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Abstract

Geometric Complexity Theory is an approach towards the separation of fundamental algebraic
complexity classes. Two papers by Mulmuley and Sohoni (SIAM J Comput 2001, 2008) pursue
this goal via representation theoretic multiplicities in coordinate rings of specific group varieties.
The papers also conjecture that the vanishing behavior of these multiplicities would be sufficient
to separate complexity classes (so-called occurrence obstructions). The existence of such strong
occurrence obstructions has been recently disproven in 2016 in two successive papers, Ikenmeyer-
Panova (Adv. Math.) and Biirgisser-Tkenmeyer-Panova (J. AMS).

This raises the question whether separating group varieties via representation theoretic multi-
plicities is stronger than separating them via occurrences. This paper provides for the first time a
setting where separating with multiplicities can be achieved, while the separation with occurrences
is provably impossible. Our setting is surprisingly simple and natural: We study the variety of
products of homogeneous linear forms (the so-called Chow variety) and the variety of polynomials
of bounded border Waring rank (i.e. a higher secant variety of the Veronese variety).

As a side result we prove a slight generalization of Hermite’s reciprocity theorem, which proves
Foulkes’ conjecture for a new infinite family of cases.
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1 Introduction

In two landmark papers on geometric complexity theory [MS01, MS08] Mulmuley and Sohoni sug-
gested the use of representation theoretic multiplicities to separate group varieties that correspond to
complexity classes. The goal of this approach is to achieve complexity lower bounds that lead to the
separation of algebraic complexity classes such as VP and VNP (see [BCS97] or [Sapl7] for the precise
definitions, which will not be important in this paper). At the heart of the approach was the hope
that so-called occurrence obstructions (see Section 2) would be sufficient to separate VP and VNP.
In [IP17, BIP19] it was shown that occurrence obstructions are too weak to provide the necessary
separation, at least for the group varieties that were originally proposed by Mulmuley and Sohoni.
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But representation theoretic multiplicities might still be able to separate VP and VNP when we look
at the finer separation criterion via multiplicity obstructions (see also Section 2). Unfortunately, so
far all known separations of group varieties via multiplicity obstructions could also in fact be obtained
via occurrence obstructions, or at least there was no setting in which multiplicity obstructions were
provably stronger than occurrence obstructions, see e.g., [BI11, BI13]. Indeed, little is known about
multiplicity obstructions in general, as the required multiplicities are often #P-hard to compute, see
e.g., [Nar06, BI0O8, BOR09], which implies that a polynomial time algorithm for their computation can
only exist if P=NP.

Scott Aaronson raised the question about the existence of a setting where multiplicity obstructions
are provably more powerful than occurrence obstructions. In this paper we give the first example of
such a situation in a finite setting, see Theorem 2.3 below.

Theorem 2.3 is not only about finite settings: For the first time multiplicity obstructions are used
to separate families of polynomials, even though the separation is extremely modest. Prior work on
obstructions focused on tensors instead of polynomials ([BI11, BI13]).

As a side result we prove a slight generalization of Hermite’s reciprocity theorem, which proves
Foulkes’ conjecture (see (2.1)) for a new infinite family of cases, see Theorem 3.5.

2 Representation theoretic obstructions

In this section we review how to separate group varieties via representation theoretic multiplicities. The
setup is in complete analogy to the geometric complexity theory approach of Mulmuley and Sohoni.
We then list our main result, see Theorem 2.3.

Consider the space A, := C[zy,...,Zmy], of complex homogeneous polynomials of degree n in m
variables. Let V := Al be the space of homogeneous degree 1 polynomials. In this paper we compare
two subvarieties of A} . The first is the so-called Chow variety

ChZ,L = {€1€n|€1 EV} QA%,

which is the set of polynomials that can be written as a product of homogeneous linear forms, see e.g.,
[Lanll, §8.6]. In algebraic complexity theory this set is known as the set of polynomials that have
homogeneous depth-two algebraic circuits of the form II™Y, i.e., circuits that consists of an n-ary top
product gate of linear combinations of variables. The second variety is called a higher secant variety
of the Veronese variety and can be written as

Pow,, ) :={{f +--- + £ | £; € V} C AL,

which is the closure of the set of all sums of £ powers of homogeneous linear forms. Note that from
a general principle it follows that the Zariski closure equals the Euclidean closure in this case, see
e.g., [Mum95, §2.C] where this is shown for every constructible set. The polynomials in Powzz’k are
exactly those that have border Waring rank at most k, see e.g., [Lanll, §5.4]. In algebraic complexity
theory this set is known as the set of polynomials that can be approximated arbitrarily closely by
homogeneous depth-three powering circuits of the form Y*A"Y, ie., a k-ary sum of n-th powers of
linear combinations of variables.

A" is generated as a vector space by the powers v", v € V, see e.g., [Lanll, Ex. 2.6.6.2]. Given
two elements g1,g2 € GL,, := GL(V), and given v € V, we clearly have ¢1(g2v) = (g192)v. Thus
we say that V admits a GL,,-action. This natural action of GL,, on V lifts canonically to A7, via
g(v™) = (gv)", g € GLy,, v € V, and linear continuation. Both varieties Ch]:, and Powy, , are closed
under this action, i.e., for ¢ € GL,, and v € Ch}, we have gv € Ch} , and analogously v € Pow”

m>s m,k
implies gv € Powz%k. A variety that is closed under the action of GL,, is called a GL,,-variety.
Let C[A”,] denote the coordinate ring of A7, i.e., the polynomial ring in dim A”, = (”er*l) many

variables, where these variables are in 1:1 correspondence to the monomials in AJ),. The action of GL,,
on A7 lifts to a linear action of GL,, on C[AT ] via the canonical pullback as follows:

(9f)(h) := f(g™ h), g € GLy, f € C[AL], h e An.



Moreover, the action respects the natural grading of C[A”,], so that each homogeneous degree d part
C[A™ ] is a finite dimensional vector space that is closed under the action of GL,,

Recall that a finite dimensional vector space W that is closed under a linear action of GL,, is called a
GL,,,-representation. This is equivalent to the existence of a group homomorphism g : GL,,, — GL(W).
If we choose bases, then we can interpret GL,,, € C™*™ and GL(W) C CHmWxdimW an4 4 is described
by (dim W)? many coordinate functions, which are functions in m? many variables. If these functions
are polynomials, then we call W a polynomial representation. Our main representation of interest,
C[A]4, is a polynomial representation. A linear subspace of W that is closed under the action
of GL,, is called a subrepresentation. Subrepresentations of polynomial representations are clearly
polynomial representations again. For every GL,,-representation W we have that W and 0 are two
trivial subrepresentations. If W has no other subrepresentations, then we call W irreducible. A linear
map ¢ : Wi — Wy between two GL,,-representations is called equivariant if go(f) = w(gf) for all
f e Wi, g € GL,,. If there exists an equivariant vector space isomorphism from W7 to Wa, then we
say that W71 and W5 are isomorphic GL,,-representations. An m-partition of D € N is a nonincreasing
list of m nonnegative integers that sum up to D. Every irreducible polynomial GL,,-representation
has an associated isomorphism type, which is an m-partition, see e.g., [Ful97, Ch. 8]. Two irreducible
GL,,,-representations are isomorphic iff their isomorphism types coincide. We denote by {A},, the
irreducible GL,,-representation corresponding to the m-partition A. We write {A\} = {\},,, is m is clear
from the context.

