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Abstract 35 

Aponeuroses are stiff sheath-like components of the muscle-tendon unit that play a vital role in force 36 

transmission and thus locomotion. There is clear importance of the aponeurosis in musculoskeletal 37 

function, but there have been relatively few studies of aponeurosis material properties to date. The goals 38 

of this work were to: 1) perform tensile stress-relaxation tests, 2) perform planar biaxial tests, 3) employ 39 

computational modeling to the data from 1 and 2, and 4) perform scanning electron microscopy to 40 

determine collagen fibril organization for aponeurosis tissue. Viscoelastic modeling and statistical 41 

analysis of stress-relaxation data showed that while relaxation rate differed statistically between strain 42 

levels (p=0.044), functionally the relaxation behavior was nearly the same. Biaxial testing and associated 43 

modeling highlighted the nonlinear (toe region of ~2-3% strain) and anisotropic (longitudinal direction 44 

linear modulus ~50 MPa, transverse ~2.5 MPa) tensile mechanical behavior of aponeurosis tissue. 45 

Comparisons of various constitutive formulations showed that a transversely isotropic Ogden approach 46 

balanced strong fitting (goodness of fit 0.984) with a limited number of parameters (five), while damage 47 

modeling parameters were also provided. Scanning electron microscopy showed a composite structure of 48 

highly aligned, partially wavy collagen fibrils with more random collagen cables for aponeurosis 49 

microstructure. Future work to expand microstructural analysis and use these data to inform 50 

computational modeling would benefit this work and the field. 51 

  52 



1. Introduction 53 

Aponeuroses are stiff sheath-like components of the muscle-tendon unit that play a vital role in force 54 

transmission and thus locomotion (Eng and Roberts, 2018; Bojsen-Møller and Magnusson, 2019). While 55 

aponeurosis has traditionally been viewed as an extension of the tendon that mechanically acts in series 56 

with muscle, this has been shown to not be the case, and has led to improper assumptions regarding the 57 

function of aponeurosis (Herzog, 2019). Various experimental and computational studies have shown a 58 

complex relationship between aponeurosis deformation and muscle force, both active and passive 59 

(Arellano et al., 2016).  Specifically, incisions of the aponeurosis in lateral gastrocnemius muscles of wild 60 

turkeys altered the gearing and force relationship in the muscle (Eng and Roberts, 2018). Varying the 61 

width, length and thickness of the aponeurosis in a 3D muscle model has also shown to have a significant 62 

impact on peak stretch location and magnitude of muscle (Rehorn and Blemker, 2010). However, the 63 

specific contributions that each fibrous tissue has on muscle-tendon unit mechanics is still not fully 64 

understood (Herzog, 2017). 65 

 66 

There is clear importance of the aponeurosis in musculoskeletal function, but there have been relatively 67 

few studies of aponeurosis material properties to date (Azizi et al., 2009; Bojsen-Møller and Magnusson, 68 

2019; Shan et al., 2019). Determining the material properties of the aponeurosis will provide evidence of 69 

its structure and function to identify how it contributes to the movement of the musculoskeletal system. 70 

Azizi et al measured uniaxial tensile material propertie in turkey gastrocnemius aponeurosis, exhibiting 71 

the highly anisotropic nature of the tissue due to the aligned collagen structure in the longitudinal or 72 

along-fiber direction (Azizi et al., 2009). While some studies have explored structural mechanical 73 

properties such as stiffness (Kitaoka et al., 1994; Scott and Loeb, 1995), this leaves a distinct lack of data 74 

on the material properties of aponeurosis such as modulus, especially in comparison to other orthopaedic 75 

tissues. While there is some debate regarding the similarities and differences of the aponeurosis and 76 

tendon, one of the main physiological differences between the tendon and aponeurosis is that the tendon 77 

is free from muscle fascicles with the exception of the myotendinous junction, while the aponeurosis 78 

spreads over a large portion of the muscle belly. It has been shown that during muscle force production, 79 

transverse stretch in the aponeurosis exceeds stretch in the longitudinal direction by roughly a factor of 80 

four (Azizi and Roberts, 2009). Therefore, it can be inferred that the aponeurosis is subject to biaxial load 81 

during muscle contraction, unlike tendon which is primarily subject to uniaxial load. However, studies of 82 

aponeurosis material properties have been completed under uniaxial stretch only (Azizi et al., 2009; Shan 83 

et al., 2019), despite a clear need to investigate biaxial aponeurosis stretch. 84 

 85 

Additionally, many soft tissues exhibit time dependent (viscoelastic) behavior such as stress relaxation 86 

(Johnson et al., 1994; Provenzano et al., 2001), and while aponeurosis is also viscoelastic (Pavan et al., 87 

2011), literature data are limited. Aponeurosis stores and returns energy during locomotion (Wager and 88 

Challis, 2016), which is affected by tissue viscoelasticity. To the authors’ knowledge there has been one 89 

study on stress relaxation of plantar aponeurosis (Pavan et al., 2011), which has a distinctly different role  90 

and deformation state than typical aponeurosis that acts as a sheath over muscle. While skeletal muscle 91 

has shown some degree of nonlinear viscoelasticity – a dependence of stress relaxation behavior on the 92 

level of tensile strain (Wheatley et al., 2016a, 2016c), tendon is generally observed to be quasi-linear 93 



viscoelastic – where stress relaxation is independent of strain level (Pioletti and Rakotomanana, 2000). It 94 

remains unknown if sheath aponeurosis exhibits nonlinear or quasi-linear viscoelastic behavior. Thus, 95 

there exists a need to better understand the time dependent material properties of aponeurosis tissue. 96 

 97 

While determining material properties of aponeurosis can provide quantitative insight into muscle-tendon 98 

unit function, they are most useful in developing and employing computational models of the 99 

musculoskeletal system. Approaches to model muscle-tendon units range from classical Hill-type models 100 

(Ackland et al., 2012), more geometrically complex finite element simulations (Tsui et al., 2004; 101 

Wheatley et al., 2018), and larger scale simulations of whole human movement (Rajagopal et al., 2016). 102 

