o = (A™ = X")Bs; + AN e — ©4B,;.

which means that (Bs; + v, A**) is the eigenvalue-eigenvector pair,
(B3,)3) € L?((1 — a,1)) x R, we were looking for.

COROLLARY 4.25. We have just shown that A3 < Ay < 0.4117.

PRrROOF. Follows from the numerical bounds obtained in Lemma 4.24
and Lemma 4.23. O

Next we show that B3 is unique modulo multiplication by constants.
In order to prove it, let us assume that w € L?((1 — a, 1)) satisfies

03w = Asw.

Now we write w = Bsj + (w — Bs;) and we notice we can decompose
w — Byj = aBsj + v where a € R and v € Bj‘j. Then w= (1+ «a)B;s; +v
and by linearity we have that 7 = Bs; +u, with u = 77 € Bj-j, is
also a solution. Then the uniqueness of the solutions in the Lax-Milgram
theorem implies 175 = B3. If @ = —1 the previous argument fails. But,
in this case, w € lej and then ¢* < A3 which has already been proven to
be false.

In conclusion, we have shown that dim(N(©3 — \3)) = 1.

LEMMA 4.26. We have that I(p) — X3 > 0. In particular, we have the
following bounds:

I(p) — A3 > 0.8526

PROOF. The proof is computer-assisted and the code can be found in
the supplementary material. We refer to the appendix for details about
the implementation. ([l

Then it remains to prove the regularity of B3, the solution of equation
(4.24). To do this we will bootstrap using Lemma 4.15. Since

(4.30) 1(p)B*(p) = \sB°(p) = =T°B*(p)

by Lemma 4.15 the function (I(p) — X\3)B3(p) € H'((1 — a,1)). Since
I € C? and Lemma 4.26 we have that B3(p) is in H'. Let’s take two
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derivatives on equation (4.30), by Lemma 4.10 we have that

I(p)d2B*(p) — A302B*(p Zaﬂl )02~ B3(p) — 0,179,B(p)

[ (2) )

Then using that I(p) € C3, f € C*, I—\3 > 0, Lemma 4.15 and B3 € H!
we have that B3 € H?. Finally, taking three derivatives yields

1(p)03 B3 (p) — X303 B%(p Za”f 0y B(p) — 8, T3 02 B (p)

1 oo . . 7N\ 2
) L 8]+1) /82 ])B ,(,U_) Km(ﬁ)d/
(Zp/_w 162550 (2 L) an

Then using, again, that f(p) eC3, feC* I—A3>0, Lemma 4.15 and
B? € H? we have that B3 € H3.

This concludes the proof of Proposition 4.8.

A similar proof as in Proposition 4.8 also works to show:

PROPOSITION 4.27. There ezists a solution (B3, \3) € H3((1—a),1) xR to the
equation

03 B3 = \3B3,

where \3 is the same eigenvalue as in Proposition 4.8 and ©3* is the adjoint operator
of ©3. In addition, X3 is simple and we can decompose

Bf = BS] + ’Ui\sv
where v)® € (st)l
and
| - ©4B.; +ellre
c* — )\3

l02%]] 2 <

PROOF. The proof that there exists a pair (B3, \;) € L? x R satisfying
(O — X5)BY = X B

runs the same steps than the proof of Proposition 4.8. The only modification
is the change ©% — —©3. In order to check that, in fact, \j = A3 we notice that

\3(B®, B?) = (0°B® B?) = (B% 0% Bj;) = \;(B% B2).

Therefore it is enough to show that (B3, B3) # 0. We prove this result in the
following lemmas:

LEMMA 4.28. The following inequality holds:
(B3, B?) > 0.



40 4. CHECKING THE HYPOTHESES OF THE C-R THEOREM FOR THE EQUATION 2.7

PROOF. We can decompose B? and B? in the following way
B =B,; + v
B =B, + v}?
where v*3, v} € BSLJ-. Thus

(4.31)

| = O3B +ell2||0% Bsj + ellz2

3 3 2 A A 2
(B, B2) = [|Byyl e + (0,02) > [| Byl 32 — o

Using the notation from Lemma 4.23, we can bound

—A —A\?
S

This implies that the RHS of (4.31) is bounded below by

B
1Bsllz | 1= >0,

(5 + V(&2 5)

where in the last inequality we have used the already checked condition that

C-A
—— > VB

O

Finally we prove that B2 is in H® in the same way we did for B3 by using
Lemma 4.18. U

4.3.1.2. One-dimensionality of the kernel of 0,.F|[p, As]. Until now, it has al-
ready been proven that there exists an element in the kernel of the operator
0, F[p, As]. In this section we will prove that this kernel is the span of this ele-
ment. As commented in point 3 at the beginning of the proof of Proposition 4.7 it
is enough to prove that the equation

03"y = Asu
implies that v =0 for n > 1.
LEMMA 4.29. Let m > 1 and
Sm= inf (03, u)
lullp2=1
Then, if the pair (Uzm, As3m) € L? x R (with us,, not identically zero) satisfies
O Uz = Az,
we have that

>\§m S /\3m
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PROOF. Since we can take us,, with norm 1 we have that

3 $
)\Sm = <@ mu?)m; u3m> > A;,nw

by definition of A3,,,. O
LEMMA 4.30. Let m > n and let A\3,,, A3,, be given by
A, = inf (©*wu,u) and A, = inf (©%"u, u).
ueL? u€L?
[lull2=1 [[ullg2=1
Then
A3m 2 Agn

PROOF. First we will show that for every m > 1 and u € L? the following

inequality holds
(0w, u) > (€7 [ul, |ul).

By using the positivity of T3™(p, p’) proved in Lemma 4.11 we have that

@ lulful) = [ H@utp)Pdp+ [ [ ()ﬁmm>mmmwmwwmﬁ

/ Pt Qd’”/ / ( >T‘*’” P ) Fo (0 i (p)ut (o) dpdp!
/ / ( )Tgmpp)fp( Nu~(p)u~(p)dpdp'
/ / ( )Tsmpp)fp( Nt (p)u” (p)dpdp!
/ / ( ) "™ (0, ) Fp (0 Y (p)u™ (0 dpdp’
/ Al dp + / / ( >T3’" p-P) 1P Yu (p)u () dpdp!
/ / ( )T?’mpp)fp( N (p)u (p)dpdp'

50

[5G

) (02 )L Yt (o)™ (o i)

) o) o0 Y ()t (o
/ Ju(p) dp+// ( ) P)fo(p Yulp)u(p)dpdp!
_ <@3m u, >
Then
'ianz (©3™y, u) = ’ianz (©%™y, u),
llull 2 =1 llull o =1, u20

Now, for a positive u € L?, we write

(@, u)y = ((©0°™ — ©) u, u) + (0°™u, u).
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where
@ - u=1 [ ) (5= 5 (4 ) uleris
and notice that

1 [ P

_/ fp(p/) (K3m _ K3n) (_/) u(p’)dp’ >0

PJ-— P

by Lemma 4.11.
We then obtain that
<®3mu,u> > <®3”u,u>,
O

for every positive u € L?. This concludes the proof of the lemma.

Now our purpose is to find a bound from below for the number A6 defined by

M= inf (O, u).
ueL?
lull 2=1
In order to do this we will need Lemmas 4.31 and 4.32 below.
=0.573. Then

6 _ 1
LEMMA 4.31. Let Bsaproz = ﬁl[lftﬂr%,l*%] and )‘(Siap'roz
s BGapTom _ 66

6 pb6aproxr
C_')SBS — “6aprozs

with
||e®||L> < 0.0893.

PROOF. The proof is computer-assisted and the codes can be found in the
O

supplementary material. We refer to the appendix for the implementation.

LEMMA 4.32. Let BS%™% be the approzimation in Lemma 4.31. Then, if we

define the number ¢ by
& = inf (6%, v),
ve(Bgapmz)i

ol 2=1

the following bound holds
%* > 0.8355.

O

PROOF. The proof is computer-assisted and the codes can be founded in the
supplementary material. We refer to the appendix for details on the implementa-

tion.
LEMMA 4.33. Let A\§ € R given by
Ao = inf  (©%,u).
ueL?
Hull 2=1

Then, we have the following bound:

AS > 0.4837.
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PROOF. For a generic B € L? with ||B||pz= = 1 we can decompose B =
aBSaPToxX 4 By where v € (BSaprOX)L, |[v||r2 = 1 and a? + 32 = 1. Therefore
(058, B) = 0 Ajyprox + 87(05v,v) + 2a(e”, v)
> a2)\gaprox + B2(0%v, v) — 2am<e6, v).
Finally we obtain that

<@ng B> > )‘gaprox - ||e6||L23
since
inf <@2*U, U> 2 o > /\gaprox
ve(pSaprox)t
ol 2=1
by Lemmas 4.31 and 4.32. |

Using Lemmas 4.29, 4.30 and 4.33 we can prove the following proposition:

PROPOSITION 4.34. The bilinear forms ((©3™ — \3)v,v) are coercive in L? for
m > 1. In addition

(O = Xajv.v) 2 ol
Therefore, if u € L? satisfies
O3y = Asu,
form > 1 then u = 0.

Proposition 4.7 is then proven.
O

To finish this section we study the codimension of the image of the operator
87”F[p7 >\3}

PROPOSITION 4.35. The space Hg’:gdd(Qa)/R (0rF[p, As]) has dimension one.

PROOF. In order to prove this proposition we will study the range of 9, F[p, A3).
Let G(a, p) € Hg’:gdd(Qa). We shall try to find g(a, p) € H;:SVGH(QQ) such that

(4.32) OrFlp, Aslg(a, p) = G(a, p)

By using the expansions

g(a, p) = Z pg>™ (p) cos(3ma)
m=1

G(a,p) =Y pG*™(p)sin(3ma)
m=1

in (4.32) we have that

> 3mp (07" g° " (p) — Asg®™ (p)) sin(3ma) = > pG¥™(p) sin(3ma).
m=1 m=1

Taking the projection onto the 3m—mode yields
(4.33) 3m (0% g% ™ — X3g°™ (p)) = G*™(p) form =1,2,3,...
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Next we shall study the existence of solutions for the equation (4.33) in L? and
after that the H3-regularity.

(1) Existence in L2. We will deal separately with two cases: in Lemma 4.36
we take m > 1 and in Lemma 4.37 m = 1.

LEMMA 4.36. For m > 1 there exists an inverse operator
(O3 —xg) ' L2 = I
with norm bounded independently of m.

PrOOF. By Lemmas 4.29, 4.30 and the explicit bound for A§ in
Lemma 4.33 we have that the bilinear form ((©3™ — X\3)v,v) is coercive
in L? with

1
(O%™ — A3)v,0) > ————|[v|22  for m > 1.
X — s

Since G*™ € H? C L? we can apply Lax-Milgram theorem in order to
obtain the existence of an inverse operator
(@™ —\3)7t L2 — L2
O
LEMMA 4.37. Let B2 be defined by Proposition 4.27. Then, if G® €
(B2)*, there exists a solution, g3 € L?, to the equation (4.33) withm = 1.
However, if G® € spcm{Bf} there is mo function in L? satisfying the
equation (4.33) with m = 1.