The group GL,, is linearly reductive, which means that every GL,,-representation W decomposes
into a direct sum of irreducible GL,,-representations, see e.g., [Kra85, AIL5, Satz 4]. The number
of times an irreducible representation of type A occurs in the decomposition is called the multiplicity
of A in W, written multy (7). Even though this decomposition is usually not unique, the notation
multy (W) makes sense, because the multiplicities are independent of the actual decompositions.

The multiplicity ay(d[n]) := multy(C[A”,]4) is the infamous plethysm coefficient, which is the ob-
ject of study in Foulkes’ conjecture and also in Problem 9 in Stanley’s famous list of open prob-
lems [Sta00]. If we pad an m-partition A with m’ — m many zeros to obtain the m’-partitions
N = (A1, A, 0,...,0), then multy(C[A}]4) = multy (C[AZ,]a), see e.g., [TIkel2, Lem. 4.3.2]. For
the sake of simplicity we identify m-partitions with m/-partitions that arise from padding zeros. This
justifies leaving out the parameter m in the notation ay(d[n]) by assuming that m is large enough.
Foulkes’ conjecture states that

Conjecture :  a)(n[d]) < ax(d[n]) for all d > n. (2.1)

Conjecture (2.1) is known to be true (moreover, equality holds: ay(d[n]) = ax(n[d])) for all 2-partitions
A, which is often called Hermite reciprocity [Her54]. We make modest progress on this conjecture by
proving it for many families of 3-partitions, see Corollary 4.10.

Let Z be a GL,,-variety, e.g., Z = Ch}, or Z = Powy, ;. Then the vanishing ideal I(Z) := {f €
C[A"] | Vh € Z : f(h) = 0} is also closed under the action of GL,y, which is easy to verify: If f(h)=0
for all h € Z, then also (gf)(h) = f(g~'h) = 0, because g~*h € Z. Since the action respects the
grading, each homogeneous degree d part I(Z)q is a GL,,-representation. The coordinate ring C[Z] is
defined as the quotient algebra C[A?,]/I(Z) and each homogeneous part C[Z]q = C[AL]4/I(Z)4 is a
GL,,-representation. Equivalently, we can define C[Z] as the set of restrictions of functions in C[AT]
to Z.

For most sets of parameters we have Powy, , & Chy,, but there are some exceptions. Clearly
Powy,, ; € Chy,. Moreover, PowY ; = ChY for alln > 1, k > 1 and Powm . =Chl forallm>1,k>1.

Tt is also easy to see that POW272 C Ch3, because (3 + (3 = (61 +ily)(¢y — il3), where i? = —1. More
n(n+1)

generally, (£14Clo) (01 +CPla) - (1 +C"ly) = L7 +(¢ 2 L3 for (" = 1, which implies Pow,, , € Chy,.
For m =2, k > 1, n > 1, we have Powy, , C Ch;, by the fundamental theorem of algebra. These are
the only exceptions, as for n>2,m >3, k>3 we have Pow,, , ¢ Chy: the polynomial 2" +y™ + 2"
of the Fermat curve is in Powy;, ; and its irreducibility implies (Slnce n > 2) that 2™ +y"™ + 2" ¢ Chl..
We will see that for spemﬁc settings of parameters there exist multiplicity obstructions that prove



Pow,,, » € Chy,, but there do not exist occurrence obstructions that prove this fact (see the definitions
below). Our approach works as follows and is in complete analogy to the approach proposed in
[MSO01, MS08] to separate group varieties arising from algebraic complexity theory. If Powy, ; C Chy,
then the restriction of functions gives a canonical GL,,-equivariant surjection

C[Chz]d - (C[Powz’k]d.
In this case, Schur’s lemma (e.g., [GW09, Lemma 4.1.4]) implies that
mult (C[Chy;,]4) > multy(C[Powy, ;]a)- (2.2)

for all m-partitions A. Therefore, a partition A that violates (2.2) proves that Powy, , Z Chy,. Such a A
is called a multiplicity obstruction. If additionally multy(C[Ch;,]4) = 0, then X is called an occurrence
obstruction.

Since Chy, and Powy, ; are subvarieties of A}, and since all A for which multy(C[A},]4) > 0 are
m-partitions of dn, it follows that if multy(C[Chy,]4) > 0 or multy(C[Pow,, ;]4) > 0, then X is an
m-partition of dn.

2.3 Theorem (Main Theorem).
(1) Asymptotic result: Letm >3,n>2 k=d=n+1, A = (n?-2,n,2). We have multy(C[Ch}]4) <
mult (C[Powy, 1]a), i-e., A is a multiplicity obstruction that shows Powy, ; & Chy,.
(2) Finite result: In two finite settings we can show a slightly stronger separation:

(a) Letk=4,n=6,m=3,d=7, A= (n? —2,n,2) = (34,6,2). Then mult)(C[Ch"]4) =7 <8 =
mult (C[Powy;, ]a), i-e., A is a multiplicity obstruction that shows Powy, , & Chy,.

(b) Similarly, for k = 4, n = 7, m = 4, d = 8, A = (né —2,n,2) = (47,7,2) we
have multy(C[Ch;, ]s) < 11 = multy(C[Powy, ;]a), i-e., A is a multiplicity obstruction that shows
Pow,,, , € Chy,.

Both separations (a) and (b) cannot be achieved using occurrence obstructions, even for arbitrary k:

for all m-partitions p that satisfy a,(d[n]) > 0 we have multy(C[Ch], ]a) > 0 in these settings.

One would like to show that there are no occurrence obstructions in all cases (1), but this is wrong if
n is not large enough with respect to m, see Prop. 3.15. Even for m = 3 or m = 4 ruling out occurrence
obstructions as in (2) is done by a large-scale computer calculation which is only suitable for a finite
case, but not for sequences as in (1). The papers [IP17, BIP19] rule out occurrence obstructions for
families, but only in ranges where they would give very strong new algebraic circuit lower bounds,
so that we expect it to be difficult to find multiplicity obstructions in those cases. Note also that
[IP17, BIP19] are only dealing with padded polynomials, for which [KL14] guarantees A to have a very
restricted shape.