These simulations can aid in understanding how a healthy musculoskeletal system functions (Rajagopal et 103 

al., 2016) and how disease and impairment can compromise this function (Ong et al., 2019). To properly 104 

employ these modeling techniques, however, we must have a comprehensive understanding of how 105 

aponeurosis behaves as a mechanical component. Thus, there exists a strong need to further explore the 106 

tissue-level material properties of aponeurosis, specifically in response to biaxial stretch and under stress-107 

relaxation conditions. 108 

 109 

In addition to characterizing and modeling material properties of orthopaedic tissues, microstructural 110 

analysis and imaging provides vital insight into tissue morphology. Scanning electron microscopy is a 111 

viable method to investigating microstructure in orthopaedic tissues such as tendon (Provenzano and 112 

Vanderby, 2006; Herod et al., 2016) and muscle  (Mohammadkhah et al., 2017; Sleboda et al., 2020). 113 

However, there is a distinct lack of microstructural analysis through use of scanning electron microscopy 114 

for aponeurosis tissue, particularly in relation to structure-function relationships. While aponeurosis 115 

macrostructure shows highly aligned collagen bundles (Azizi et al., 2009), we hypothesize this is also 116 

observed at the microstructural level of collagen fibrils. 117 

 118 

Based on the above, we have identified four aims of this research, with the overarching goal of 119 

developing a better understanding of aponeurosis mechanical properties: 120 

1) Measure the stress-relaxation behavior of aponeurosis tissue, and determine if it is dependent on 121 

strain level (nonlinear viscoelastic or quasi-linear viscoelastic) 122 

2) Perform planar biaxial tensile testing to evaluate aponeurosis tissue stress-stretch response to 123 

multi-axial load 124 

3) Employ computational modeling based on the above to develop the appropriate material 125 

properties of aponeurosis 126 

4) Perform scanning electron microscopy to determine collagen fibril organization and alignment in 127 

aponeurosis 128 

 129 

We hypothesize that this approach of materials testing, imaging, and modeling will further elucidate the 130 

mechanics of aponeurosis tissue. Future use of these data in computational models of muscle-tendon units 131 

can aid in understanding locomotion and neuromuscular impairments. 132 

 133 

2. Methods 134 



2.1 Sample Preparation 135 

For all testing, porcine shoulder samples were obtained from a local abattoir and the triceps brachii 136 

aponeurosis (Figure 1A) was dissected from the muscle using standard dissection tools. Long and steady 137 

cuts using sharp dissection blades were used to ensure minimal damage to the aponeurosis. As much 138 

muscle tissue as possible was removed without tearing or damaging the aponeurosis (Azizi et al., 2009; 139 

Shan et al., 2019). All samples were kept moist by applying PBS throughout the dissection process and 140 

before testing (Azizi and Roberts, 2009; Azizi et al., 2009).  Each sample was speckled with graphite 141 

powder to enhance digital image correlation strain tracking during testing (Lynch et al., 2003; Luyckx et 142 

al., 2014). Graphite washout was prevented by gently dabbing the sample surface with dry gauze before 143 

applying the speckle. Postmortem effects were assumed negligible due to similar assumptions made for 144 

tendon (Evans and Barbenel, 1975). Each sample’s thickness was measured using a dissection microscope 145 

by taking images across the entire length of the aponeurosis and averaging all of the measurements 146 

(Figure 1B). We differentiated the aponeurosis tissue from the muscle tissue under the microscope by its 147 

distinctive silver coloration compared to muscles red coloration. To acquire thickness measurements 148 

across the entire length of the sample, nine images were obtained, and four measurements were taken off 149 

each image with image acquisition software (ThorCam, Thorlabs, Inc.). 150 

 151 

 152 
Figure 1. Overview of experimental workflow. A) Triceps brachii muscle with attached aponeurosis 153 

(sliver sheath). B) Light microscope image for thickness measurements (white arrows). C) Dog bone 154 

sample, uniaxial material testing instrument, and example digital image correlation image with 155 

highlighted region of interest (red rectangle). D) Cruciform sample, planar biaxial material testing 156 

instrument, and example digital image correlation image with with highlighted region of interest (red 157 

square). 158 

 159 



2.1 Stress Relaxation Testing 160 

Four porcine shoulders were obtained from a local abattoir to extract the triceps brachii muscle for 161 

testing. The aponeurosis samples were cut into dog bone samples approximately 22 mm in height by 5 162 

mm in width (Figure 1C) (Azizi et al., 2009).  All samples were cut parallel to the muscle fiber direction 163 

(n=20). Tensile stress relaxation was performed on each sample with a 5965 Instron uniaxial testing 164 

system with a 5 kN load cell (Figure 1C). Two dimensional images were acquired approximately every 165 

0.25 seconds throughout each test to determine the precise strain of each sample using a digital image and 166 

correlation software (Azizi et al., 2009; Wheatley et al., 2016b). The employed test procedure was as 167 

follows: 20 cycles of preconditioning (between 0.5 N and 1 N), then two consecutive stress relaxation 168 

steps of approximately 1-2% sample engineering strain at a rate of 1-2%/sec and 300 seconds of 169 

relaxation (Komatsu et al., 2007). Engineering stress (Equation 1) was calculated from force 𝐹 and initial 170 

specimen area 𝐴0. Engineering strain for each stress relaxation ramp was determined with digital image 171 

correlation over a rectangular region of interest comprising the width of the sample and approximately 5 172 

mm in height above and below the centerline (Figure 1C). Stress data were then fit to a power law 173 

(Equation 2), which characterized the rate of relaxation with a 𝑏 parameter. 174 

 175 

σ =
𝐹

𝐴0
       (1) 176 

σ = 𝑎𝑡𝑏 + 𝐶      (2) 177 

  178 

2.2 Biaxial Tensile Testing 179 

Similar to fascia samples (Eng et al., 2014), aponeurosis samples were cut into cruciform shapes 180 

approximately 30 mm in arm length and 20 mm in arm width by a custom die (Figure 1D). All samples 181 

(n=9) were punched such that the aponeurosis fibers were best aligned with one orientation of the 182 

cruciform, which was possible due to the highly aligned nature of the tissue and size of the porcine 183 

muscle. Samples were speckled with graphite powder similar to stress-relaxation testing (Figure 1D). 184 