PROOF. First we notice that we have already checked that ((©3 —
A3)v,v) is coercive in the space lej. In the next lemma we prove that it

is also coercive in (B2)*.
LEMMA 4.38. There exists a constant ¢ > A3 such that
inf (@3 = \3)v,v) > c— A3.

ve(B3)L
lvllL,=1

PrOOF. We take v € (B2)*, with L?—norm equal to 1. We can
decompose v in the following form v = aB,; + Bh where h € lej and
||h||z2 = 1. Since B2 = By; + v} we have that

o [Byjl|Zz + B(h, v2*) =0
|| Byjll7 + 8% = 1.
Therefore, we can write,
(% = X3)v,v) = ((©F — As)v, ),

using that ©%B,; = \*By; + e,
(8% = A3)v,v) = a®((85 — X3)Bsj, Bj) + 20B((035 — X3) Bsj, h) + 57((0F — Aa)h, h)
= a’((\" = \3)Bsj + e, Bsj) + 2aB{(\* — X\3)Bs; + e, h) + BZ((0% — \3)h, h).

And substituting

(h, v32)
[1BsjllZ

a=-8
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yields
(4.34) ((©% - >\3)v U>

— p? <<h T 0 A By s + (e Bug)) + (8% — Ao, ) — 202 <e7h>>.
Bosls L 1BoI2,

Here we recall that

— @ist + 6||L2
c* — /\3

((©% = A3)h,h) >(c* — A3)

and notice that

o] <)

1
2

>
5= |4 [ZOaB.+el, >0

(@ 2)2B 1%,

Therefore, it is enough to show that

hooi®)? L h, v}
<|<B S (O = M) BulEs + e Bus)) + (O3 = A ) — 27 105 <e7h>> >0,
sJillp2 sJillp2

However, the LHS can be bounded from below by

2
* H_ef’qujJ"eHLZ * 2 [| — ®ABSJ +e||L2
- LTS Sk ML ERLS Ml A" — Xo)||Bs; — e, Bsj)|) —25——2—2 L=
¢ = o+ ( ARG (« OlIBssl}2 = (e, Bag)l) 15512, (e = he) llell 2

since
((O% = A3)h, h) > (¢ = X3) > ¢" = Ao
(h,v2%)? || = ©%Bs; +ellr2 .
||B H4 ()‘ >‘3 H‘BSJ”L2 e (C* )\3 |J|B ” L (>‘ _>\3)||st||%2
sjllg2 sj
|| = ©%Bsj +ellr .
> (s S Bl
55
(h,v)3)? (||—@ABSj+e|L2>
12 * L (e Bi) > — e, Bgj
Bl @5 2~ o=, ) 1B
: 2
|| = ©%Bsj +ell2
_ B..
( (c* — )\O)Hst”ZLz |<€7 sJH
(h,v2%) o= ©%4Bs; +ellz2
—2——" (e, h) > e
1B 12, ™ = B e — gy 1
H G)ABS_] —|—€||L2

> " llell >
”st [172(c* = o)
Using Lemmas 4.21 and Corollary 4.25, we get

¢ — Mo > 0.8526 — 0.4117 = 0.44009.
Via Lemmas 4.20 and 4.24 we obtain

2 2
0.1534
*_ 12, > [ 22222 . —0. > 0.
) (N = o)1 Bs 122 > <0.4409> (0.3482 — 0.4117) > —0.01

<| — 4By tellee
(c* = 20)[I1Bs; 17
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(4.35)

and similarly:

- 63 Bg: +e€l|re2 2
H - A J ||2L ‘<€,BSJ>|Z—
(C - AO)HBSjHLz
Finally, the last term can be bounded by:
o= 0% Bs; + €|z el > (_2)0.1534
[Bgjl2.(c = Ao) "7 =17 0.4409

Adding all the numbers we get the desired positivity result. This
finishes the proof. O

<0.1534

2
—222) 0.0101 > —0.002
o.4409> =

0.0905 > —0.013

By Lemma 4.38 and Lax-Milgram theorem we find ¢® € (B2)* such
that

((©° = xaig®v) = (360)
for all v € (B2)* and then, there exists a real v € R such that
(0 — X3)g® = éGS +7B:.
But taking scalar product with B2 we have that
1Bz = {(07 = Xs)g®, BY) = (¢, (%" = X3) BY) = 0.
This last equality implies that v = 0 and therefore
(0% - X\3)g® = %G3.
However the equation
(0% — A3)g® = B!

does not have any solution in L2. In order to check it let us assume that
there exists g% € L? such that the equation (4.35) is satisfied. Multiplying
(4.35) by B2 and integrating yields

(0 = X3)¢%, BY) = ||B|[7: = (¢°, (0% = X3) BY) =0,
which is a contradiction. O

H?—regularity. We again deal separately with two cases: in Lemma 4.39
we take m > 1 and in Lemma 4.40 m = 1.

LEMMA 4.39. The solution g™ € L? to the equation (4.33) given by
Lemma 4.36 is actually in H> with the bound

C
3m|| . < G3m .
I e < oG,
where C' does not depend on m.

PROOF. For m > 1 let us consider the equation (4.33). We split the
proof in two steps: in the first one we will show that ¢3™ € H? but its
H3—norm will depend on m; in the second one we will prove that the
H?—norm is actually independent of m.
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(a) Step 1. Since @3 g™ — \3g°™ = SLmGSm and 3LmG3m is H', we can
take a derivative on both sides to obtain

- 1. ~ )
(I(p) — X3)D,og>™(p) = —%%G‘S’"(ﬂ) — 9,1(p)g>™(p) — O, T*"g*™,

where we remark that 8pf3mg3m € L? since we know that g™ €
L? and T%™ : L? — H'. The problem here is that ||T%™ || >_,
depends on m. In addition, since I(p) € C® and I — X3 > 0, we have
that 5‘pg3m is L? with norm bounded by a constant depending on m.
Taking 2 derivatives in the equation (4.33) we have that

2
T 1 : 1) T —7) .3m 73m _3m
(I(p) = Xs)859™" (0) = 5~ 0,G*" (p) = Y_0)L(p)3; Vg™ — ;T g (p).
j=1

By Lemma 4.10 we know that

~ - 1 o0 / 1
9, T%™g*™ (p) =T 8,9°™ (p) + p / of (p’)g?””(p)(p’)%K sm (;) dp'.

Thus we can write

~ ~ 1 oo / 1
8§T3m93m(p) :aprmapg&n(p) +ap;/ alZ)f(p/)QSm(p)(p/)%KBm (5) dp/.

Then, by Lemma 4.15 we know that apr"maprm € H? (with norm
depending on m) and therefore 8§T3mg3m(p) € L?. Again, using

that I € C3, I(p) — A3 > 0, and ¢ € H? we have that 92g9°™ € L?
with L?—norm depending on m. Finally since

3
1 i) T —J m m3m 3m
(I(p) = As) 859" = 503G (p) — > 0D1(p)d5 ) g*™ (p) — 3T g™ (p)
J=1

and
9T g*™ (p) = T3 9% B(p)

2 o N2
S230 [T s ) (%) Ko (pﬁ) iy,
j=17 -0

and Tfm is compact from L? — H', a similar argument yields that
83g3m € L? with L?—norm depending on m.
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(b) Step 2. Now, taking one, two and three derivatives on the equation
(4.33) and applying Lemma 4.10 we have that,

(6 = X0)2,0™" (1) =55=0,G*" () = 0, (p)g™" (1)
_1002/3m/p_/3m1’
p/_ooapf(p)g (W) K (7)@
1 o / my ./ : m 1 !
(4.36) +;/_ fo(0")0,9° (p)<1—%>K (;) dp
2

(@3m _ )\3)8§g3m(p) :i82G3m Z j 82 J (p)

S L (35 (5)o

(437) G (1 - (%)) K (5)ar

3
1 o
(0% = Xs)8p9"" (p) =5 —~05G*™ (p) = D_ 0 1(p)0; 4" (p)

j=1
1~ [ AN P
_ = ajJrl) /837]’) 3my o/ <_> K?)m (_) do'
pg/w 15 ) (5 L) ap
(438) L7 p e 1—(”—/)3 K™ <ﬁ>dp'.
P p o’

Since ¢3™ € H3, by the step 1 above, the coercivity property in
Proposition 4.34 applies. We first apply it to (4.36), then to (4.37)
and (4.38) yielding the bound

C
g™ lls < 16 s

with C' independent of m. The only problem comes from the last
term on (4.36), (4.37) and (4.38). In order to bound these terms we
apply an integration by parts, Lemma 4.14 and the same argument
that we used in Lemma 4.15 to control the L?—norm.

O

LEMMA 4.40. The solution, g> € L? of the equation (©3 — \3)g® =
%G?’ with G® € H? N (B2)* given by Lemma 4.37 is actually in H>.

PRrROOF. We can show that ¢ € H? in the same way we did in the
proof of the first part of Lemma 4.39. O

Then Proposition 4.35 is already proven. (Il
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4.4. Step 4. The transversality property 4

In this section we prove the transversality condition (3.5) of the C-R theorem,
i.e., the fourth hypothesis. In order to do this is enough to show that

(4.39) (0% — \3)b® = B3
does not have a solution in b® € L2.

Let’s suppose that there exists b> € L? such that (4.39) holds. Then, taking
scalar product in L? with B3, we have that

(B, BY) = 0.
This is impossible as it was proved in Lemma 4.28.
This concludes the proof of Theorem 3.2.
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APPENDIX A
Asymptotics

Part of the computer-assisted proof involves having to compute the kernels
T, T3 and T, which are given by elliptic integrals. As far as we know, we are
not aware of any rigorous implementation of them in any library. One possibility
could be to leave the (singular) integrals as they are and integrate over a domain of
one more dimension. This would be very time consuming in terms of the computer
performance. Instead, we do the laborious work of deriving explicit approxima-
tions (to order 0) of the kernels by hand, with computable error bounds of order
greater than 1. Once we do this, whenever we have to code either T, T or T, we
substitute it by the explicit expression found here.

We start with the elliptic integral

g cos(x)

I:
o \/1 + 72 — 2r cos(z)

dz.