We expect multiplicity obstructions to be more powerful than occurrence obstructions in most cases
relevant for geometric complexity theory, and Theorem 2.3 resolves the challenge of finding a setting
in which the corresponding multiplicities and occurrences could actually be computed in a reasonable
amount of time, while the setting is also involved enough so that a difference between occurrence
obstructions and multiplicity obstructions could be witnessed.

2.4 Remark. The partition (n?—2,n,2) is known to be the type of one of Brill’s classical set-theoretic
equations for Ch;,, see [Gualg].

3 Proof of the main theorem

The main theorem (Theorem 2.3) makes a statement about the finite situations k =4, n = 6, m = 3,
d=T7and k=4, n=7 m=4,d=2_8, as well as the general situation m >3, n>2, k=d=n+1.
As a first step, in all these cases we show that

multy (C[Pow,, ;]a) = ax(d[n]). (3.1)

m,k

In the finite cases the following computer calculation suffices to prove (3.1).



3.2 Proposition. mult s o) (C[Powgy4]7) = 8 = a(34,6,2)(7[6]) and mult(4777,2)(C[POW;4}8) =11 =
a(ar,7,2) (8[7]).

Proof. The plethysm coefficient computations were performed with the L1E software. The rest is a
small computer calculation completely analogous to the ones in [BIP19, Sec. 6]. The details can be
found in Section 6. O

For the general situation the equality (3.1) is a consequence of the following result on power sums
proved in [BIP19, Prop. 3.2]:

3.3 Proposition. If \ is an m-partition of dn and k > d, then multy(C[Powy, ,]a) = ax(d[n]).
As a second step we will use the following lemma for A = (n? — 2,n,2).

3.4 Lemma (see also [Lanl7, Sec. 9.2.3]). Let A be an m-partition and n > m. Then
mult (C[Ch} ]4) < ax(n[d]).

Proof. Let GL,(x1---xy) := {g(x1 - 2,) | g € GL,} € AY denote the GL,,-orbit of z1---z,. We
denote by GL,(x7---x,) the Zariski closure of this orbit, which equals its Euclidean closure by the
same principles as in Section 2. Choose bases and embed A" C A" so that Chy, is the intersection
of A" and GL,(z1 ---x,). This implies (via arguments analogous to that for the plethysm coefficient
([Tkel2, Lem. 4.3.2])) that the multiplicity of the irreducible GL,,-representation {A},, in C[Chy |4

equals the multiplicity of the irreducible GL,-representation {\},, in C[GL,(x1 - - x,)]. In other words
multy (C[Ch] |4) = mult(C[GL, (21 - - zp)]a)-

The vector space C[GL,,(x1 - - - x,)]q consists of exactly the restrictions of polynomials in C[A]]4 to the
orbit GL,(z1 - - - @,). The coordinate ring C[GL,, (21 - - - 2,)] is also graded and its homogeneous degree
d part C[GL,, (21 - - - 25)]q consists of all homogeneous degree d regular functions on GL, (21 -+ ), in
particular

multy (C[GLy, (21 - - - 2p)]a) < multy(C[GL, (z1 -+ - xn)]a)-

The right-hand side can be understood via geometric invariant theory as follows (see [Ikel2,
Sec. 3.4(A))):
multy (C[GL,, (x1 - - - 2,)]q) = multy- (C[GL,]H),

where H = {diag(a1,...,a,) | [Tie; 0 = 1} x &, C GL,, is the stabilizer of zy ---z,, and A* is
the isomorphism type of the dual (i.e., contragredient) representation of {\}, i.e., {\*} = {A}*. The
algebraic Peter-Weyl theorem (see e.g., [Kra85, I1.3.1 Satz 3], [GW09, Thm. 4.2.7], or [Pro07, Ch. 7,
3.1 Thm.]) states that

ClGL,] = H{A} @ {1}
A
and we conclude
multy- (C[GL,]5) = dim{\} 7.

There are several ways of seeing that dim{\}? = a,(n[d]), see e.g., [Lanl7, Sec. 9.2.3] or [Ikel8,
Prop. 3.3]. This proves the lemma. O

Now an argument using symmetric functions is used to prove the following theorem.
3.5 Theorem. a(,2_3,2)((n+1)[n]) =1+ a@m2_2n2 (nn+1]).

Theorem 3.5 is a corollary of more general results, see Corollary 4.10.
This finishes the proof that (n? — 2,n,2) is a multiplicity obstruction in all cases of Theorem 2.3.



No occurrence obstructions

To finish the proof of Theorem 2.3(2), it remains to show that there are no occurrence obstructions in
the finite situation n = 6, m = 3 and n = 7, m = 4. We will primarily go into more detail for the first
case and the second one will be proven similarly. We will do this by showing that

for n = 6, m = 3, and for all m-partitions p of dn: a,(d[n]) > 0 implies mult, (C[Ch;,]q) > 0
(3.6)
Note that this claim is independent of k. We start proving (3.6) by giving a complete classification of
when a,,(d[n]) > 0 for the case n =6, m = 3.
First, the following lemma states that for a few special pu the plethysm coefficient always vanishes.

3.7 Lemma. Let X = (X, A3,...) denote \ without its first row. If \ is an m-partition of dn and
A €{(3,3),(3,1),(2,1),(1,1), (1)}, then ax(d[n]) = 0.

Proof. This is proved by a finite calculation for all cases but (3,3) as Thm 1.10(a) in [IP17]. Exactly
the same calculation can be used to also prove the result for the additional partition (3,3). O

For characterizing the set of all p for which a,(d[n]) is positive, we observe that they form a finitely
generated semigroup and hence we only need to find the semigroup’s generators:

If a,(d[n]) > 0 and a,(d'[n]) > 0, then a,+,(d + d'[n]) > 0. (3.8)
A detailed proof of (3.8) can be found for example in [BI18, Prop. 21.2.6].
3.9 Proposition. Define the set

X := {(6), (6,6), (8,4), (10, 2), (6,6,6), (8,6,4), (10,4,4), (9,6,3), (8,8,2), (10,6,2), (11,5,2), (10,7, 1), (12,4, 2), (11,6, 1), (10, 8), (14,2, 2),
(13,4,1), (13,5), (15, 3), (8,8, 8), (10,8, 6), (11,7, 6), (10,9,5), (11, 8,5), (10, 10, 4), (12,7,5), (11,9, 4), (13,6, 5), (12, 8,4), (11, 10, 3), (13,7, 4),
(12,9,3), (13,8,3), (12,10,2), (15,5,4), (14,7,3), (13,9,2), (13,10,1), (16,5,3), (15,7,2), (14,9,1), (17,4,3), (15,8,1), (15,9), (19,3,2),
(18,5, 1), (17,7), (10, 10, 10), (11, 10, 9), (12, 10, 8), (13,9,8), (12,11, 7), (13,10, 7), (14,9, 7), (13,11,6), (15,8,7), (13,12, 5), (16,7, 7), (15,9, 6),
(14,11, 5), (13,13, 4), (15,10, 5), (15, 11,4), (14, 13, 3), (16, 11, 3), (15,13, 2), (15, 14, 1), (17, 13), (13, 12, 11), (14, 11, 11), (13, 13, 10), (15, 11, 10),
(14,13, 9), (16,11,9), (15,13,8), (15,14, 7), (18,9,9), (15, 15,6), (17,17, 2), (18,17,1), (26,5, 5), (15, 14, 13), (16, 13,13), (15, 15, 12), (17,17, 8),
(18,15, 15), (17,17, 14), (25, 23), (45, 45)}.