Biaxial tensile testing was completed in a planar biaxial material testing system (ADMET, Inc.) with 220 185 

N load cells (Figure 1D). An initial gauge length of approximately 30 mm for each orientation was 186 

selected, and the longitudinal direction of the tissue was preloaded to 0.5 N while the transverse direction 187 

of the tissue was preloaded to 0.15 N to remove slack. Equibiaxial constant rate tensile testing was then 188 

performed at a grip-to-grip strain rate of 0.05%/sec until failure. During testing, images were taken 189 

approximately every second and digital image correlation was performed on a 10 mm x 10 mm region of 190 

interest centered on the initial image of each sample (Figure 1D). For two-dimensional digital image 191 

correlation, longitudinal and transverse stretch were determined for constitutive modeling (Szczesny et 192 

al., 2012) (Correlated Solutions, Inc.). Thickness measurements were measured post-hoc from tested 193 

samples due to the inability to obtain accurate thickness measurements of the aponeurosis in the region of 194 

interest without damaging the tissue. The cruciform samples were cut at 45-degree angles between each 195 

arm making an “X” in the middle of the sample. Five measurements were taken from each cut and all of 196 

the measurements were averaged together to obtain the overall thickness in the region of interest. Regions 197 

with clear damage were avoided for thickness measurements. This method was chosen due to the failure 198 



mechanism of aponeurosis tissue (rupture versus plastic deformation) and the similarities in measured 199 

thickness between stress-relaxation and biaxial samples. 200 

 201 

Nominal stress in both the longitudinal and transverse direction was determined for each sample using the 202 

force values from MTESTQuattro and the thickness and arm length measurements. The nominal stress 203 

value in the arm of each sample was multiplied by a cofactor to determine the stress in the center of the 204 

cruciform sample similar to (Labus and Puttlitz, 2016). The cofactor was determined via a finite element 205 

modeling protocol similar to previous modeling approaches of biaxially stretched, soft, fibrous tissues 206 

(Jacobs et al., 2013). A quarter-symmetric cruciform finite element model with a 25 mm2 square region of 207 

interest was developed in FEBio (Figure 2A) (Maas et al., 2012). The average Cauchy stress data in the x 208 

or y direction from the region of interest was compared to the nominal stress in the corresponding 209 

cruciform arm. By employing a transversely isotropic neo-Hookean material model, a graph of correction 210 

factor versus stretch was created to determine the trend between the correction factor values and the 211 

various strain levels in both the x and y direction (Figure 2B) (Jacobs et al., 2013). To determine the 212 

appropriate correction factor functions for the longitudinal and transverse directions, piecewise functions 213 

were fit to model correction factor data points (Figure 2B). 214 

 215 

 216 

  

 217 
Figure 2. A) Quarter symmetric finite element model for correction factor modeling. B) Correction factor 218 

model outputs (circles) and approximated correction factor piecewise functions (solid curves). 219 

 220 

2.3 Modeling 221 

2.3.1 Viscoelastic Modeling 222 

To characterize relaxation behavior of the aponeurosis, a three term Prony series quasi-linear viscoelastic 223 

model (Equations 3-4) was fit to both a normalized hold phase stress from both the stretches and an 224 

average hold phase stress from both the stretches (Chen, 2000).  225 

 226 



𝜎(𝜀, 𝑡) = ∫ 𝐸(𝑡 − 𝜉) 
𝑑𝜀(𝜉)

𝑑𝜉
𝑑𝜉

𝑡

0
                                                       (3) 227 

𝐸(𝑡) = 𝐸0(1 − ∑ 𝐸𝑖 [1 − exp (−
𝑡

𝑖
)])3

𝑖=1                                            (4) 228 

 229 

Here stress 𝜎 is calculated from the convolution integral (Equation 3), which includes the Prony series 230 

reduced relaxation function 𝐸(𝑡), nominal strain 𝜀, and an integration parameter 𝜉. This includes three 231 

relaxation coefficients 𝐸𝑖 , three time constants 𝑖, and the instantaneous modulus 𝐸0. As the purpose of 232 

this analysis was to compare relaxation behavior only, 𝐸0 = 1 was fixed and all data were normalized. 233 

Parameter determination was performed in two steps: a Monte Carlo simulation followed by a nonlinear 234 

least-squares deterministic optimization (lsqnonlin in MATLAB) (Vaidya and Wheatley, 2019). In the 235 

Monte Carlo simulation, the six parameters ( 𝐸1−3 and 𝜏1−3) were randomly varied for 100,000 236 

simulations, ensuring 0 < 𝐸1 + 𝐸2 + 𝐸3 < 1. The set of parameters minimizing percent error between the 237 

normalized model and experimental hold stress was used as initial guesses for the deterministic 238 

optimization, which optimized percent difference between normalized model and experimental hold 239 

stresses. 240 

 241 

2.3.1 Hyperelastic Modeling 242 

Adjusted biaxial stress-stretch data were fit to a range of hyperelastic constitutive models through inverse 243 

finite element analysis in FEBio (Maas et al., 2012; Wheatley et al., 2015). A finite element 244 

representation of the 10 mm x 10 mm region of interest was developed using quarter symmetry. This 245 

simple geometric model was subject to longitudinal and transverse stretch boundary conditions from the 246 

mean digital image correlation data. Longitudinal and transverse model stress were output by averaging 247 

the Cauchy stress for each element in each orientation. The model stress-stretch outputs were then fit to 248 

experimental mean stress-stretch data by varying model parameters (specific parameters outlined below) 249 

within lsqnonlin in MATLAB similar to the viscoelastic modeling approach. A total of five constitutive 250 

models were identified and implemented that ranged in nonlinearity, fiber definition, and material 251 

damage. For hyperelastic modeling, the constitutive relation is defined by the strain energy density 252 

function Ψ (Equation 5, where 𝝈 is the Cauchy stress, 𝐽 is the volume ratio of the solid, 𝑭 is the 253 

deformation gradient, and 𝑪 = 𝑭𝑇𝑭 is the right Cauchy-Green deformation tensor). The strain energy 254 

density function for anisotropic materials such as aponeurosis can be decomposed into isotropic and 255 

anisotropic components (Equation 6). The isotropic component is typically referred to as an isotropic 256 

ground matrix while the anisotropic component generally represents collagen fibers in soft tissues. 257 