1—7"_
147"

Taking u =

cos(z)dx cos(2y)dy

147 /—W \/sm ) + u?cos? (%) R / \/sm ) + u? cos?(y)

2

1 — 2sin?(y) )dyZ{ o :tan(y)}

1422 dy

1+7‘/ \/

sin?(y) + u2 cos?(y

4 / 1 22 dz
Sl o (L4222

We remark that u will be close to zero. We need to derive the asymptotics in
powers of u as u — 0 of

7= 4 /°° 1—=2 dz
Sl Sy (1422)3/2 2 12

4 /“l 1—=2 dz n 4 /1 1-=2 dz
Tty Qr2PEVEre It )12V

N 4 /°° 1—=z dz
147 )i (1422322212
=1 + I, + Is.

51
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We start with I5:

[ 4 /1 1 —u?w? dw
S A IR RV, gl

We expand (1 + u?w?)~3/2 as a power series around w = 0:

. 3 115
(14 u?w?)™3/2=1- §u2w2 + = W — (u*w?)’E3,

where (1 +u?)~7/2 < E} < 1. A naive integration and bounding then yields:

4 11— w2w? 3 11— wPw? 15
I = dw — ~u? w?dw + —u4E >
! 1+r< VI+u? 2y Vit ?
=1 (arcsinh(l) + u? (g(—\/i + arcsinh(l)))
+ut ([ —= (\/_ 3arcsinh(1 )) + 1—5E1
16 8°7%))
where

1 1—?

Next, we proceed with I3. We can write it as:

<Ei<1

Lo A /1 w? —1 dw
T4 )y 21321t wtad

Expanding in series (1 4 w?u?)~1/2:

13
(14 uw?) 2 =1- 2w2—|——— u?w

2\2 12

where < E? < 1. A naive integration and bounding then yields:

1
(1+u2)5/2

4 Low? -1 1 ! w?—1 3, =
I. = " dw-= 2 24(1 e 4E2
3 1+r</0 (w? 1 132 3 /0 YR it TR

4 1 3 4=
o <arcsinh(1) V24 ZUJQ (—3\/5—1— 5arcsinh(1)> + §U4E§) ,

and
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Finally, we do the asymptotics for Is. This is the most careful part. We start

by writing
12:14 1/11 1—w dw
+72 2w (14 w)3/2 142
_41/11 1 dw_4l/1l w dw
1472 Jp2 w(1+w)3/? 1y 1+r2 uzw(l—i—wﬁ”\/ﬁ

= I + Is.

—1/2
Next, we expand the term (1 + %) , but we do not truncate. Hence

2 —1/2\ o /1 1 dw
I = — _—
A= > ( k ) ) W (1 w)3r

k>0

F

Using the following integration by parts formula for & > 0:

1 wel 1
/ w (1 +w) " dw = (72)(1+w)71/2w7k‘ 72k/ w1+ w) " dw
u U2

2 w=u?2

w=1 1
= (—2)(1+w)_1/2w_k‘ —Qk/ w_k_1(1+w)_3/2dw

w=u? 2

1
— 2k/ w (1 +w) " *dw,

2

which implies:

1
/ w1 4 w) T 2 dw = ,%(1 +w) V2"

2

YTt 2k +1 [t

% ). w (1 +w) " dw,

w:u2

yielding
1 1 u?k 2k—|—1>
Fr=-—— - — ) - =—) F_1.
§ k(\/l—i—u? \/5) ( 2k o

We now get back to Is;. We have to compute

2 2\ )
1211+T<k220< i >Fk>

(e n (V) e 3) B () (500 )

E>1

We calculate the following explicit numbers:

Fo=v2- ﬁ — 2arcsinh(1) 4+ 2 arcsinh (ﬁ) .
= (1Y (g - 55) - 20 g (047

k>1

We treat the rightmost sum as
—-1/2

nating (since ( k/ > is alternating and the other factors are positive), and that,

an error. Using the fact that the terms are alter-
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for k > 1:

. =

CON% - T

() 2 G s

we can bound the absolute value of the sum by the absolute value of its first
term, yielding:

“1/2\ [2k+1 3
2 2
U E < p ) ( ok )Fk_l < Zu | ol

We move on to Is5. We can write it as:

2 —1/2
I22 = m —’U,2F71 —’LL2Z < k/ )Fkl

k>1

Together with the explicit calculation

2

2
—WPF o =V2 - ——
! V14 u?

and the bound on the last term by the same reason as above:

—1/2 1
“22< k:/ )Fk—l < §U2|F0\

k>1

we can conclude, after gathering all the contributions, that I splits in the
following way:

1= Iho,ns + Iho,s + Ie,s + Ie,n57



A. ASYMPTOTICS 55

where

Iho,ns =

(arcsmh (Z (—V2 + arcsinh(l)))

—13—6 (v2-3 arcsinh(1))>)
<arcs1nh —V2+ iuQ (—3\/5 +5 arcsinh(l))>

+

<

W~
r‘h/—\{-

- 2arcsinh(1))
+V2log ( (1+V1+u?) ))

R
<
)

+ﬁ ( ( 1+ \/m) arcsinh(1) + log(2))>
i <u2 (-2\/§+ garcsinh(l)> _ 3 4(v/2 — 3arcsinh(1 )))

16
4
Ios:— h
hos = T arcsin <| |)

and
4 15 4 3 2 5 2
Lons| < Pt 2 2 22 Ve - 2 9aresinh(1
Lemsl < Ty g + g T g | V2 T Ceresinh(l)
49, 4 5, 2 .
- 2 -z 2 —-2 h(1
T s V2 1+ u2 amsm()‘

4 5 1
Ies < — 2 h
| Ie s < T 4u arcsin <|u)

Note that in the computer implementation any error term I, will be imple-
mented as the interval [—M, M| whenever |I.| < M.
We do the same for the other elliptic integral:

s v cos(3x) .
—r /1 + 52— 2scos(x)
1—r
Taki = :
aking u = ——
cos(3z)dx cos(6y)dy

Tl /*W \/sm ) + u? cos? ( IERE / \/sm ) + u? cos?(y)

(3)
B z = tan(y) / — 1522 41524 — 28 dz
- 11222 = dy 147 (1+22)7/2 NN
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We repeat the splitting that we did for I, this time for J:

g 4 /001—15224-1524—26 dz
L+r (1+22)7/2 V22 +u?
4 lul 1 1522 4 1524 — 26 dz
- 1+r/ 1+22)772 2 ya?
N 4 /1 1—15224+152* — 20 dz
Tor by Q1272 Jars
n 4 /001—1522+1524—26 dz
1+7 (1+ 22)7/2 V22 +u?
We start with Ji:

=Ji+ Jo + J3.

Ji =

4 / 1 — 15u%w? + 15utw? — ubuwb  dw
1+7r (14 uw?)7/2 VIt w?
We expand (1 + u?w?)~7/? as a power series around w = 0:

2, 2\—7/2 T2 251
(1 + v w?®) :1—5uwF2,

where (1 +u?)~%2 < FJ < 1. A naive integration and bounding then yields:

4 1 — 15u%w? + 15utw* — ubw® 7, )
J = dw——uF
! 1+r(/0 VIt w? 2

1: (arcsinh(l) ( V2 —arcsinh(l))>

(
—u4( - (V2 - 3arcsinh(1 )
)-30%)

1
—— (13\/5 — 15 arcsinh(1
48
0< F} <1,

where

and we have used that |u| is small enough to guarantee the positiveness of the
integrand.

Next, we proceed with J3. We can write it as:

g 4 /1 w® — 15w! + 15w? =1 dw
S (w2 +1)7/2 V14 wu?’
Expanding in series (1 4 w?u?)~1/2:

1
(14 uw?) /2 =1- §u2w2F22,
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where < F2? < 1. We use the fact that

1
(14u2)3/2

max_|w® — 15w? + 15w? — 1] < 176 — 80v/5 < 3,
we[0,1]

to obtain, via integration and bounding:

4 Lawb — 15wt + 15w? — 1 1, -
J3 = (/ = Wt 1ow dw—§u2F22)

L+r (w? +1)7/2
4 . 7
=T+r <arcsmh( ) — 1—5\/_— = 2F2>
and
[F5] < 3.

We finally move on to J;. As before, we have the following formula obtained
by integration by parts:

1
/ Rl 4 w)” /2 dw

2

w=1 1
2
_(2k£5 / w k(14 w) " 2dw.
s 2k ) /o

1
1 dw
G, = Qk/
k u 2 wltk (1 +w)7/2

1
= —Ew_k(l +w) /2

Defining now

we arrive to

1 1 u?k 5 (2k+5
(A1) Gr=x ((1 +u2)s/2 \/3_2> o ( 2k )G’“'
We can write

i (B () S ()6

k>0 k>0

+15u 42( 1/2) Q—UGZ( 1/2)Gk3

k>0 k>0
= Jo1 + Jog + Jog + Jos.

The last three terms are easier. We deal with them first.

2 1/2
J24:1—+7“ —UGG 3~ U GZ( />Gk3

The first term can be explicitly calculated and it amounts to

1 64 + 160u? + 120u* — 43v/2(1 + u?)5/2

6
b G .=
ST 0 (1 +u2)5/2
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The last series is alternating and convergent and we can get the following bound:

40 24
—7V2 — .
\/_—’_ (1+u2)3/2 (1+U2)5/2

62( 1/2>Gk 5l < —G inu

=1 120

We move on to Jo3. By the same reasoning:

2 4 4 —1/2
J23 = m 15u G72 + 15u Z ( k )Gkg

k>1
2 7 10 1/2
_ _ — 15u* Gr_
5 (o0 e o 5 (o)
and
1/2 15 3 8
15u* G| <u'—G_1 = Zu® |-V2
;1( ) k2| S oG = qu \/_+(1+u2)5/2

The same applies to Jas. We have:

2 1/2
Jog = —15u2G_q — 15u22( /)Gk_l

L4 E>1
2 ) 1/2
“1+r _\/_ 1+ 5/2 — 1bu Z( )Gk—l
E>1
and
—15u? Z (2/2> Gr-1| < ungo
E>1
1, 24 40120
73v2 (IT+u2)52  (1+u2)32  (1+u2)i/?

—120 arcsinh(1) + 120 arcsinh <‘ |) '
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In order to compute Ja; we use formula (A.1):

3 (‘2/2) Go=Go+ S (‘;/2> Gi

k>0 k>1
2\1 u?k

_G0+§:< />_ 2527—/—)

k>1 k k 1+ u?)s/ 32

1/2 2k+5
< /> Gr—1
k>1

3of T+ u? 3 (1 —|—u2)3/2

2 1
S Ty 2 arcsinh(1) + 2 arcsinh (| |)

+ % <16(log((f)+_uigsiznh(l)) —V2log(4) +2v2log(1 + \/1+—u2)>

B 22( 1/2> (21«225) ot

k>1

The last sum can be bounded as usual by

2 1/2\ (2k+5 17 ,
E < ——
( o0 Gk—l _22U Go

k>1
T L] T3 2 2 1 2 1
= u —_ = —_ —
30v2  VI+tu2 3(1+u)32 5(1+u?)P?