Here we truncated trailing zeros from the 3-partitions. The set X is the set of minimal generators of

the semigroup of 3-partitions p that have a,(d[6]) > 0.

The proof of Proposition 3.9 proceeds in several steps.

A direct computation with the LIE software verifies a,(d[6]) > 0 for all 4 € X \ {(45,45)} such
that d = |u|/6. The case d = 15 runs into memory problems when using LIE. Other software such as
SCHUR stops working when d = 8. We used the formula [Stu08, Cor. 4.2.8] to verify a(4545y(15[6]) > 0.

We call the number of nonzero parts the length of a partition. We use a brute-force computer
verification and a direct computation with LIE to show that for d < 26 every partition p of length
< 2 with a,(d[6]) > 0 is a sum of partitions from the set X. The same computation is done for all
3-partitions, but only up to d < 14. The following proposition states that these finite computations
completely describe all cases.

3.10 Proposition. If \ is a 3-partition of 6d, d > 15, and X ¢ {(3,3),(3,1),(2,1),(1,1), (1)}, then X

is a sum of partitions from X.

Proof. For 15 < d < 17 we use a computer calculation to show that we can write every such partition
A as a sum of partitions from X. For d > 17 we prove this inductively by showing that we can write
every 3-partition A of 6d with A ¢ {(3,3),(3,1),(2,1),(1,1),(1)} as a sum of one of the partitions
(6),(6,6) or (6,6,6) and a smaller \' with again X ¢ {(3,3),(3,1),(2,1), (1,1), (1)}.

Let ¢; denote the number of columns in A with exactly ¢ boxes for i € {1,2,3}. Since we have at
least 108 boxes in A, the pigeonhole principle implies that at least one must be true: ¢; > 6, co > 10
or cg > 10.

In the case ¢; > 6 we have A = X + (6) with, by induction, A\’ being a sum of elements from X
since M = \. In the case c; > 10 we have A = X + (6,6) with A’ being a sum of elements from X
as Ay > 4. In the case ¢g > 10 we have A = X + (6,6, 6) with A" being a sum of elements from X as
Ap > 4. O



This finishes the proof of Proposition 3.9.
To prove (3.6) it is sufficient (and necessary) to show that mult,(C[Ch;,]q) > 0 for all u € X, be-
cause a semigroup property analogous to (3.8) holds (the same proof applies, e.g., [BI18, Prop. 21.2.6]):

If mult,, (C[Ch},]4) > 0 and mult, (C[Ch},]4) > 0, then mult,, (C[Ch},]4+q) > 0. (3.11)

If the length of p is at most 2, we use the following general result.

3.12 Proposition. Let i be a 3-partition of length at most 2. If a,,(d[n]) > 0, then mult, (C[Ch},]4) >
0.

Proof. We use an inheritance result: If for a 2-partition 1 we have mult, (C[Ch3]4) > 0, and v is the
3-partition that arises from u by adding a single 0, then mult, (C[Ch5]4) > 0. The proof is completely
analogous to other inheritance results, see e.g., [Tke12, Lemma 4.3.2 or Sec. 5.3]. Now for 2-partitions u
we have a,(d[n]) = mult, (C[Ch}]4), because every homogeneous polynomial in 2 variables decomposes
as a product of homogeneous linear polynomials by the fundamental theorem of algebra, see also e.g.,
[Lanl7, Exa. 9.1.1.8]. This is how the Hermite reciprocity can be proved. An even simpler argument
works if 4 has length 1. O

We finish the proof of (3.6) by using a computer calculation to verify that for all 3-partitions p € X
of length 3 we have mult,, (C[ChS]) > 0, see Proposition 5.1.

This finishes the proof of Theorem 2.3(2a). The proof of Theorem 2.3(2b) is completely analogous
as follows. Let m =4, n=7T7.

3.13 Lemma. Let ) := (\y ..) denote \ without its first row. If A is an m-partition of dn and
ANEY forY :={(1 ) (1,1), (1 1 1)7 (2,1), (2,1,1), (2,2,1), (3,1), (3, 1,1), (3,2,1), (3,3), (3,3,1),
(3,3,2), (3,3,3), (4,1,1), (4,3,3), (5,1,1), (5,5,5), (6,1,1)}, then ax(d[n]) = 0.

Proof. This is proven exactly like Lemma 3.7. O

The semigroup of 4-partitions A that have ay(d[7]) > 0 has 948 generators, listed in Proposition 7.1.
They form a set that we again call X.

We again use a direct computation with the LIE software to verify a,(d[7]) > 0 for all
e X\ {(49,49),(24,24,23,23)}. For both the remaining partitions u € {(49,49), (24,24, 23,23)}
we prove mult, (C[Ch]];) > 0 using our computer calculations which also implies a,,(d[7]) > 0.

To prove those are all the generators we use the following proposition which is proved completely
analogously to Proposition 3.10.

3.14 Proposition. If \ is a 4-partition of 7d, d > 14, and X ¢ Y, then X is a sum of partitions from
X.

For the next finite case (n = 7, k = d = 8, m = 5) we reached the computational limit of our
implementation. Here we were able to find 5016 generating partitions of the semigroup of 4-partitions
p that have a,,(d[7]) > 0. Unfortunately these do not generate everything excluding the exceptions yet.
We were able to verify for 5000 generating partitions p that mult,(C[Ch],];) > 0. For the remaining
ones, we used up to 200 GB of RAM, but this was not sufficient.

Some occurrence obstructions

As we degenerate the parameter settings and let n get closer to m, multiplicity obstructions tend to
become occurrence obstructions. More precisely, for m = 3 and values of n < 6, and for (m,n) = (4, 6),
some multiplicity obstructions are actually also occurrence obstructions, as the following proposition
shows.

3.15 Proposition. The following partitions give occurrence obstructions that show Powy, ; € Chy,.



m | n A d | ax(d[n]) | ax(n[d])
32 2.2,2) 3 1 0
3|3 (7,3,2) 4 1 0
34| @198 |7 1 0
35| (12,99 |6 1 0
416 (14,14,13,13) | 9| 11 0

Proof. The plethysm coefficient computations were performed with the LIE software. Lemma 3.4
implies that multy(C[Chy, ]4) < ax(n[d]) = 0. Proposition 3.3 implies multy (C[Powy, 4]4) > 0. O

m

See [BHI17, Prop. 4] for additional occurrence obstructions in the case n = 3.