 258 

𝝈 = 2𝐽−1𝑭
𝜕Ψ

𝜕𝑪
𝑭𝑇            (5) 259 

Ψtot(𝑪) = Ψiso(𝑪) + Ψaniso(𝑪)     (6) 260 

 261 

For this work, we have identified two isotropic strain energy density terms commonly used for biological 262 

and engineered materials subject to large strains, the Mooney-Rivlin formulation (ΨMR) and a first-order 263 

Ogden formulation (ΨOG). The Mooney-Rivlin (MR) model is a function of the first and second 264 

invariants 𝐼1 and 𝐼2 of 𝑪 and includes two shear modulus-like parameters 𝑐1 and 𝑐2 (Equation 7). The 265 



Ogden model is a summation function of the principal stretches 𝜆𝑖 of the deformation and requires 266 

specification of moduli-like parameters 𝑐𝑖 and nonlinear parameters 𝑚𝑖 (Equation 8). For simplicity and 267 

reduction of parameters, in this work we have chosen a first-order Ogden model (𝑁 = 1).  268 

 269 

ΨMR(𝐼1, 𝐼2) = 𝑐1(𝐼1 − 3) + 𝑐2(𝐼2 − 3)        (7) 270 

ΨOgden(𝜆1, 𝜆2, 𝜆3) = ∑
𝑐𝑖

𝑚𝑖
(𝜆1
𝑚𝑖  + 𝜆2

𝑚𝑖 + 𝜆3
𝑚𝑖 − 3)𝑁

𝑖=1        (8) 271 

 272 

The specific formulations presented in Equations 7-8 are generic forms of these models, and for finite 273 

element implementation they must be adapted to include the material response to volumetric 274 

deformations. These complete, isotropic coupled equations are provided for the Mooney-Rivlin model 275 

(Ψiso
MR Equation 9) and Ogden model (Ψiso

Ogden
 Equation 10) and each include a bulk-like modulus 276 

parameter 𝑘. This parameter dictates the response to volumetric deformations, as characterized by the 277 

volume ratio 𝐽. 278 

 279 

Ψiso
MR(𝐼1, 𝐼2, 𝐽) = 𝑐1(𝐼1 − 3) + 𝑐2(𝐼2 − 3) − 2(𝑐1 + 2𝑐2) ln 𝐽 +

𝑘

2
(ln 𝐽)2      (9) 280 

Ψiso
Ogden(𝜆1, 𝜆2, 𝜆3, 𝐽) = ∑

𝑐𝑖

𝑚𝑖
(𝜆1
𝑚𝑖  + 𝜆2

𝑚𝑖 + 𝜆3
𝑚𝑖 − 3 −𝑚𝑖 ln 𝐽)

𝑁
𝑖=1 +

𝑘

2
(ln 𝐽)2        (10) 281 

 282 

For material anisotropy, nonlinear tension-only fibers were embedded into the isotropic ground matrix. 283 

The constitutive relation for these fibers (Ψaniso
f , Equation 11) is a piecewise function that enacts this 284 

tension-only response and is a function of the fiber stretch 𝜆𝑓. The material parameters for this relation 285 

include a transition stretch 𝜆𝑓
∗  where the fiber transitions from a nonlinear power law response to a linear 286 

response, a power law parameter 𝛽 and a fiber modulus 𝐸. It should be noted that parameters 𝐴, 𝐵, and 𝐶 287 

are calculated to enforce continuity of strain energy density. This fiber material model can be included in 288 

the overall material response in FEBio using the solid mixture material (Maas et al., 2012). 289 

 290 

Ψaniso
f (𝜆𝑓

2) =

{
 

 

   

0          , 𝜆𝑓 ≤ 1

𝐴

2𝛽
(𝜆𝑓
2 − 1)

𝛽
, 1 < 𝜆𝑓 < 𝜆𝑓

∗  

𝐸(𝜆𝑓
∗ − 𝜆𝑓) + 𝐵(𝜆𝑓

2 − 𝜆𝑓
∗2) + 𝐶 , 𝜆𝑓

∗ ≥ 𝜆𝑓

        (11) 291 

 292 

The final constitutive formulation that was explored in this work was reactive damage modeling (Safa et 293 

al., 2018). In continuum damage modeling applications, the strain energy density function is reduced 294 

linearly with accumulated material damage 𝐷 (Equation 12). For this work, material damage was 295 

specified with respect to two conditions – the initiation of damage and the accumulation of damage. Here 296 

initiation was chosen as the normal Lagrange strain for the reinforcing fibers and assuming that damage 297 

can only accumulate (this work does not consider the effects of healing and regeneration), we defined the 298 

damage accumulation with a log-normal cumulative distribution function (Equation 13, where Ξ is the 299 

damage criterion, in this case normal Lagrange strain, μ dictates the value of Ξ where 50% damage has 300 



occurred, and 𝜎 dictates the rate of damage accumulation). We also assumed that the maximum amount of 301 

damage was 100%, or 𝐷𝑚𝑎𝑥  = 1. 302 

 303 

Ψr(𝑪,𝐷) = (1 − 𝐷)Ψ           (12) 304 

𝐷(Ξ) =
1

2
erfc [−

ln(
Ξ

μ
)

𝜎

2

]           (13) 305 

 306 

A total of five different constitutive models were fit to experimental data. These included 1) transversely 307 

isotropic Mooney-Rivlin, 2) transversely isotropic Ogden, 3) Mooney-Rivlin with two fiber families, 4) 308 

transversely isotropic Ogden with longitudinal fiber damage, and 5) Mooney-Rivlin two fiber families 309 

with longitudinal damage. For all models the bulk-like modulus was fixed at 𝑘 = 100 MPa. For Mooney-310 

Rivlin models, a 𝑐1 = 𝑐2 constraint was applied to ensure unique solutions for optimization fitting. 311 