—2arcsinh(1) + 2 arcsinh < |) ‘

We finally add everything together to write J as

J = Jho,ns + Jho,s + Je,ns + Je,s

where

59
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4 . 2 (15 .
Jhons = T (arcsmh(l) u < 5 (V2 arcsmh(l))>

ot (E (\/_ _ 3arcsinh(1))) - %uf} (13\/5 —15 arcsinh(l)))

7
+ arcsinh(1 15\/5)
N 1 64+ 160u” + 120u" — 43v/2(1 + w®)*/?
1+r 60 (14 u?)5/?
- 2 (7 6 . 10
+7r 24/2 (1+u2)5/2 (1+u2)3/2
3 8
+1+r(1 (ﬁ 1+u2)5/2>)
1 (16(log(2) — arcsinh(1))
- —Vv2log(4) + 2v2log(1 1 2
+1+T<8( Hqu V2log(4) + 2v2log(1 + V1 + u?)
2 73 2 2 1 2 1
- _z _Z — 2arcsinh(1
T (:wi Vit 30w (g ereinh ))
4 46 1 g . .
=1 < 501+ u2)72 s (13v/2 — 15 arcsinh(1)) +arcsmh(1)>
4 arcsinh(1) 4 15 2 45 .
+ T r ( 0t w2)5/? + e I+ w)pn + g arcsinh(1)
4 1 5 8 .
+ 1 Tr <6 <—45\/§+ m +45 arcsmh(l)))
n 4 log(2) log (3 (14 V1+u?))
147 \ (14+u?)5/? 4+/2

4
Jho,s = —— h
ho, 1+Tarcsm (| ‘>

and
4 7 3
Jems| < —u? + Su?
ensl < 147 (2" +2“)
4 1, 24 40
- —7vV2 —
i (240“ v2 A+ a2p2 (w22 )
4 3 8
+1+r(16 \/_+(1+u2)5/2>
" 4 (37 5] 73 2 2 1 2 1 9 . h(l)’)
—U - - = - = — z arcsin
1+7r \ 8 30v2 VIi+uZ 3(1+w2)3/2  5(1+u2)5/2
4 37
7 2
el ST (\ \)
Finally, we do Kg, corresponding to:
™
cos(6x
L= (62) dx.

—n /14 5% —2scos(z)
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1—7‘.
147

Taking u =

cos(6x)dx

1 +r /*Tf \/sm —|— u? cos? (%)

cos(12y)dy

1+r / \/sm ) + u? cos?(y)

B { z = tan(y) }
lizz? = dy
4 /°° 1 — 6622 + 4952* — 92425 + 49528 — 66210 + 212 dz

1+7r (1 + 22)13/2 N
We repeat the splitting again:
I 4 /°° 1 — 6622 +4952* — 92426 4 49528 — 66210 + 212 dz
147 (14 22)13/2 N
4 M1 — 6622 4 49524 — 92425 + 49528 — 66210 4+ 212 4z
B 1+r/ (1+22)13/2 NEFETT
N 4 /1 1 — 6622 4+ 4952% — 92425 4+ 49528 — 66210 + 212 dz
147 ) (1+ 22)13/2 V2 + a2
N 4 /°° 1 — 6622 +4952* — 92425 4+ 49528 — 6620 + 212 dz
1+r (14 22)13/2 N
=Ly + Ly + Ls.

We start with Lq:
Lo 4 /1 1 — 66uw? + 495uw?* — 924uSw® + 495udw® — 66u'0w!0 + u'?w!?  dw
R A (1 + u2w?)13/2 T+ w2
We expand (1 + u?w?)~'3/2 as a power series around w = 0:

13
(1+u?w?) 132 =1 7u2w2G§,

where (14 u?)~1%/2 < F} <1. A naive integration and bounding then yields:
Lo 4 (/1 1 — 66uw? + 495uw?* — 924uSwC + 495udw® — 6610w 4 ul?w!?
YTy V14 w?

0
13 21
—=2uw2G
2 v 2)

= %—5—7“ (arcsinh(l) — 33u?(V2 — arcsinh(1)) — (495 (\/_ 3arcsmh(1)>)

G 165
S (13\/5 — 15 arcsinh(1 )) et (43V2 — 105 arcsinh(1))

33
- %u10(257\/§ — 315 arcsinh(1))

13
— 15360u12(221\/§ — 495 arcsinh(1)) — ?usz)

where
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and we have used that |u| is small enough to guarantee the positiveness of the
integrand.
Next, we proceed with Ls. We can write it as:

4 /1 1 — 66w? + 495w?* — 924w0 + 495w8 — 66w0 + w2 dw
L+r (w? +1)13/2 VI 4+ w2u?’

Expanding in series (1 4 w?u?)~1/2:

Lg =

1
(1+ u2w2)*1/2 =1- 5u2w2G§,

where m < G3 < 1. We use the fact that

m[aoxl]|1—66w + 495w* — 924w° + 495w® — 66w'® + w'?| = |w(1)| = 64,
we

to obtain, via integration and bounding:

4 11— 66w? 4+ 495w* — 924w® + 495w — 66w + w'? 1 549
L3 = dw — =u"G5
1+r (wQ—G-l)B/2 2
4 . 2182 9
=11 <arcsmh( ) — 3465 2 5 U G2> ,
and

|G2| < 64.

We finally move on to Ly. As before, we have the following formula obtained
by integration by parts:

1
/ w R 1+ w) T3 2 dw

2

w=1 1
2k + 11
—< 2—2 )/ wF(1 4+ w) " 2dw.

1
= —wak(l + w)fn/2

w=u?
Defining now
1
1 dw
H, = u2k/
k 2 WIE (14 w)13/2

we arrive to

1 1 u2k 2k + 11
A2 H, == - —w? | =) H._.
( ) k k ((1+u2)11/2 /211) w ( 2k ) k-1

We can write

e (S (e ()

k>0 k>0

950t 3 ( 1/2) joo — 924u® > ( 1/2) )

k>0 k>0

k>0 k>0
= Lo1 + Lo2 + Lo3 + Log + Los + Log + L27~
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The last six terms are easier. We deal with them first.

2 1/2
e 2w (V)

147 E>1

The first term can be explicitly calculated and it amounts to

1 16384 + 90112u? + 202752u* + 236544uS

12
H7 =
U T 90176 (L + )11/
1 147840u® 4 44352u'° — 11531v/2(1 + u?)11/2
22176 (1+u2)t1/2

The last series is alternating and convergent and we can get the following bound:

1/2 1 )
12 12 ,
> Hy | <u?-H_ 5=

k>1( ) o6 =5 T o01760(1 + w2) 12

X ‘8192 + 4505612 + 1013760 + 118272u’ + 73920u® — 5419v/2(1 + u?)'1/2|.

We move on to Log. By the same reasoning:

Log = ﬁ (—66u10H5 w3 (7 1/2>Hk—5>

k>1

2 8192 4 45056u2 4+ 101376u* + 118272u’ + 73920u8 — 5419v/2(1 + u?)11/2
1+7 1680(1 + u2)11/2

o2 (o s ().

k>1

_5| <33ulH_4

102( 1/2)

k>1

1
=— 42
1120

1024 + 5632u2 + 12672u* + 14784u’ — 533v/2(1 + u2)11/2
(1 4 u2)11/2

The same applies to Los. We have:

2 g g —-1/2
Los = 1 | 495u™H s + 495u > ( k )Hk_4
k>1
2 (3(1024 + 5632u? + 12672u* + 14784u’ — 533v/2(1 + u?)'1/?)
14 224(1 + u2)11/2

+495u SZ( 1/2)1{“

k>1



64 A. ASYMPTOTICS

and

1/2 495
4954 SZ( /)Hk4 §u8TH,3

k>1

5 [512 4 281612 + 6336u? — 151v/2(1 + u?)1/2
1+ u2)li/2 .

_ 5,
T 448

The next term is Loy. We have:

) —-1/2
Los= 1 (—924u6H3 —924u5 " ( L >Hk—3>

E>1

T 1t 24(1 + u2)11/2 =

2 —512 — 2816u2 — 6336u? + 151v/2(1 + u2)11/2 1/2
( U u” + \/_( + u®) ) 92462( />Hk—3

and

924w GZ( 1/2)Hk3

k>1

13V — 576 704

7
6
< 462u°H_5 = —u? (1 +u2)11/2 + 1+ u2)92|

48

The term Ly can be decomposed as:

2 4 4 -1/2
L23 = m 495u H72 +495’LL E ( k )sz
k>1
2 65 90 110 -1/2
= - - 495u* Hj—
T+ | 16y v T e T Z( k ) k2

k>1

and we have the bound

495u 4Z< 1/2)Hk_2 §495 wiH_ | = 45 2< \/§+L>.

2\11/2
o ()t
We can split Lyo into:

2

L =
22 1+7r

—~1/2
—66u H_; — 661> Z ( k/ )H,H

k>1

2 3 12 1/2
- - — 66u? Hy_
T+r \8v2 (1+u?)l1/? u,;( ) o
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and bound the second sum by

~1/2
66u22< k/ )Hkl < 33u%H,

E>1
_gg (137969 9 ) 5
- 55440v2  11(1+u2)/2  9(1 + u2)9/2

ST+ w?)72 0 5(1+ )52 3(1+ u2)32

2
———— — 2arcsinh(1) + 2 arcsinh < ))
V1+u? W |ul

In order to compute Lg; we use formula (A.2):

> <_2/2>Hk =Ho+ ) (_2/2)Hk

k>0 >1
1/2 1 u2k
=Ho+) ( ) ( - )
E>1 1+ u?)tt/ V211
1/2\ (2k+11
u? Z ( ) ( ) Hy 1
k>1 2k
137969 9 B 9
T 5544002 1L(1+u)/2 T 9(1+u2)9/2
_ 2 _ 2
7(1+u2)7/2 514 u2)5/2
2 2

— — — 2arcsinh(1) + 2 arcsinh
31+u?)32 142 o <| |)

1 [128(log(2) — arcsinh(1))
a ( (1+u2)5/2 —\/510g(4)

+2v/2log( 1+m))
Qk;< 1/2) (Qk;];ll) -

The last sum can be bounded as usual by

1/2 2k + 11 111
u? H, | < ==—=u?H,

k>1
_ 11 5| 137969 2
T4 |55440v2  11(1 +u2)i1/2
2 2 2

91 +u)92  T(1+u)T/2 51+ u2)5/2
2 2 1
— 2arcsinh(1) + 2 arcsinh (| |> ’
u

314w Tra?