4 Plethysm inequalities

We are interested in the plethysm coefficients ay(d[m]) for certain values of A and d,m. Here we
compute such values for infinite families of parameters and in particular, prove Theorem 3.5.

We will work over the ring of symmetric functions A, defined as the ring of formal power series (in
finitely or infinitely many variables) which are invariant under any transposition of the variables. For
the definitions and main identities see e.g., [Sta99]. Plethysms of symmetric functions are described
also there in Appendix 2 of Chapter 7, here we review the necessary definitions.

The characters of the irreducible GL,—module W) are the Schur functions sy(z1,...,z,), where
x1,...,%, correspond to the eigenvalues of the conjugacy class representative from GL,. Their com-
binatorial interpretation is as the generating function over all semi-standard Young tableaux with
entries 1,...,7, but we will use certain determinantal formulas as described below. The complete ho-
mogeneous symmetric functions iy are defined as sy and are the characters of the Symz module. The

Sym?(Sym™(C")) module is obtained as the composition of the two representations. The image in
Sym"(C") of a diagonal matrix from GL, with entries (i.e. eigenvalues) x1,...,z, on the diagonal
has eigenvalues all the N := (”':I;l) degree n monomials in x1,...,x,. Hence, the character of the
representation Sym?(Sym"(C")) of GLy can be obtained by evaluating the character hy of Sym? at
the monomials, i.e. the eigenvalues above. This gives us the definition of the symmetric function
plethysm hglh,(x1,...,2,)], that is, the evaluation of hy on the variables consisting of all degree n
monomials, i.e.,

halhn (21, ... 20)] = hd(x?,x?flxg, m?*1x37 co el L),

where @ = (a1, ..., q,) runs over all compositions of n, i.e., finite sequences of r nonnegative numbers
that sum up to n.

In general, knowing the character of a representation contains all the information to obtain the
multiplicities of the irreducible decomposition via the inner product of characters. As the Schur
functions sy are the irreducible characters for GL,., the inner product is equivalent to an inner product
in the ring A, where {s)}, is an orthonormal basis. In other words, the multiplicity of the Weyl
module of weight \ is given by the multiplicity of the Schur function sy in the expansion of hg[hm].
We will now compute this via the inner product in the ring A of symmetric functions, using some basic
properties of this ring as found in [Sta99] and [Mac95].

We have that ay(d[n]) is the multiplicity of {\} in Sym?Sym”, translated into characters this is
also the coeflicient at sy of the expansion of h4[h,] in Schur function. By their orthonormalitiy, this
is the same as

ax(d[n]) = (sx, halhn]) (4.1)
We now invoke various symmetric function identities in order to compute the above inner product.
The Schur functions sy can be expressed via the Jacobi-Trudi formula (see again [Sta99, Ch. 7]) as a
signed sums of homogeneous symmetric functions, namely

sx = det [hy, i (4.2)



the inner product (4.1) can then be computed via a signed sum of inner products of the form
(hys halhy]). We remark that the orthogonal dual basis for the complete homogeneous symmetric
functions is the monomial symmetric functions, i.e.

<h;u mu> = 6u,1/7

so we need to express hglh,] in terms of the monomial symmetric functions, defined by

mu (21, ... 2y 1= Z x7 V7@ g
oc€S,
where the sum ranges over all distinct permutations of (1,2,...,7) and v is completed with Os to the

length 7. Since the monomial symmetric functions form a basis for A, we can expand any symmetric
function in it uniquely. Let

hd[hn] = Z CyMy,

for some constants ¢, (i.e. the coefficients in this expansion). Since each m, has a unique leading

monomial (in the lexicographic order) x5 - - -, finding ¢, is equivalent to extracting the coefficient
at the single monomial 7" - - - from the monomial expansion of the corresponding symmetric function

as a polynomial, i.e.
¢, = (zras? .. )Qhg[hy (21, 22, .. .)],

where to avoid confusion with the plethysm notation we denote by (X)Qf the coefficient of the
monomial X in the monomial expansion of the polynomial f.
Let v be a partition of length ¢. By the above remarks we need to consider only the truncated
expansion hgl[hy(z1,...,2¢)] as only the monomials in 1, ..., z, will be relevant.
As a service to the reader we provide here a short list of the main objects for reference:
e m): the monomial symmetric functions
hy: the complete homogeneous symmetric functions
sx: the Schur functions
ax(d[m]): the coefficient of sy in the Schur expansion of the plethysm hg[h.y,]
pr(a,b): the number of partitions of r which fit inside an a x b rectangle
(X)Qf: The coefficient of the monomial X in the monomial expansion of the polynomial f
We have the following formula for the h’s, see e.g., [Sta99]:

bi,.b
hN<3?1,...,a',‘T): Z 33113;22...7
(b):b1+b2+-“:N

where (b) = (b1,be,...,b.) runs over all (weak) compositions of N. Hence, assuming some total
ordering for compositions a’ of n, we have

halhn(z1, ... 2p)] = hyl. .. Lz ] = Z g2 biet,
(b):|b|=d

Thus for the coefficients ¢, we have:

cv(d,n) := (¥)@hg[hn] = (hy, halhn]) = #{(b) : |b] = d, Z bia' = v} (4.3)

By the Jacobi-Trudi identity (4.2) this gives a formula for computing the plethysm coefficients as

ax(d[n]) = (det [h,—ips ), ) halhal) = Y sgn(m)eain—qi.2,.(din), (4.4)
TFESg(/\)
where the permutations 7 are viewed as vectors with entries 1,2,...,¢(\).



We now turn towards the proof of Theorem 3.5 and consider sy for A = (A1, A9, 2) for some k > 2.
By the Jacobi-Trudi identity (4.4) we need to compute only ¢, for v having at most 3 parts, with
vs = 0,1,2. Let p,.(a,b) denote the number of partitions of r which fit inside an a x b rectangle, its
generating function is the g-binomial coefficient (see [Stall]):

a+b) (1—q)--(1—qoth) 7ab .
( “ >q_(1—Q)'“(l—q“)(l—Q)~--(1—qb)_;pr( b)g

4.5 Proposition. We have the following generating function identities for ¢, (d,n), where £(v) < 3
and v3 < 2 (we omit the argument (d,n) of ¢,(d,n) below):

crra = (@)@ (1), (7272), + (7, (), +a(3), (7))
ek = (@)0(), ("),
C(L,k,0) = (qk)@(n:d)q = pk(n,d)

Proof. By formula (4.3), we have
crko) = #{0) bl = d, Y bia’ = (LK)}

Hence, the only o involved are of the form o/ = (n—aj;, a;), and after renumerating, we can assume
a; = i. So we are counting compositions b of d, s.t. >, b;i = k for ¢ = 0...n. This is exactly the
same as specifying an integer partition v of k by the number of its parts, i.e. v = (0%, 1% ... nbn),
such that by + - - - + b, = d. These restrictions are equivalent to ~y fitting inside an n x d box, and the
number of such ~ is exactly px(d,n).