 312 

2.4 Statistical Analysis 313 

The experimental stress relaxation data were analyzed by comparing the power law coefficient 𝑏 that 314 

resulted from the first and second relaxations through a paired two sample t-test for means (significance 315 

set at p<0.05) to determine whether the relaxation after the first and second strains of each sample were 316 

statistically significant. 317 

 318 

The goodness of fit (GoF) for all fits were evaluated with the goodnessOfFit function in MATLAB 319 

(Equation 15). Here 𝑃𝑖
𝑚𝑜𝑑 and 𝑃𝑖

𝑒𝑥𝑝
 are the model and experimental stress values, respectively, at 320 

the ith data point and N is the total number of data points. Fits range from -∞ (worst) to 1 (perfect). The 321 

overall percent error, peak stress percent error, and normalized root mean square error (NRMSE) were 322 

also determined (Equation 16).  323 

 324 

𝐺𝑜𝐹 = 1 − ∑ [
𝑃𝑖
𝑚𝑜𝑑−𝑃𝑖

𝑒𝑥𝑝

𝑃𝑖
𝑚𝑜𝑑−𝑚𝑒𝑎𝑛(𝑃𝑖

𝑒𝑥𝑝
)
]2𝑁

𝑖=1                                                  (15) 325 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖

𝑚𝑜𝑑−𝑃𝑖
𝑒𝑥𝑝

)
2𝑁

𝑖=1

𝑁
                                                         (16) 326 

 327 

2.5 Scanning Electron Microscopy 328 

Two porcine samples were obtained from a local abattoir to extract the triceps brachii aponeurosis for 329 

scanning electron microscopy (SEM). The triceps brachii aponeurosis was dissected by the same 330 

procedure as the stress relaxation and biaxial tests, and subject to a fixing a preparation protocol for 331 

imaging (Carson and Cappellano, 1997).  The samples were cut into approximately 4 mm x 8 mm 332 

rectangles then fixed in 10% formaldehyde for 24 hours at 4 degrees Celsius with a 1:20 volume to 333 

fixative ratio. Samples were then subject to a washing alcohol series that included 15 minutes in 70% 334 

ethanol, 15 minutes in 90% ethanol, and then a series of 15, 30, then 45 minutes in 100% ethanol. To 335 

prepare for dehydration, samples were transferred to a 1:2 solution of HMDS to ethanol for 20 minutes 336 

followed by 20 minutes in a 2:1 HMDS to ethanol solution, and finally two cycles of 20 minutes in 100% 337 



HMDS solution. Approximately half of the HMDS in each vial was then discarded and the vials were 338 

placed without caps in a vacuum for desiccation. Samples that were dehydrated could then be properly 339 

sputter coated with gold approximately 48 to 72 hours later. Scanning electron microscopy was conducted 340 

on a Hitachi SU5000 Field Emission Gun microscope. Relevant images were analyzed with the 341 

Directionality plugin found in Fiji (Schindelin et al., 2012) to determine collagen fibril alignment. The 342 

number of bins was set to nineteen and the histogram range was set to 0-180°. 343 

 344 

3. Results 345 

3.1 Stress Relaxation 346 

The average thickness of the 20 aponeurosis samples were 0.506 mm ± 0.034 (standard error).  The 347 

average power law constant of the 20 samples during the first relaxation phase was -0.1013 ± 0.0057 348 

(standard error) and during the second relaxation phase the average power law constant was -0.0893 ± 349 

0.0018 (standard error).  The paired t-test comparing the first and second relaxation phases were 350 

statistically significant (p=0.044).  However, further evaluation of 𝑏 parameter versus strain percentage 351 

data shows minimal variation between the first relaxation (Ramp 1) and the second relaxation (Ramp 2) 352 

(Figure 3), as an R2 value of 0.0291 with a linear slope of 0.0026 was fit to these data. Thus, any strain 353 

dependent relaxation may be statistically significant, but minimal. 354 

 355 
Figure 3. Strain versus power law coefficient for each relaxation phase with a linear regression fit. 356 

 357 

Comparison between the experimental viscoelastic behavior data and the viscoelastic model shows 358 

similar comparable behaviors (Figure 4).  The global stochastic Monte Carlo simulation in conjunction 359 

with the deterministic optimization yielded excellent fits between the three-term linear Prony series 360 

viscoelastic model and normalized experimental stress data (average percent error = 0.29 ± 0.01%, 361 

average RMSE = 0.40 ± 0.02, average GoF = 1.00) (Figure 4).  For the viscoelastic model, the parameters 362 

show a similar amount of stress relaxation behavior (𝐺) and similar rate of relaxation (𝜏) between the 363 

first, second, and average relaxations (Table 1), suggesting that the use of a linear or quasi-linear 364 



viscoelasticity is appropriate for aponeurosis tissue. Additionally, aponeurosis exhibited greater relaxation 365 

during initial relaxation as evident by the larger 𝐺1 parameters in comparison to 𝐺2 or 𝐺3. 366 

 367 

 368 
Figure 4. A) Relaxation behavior of average experimental data and model data for (Ramp1, Ramp2, and 369 

ModelAvg) over the entire 300 second relaxation periods. B) Highlighted relaxation behavior over the 370 

first three seconds of relaxation. 371 

 372 

Table 1. Optimized viscoelastic parameters for the hold phase of stress relaxation after first, second, and 373 

average of first and second stretches. 374 

Parameter Ramp One Ramp Two Average 

𝑮𝟏 [MPa] 0.420 0.426 0.423 

𝑮𝟐 [MPa] 0.135 0.127 0.130 

𝑮𝟑 [MPa] 0.101 0.0946 0.0978 

𝝉𝟏 [s] 0.542 0.541 0.551 

𝝉𝟐 [s] 8.59 8.83 8.86 

𝝉𝟑 [s] 98.0 101 100 

 375 

3.2 Biaxial Stretch 376 

Tensile planar equibiaxial stress-stretch data shows consistent anisotropy of aponeurosis tissue (Figure 5). 377 

The average thickness of the nine aponeurosis samples were 0.626 mm ± 0.028 (standard error). 378 