65
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We finally add everything together to write L as
L= Lho,ns + Lho,s + Le,ns + Le,s
where
4 . 5 . 4 (495 .
Lhons = —— [ arcsinh(1) — 33u?(v/2 — arcsinh(1)) — u* [ — <\f - 3arcsmh(1))
’ 1+7r 8
4 77 ~ 165 s B
T ( vy (13\/5 15 arcsinh(1 )) 125" (43v/2 — 105 arcsinh(1))
330 10(257v/2 — 315 arcsmh(l)))
( 15360 u'?(221v/2 — 495 arcsinh(1 )))
(arcsmh - %\/ﬁ)
+ (u"?H(—6) — 66u'"H(—5) + 495u8 H(—4)

1+7r
—924u® H(—3) + 495u* H(—-2) — 66u*H(-1))

+i< (0)*2arctan( )*;( 1/2> (1+u12)11/2\1/i%>)

495 4<
8

= 4 (arcsinh(l) + 33u?(arcsinh(1) — v2) —

e V2 — 3arcsinh(1 ))

- .
-7 (13\/5 —15 arcsmh(l)))

4 165 33
+ 1 ( ot u® (43\/5— 105 arcsinh(1 )) %um (257\[_ 315arcsinh(1))
7 12
—151;60 (221v2 - 495 arcsinh(l)))
4 8
- 1627 + 11u?(—604 + 3366u? — 2268u* + 945u° )
* 147 ( 3465(1+u2)11/2( + 11u”( + U ut + 945u%))
4 4 log(2) — arcsinh(1) N log ( (1 + m))
147 (1+u2)11/2 32v2
4
Lho,s = T+r arcsinh (| |>



Jr1Jr7"

73(1+u2)3/2 B V14 u?

[Le,s| <

14+7r
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13
<?u2 + 32u2>

u® 8192 + 45056u” + 101376u* + 118272u® + 73920u® — 5419v2(1 + u?)"1/2

443520 (1 +u2)t1/2

u? 1024 + 5632u> 4 12672u* + 1478408 — 533v/2(1 + u?)'1/?

2240 (1 + u2)11/2

5u? 512 4 2816u2 + 6336ut — 151v/2(1 + u?)'1/2

896 (1 +u2)1t/2

7 . 576 704

— —13v2 —
‘96“ ( (1+u2)11/2+(1+u2)9/2>‘

45u2 64

) 7)

128 ( MR CESRIYE

143 ( 137969 2 2 2 2
143, _ _ _ _

8 55440v2  11(1+u?)/2 9(L+w?)?/2  7(14u2)7/2  5(1+u?)5/2

2 2

4
1+r

-2 arcsinh(l)) ‘

143 5 . ( 1 )
——wu” arcsinh ([ — | .
4 |l






APPENDIX B

Implementation of the computer-assisted part and
rigorous numerical results

In this section we will discuss the technical details about the implementation of
the different integrals that appear in the proofs. We remark that we are computing
explicit (but complicated) functions over a one dimensional domain. In order to
perform the rigorous computations we used the C-XSC library [35]. The code can
be found in the supplementary material.

The implementation is split into several files, and many of the headers of the
functions (such as the integration methods) contain pointers to functions (the in-
tegrands) so that they can be reused for an arbitrary number of integrals with
minimal changes and easy and safe debugging. For the sake of clarity, and at the
cost of numerical performance and duplicity in the code, we decided to treat many
simple integrals instead of a single big one.

We will only integrate in p’ (or more specifically, in j': see below for the change
of variables). We outline the computation for I(p) here but the other parts of the
functions are calculated in the same way.

In order to minimize the impact of a and g being too small, we transform the
original domain [1 — a, 1] into a reference one: [—1,1].

— e [T R (5) e
- ﬁ/< Fon) e (EEEE )
(5—1)+3>dﬁ,

= /la (“ 1)+ 1)(1 I oo+ Tems) a
= 27 (a( ﬁ E—y 1) 7 ho,s ho,ns e,s e,ns -1+ 2

1(p),

where = 2(p— 1) + 1.

There are two basic classes in the programs that enclose all the necessary infor-
mation used throughout the computations. The first one is called ParameterSet
and has the following members: two doubles, abs_tol and rel_tol, providing
the desired tolerances used to accept or reject the enclosure of the integral in the
adaptive integration scheme described below; two intervals, a and beta, which
are parameters of the system. We take them to be intervals since the actual
value of a is not representable by a computer. A ParameterSet also contains
two intervals, Left and Right, describing the boundaries of the integration re-
gion; two integers, region_rho and region_rhop, denoting whether p and p’ are in
[-1,-148],[-1+8,1— ] or [1 — 3,1] respectively. Finally, there is also an inter-
val rho_normalized indicating the value of p (we remark that we are integrating
in p’). The second data structure is called IntegrationResult and is composed

69
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of a ParameterSet, an interval result containing the result of the integration,
an ivector (vector of intervals) error_by_coordinate which has information about
the error in the different directions and an integer flag which is set to 1 if we ever
encounter an error in the program (e.g. a division by zero due to overestimation).

We now explain how the integrals are calculated. By technical issues explained
below, we will split the integration region [—1, 1] into smaller pieces and sum the
contributions over each piece. Regardless of the domain, the integration is done
in an adaptive way unless specified. We keep track of the regions over which we
need to integrate in a Standard Template Library priority_queue, which keeps
the IntegrationResults sorted by absolute width of their member result. We
operate by taking the topmost element (i.e. the one with the highest absolute
width) and deciding to accept the result or reject it. This is done based on the
width of the result in an absolute and a relative (to the length of the integration
region) way (it has to be smaller than abs_tol and rel_tol respectively). In the
latter case, we split the region and recomputed the integral on both subregions. The
splitting is done by the midpoint. In order to avoid infinite loops — which could
potentially happen since there is uncertainty in the value of p —, we repeat this step
at most MAX_ELEMENTS_EVALUATED times. In our code, MAX_ELEMENTS_EVALUATED
= 100.000. All integrations are done using a Gauss-Legendre quadrature of order
2, given by:

b _ _ _
/af(x)dxean<f<b2a§+b—2ka>+f<_b2a§+b—2ka>>

4 Lo (b= )" F4([a, ).

Once we have defined the basic classes and explained the integration method, we
now turn into the discussion of the splitting of the interval [—1,1]. We will compute
4 different integrals depending on whether we are integrating Ino ns,lho,sslenssle,s
(see Appendix A). On the one hand, the integrals of Ij, s and I.,s will be
performed on the full interval [—1, 1] taking care of adjusting the regions of p and
p' accordingly (see Figure 1 for a depiction of the different regions) in order to
adjust the expression of f, accordingly to the region. We remark that because of
the monotonicity of f,, whenever we want to evaluate f, in an interval it is enough
to compute it at the endpoints and take the hull of the two results. On the other
hand, the integrals of Ij, s and I. , will be split into a staircase domain and a
singularity region depending on (p, p’). The staircase domain is shown in Figure 2
for N =20,8 = %

In order to integrate over the singularity region, we will integrate by factoring
out everything out of the factor arcsinh(ﬁ) and integrating explicitly.

For example, if we want to integrate

(B.1) /A(p, o) arcsinh (%) dp/

and we have uniform bounds on A of the type
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] (2.3) 3.3)

00 2,1) 31

-1 -143 1-p41

FIGURE 1. The 9 different possibilities in (p, p’) leading to different
values of f.

—-1+4

. -8 1

F1cUrE 2. Different integration regions. Colored: singular region,
white: staircase region.

then the integral (B.1) can be bounded by

1 1
a/arcsmh ( |) dp’ < /A (p, p') arcsinh (| |) dp’ < E/arcsinh <|—> dp’,
u

yielding the enclosure

/A(p,p)arcsmh( |) dp’ € {g/arcsmh(ll) dp’,&/arcs1nh(| |>dp].
u u
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A strightforward but long calculation yields the following lemma, which is useful
for that purpose:

LEMMA B.1. Let -1 <p,p' <1,0<a < 1. We have that:

d 55 _o4 4
/ arcsinh w dp’
c ‘P - P |

4 -2 ) 4 —24+d ) o

— —carcsinh (M) + darcsinh (M) slog ( —p )
—

(=

alc — p| ald — p|
V2, . am o 2+a(—1+c)++8+4a(=2+c+p) +a2(2+ (-2 +c)c+
o2 p)lg<2+a(71+d)+\/8+4a(72+d+ﬁ)+a2(2+( 2+ d)d + (-
+ plog 4+a(=2+c+p)+Vv2y/8+4a(=2+c+p) +a?(2+ (=2+)e+ (=2 +p)h)
r 4+a(—2+d+p)+V2/8+4a(-2+d+p) +a2(2+ (—2+ d)d+ (=2 + p)p)

)))
+5)p)

2
= —clog <§+<2+c+ﬁ>+\/<cﬁ>2+ (5+25c4n) ) + (e — p)log (e — Al)

4 ~ - 4 _\? _ _
+ dlog <z+(—2+d+p)+\/(d—p)2+<;+(—2+d+p)> ) — (d—p)log(|ld—pl)

+£(72+a7a")lo 24 a(-1+c)++8+4a(-2+c+p) +a22+ (—2+c)c+ (=2 + p)p)
a prios 2+a(—1+d)++8+4a(—2+d+p)+a2(2+ (—2+d)d+ (—2+5)p)

+ plog 4+a(=2+c+p)+Vv2y/8+4a(=2+c+p) +a?(2+ (=2+)c+ (=2 +p)h)

’ dta(-2+d+p) +vV2/Brda(—2+d+p) +al2+ (—2+d)d+(—2+pp) )

The computations were run on a desktop with 8 cores at 3.10 GHz and 8 GB
of RAM. The different runtimes are described in each of the lemmas separately.

We will explain the algorithms and the procedures of the different lemmas from
easier to harder, irrespective of the order in which the lemmas are found in the main
sections of the paper.