Next, when the second part in v is 1, we have the following. Since v3 = 1, the condition ), bl =
vz = 1 implies that there is a single ¢, such that b;a% # 0, and in fact must be 1, so b; = af = 1.
After renumeration, we can assume that i = 0 (for separation purposes) with by = aJ = 1 and
a®=(n—-1—-nrm7r1) forr=0...n— 1. For the remaining bs and as we have

Zbiai:(L,k)—(n—l—r,r):(L+r—n+1,k—7°)

with by 4+ -+ = d — 1, and |a’| = n. This number is now, by the previous case, (qk_r)@(n+d71)q. The

n
total number is thus

s = @M ') - <qk>@§qr (") =we() ()

r=0

Finally, when v3 = 2 we have the following two distinct options: ‘

Either there is an index ¢, such that biag =v3 =2, 0r i< j with biaé =1 and bja?,) =1.

In the first case we have b;a3 = 2 — either b; = 2, in which case o’ = (n — 1 —r,1) and the rest of
the b’s sum to d — b; = d — 2, which brings us to the previous case (of (L, k,1)), so the number is

@e(3),("),

Otherwise, b; = 1 and af = 2. Asin the case v3 =1,let i =0 and a® = (n —2 —1r,7,2), bg = 1, so
we are looking for the number of (by,...) with [b| = d—1 and such that >, b;a’ = (L—n+r+2,k—r)
for all possible r = 0,...,n — 2. So this is

:Zz(qkr)@(n'f's— 1>q _ (qk)@<n;1>q<n+;l— 1)q

10



Last, when there are i < j with b;af = 1 and bjaé =1, let i = —1, j — 0 (again, renumerating for
simplicity), with o=t = (n — 1 —71,71,1) and a® = (n — 1 — ro,75,1) with 0 < 71 <719 <n —1. We
thus have for the remaining o and bs that by +--- =d—2,and >, bja' = (L—(n—1—r1)—(n—1—
r2),k — 11 — r2). By the first case, this is

(qk—’”l—m)@(”t‘f’Q)q. Summing over all possible 0 < r; <72 <n — 1, we have

ri+r n+d-—2 r ro— n+d-—2
(e >t 2( ) = (Mag > g ”( >
n q n q

0<r1<ro<n—1 0<r1<ro—1<n—2

(qk)@q<n—§+2>q(n+;l—2>q’

where the last identity follows from interpreting (ro — 1,71) as a partition in the 2 x n — 2 rectangle.
Summing over all the cases considered here, we get the desired total coefficient. O

As an application of the above formulas, and an example, we first compute some easier cases, the
first one being well known and classical (see e.g., [Stu93, Cor. 4.2.8]).

4.6 Proposition. The plethysm coefficient for a two-row partition A = (L, k) is equal to

@) = (@8 1= (" 1) =mlan) - pa(an)

The plethysm coefficient for the three-row partition A = (L, k,1) is equal to

) = @)e (=" ) e n-o ("))

=pr(d—1,n) — ppt1(n,d) + pr—1(n,d) — pr(d,n) + pr(d,n — 1)

Proof. Following equation (4.4), and applying the formulas from Proposition 4.5 we have that

n+d _ n+d
a(L,k)(d[n]) = C(L,k,0) — C(L+1,k—1,0) = (qk) Q@ ( n ) - (qk 1) Q@ < n > = pr(d,n) — pr—1(d,n).
q q

The formula in the statement follows from the fact that (¢*~!)@ F = (¢¥)@ ¢F for any Laurent
polynomial F' in g. For the second case, we follow the same formulas and derive

acr, k1) (dn]) = crr1) = CLk+1,0) = C(L+1,k—1,1) T C(L+2,k—1,0)

) (71 s (1 e () () e (119,
o () ) eena (,

~@ea-o("T) c@mea-a ("))

n

which establishes the first expression for a(y, ;,1)(d[n]). For the second one we observe that

<d+n> <d+n—1) _ (d+n—1> (1—qd+” B 1) :qnl—qd [d+n—1], qn<d+n—1)
no/, d q n—1 J,\ 1-¢" 1—qm [dlg[n — 1], n ‘
and then take the corresponding coefficients of the g—binomials via their combinatorial interpretation
as number of partitions inside a rectangle. O
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4.7 Corollary. For every two-row partition (L, k) of dn we have a(g, xy(d[n]) = a(p ) (n[d]) (which is
the well-known Hermite reciprocity) and also ay, k1) (d[n]) = ap k1) (n[d]).

Proof. The first equality is obvious by the combinatorial interpretation — partitions inside d x n rect-
angle are in one-to-one correspondence with partitions inside a n x d rectangle by diagonal flip. So
pr(d,n) = pr(n,d) and pr—1(d,n) = px—1(n,d), and by the first equation in Proposition 4.6 the equality
follows.

To see the case of the three-row partition (L, k, 1) from Proposition 4.6 we just compare all the
terms using the symmetry again

acr.k1)(dn]) —ap k1) (nld]) = pe(d —1,n) + pr(d,n — 1) — prr1(n, d) + pr—1(n, d) — pr(d,n)
_pk(n - 17 d) - pk(n,d - 1) +pk+1(da n) - pk*l(d7 n) +pk(n7d) =0.

4.8 Proposition. The plethysm coefficient for A = (L, k,2) is equal to

ax(dln]) = (¢"*H) @ ((” +: - 2) q(1- q”)(i - ;12 +q-q")

H(" 1)q<q"+1 _y+q —q>(":d)q)

Proof. Following equation (4.4), we have that

ax(d[n]) = C(L,k,2) = C(L,k+1,1) — C(L+1,k—1,2) T C(L+1,k+1,0) T C(L+2,k—1,1) — C(L+2,k,0)

Substituting the formulas for the ¢’s from Proposition 4.5, and observing that (¢"*7) @ f = (¢*)@ ¢/ f
for any j, we have that

i =@ (e () (747) ()07 ). 007))
- bf) (757 a-o(129)

Simplifying the above expression by grouping terms for the same binomial coefficients together we
obtain

ax(dn)) = (¢*) @ ((”+ - 2) (1 —q"><1—32 +q—q")

+<n+g— 1>(Z(q"Jrl -+ —q)(n:d)q)

4.9 Proposition. Let A = (L, k,2). We have that

n+d—2\ , , (1—g¢¥H(1—g¢g" )
n—1 >q(q ) (1q—qd)(1—g") '

ax(d[n]) — ax(nld]) = (¢*) @ (

12



Proof. Set [a]ly := (1 —¢q)---(1 — ¢%), a variant of the usual factorial ¢g-analogue but multiplied by
(1 —¢)?, and consider the desired difference via the formula in Proposition 4.8:

ax(dn]) — ax(n[d)) = (¢"*") @
{ <n+s_2> q1—q¢")(1—q¢*+q—q") N (n+d—1> @)