Qualitatively, the aponeurosis is shown to be stiffer in the longitudinal direction compared to the 379 

transverse direction and strain more in the transverse direction compared to longitudinal (Figure 5A). 380 

Quantitatively, these results are supported by the finding that over the course of the experiment the stress 381 

ratio leveled out at approximately ten and the strain ratio leveled out at approximately 0.5 between 382 

longitudinal and transverse orientations (Figure 5B).    383 



 384 
Figure 5. A) Planar equibiaxial tensile stress-stretch data. Raw data are provided in light background 385 

curves for longitudinal (black) and transverse (blue) direction. Mean and standard error are shown with 386 

open circles and error bars. B) Mean data ratios for stress (blue) and strain (orange) between the 387 

longitudinal and transverse directions as a function of data points. Data presented are 388 

longitudinal:transverse ratios. 389 

 390 

Finite element model fits to experimental data were generally strong as observed both visually (Figure 6) 391 

and statistically (Table 2). The model with the worst fit was the transversely isotropic Mooney-Rivlin 392 

formulation due to the linear stress-stretch response in the transverse direction (Figure 6B). The best fit 393 

was the two fiber families model with longitudinal fiber damage, which produced a root mean square 394 

error of 0.00655 MPa. However, this model was statistically nearly identical to the transversely isotropic 395 

Ogden damage model, and the non-damage versions of these models had strong fit statistics as well 396 

(above a 0.95 goodness of fit value (Table 2)). 397 

 398 

 399 
Figure 6. Comparison between biaxial experimental data and model in A) longitudinal direction and B) 400 

transverse direction. Note the significant model overlap.  401 

 402 



Table 2. Statistical evaluations of model fits to experimental data. 403 

Model Percent Error Goodness of Fit RMSE [MPa] 

TI Mooney-Rivlin 87.9 0.945 0.0233 

TI Ogden 33.7 0.952 0.0204 

Two Fiber Families 25.2 0.953 0.0198 

TI Ogden Damage 24.3 0.984 0.00665 

Two Fiber Damage 19.0 0.984 0.00655 

 404 

Model parameters for all five formulations (Table 3) show a longitudinal fiber modulus value of 405 

approximately 50 MPa and a transverse modulus of approximately 2.4 MPa. The 𝜆∗ values also suggest 406 

that the longitudinal fibers are fully recruited at stretch values between 1.02 and 1.03, while the transverse 407 

response exhibited a larger toe-region with full fiber recruitment occurring at approximately 1.06-1.065 408 

(Table 3). The transversely isotropic Ogden model exhibited both strong fitting statistics and a low 409 

number of fitting parameters (five), while the two fiber families with damage formulation exhibited the 410 

best fitting statistics and enables the use of damage modeling, but requires nearly twice the parameters 411 

(nine). 412 

 413 

Table 3. Biaxial finite element model parameter values. 414 

Model 𝒄𝟏 [MPa] 𝒎𝟏 [-] 𝑬𝒇 [MPa] 𝜷 [-] 𝝀∗ [-] 𝝈 [-] 𝝁 [-] 

TI Mooney-Rivlin 0.0493 - 43.3 5.17 1.0233 - - 

TI Ogden 0.185 41.0 44.0 4.82 1.0234 - - 

Two Fiber Families 0.0172 - 
44.3 4.76 1.0237 - - 

2.35 5.21 1.0619 - - 

TI Ogden Damage 0.157 44.2 69.8 4.02 1.0327 0.509 0.118 

Two Fiber Damage 0.0135 - 
55.1 4.06 1.0296 0.316 0.122 

2.37 4.34 1.0643 - - 

 415 

3.3 Scanning Electron Microscopy 416 

Scanning electron microscopy (SEM) of aponeurosis at different magnifications shows a composite 417 

hierarchical structure with highly aligned collagenous sheets and collagen cables (Figure 7). Superficial 418 

collagen cables (Figure 7A) appear to have some degree of random organization, while a collagen fibril 419 

sheet (Figure 7B) is comprised of highly aligned collagen fibrils. In addition to variation in structure, 420 

collagen fibril sheets appear to have a variation in waviness (Figure 7C). Characterization of fiber 421 

dispersion shows that the directional alignment in aponeurosis can very from highly aligned and straight 422 

fibers (dispersion standard deviation of ~7 degrees, Table 4) to a more dispersed case (~30 degrees, Table 423 

4). 424 

 425 

Table 4. Gaussian distribution fit dispersion (standard deviation of Gaussian fit) and goodness of fit for 426 

analyzed scanning electron microscopy images. 427 

Image Dispersion [deg] Goodness of Fit [-] 

Straight Image 6.94 0.97 



Wavy Image 27.4 0.95 

 428 

 429 
Figure 7. Scanning electron microscopy of aponeurosis tissue and analysis of fiber alignment. A) Image 430 

showing aligned collagen sheet under collagen cables. B) Higher magnification of aligned fiber sheet with 431 

straight fibrils (“Straight”) taken from a region in A. C) Higher magnification of aligned fiber sheet with 432 

wavy fibrils (“Wavy”) taken from a region not shown in A. D) Comparison of collagen fibril alignment 433 

image analysis data and normal distribution fits for the images in B and C. Note that data are plotted as a 434 

function of angle from the transverse direction, or that a value of 90° indicates the longitudinal direction. 435 

 436 

4. Discussion 437 

While the broader goal of the study was to elucidate the mechanical properties of aponeurosis tissue, the 438 

four specific goals were: 1) measure the stress-relaxation behavior of aponeurosis tissue and determine if 439 

there was strain level dependence (nonlinear viscoelastic or quasi-linear viscoelastic), 2) perform planar 440 

biaxial tensile testing to evaluate aponeurosis tissue response to multi-axial load, 3) employ 441 

computational modeling based on the above to develop the appropriate material properties of aponeurosis, 442 

and 4) perform scanning electron microscopy to visually determine collagen organization in aponeurosis. 443 

 444 

4.1 Stress Relaxation 445 

When considering both statistical analysis (Figure 3) and viscoelastic fitting (Table 1 and Figure 4), we 446 

conclude that from approximately 1-4% tensile strain, aponeurosis relaxation behavior is comparable. 447 