PROOF OF LEMMA 4.26. We compute the hull (an enclosure of the range) of
f(%(ﬁ— 1)+ 1) for p € [-1,1]. To do so, we split the interval [—1,1] into N =
512 intervals I;,7 = 0...N — 1 of equal size and compute an enclosure I[; =
I (%(ﬁ —-1)+ 1), for p = I;. We can prove the following estimate:

“min [ <2(,5 -1)+ 1) > min I1; > 1.2655
pel-11] \a J

The minimum is attained in the last region, p € [1 — %, 1]. A nonrigorous
computation shows that indeed this minimum is attained at p = 1. The detailed
breakdown of the regions can be found in the file output/output_Min I_512.out
in the supplementary material. The tolerances abs_tol and rel_tol were set to
107°. The computation took approximately 242 minutes, giving an average time

of around 7 seconds per integral.
|

PRrOOF OF LEMMA 4.20. For every p € [—1,1], we complete an enclosure of
e(2(p—1)+1). To do so, we split the interval [—1,1] into N = 512 intervals
Ij,j7=0...N —1 of equal size and compute an enclosure 5]3 =e (%(/3 -1+ 1),
for p = I;. Finally, we can estimate an enclosure of the L? norm of e and the scalar
product with B,; by
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a N-1 2
lele € | 5 Y€
j=0
a N— 1 a N— 2
|(e, Bj)| €y =¥
J=0 j=1

where we have used that B,; is piecewise constant in each of the I;: it is zero
if j=0o0r j=N —1 and 1 otherwise. This yields in this particular case

llel| 2 < 0.0905
(e, Bs;)| < 0.0101

The detailed breakdown of the regions can be found in the file
output/output_E_3.out in the supplementary material. The tolerances AbsTol
and RelTol were set to 107°. The computation took approximately 563 minutes,

giving an average time of around 16.5 seconds per integral.
O

PRrROOF OF LEMMA 4.24. For every p € [—1,1], we complete an enclosure of
O3 Bs; (E( — 1) +1). To do so, we split the interval [~1,1] into N = 512 intervals
1;,7=0. — 1 of equal size and compute an enclosure

2,
T3, = ©4Bs; (E(p -1+ 1) ;
for p = I;. Finally, we can estimate an enclosure of the L? norm of ©3 B,; by

2

N-1
3 a
1024 Bs;ll 2 € N Z TAJ .
7=0
yielding in this particular case

1% Byl L2 < 0.0629

The detailed breakdown of the regions can be found in the file
output/output_Theta A_N_512.out in the supplementary material. The tolerances
abs_tol and rel_tol were set to 107°. The computation took approximately 405

minutes, giving an average time of around 12 seconds per integral.
O

PrOOF OF LEMMA 4.21. To obtain a bound on ¢* we will employ the following
strategy. First, we can bound ¢* in the following way:

¢* >minl p)+ min Tiu, u),
( ) ||uHL2:1,u€(BSJ)i< s >
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where T3 is the symmetric part of ©% — I, given by

T3u() = [ 1 (2 (5) 2+ 5o () ) B

—a p)p

We know that Tg is symmetric and compact. We approximate it by a finite
rank operator. For any p € [-1,1]:

(T3u)(5(p = 1) + 1) = T3u(p) = TF;,u(p)

1 23
a - - a, . ~
= [ 5 3 @l )57 ~ 1)+ 1a.
-1 %5 =0

The matrix T}?m is symmetric and given explicitly in Appendix C. The func-
tions u; are an orthonormal basis chosen in the following way:

M L eg([i/3], 2(5+1) — Dl{-1<pe—14p) if i = 0(mod3)
ui(p) = LB eg([i/3], 125) 111 1p<5<1-8) if i = 1(mod 3)
2P D eg([i/3], 2(p— 1) + Dli_p<pcry  if i = 2(mod3)
where Leg(a, z) stands for the standard Legendre polynomial of order a, defined
for x € [-1,1] by

Leg(0,2) =1, Leg(l,z) =z,
(n+1)Leg(n +1,2) = (2n 4 1)aLeg(n,z) — nLeg(n — 1,z), n > 1.

Note that B,; corresponds to u;. We now decompose TS as:

min Tiu,u) > min T3 u,u
||u\|L2:1,ue<st>L< su ) \|unL2:Lueu.fssm< Fintty )
min (T — T )u,u)

lull L2 =1,u€(Bs;)*"

The first term in the sum is simply the smallest eigenvalue of the matrix Tfm
without the second row and the second column. By Gershgorin’s theorem [31], the
eigenvalues of an n x n matrix A lie inside the union of the disks

D, = ZE(C,|Z—A“|SZ|A”| , t=1,...,n.

j=1

J#i

In this particular case, this implies that
min T3 u,u) > —0.3125
HuHLz:Lue(st)L( Fintts ) ’

where the leftmost disk of T?m is D5. The second term can be bounded via
the operator norm
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min (TS - T3, u,u)
lull 2=lue(Boy)+ - o 1"

‘ 55— 1)
5 (0 G0 -0+ ) (S5 =) o=
57 1)
5 (509415 (355551 =)

23
a - - ~
~5 > " (Th)ijui(p)ui (7)) | df

1,57=0

< HTS - T?in||L2—>L2

< max/
€[-1,1]

where we have used that the operator is symmetric and the Generalized Young
inequality. We computed the following bound:

T3 = T, ]l 22 < 0.1004

To do so, we split the subdomains [—1, =1+ 0], [-14+8,1—] and [1—2, 1] for p’
into a uniform mesh of N1 = 512, Ny = 51016, N3 = 512 subintervals respectively.
Since we are expecting bounds of the order of the width of the integration integral
and we can’t do better (the integrand is not C'!), we simply compute the integrand
evaluated in the full interval (a quadrature of order 0). We are careful and the
singular part of the integrand is bounded first (all terms that multiply the arcsinh
term) and then integrated explicitly separately. This is done whenever p € I;,p' €
I, and |j — k| < 2. Otherwise we evaluate the full integrand. For every p € I;
we sum over all j such that 5’ € I; to obtain the L' bound. Finally, we take the
maximum over every p.

Putting everything together we obtain

¢* > 1.2655 — 0.3125 — 0.1004 = 0.8526

The detailed breakdown of the regions can be found in the file
output/out_L1 Estimates_T3_N_512.out in the supplementary material. The com-
putation took approximately 12 hours, 53 minutes, giving an average time of around
5 seconds per subinterval in p. ([l

ProoF OF LEMMA 4.31. The proof follows the same strategy as the proof of
Lemma 4.20. We get the following:

€8] 12 < 0.0893.

The detailed breakdown of the regions can be found in the file
output/output_E_6.out in the supplementary material. The tolerances abs_tol
and rel_tol were set to 107°. The computation took approximately 604 minutes,
giving an average time of around 17.5 seconds per integral. ]
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PrOOF OF LEMMA 4.32. The proof follows the same strategy as the proof of
Lemma 4.21. We get the following figures:
min (T¢;u,u) > —0.3121.
€

llwll 2 =1,ue(B*)

17§ = Tfinllr2 < 0.1179

™ >1.2655 — 0.3121 — 0.1179 = 0.8355

As before, the leftmost disk is D5. The detailed breakdown of the regions can
be found in the file output/out_L1 Estimates_T6_N_512.out in the supplementary
material. The computation took approximately 13 hours, 3 minutes, giving an

average time of around 5 seconds per subinterval in p.
O

In summary, we have proved the following bounds (we are using that || Bsj||z2 =
6aprox g — .

e c* > 0.8526
A=)+ (e, Byj)| < 0.3583
VB < el 12 + |03 Bl 12 < 0.1534
Az < Ao < 0.4117
I — )3 > 0.8538
% > 0.8355



APPENDIX C
Finite projections

In this section we provide the two matrices of size 24 x 24: T, and T}, used

to approximate the finite dimensional projections of T3 and T° respectively. The
matrices were computed using nonrigorous integration. The matrices (in a slight
different format) can be found in the files input/good_projection N_512.out and
input/good_projection T6 N _512.out. In order to write the matrices, because of
spacing issues, we will decompose T?m and T;?m into the following blocks:

3
Tfin = ( T?in,l T?in,? T?in,?) T?in,ll )
6
Tfm = ( T)?m,l Tﬁmz T](?in,S Tﬁm,zx ),
where every block is 24 x 6. The exact expressions are:

s



3
Tfina1 =

—0.00313914631
—0.03306228140
—0.00063757204
—0.00130670573
0.00933189622
0.00027670636
0.00006084465
—0.00402764479
—4.43314493090 - 108
0.00033343322
0.00233871666
—0.00006498459
0.00000533557
—0.00155761794
9.90200697265 - 10~
—0.00007592114
0.00112127249
0.00001629250
0.00000125611
—0.00084878958
—2.73010821736 - 109
0.00001432963
0.00066557241
—0.00000279787

—0.03306228140
—1.12901165788
—0.03145756256
—0.00822746089
0.00729039148
0.00876971358
—0.00000985095
0.06018656936
—0.00000908783
0.00192283641
—0.00072531006
—0.00205039765
0.00000206570
0.00542593789
0.00000190393
—0.00048164344
—0.00008203811
0.00051364377
8.65982848231 - 108
0.00138998159
1.02554282905 - 10~ 7
0.00008343141
—0.00002363432
—0.00008889372

—0.00063757204
—0.03145756256
—0.00299812421
—0.00022549348
—0.00911506433
0.00124776818
—5.18229665685 - 108
—0.00384397048
0.00005786424
0.00005295158
—0.00222568341
—0.00031825067
1.15781378363 - 10~ 8
—0.00148129715
0.00000505660
—0.00001327566
—0.00106597793
0.00007249718
—3.19226015591 - 109
—0.00080678323
0.00000119690
0.00000227980
—0.00063256170
—0.00001367678

—0.00130670573
—0.00822746089
—0.00022549348
—0.00021202888
0.00270210646
0.00000013750
—0.00005068073
—0.00114915910

—4.60911625268 - 10~ 1

0.00004143653
0.00067663595

—1.39917284412 - 10~ 8

0.00003985325
—0.00046479429
5.62487168223 - 1012
0.00000498929
0.00034694746
3.50789736574 - 10~ 2
—0.00000437207
—0.00027291240

—1.62202100706 - 10~ 12

0.00000129772
0.00022255360

—6.02460704593 - 10~ 10

0.00933189622
0.00729039148
—0.00911506433
0.00270210646
—0.23717252091
0.00223673972
0.00001298234
0.00170736716
—0.00001219458
—0.00062130092
0.04134607065
—0.00051248314
—0.00000267070
—0.00053855113
0.00000250964
0.00015501214
0.00518713553
0.00012776307
—0.00000039251
—0.00008220557
0.00000038596
—0.00002784648
0.00154868510
—0.00002311176

0.00027670636
0.00876971358
0.00124776818
0.00000013750
0.00223673972
—0.00020166430
4.63109155689 - 10~ 11
0.00102743751
0.00004810665
—1.82060948332 - 10~ 8
0.00062743044
0.00003940755
—6.84832886920 - 1012
0.00043588867
—0.00003785447
4.58706059629 - 109
0.00032698003
0.00000473106
1.95786950003 - 10~ 12
0.00025788023
0.00000415121
—7.87753818442 - 10— 10
0.00021062293
0.00000123395

8.
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3
Tfin,2 =

0.00006084465
—0.00000985095
—5.18229665685 - 10~ 5
—0.00005068073
0.00001298234
4.63109155689 - 1011
—0.00010321148
—0.00001414574
—2.80290333759 - 10~ 14
—0.00003848684
0.00001470528
—3.67487307816 - 10~ 12
0.00003020315
—0.00001495138
3.14813570358 - 10~ 1°
0.00002961061
0.00001500747
9.04914568531 - 10~ 13
0.00000406644
—0.00001493806
—7.69293477455 - 10714
—0.00000252131
0.00001478127
—4.37312250174 - 10~ 14