1—¢g2 n
n+d—2\ ¢1-¢)1-¢"+q—q¢%) (n+d-1 1
(e L () )
[n+d-2!y  q(" ' —q¢"") [n+d-1)ly (1-q)(¢" —q

S =2 d =20 U= (A —¢T ) = 1] d -1l (1 - )1~ ¢%)
n _ _ nt+d—1 _
— ( +d 2> (qniqd) (1 (1( q + )(1 )Q)>

n—1 1—g")(1—q*

_ (n+d2> (qnfqd)q(lfqd*)(lfq””) }

n—1 (1—q%)(1—q)

Finally, observe that the RHS is a polynomial divisible by ¢, so the coefficient at ¢“¥*! is the same as

the coefficient at ¢* after dividing by g. O

We are now ready to prove Theorem 3.5 as a corollary of the above computations. This verifies
Foulkes’ conjecture for an infinite family of cases:

4.10 Corollary. [Theorem 8.5/ Let d =n+1 and A = (n®> + n — 2 — k, k,2). Then ax((n+ 1)[n]) —
ax(nln+1]) > 0, with

0, when k < n,
ax((n+1)[n]) —ax(n[n+1]) =< 1, when k =n,
>0, whenk>nandn>7,

with the exception in the last case when n =8, and k = 35 when a(3535,2)(9[8]) = a(35,35,2)(8[9])-

Proof. Then by the Proposition 4.9 we have

ox(n+ D)~ axnfn-+ 1) = @ (27 TRy

=(¢")@ (2n B 1)q(q” — q"“)(i:zz:) = (¢"@ (2:__21>q(Q" —q"t)

n—1

2n — 1> (qn _ n+1) (1 - qn)(l B qn_l)

The last line follows by absorbing the fraction into the g-binomial coefficient. It is now evident,
that since the g-binomial coefficient expands into a polynomial of ¢ (with coefficients given by p.(n —
2,n + 1)), multiplying it with ¢" or ¢"! gives two polynomials whose lowest order terms are ¢" and
q"t! respectively. So if k < n, there is no term of such degree, and the coefficient is 0. When k = n we
see that such term can only come from the first polynomial’s first (lowest order) term, which is exactly
q" since (2:__21)(111” =q"(14+q+2¢>+---) = q" + O(q"™). Therefore we obtain the case k = n.

Let now k > n, and set kK =n + r + 1 for some r > 0. We have that

x4 ) —astaln 1) = @0 (7)) e (37))
=prr1(n+1l,n—2)—p.(n+1,n-2)

= g((n2 -n—-3—-rr+1),(n+ 1)"_2, (n+ 1)"_2) >0,
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where g denotes the Kronecker coefficient for the symmetric group &,, for the 3 given partitions, and
the last identity and the strict positivity are shown to hold for n > 9 in [PP13], and the other cases
are verified by direct expansion of the g-binomial coefficients. In particular, we have that pg(9,6) =
227 = p27(9,6) which gives the only exceptional 0 plethysm. O

5 Computer calculations

The following computer calculation for Proposition 5.1 is a refinement and speedup of the computation
performed in [CIM16]. Indeed, a run of the method from [CIM16] would take significantly too long
to prove Proposition 5.1 in any reasonable time. Our new method makes extensive use of memory
resources, while the method from [CIM16] uses almost no memory.

5.1 Proposition. If X is defined as in Proposition 3.9, then for all p € X of length 3 we have
mult,, (C[ChS]) > 0.
If X is defined as in Proposition 7.1, then for all p € X we have mult, (C[Ch]]) > 0.

Proof. For a vector space U let Q°U denote its §-th tensor power. The computation that verifies
Proposition 5.1 is based on the famous Schur-Weyl duality (see e.g., [Pro07, Ch. 9, eq. (3.1.4)] or
[GW09, eq. (9.1)]):

R™Cm ~ P o [, (5:2)
A

where the sum is over all m-partitions of dn, {A} is the irreducible GL,,-representation of type A, and
[A] is the irreducible & 4,-representation of type A, which is called the Specht module.

For a GL,,-representation W, a highest weight vector of type A is a vector f € W such that two
properties hold: (1) diag(aq,ag,...,am)f = a?l ~-a)m f, where diag(ag,as,. .., an) denotes the
diagonal matrix with «; on the main diagonal, and (2) gf = f for every upper triangular matrix
g € GL,, with 1s on the main diagonal. The highest weight vectors of type A in W form a vector space,
which we call HWV(W). Its dimension conveniently coincides with the multiplicity of A in W (see
e.g., [BI18, Prop 12.2.5]):

multy (W) = dim HWV, (W). (5.3)

Let Sym5U C ®°U denote the Gs-invariant subspace and let U* denote the vector space dual to U.
There are canonical isomorphisms C[U]y ~ Sym?(U*) ~ (Sym?U)*. Observe that there are canonical
GL,,-equivariant surjections:

=C[An]a

where the first surjection is the symmetrization Sq, = W 20667116(1 o over the wreath product

6,16, and the second surjection is the restriction of functions from A”, to the subvariety Ch;, . Now,
restricting to the highest weight vector space of type A, we obtain surjections

HWV, (®C™) — HWV(C[A™ ]4) — HWV(C[Ch™ ],). (5.4)

To prove that multy(C[Ch} ]4) > 0 we combine (5.3) with (5.4), so our goal is to find a nonzero
vector in HWV, (®4"C™) that does not vanish under the composition of both surjections in (5.4). The
vector space HWV , (®Q¥C™) is well known and we construct its elements as follows. For a partition
A= (A,...,A\m) let u be its transposed partition, i.e., p; := [{j | A\s > j}|. If we depict a partition
by its Young diagram, which is a top-left justified array of boxes, A\; in each row, then g is obtained
by reflecting A at its diagonal, hence the name “transposed partition”. It is straightforward to verify
that the following vector vy is contained in HWV (®QC™):

Ux ::U#1®UM2®'“®U#A1’
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where v; ;== e; Aeag A+ ANe; = %20661 sgn(o)eq(1) ® - @ e4(;) is a highest weight vector of type
(1,1,...,1). Equation (5.2) combined with the fact that {\} contains a single highest weight vector
%,—/
7 times

line of type A and no highest weight vector of any other type (see e.g., [Kra85, ITII.1.4, Satz 1]) implies
that {mvy | ™ € G4y} is a generating set of the vector space HWV (¥ C™) (cp. [kel2, Claim 4.2.13]).
Thus {Sqnmvx | T € G4y} is a generating set of HWV(C[AZ,]4). The evaluation of Sy ,mvy at a point
p € A = Sym"C™* is known to equal the tensor contraction