While a statistically significant result between power law parameters for the two relaxation steps was 448 

found (p=0.044), this represents a case where the data may be statistically different but not functionally 449 

different. These results support the claim that the aponeurosis exhibits quasi-linear viscoelastic behavior 450 

(Pavan et al., 2014), similar to other fibrous connective tissues like tendon (Taylor et al., 1990; Johnson et 451 

al., 1994; Provenzano et al., 2001). Qualitative examination of digital image correlation strain plots 452 

suggests that the aponeurosis does not strain in a homogenous manner due to the non-uniform recruitment 453 

of collagen fibers and fascicles during uniaxial tensile testing. These findings are similar to a previous 454 

study that showed that the aponeurosis-tendon unit strained nonuniformly when submaximal voluntary 455 

contractions occurred in vivo (Finni et al., 2003). While characterization of this inhomogeneous strain was 456 

outside of the scope of this work, future efforts to measure regional aponeurosis strain would be a benefit 457 

to the field. One limitation of the material tests performed in this work is the lack of tissue immersion in a 458 

buffering solution. This was chosen for comparative purposes to other studies of aponeurosis material 459 

properties that tested in non-immersed conditions (Azizi et al., 2009; Shan et al., 2019), to improve digital 460 

image correlation analysis, and to introduce as few variables into the testing protocol as various buffer 461 

solutions can affect measured mechanical properties (Safa et al., 2017). However, future work to evaluate 462 

the effect of various buffer solutions, graphite powder speckling and dehydration, and of immersed versus 463 

non-immersed conditions could further improve the translation of in vitro data to in vivo models and 464 

considerations. 465 

 466 

Viscoelastic fitting of the three-term linear Prony series model to the normalized experimental data show 467 

an excellent ability of this approach to fit stress-relaxation data. As highlighted above, the similar 468 

viscoelastic model parameters optimized for both stress-relaxation ramps and the accuracy of a fit to 469 

mean data suggest the parameters provided in Table 1 could be reasonably used for future modeling 470 

efforts. One limitation of this work is that only normalized stress relaxation data was used in the 471 

viscoelastic model, which was completed for simplicity. Additionally, these viscoelastic parameters were 472 

not validated against independent data, and as such they should only be used for simulations of similar or 473 

slower strain-rate conditions. Future studies could incorporate and couple the stress-relaxation and stress-474 

stretch data presented in this study to other viscoelastic models and perform validation experiments. 475 

 476 

4.2 Biaxial Stretch 477 

To the best of the authors’ knowledge, there exists only two previous studies that have directly measured 478 

stress-stretch material properties of aponeurosis (Azizi et al., 2009; Shan et al., 2019). Azizi et al., 2009 479 

measured the anisotropic linear modulus and failure properties of turkey gastrocnemius aponeurosis and 480 

found that the longitudinal direction had a higher tensile modulus (~700 MPa) value compared to the 481 

transverse direction (~100 MPa). Shan et al. studied the morphological and mechanical characteristics of 482 

the human triceps surae aponeuroses in various regions of the gastrocnemius and soleus, determining that 483 

thickness varied depending on location and a similarly higher modulus in the longitudinal (64-145 MPa) 484 

versus transverse (0.3-1.5 MPa) directions (Shan et al., 2019). Our linear region modulus results 485 

presented here were generated by constitutive model fitting via inverse finite element analysis. The 486 

findings of a longitudinal modulus of ~50 MPa and transverse modulus of ~2 MPa agree well with Shan 487 

et al. In comparing these values to tensile moduli for tendon and muscle, we see that aponeurosis tissue 488 



compares similarly to tendon and is approximately 1-2 orders of magnitude stiffer than muscle (Table 5). 489 

This suggests that aponeurosis functions from a materials perspective as an extension of tendon and not as 490 

a transition from tendon to muscle. However, this requires further extensive material testing of 491 

aponeurosis and tendon from the same muscle-tendon unit to confirm. Despite the range of reported 492 

moduli values for aponeurosis in literature (Table 5), our findings corroborate the observation that the 493 

aponeurosis is stiffer in the longitudinal direction compared to the transverse direction and that the 494 

transverse direction experienced more stretch during the experiment (Figure 5) (Azizi and Roberts, 2009; 495 

Azizi et al., 2009). 496 

 497 

 498 

Table 5. Comparison between anisotropic linear-region tensile elastic modulus values reported in 499 

literature and those presented in this study for tendon, aponeurosis, and muscle tissue. Note that * denotes 500 

some approximate values for skeletal muscle stress-stretch curve tangents, as muscle exhibits a great 501 

degree of nonlinearity. 502 

Tissue 
Longitudinal 

Modulus [MPa] 

Transverse 

Modulus [MPa] 
References 

Tendon 50-1850 0.2-40 
(Wren et al., 2001; Lynch et al., 2003; Lake et al., 

2009, 2010) 

Aponeurosis 50-750 0.3-100 Our work and (Azizi et al., 2009; Shan et al., 2019) 

Muscle* 0.02-0.5 0.08-0.4 
(Takaza et al., 2012; Mohammadkhah et al., 2016; 

Wheatley et al., 2016b) 

 503 

One cautious observation of this work is the relatively large size of the error bars on the transverse stress-504 

stretch graph (Figure 6B). We believe this is due to specimen variability, anisotropic strain in 505 

aponeurosis, and the highly anisotropic nature of the tissue. As the transverse direction is not the major 506 

load bearing direction of the tissue, a larger variability of strain values was expected. Future work could 507 

experiment with different strain ratios and strain rates in the longitudinal and transverse directions to 508 

determine how the aponeurosis responds mechanically to non-equibiaxial stretch. This could also 509 

potentially reduce the variability of stretch observed in the transverse direction. 510 

 511 

As discussed above, there exists limited published data on the material properties of aponeurosis tissue. 512 

To the best of the authors’ knowledge, there exists no prior study that has fit anisotropic, hyperelastic 513 

constitutive models to aponeurosis stress-stretch data. Thus, we have presented here not only the first 514 

such complete model parameters, but also various modeling approaches for future implementation 515 

depending on potential application. We chose five anisotropic constitutive models to employ in this work, 516 

ranging from more common isotropic matrix models with a single set of reinforcing fibers (TI Mooney-517 