—0.00402764479
0.06018656936
—0.00384397048
—0.00114915910
0.00170736716
0.00102743751
—0.00001414574
—0.12947879697
—0.00001337930
0.00025555410
0.00095216359
—0.00022761700
0.00000287744
0.03027233689
0.00000272492
—0.00006309436
—0.00041014040
0.00005613296
0.00000066295
0.00436069767
0.00000063871
0.00001241650
—0.00007108881
—0.00001114858

—4.43314493090 - 108
—0.00000908783
0.00005786424
—4.60911625268 - 10~ 11
—0.00001219458
0.00004810665
—2.80290333759 - 10~ 14
—0.00001337930
—0.00009797657
4.90797112113 - 10~ 12
—0.00001393579
0.00003651136
2.98104624843 - 10~ 1%
—0.00001418074
0.00002869680
—1.21506679426 - 10~ 12
—0.00001423998
—0.00002812073
—5.79173351464 - 10~ 14
—0.00001417756
0.00000386310
7.34844588938 - 10~ 14
—0.00001403083
0.00000239297

0.00033343322
0.00192283641
0.00005295158
0.00004143653
—0.00062130092
—1.82960948332 - 10~ 8
—0.00003848684
0.00025555410
4.90797112113 - 10~ 12
—0.00006239992
—0.00014435698
49966215326 - 1012
—0.00001908529
0.00009471142
—1.48184820399 - 10~ 14
0.00002355898
—0.00006730898
—6.97673484952 - 10 1°
0.00002138146
0.00005029006
5.43227769034 - 10~ 14
0.00000330787
—0.00003888592
1.14001332420 - 10~ 13

w

0.00233871666
—0.00072531006
—0.00222568341

0.00067663595

0.04134607065

0.00062743044

0.00001470528

0.00095216359
—0.00001393579
—0.00014435698
—0.08886148634
—0.00013349522
—0.00000297094

0.00066179035

0.00000282037

0.00003503703

0.02375644464

0.00003236439
—0.00000090330
—0.00032965875

0.00000086668
—0.00000788818

0.00368849025
—0.00000734374

—0.00006498459
—0.00205039765
—0.00031825067
—1.39917284412 - 108
—0.00051248314
0.00003940755
—3.67487307816 - 10 12
—0.00022761700
0.00003651136
—3.49966215326 - 10~ 15
—0.00013349522
—0.00005919817
1.50361388430 - 10~ 14
—0.00008862582
0.00001807875
—7.01151105584 - 1016
—0.00006331650
0.00002238336
—5.68804673351 - 10~ 14
—0.00004744310
—0.00002030190
8.17156504431 - 10~ 14
—0.00003674960
0.00000314218

SNOILODHIOYd HLINIA "D
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3
Tfin,3 =

0.00000533557
0.00000206570
1.15781378363 - 108
0.00003985325
—0.00000267070
—6.84832886920 - 10~ 12
0.00003020315
0.00000287744
2.98104624843 - 10~ 12
—0.00001908529
—0.00000297094
1.50361388430 - 10~ 14
—0.00004067472
0.00000301020
—3.70438406451 - 10~ 15
—0.00001108514
—0.00000301927
3.33415541431 - 10~ 14
0.00001920997
0.00000301060
2.27927040204 - 10~ 14
0.00001662305
—0.00000299111
1.26943093273 - 10~ 14

—0.00155761794
0.00542593789
—0.00148129715
—0.00046479429
—0.00053855113
0.00043588867
—0.00001495138
0.03027233689
—0.00001418074
0.00009471142
0.00066179035
—0.00008862582
0.00000301020
—0.06718915938
0.00000286072
—0.00002243646
0.00050351668
0.00002096805
0.00000111905
0.01951726310
0.00000107185
0.00000597029
—0.00027523003
—0.00000562167

9.90200697265 - 10~
0.00000190393
0.00000505660

5.62487168223 - 10~ 12
0.00000250964
—0.00003785447

3.14813570358 - 10~ 1°
0.00000272492
0.00002869680

—1.48184820399 - 10~ 14
0.00000282037
0.00001807875

—3.70438406451 - 10~ 1%
0.00000286072
—0.00003855497

—4.36948352896 - 10~ 14
0.00000287165
0.00001047733

—2.13045262845 - 10~ 15
0.00000286489
0.00001825080

1.21914579746 - 10~ 14
0.00000284750
—0.00001578051

—0.00007592114
—0.00048164344
—0.00001327566
0.00000498929
0.00015501214
4.58706059629 - 10~
0.00002961061
—0.00006309436
—1.21506679426 - 10~ 12
0.00002355898
0.00003503703
—7.01151105584 - 10~ 16
—0.00001108514
—0.00002243646
—4.36948352896 - 1014
—0.00002712959
0.00001542937
5.10048792691 - 10~ 14
—0.00000572563
—0.00001103849
3.89829629231 - 10~ 14
0.00001614121
0.00000806555
—3.69080589571 - 10— 14

0.00112127249
—0.00008203811
—0.00106597793

0.00034694746

0.00518713553

0.00032698003

0.00001500747
—0.00041014040
—0.00001423998
—0.00006730898

0.02375644464
—0.00006331650
—0.00000301927

0.00050351668

0.00000287165

0.00001542937
—0.05364315620

0.00001449165
—0.00000131717

0.00040280165

0.00000126051
—0.00000498558

0.01654806391
—0.00000471758

0.00001629250
0.00051364377
0.00007249718
3.50789736574 - 107
0.00012776307
0.00000473106
9.04914568531 - 1013
0.00005613296
—0.00002812073
—6.97673484952 - 10~ 15
0.00003236439
0.00002238336
3.33415541431 - 10~ 14
0.00002096805
0.00001047733
5.10048792691 - 10~ 14
0.00001449165
—0.00002568508
—1.45197814251 - 1014
0.00001039344
0.00000538519
—17.83391499939 - 1014
0.00000760366
0.00001533483
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3
Tfin,a =

0.00000125611
8.65982848231 - 108
—3.19226015591 - 109
—0.00000437207
—0.00000039251
1.95786950003 - 10~ 12
0.00000406644
0.00000066295
—5.79173351464 - 10~ 14
0.00002138146
—0.00000090330
—5.68804673351 - 10~ 14
0.00001920997
0.00000111905
—2.13045262845 - 10~ 1
—0.00000572563
—0.00000131717
—1.45197814251 - 10~ 14
—0.00001787015
0.00000149962
1.79534093854 - 10~ 14
—0.00000204184
—0.00000166924
—2.11654961276 - 10~ 13

—0.00084878958
0.00138998159
—0.00080678323
—0.00027291240
—0.00008220557
0.00025788023
—0.00001493806
0.00436069767
—0.00001417756
0.00005029006
—0.00032965875
—0.00004744310
0.00000301060
0.01951726310
0.00000286489
—0.00001103849
0.00040280165
0.00001039344
0.00000149962
—0.04435474412
0.00000143467
0.00000442712
0.00033271878
—0.00000420077

—2.73010821736 - 109
1.02554282905 - 10~ 7
0.00000119690
—1.62202100706 - 10~ 12
0.00000038596
0.00000415121
—7.69293477455 - 10 14
0.00000063871
0.00000386310
5.43227769034 - 10~ 14
0.00000086668
—0.00002030190
2.27927040204 - 10~ 14
0.00000107185
0.00001825080
3.89829629231 - 10~ 14
0.00000126051
0.00000538519
1.79534093854 - 10~ 14
0.00000143467
—0.00001688740
2.11077743505 - 10~ 13
0.00000159584
0.00000188523

0.00001432963
0.00008343141
0.00000227980
0.00000129772
—0.00002784648
—7.87753818442 - 1010
—0.00000252131
0.00001241650
7.34844588938 - 1014
0.00000330787
—0.00000788818
8.17156504431 - 10~ 14
0.00001662305
0.00000597029
1.21914579746 - 10~ 14
0.00001614121
—0.00000498558
—7.83391499939 - 10~ 14
—0.00000204184
0.00000442712
2.11077743505 - 10~ 13
—0.00001114387
—0.00000409665
—2.57393155040 - 1013

0.00066557241
—0.00002363432
—0.00063256170

0.00022255360

0.00154868510

0.00021062293

0.00001478127
—0.00007108881
—0.00001403083
—0.00003888592

0.00368849025
—0.00003674960
—0.00000299111
—0.00027523003

0.00000284750

0.00000806555

0.01654806391

0.00000760366
—0.00000166924

0.00033271878

0.00000159584
—0.00000409665
—0.03758247246
—0.00000389363

—0.00000279787
—0.00008889372
—0.00001367678
—6.02460704593 - 1010
—0.00002311176
0.00000123395
—4.37312250174 - 10~ 14
—0.00001114858
0.00000239297
1.14001332420 - 10~ 13
—0.00000734374
0.00000314218
1.26943093273 - 10~ 14
—0.00000562167
—0.00001578051
—3.69080589571 - 10~ 14
—0.00000471758
0.00001533483
—2.11654961276 - 10— 13
—0.00000420077
0.00000188523
—2.57393155040 - 1013
—0.00000389363
—0.00001049667
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6
Tfin1 =

—0.00291345537
—0.02540749127
—0.00041941419
—0.00121786943
0.00933076659
0.00018206274
0.00006084737
—0.00403278487
—4.61137477934 - 108
0.00031255555
0.00233877011
—0.00004274417
0.00000533496
—0.00155761678
1.03004567414 - 10~ 8
—0.00007068683
0.00112127247
0.00001071653
0.00000125628
—0.00084878958
—2.83996989618 - 10—
0.00001343075
0.00066557241
—0.00000184033

—0.02540749127
—0.90497888764
—0.02424571525
—0.00635382205
0.00563881494
0.00674636418
—0.00000978359
0.06006461031
—0.00000913619
0.00148247120
—0.00072279657
—0.00157496654
0.00000205063
0.00542592858
0.00000191475
—0.00037123808
—0.00008204165
0.00039444690
9.07808750600 - 108
0.00138995868
9.96003237305 - 108
0.00006447176
—0.00002363043
—0.00006842433

—0.00041941419
—0.02424571525
—0.00278371098
—0.00014838001
—0.00907915550
0.00116335903
—4.86286767418 - 10~ 8
—0.00384880693
0.00005786179
0.00003482935
—0.00222565755
—0.00029841490
1.08637530482 - 108
—0.00148129586
0.00000505715
—0.00000873218
—0.00106597795
0.00006752409
—2.99529358660 - 10~ 2
—0.00080678324
0.00000119675
0.00000149956
—0.00063256170
—0.00001282276

—0.00121786943
—0.00635382205
—0.00014838001
—0.00021204206
0.00262575863
0.00000013645
—0.00005068073
—0.00114914679

—4.64964261953 - 1011

0.00004143807
0.00067668948

—1.52922857114 - 10~ 8

0.00003985325
—0.00046479549
5.72582288790 - 1012
0.00000498890
0.00034694746
3.83396386458 - 10~ 2
—0.00000437207
—0.00027291241