Rivlin) to a model with multiple fiber families and longitudinal fiber damage (Two Fiber Damage). These 518 

five models are not fully comprehensive of all modeling procedures, but nonetheless provide different 519 

advantages and disadvantages. 520 

 521 



In comparing model fits to experimental stress-stretch data, all of the models exhibited a strong fit to 522 

longitudinal data (Figure 6A), and all models except the TI Mooney-Rivlin case exhibited similarly strong 523 

fits to transverse data (Figure 6B). As the TI Ogden model requires fewer parameters in comparison to the 524 

Two Fiber Families model (five versus seven), we recommend use of this formulation for general 525 

modeling procedures. In the case where a user may want to include damage (such as a simulation of 526 

extreme stretch or potential rupture), we recommend the use of the TI Ogden Damage approach. While it 527 

may seem redundant to implement the Two Fiber Family model, this approach provided outputs of 528 

longitudinal and transverse fiber modulus values as discussed above in detail. 529 

 530 

The damage modeling employed in this work provides a general application of damage modeling of 531 

aponeurosis at quasi-static strain rates and under controlled strain. As damage accumulation in this work 532 

was defined as a function of normal Lagrange strain, tissue damage does not directly depend on any stress 533 

measures. These stress measures could be backed out from the normal Lagrange strain measures under 534 

which damage reaches 50% (Table 3). We believe that using strain as a damage initiation measure is more 535 

appropriate than stress because variations in aponeurosis linear modulus in literature are approximately an 536 

order of magnitude, while damage initiation in soft tissues is surely bounded by a much smaller stretch 537 

region. For example, it is unlikely that the turkey gastrocnemius aponeurosis tested by Azizi et al (Azizi 538 

et al., 2009) would accumulate damage when subject to similar stress states to the porcine triceps brachii 539 

tested in this work due the measured linear modulus value of nearly ~700 MPa compared to ~50 MPa 540 

measured here. However, qualitative comparisons of pull to failure stress-stretch curves from Azizi et al 541 

show longitudinal failure at approximately 𝜆 ≈ 1.075, with damage likely initiating in the 𝜆 ≈ 1.03 −542 

1.05 range, which is similar to our modeling results. Future modeling efforts to better characterize the 543 

damage accumulation and failure, particularly at high strain rates would elucidate how aponeurosis 544 

rupture occurs and how it could be modeled. Multi-axial damage modeling would also be a benefit, 545 

although it is more likely that in vivo aponeurosis damage and muscle-tendon unit impairment is related to 546 

longitudinal loading. 547 

 548 

For biological soft tissues, the assumption of incompressibility or near-incompressibility (Weiss et al., 549 

1996) is common due to their high water content, thus requiring the use of decoupled strain energy 550 

formulations to prevent volume-locking of elements. However, to the best of the author’s knowledge, 551 

there exists no experimental investigations of the volumetric behavior of aponeurosis. Due to the sheet-552 

like macroscopic structure of aponeurosis, it is unlikely that maintaining constant volume plays a critical 553 

role in the tissue function relative to the tensile stiffness of the material. Thus, to increase model stability 554 

and reduce assumptions and complexity, we selected a bulk modulus of 100 MPa and employed a coupled 555 

hyperelastic formulation without experiencing volume locking. Further experimental analysis to directly 556 

evaluate the volumetric behavior of aponeurosis would provide necessary data to adjust the modeling 557 

assumptions made in this work. 558 

 559 

4.4 Scanning Electron Microscopy 560 

We employed scanning electron microscopy (SEM) to provide a qualitative comparison of aponeurosis 561 

microstructure to the mechanical testing and modeling. Previous efforts have used high magnification 562 



oblique contrast microscopy, which limits visualization to collagen fascicles (Azizi et al., 2009). To the 563 

authors’ knowledge, no previous studies have conducted scanning electron microscopy on the 564 

aponeurosis; however, it has been shown that type I collagen is the dominant fiber type (Miao et al., 565 

2019). Our SEM images suggest that the aponeurosis is comprised of both collagenous cables and sheets 566 

(Figure 7A) and that these sheets contain collagen fibrils with some variability of waviness and/or 567 

dispersion (7B-D). We expect that as the aponeurosis is stretched, the regions with waviness (also 568 

referred to as crimping) become straight, and that this is the mechanism for the toe-region in the stress-569 

stretch experimental data and modeling results presented here. Thus, there is a general agreement 570 

(although not numerically quantified) between our microstructural analysis and the macroscale 571 

experimentation and modeling. 572 

 573 

While we have not generated microstructurally driven computational models of the aponeurosis, further 574 

rigorous SEM could generate the data necessary to inform such models. The specific hyperelastic 575 

formulation chosen here to represent collagenous structures in the aponeurosis (Equation 11) includes a 576 

nonlinear toe-region during which collagenous structures uncrimp. However, the 𝜆∗ values were 577 

optimized from stress-stretch data and not generated from SEM images. Additional implementations of 578 

dispersed fiber models (von Hoegen et al., 2019) driven by microstructure (Figure 7D) could greatly 579 

strengthen modeling efforts of aponeurosis and muscle-tendon units. 580 

 581 

5. Conclusion 582 

This work presents an investigation of the mechanical properties of aponeurosis tissue through stress 583 

relaxation testing, planar biaxial testing, constitutive modeling and finite element analysis, and 584 

characterization of microstructure through scanning electron microscopy. In all, the study found that the 585 

aponeurosis exhibits nearly linear stress-relaxation behavior, highly anisotropic hyperelastic behavior, and 586 

has intricate microstructural collagen fibril alignment. We have presented viscoelastic parameters for 587 

future modeling use as well as and anisotropic, hyperelastic, and damage constitutive parameters for 588 

similar use. Future use to drive modeling efforts with microstructural data would be a natural continuation 589 

of this work and would be a benefit to the field. Generally, this work helps to better understand 590 

aponeurosis material properties and thus how aponeurosis transmits force and stores (and returns) energy 591 

during movement.   592 
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