—1.65191684991 - 1012

0.00000129779
0.00022255360

—6.58453704807 - 10— 10

0.00933076659
0.00563881494
—0.00907915550
0.00262575863
—0.23685105510
0.00230342523
0.00001298540
0.00170420893
—0.00001219898
—0.00060335343
0.04134592791
—0.00052815010
—0.00000267139
—0.00053855101
0.00000251061
0.00015051244
0.00518713748
0.00013169100
—0.00000039232
—0.00008219826
0.00000038570
—0.00002707375
0.00154868413
—0.00002378631

0.00018206274
0.00674636418
0.00116335903
0.00000013645
0.00230342523
—0.00020165240
4.66620681740 - 10~ 11
0.00102804953
0.00004810665
—1.67484077527 - 10~ 8
0.00062737193
0.00003940615
—6.88851803831 - 10 12
0.00043588952
—0.00003785447
4.19903510403 - 109
0.00032698004
0.00000473141
1.97070264514 - 10~ 12
0.00025788023
0.00000415121
—7.21116613265 - 10~ 10
0.00021062293
0.00000123389
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6
Tfin,2 =

0.00006084737
—0.00000978359
—4.86286767418 - 10~ 3
—0.00005068073
0.00001298540
4.66620681740 - 10~ 11

—0.00010321148
—0.00001414600
.73005911389 - 10 14
—0.00003848684
0.00001470528
71351392015 - 10~ 12
0.00003020315
—0.00001495138
.31589309321 - 10— 16
0.00002961061
0.00001500747
9.12420912576 - 10~ 13
0.00000406644
—0.00001493806
—8.14811085733 - 10~ 14
—0.00000252131
0.00001478127
—4.67295111503 - 10~ 14

|
™)

w

w

—0.00403278487
0.06006461031
—0.00384880693
—0.00114914679
0.00170420893
0.00102804953
—0.00001414600
—0.12947857817
—0.00001337906
0.00025555125
0.00095215812
—0.00022776080
0.00000287750
0.03027233185
0.00000272488
—0.00006309364
—0.00041014029
0.00005616901
0.00000066293
0.00436069008
0.00000063872
0.00001241640
—0.00007109159
—0.00001115478

—4.61137477934 - 108
—0.00000913619
0.00005786179
—4.64964261953 - 10— 11
—0.00001219898
0.00004810665
—2.73005911389 - 10~ 14
—0.00001337906
—0.00009797657
4.89450772014 - 10~ 12
—0.00001393580
0.00003651136
—6.11527496408 - 10~ 16
—0.00001418074
0.00002869680
—1.20807810807 - 10~ 12
—0.00001423998
—0.00002812073
—6.41351673174 - 10~ 14
—0.00001417757
0.00000386310
7.05782109673 - 10~ 14
—0.00001403083
0.00000239297

0.00031255555
0.00148247120
0.00003482935
0.00004143807
—0.00060335343
—1.67484077527 - 108
—0.00003848684
0.00025555125
4.89450772014 - 10712
—0.00006239992
—0.00014436957
—4.92646031077 - 10~ 15
—0.00001908529
0.00009471169
—1.82627377477 - 10~ 14
0.00002355898
—0.00006730898
1.93046228742 - 10~ 15
0.00002138146
0.00005029007
5.45200014040 - 10~ 14
0.00000330787
—0.00003888592
1.14232496671 - 10~ 13

0.00233877011
—0.00072279657
—0.00222565755

0.00067668948

0.04134592791

0.00062737193

0.00001470528

0.00095215812
—0.00001393580
—0.00014436957
—0.08886148567
—0.00013348148
—0.00000297095

0.00066178980

0.00000282036

0.00003504019

0.02375644411

0.00003236094
—0.00000090328
—0.00032965896

0.00000086669
—0.00000788873

0.00368849050
—0.00000734314

—0.00004274417
—0.00157496654
—0.00029841490
—1.52922857114 - 10~ 8
—0.00052815010
0.00003940615
—3.71351392015 - 10~ 12
—0.00022776080
0.00003651136
—4.92646031077 - 10~ 1°
—0.00013348148
—0.00005919817
1.88925224729 - 10~ 14
—0.00008862601
0.00001807875
1.06789333275 - 10~ 14
—0.00006331651
0.00002238336
—5.54519037512 - 10~ 14
—0.00004744310
—0.00002030190
8.42888401493 - 10~ 14
—0.00003674960
0.00000314218
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6
Tfin,3 =

0.00000533496
0.00000205063
1.08637530482 - 10~ 8
0.00003985325
—0.00000267139
—6.88851803831 - 10~ 12
0.00003020315
0.00000287750
—6.11527496408 - 10~ 16
—0.00001908529
—0.00000297095
1.88925224729 - 10~ 14
—0.00004067472
0.00000301019
—9.94013687038 - 10~ 15
—0.00001108514
—0.00000301927
3.09891987571 - 10~ 14
0.00001920997
0.00000301060
2.46715880694 - 10~ 14
0.00001662305
—0.00000299111
1.62019892263 - 10~ 14

—0.00155761678
0.00542592858
—0.00148129586
—0.00046479549
—0.00053855101
0.00043588952
—0.00001495138
0.03027233185
—0.00001418074
0.00009471169
0.00066178980
—0.00008862601
0.00000301019
—0.06718916229
0.00000286072
—0.00002243655
0.00050351656
0.00002096811
0.00000111906
0.01951725986
0.00000107186
0.00000597031
—0.00027522999
—0.00000562168

1.03004567414 - 108
0.00000191475
0.00000505715

5.72582288790 - 1012
0.00000251061
—0.00003785447

—3.31589309321 - 10~ 16
0.00000272488
0.00002869680

—1.82627377477 - 10 14
0.00000282036
0.00001807875

—9.94013687038 - 10~ 15
0.00000286072
—0.00003855497

—3.90779130797 - 10~ 14
0.00000287165
0.00001047733

2.94183176863 - 10~ 1°
0.00000286489
0.00001825080

6.81443231533 - 10~ 1°
0.00000284750

—0.00001578051

—0.00007068683
—0.00037123808
—0.00000873218
0.00000498890
0.00015051244
4.19903510403 - 109
0.00002961061
—0.00006309364
—1.20807810807 - 1012
0.00002355898
0.00003504019
1.06789333275 - 10~ 14
—0.00001108514
—0.00002243655
—3.90779130797 - 10~ 14
—0.00002712959
0.00001542937
4.95308748195 - 10~ 14
—0.00000572563
—0.00001103849
4.12671067396 - 10~ 14
0.00001614121
0.00000806555
—4.16453813480 - 10— 14

0.00112127247
—0.00008204165
—0.00106597795

0.00034694746

0.00518713748

0.00032698004

0.00001500747
—0.00041014029
—0.00001423998
—0.00006730898

0.02375644411
—0.00006331651
—0.00000301927

0.00050351656

0.00000287165

0.00001542937
—0.05364315613

0.00001449165
—0.00000131717

0.00040280094

0.00000126051
—0.00000498558

0.01654806366
—0.00000471758

0.00001071653
0.00039444690
0.00006752409

3.83396386458 - 109
0.00013169100
0.00000473141

9.12420912576 - 1013
0.00005616901
—0.00002812073

1.93046228742 - 10~ 15
0.00003236094
0.00002238336

3.09891987571 - 10~ 14
0.00002096811
0.00001047733

4.95308748195 - 10~ 14
0.00001449165

—0.00002568508

—1.48589541887 - 10~ 14
0.00001039344
0.00000538519

—8.56313692173 - 10~ 14
0.00000760366
0.00001533483

78

SNOILOHIOYd HLINIA "D



6
Tfin,a =

0.00000125628
9.07808750600 - 10~
—2.99529358660 - 10~
—0.00000437207
—0.00000039232
1.97070264514 - 10~ 12
0.00000406644
0.00000066293
—6.41351673174 - 10~ 14
0.00002138146
—0.00000090328
—5.54519037512 - 10~ 14
0.00001920997
0.00000111906
2.94183176863 - 10~ 1°
—0.00000572563
—0.00000131717
—1.48589541887 - 10~ 14
—0.00001787015
0.00000149962
2.77623635774 - 10714
—0.00000204184
—0.00000166924
—1.91830702198 - 10~ 13

—0.00084878958
0.00138995868
—0.00080678324
—0.00027291241
—0.00008219826
0.00025788023
—0.00001493806
0.00436069008
—0.00001417757
0.00005029007
—0.00032965896
—0.00004744310
0.00000301060
0.01951725986
0.00000286489
—0.00001103849
0.00040280094
0.00001039344
0.00000149962
—0.04435472907
0.00000143468
0.00000442712
0.00033271917
—0.00000420077

—2.83996989618 - 10~ 2
9.96003237305 - 108
0.00000119675
—1.65191684991 - 10~ 12
0.00000038570
0.00000415121
—8.14811085733 - 10 14
0.00000063872
0.00000386310
5.45200014040 - 10~ 14
0.00000086669
—0.00002030190
2.46715880694 - 10~ 14
0.00000107186
0.00001825080
4.12671067396 - 10~ 14
0.00000126051
0.00000538519
2.77623635774 - 10714
0.00000143468
—0.00001688740
2.06623856601 - 10~ 13
0.00000159584
0.00000188523

0.00001343075
0.00006447176
0.00000149956
0.00000129779
—0.00002707375
—7.21116613265 - 10— 10
—0.00000252131
0.00001241640
7.05782109673 - 10~ 14
0.00000330787
—0.00000788873
8.42888401493 - 10~ 14
0.00001662305
0.00000597031
6.81443231533 - 10~ 15
0.00001614121
—0.00000498558
—8.56313692173 - 10~ 14
—0.00000204184
0.00000442712
2.06623856601 - 10~ 13
—0.00001114387
—0.00000409665
—2.62477024413 - 1013

0.00066557241
—0.00002363043
—0.00063256170

0.00022255360

0.00154868413

0.00021062293

0.00001478127
—0.00007109159
—0.00001403083
—0.00003888592

0.00368849050
—0.00003674960
—0.00000299111
—0.00027522999

0.00000284750

0.00000806555

0.01654806366

0.00000760366
—0.00000166924

0.00033271917

0.00000159584
—0.00000409665
—0.03758247285
—0.00000389363

—0.00000184033
—0.00006842433
—0.00001282276
—6.58453704807 - 1010
—0.00002378631
0.00000123389
—4.67295111503 - 10— 14
—0.00001115478
0.00000239297
1.14232496671 - 10~ 13
—0.00000734314
0.00000314218
1.62019892263 - 10~ 14
—0.00000562168
—0.00001578051
—4.16453813480 - 10~ 14
—0.00000471758
0.00001533483
—1.91830702198 - 1013
—0.00000420077
0.00000188523
—2.62477024413 - 1013
—0.00000389363
—0.00001049667
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