(P®)Sanmoa, (5.5)
see e.g., [Ikel2, Sec. 4.2(A)]. Since p®4S,,, = p®¢, (5.5) equals

(P, (5.6)

as observed e.g., in [Ikel2, p. 39]. Therefore, the statement dim HWV(C[Ch].,];) > 0 is equivalent
to the existence of a m € &4, and a p € Ch}, such that (5.6) is nonzero. The search for (7, p) is an
algorithmic challenge that we tackle as follows. We choose a random p € Ch), ie, p = {14, =
% ZGGG” Loy @ -+ @ Ly(yy, L3 € C™*. To compute (5.6) we aim to not expand 7vy, because a tensor
contraction

(liy @ Liy @ -+ @ L, )TUN (5.7)

is just a product of determinants of matrices of size < m, and such determinants are efficiently
computable. If we expand p®? into a sum of summands of the form ¢;, ® ¢;, ® --- ® {;, , then
we obtain (n!)¢ many summands, which for n = 6 quickly exceeds our computational recources,
even for reasonably low d. Therefore we use a dynamic programming approach that is based on the
combinatorial interpretation of the summation (5.6) from [CIM16], which we describe next.

We identify A with its Young diagram, which we interpret as a cardinality |A| subset of N x N. Let
1 be the transpose of A, so u; denotes the length of the i-th column of A. A placement ¥ on X is a map
A — {1,...,n}. To each placement ¥ and each column index ¢ the corresponding determinant dety ;
is defined as the determinant of the top p; X p; submatrix of the m x p; matrix that is given by the
linear forms £y (1 ), L9(2,i)s - - - > L9(us,i)- We number the positions in A columnwise from left to right, top
to bottom, so that each position b € A gets a number j(b) € {1,...,nd}. Given m € &,,4 we construct
the Young tableau T of shape A by filling A\ at position b with the number T'(b) := [7(j(b))/n]. For
example, if X = (2,2), d = n = 2, and 7 is the transposition (2 3), then T' = ZJ. The tableau T' contains
each number from {1,...,d} exactly n times (and each tableau T which contains each number from 1
to d exactly n times can be otained from some 7). A short calculation, which for example is done in
[CIM16], shows that (5.6) equals

> H dety ;, (5.8)

proper ¥ i=1

where a placement 9 is proper if 9 places each number onto each number in T exactly once, i.e., for
every i € {1,...,n} and j € {1,...,d} there exists exactly one b € A with (9(b),T'(b)) = (4, J).

The above description was used to perform the computations in [CIM16]. We now discuss some
adjustments for the computations that we use. For a placement ¢ on A and for a partition v C X\ we
denote by 9|, the restriction of ¥ to v. We say that a placement ¢ on A extends a placement ) on
v C XNiff 9], = 1. Let AS* denote the set of boxes in the first k¥ columns of the Young diagram \, and
A>F denote the set of boxes of A that are in columns > k. For a placement 1 on AS* and a placement
@ on A”* let ¥ denote the unique placement on A that extends both ¢ and .

Our algorithm constructs all proper placements ¥ on A using a standard breadth-first search in a
columnwise manner from left to right, top to bottom. In this way we first obtain 9| <1, then ¥|y<2,
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and so on. For each placement 1) on AS* we observe that

A1 k A1
Z Hdetﬁ’i = (H detw,i> Z H detﬁwi . (59)
i=1

proper ¥ extending ¢ i=1 proper 9 extending ¢ i=k+1

=:a(y)

Two placements 1 and v’ on AS* are called equivalent if they can be obtained from each other by
permuting entries between positions that have the same number in T'. The crucial observation is that
a(y) = a(y’) if ¢ is equivalent to ¢’. Therefore we can store and reuse each «(t)) that we encounter
throughout the algorithm without computing it again. Although this requires a significant amount of
memory, it enables us to crucially cut down the computation time. !

Define #;(T<*) as the number of times the number i appears in the first k& columns of T. Then the
number of non-equivalent 1 can easily be calculated as

2 (Y o

k=1i=1

Note that depending on T the number of non-equivalent ¢ can wildly vary and with it also our
running time and memory usage. Generally, it seems that semistandard tableaux, i.e., tableaux with
non-decreasing rows and strictly increasing columns, can be evaluated faster. It is sufficient to restrict
our attention to semistandard T' only, see e.g., [Ikel2, Sec. 4.3(A)]. For many partitions there were
too many semistandard tableaux in order to generate all of them, so a set of random semistandard
tableaux was chosen in these cases. In either case we tested the chosen tableaux by increasing value
of (5.10). Additionally, as soon as we find Hle dety ; to be zero we do not have to evaluate the
corresponding a(t). Numerical problems were avoided by working over a finite field. O

The actual tableaux found in both these calculations can be found in Section 8.

6 Tableau computation results for Proposition 3.2

Proof of Proposition 3.2. We computed the following &8 tableaux that index a basis of
HWV34.6.2(C[AS]7), in complete analogy to [BIP19, Sec. 6]. The corresponding functions can be readily
evaluated at 8 random points in Powg!4 to obtain an 8 X 8 matrix whose non-singularity proves the
first part of Proposition 3.2.

1(1/2]2[2[2[2|3[3[4[4[4[4[5[5]|5|5[5[6]|6[6]6]|6[{6|7|7[7|7|7|7
4|5

2[2[2]2[3[3][3]3][3[3]4[4]4]4[5][5]5]5]6]6][6]6]7]7[7]7]7]7]

1]2[2]2[3[33[3[3[3[4[4[4]4[5]5[5[6[6[6l6[6[6l7[7[7[7[7]7]

2[2[2[2]2[3[3[3[3[3]3[4[4[5]5[5]5]6[6[6]6[6[6[7[7[7[7]7]

2[2[3[3]3[3[3[4[4[4[4]5[5]5]5[5]5]6[6[6]6[6[7[7[7[7[7]7]

1]22]2[2[2]3[3[3[3[3[4[4[4[4[5[5]5[5[56[6[6l7[7[7[7[7]7]

2[2[2[2]2[2]3]3[3[3]4]4[4]4]5[5]5]5]6[6]6[6[67[7[7[7]7]

2[2[2]2]3[3[3[3[4[4[4]4[4[5]5[5]5]5]6[6]6[6[67[7[7[7]7]

[Tel=]Ee =[] [e =] ]e === ][w]e[=
520 T e e Y N S 1 N S S N P

1Since a(z)) for any placement 1) on A<F only depends on a(y') for some placements 1)’ on A=kl we don’t have to
keep the results for all k at the same point in time, which again cuts down our memory usage by a small factor. This
was especially relevant for the case m = 4,n = 7, although not sufficient for all partitions.
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The second part is proved analogously by studying HWV7 7 2(C[A]]s) and using the following 11

tableaux.
1[afa[a[a[a[1]2][2]2]2]2]3[3[3]3]3[3[3]4[4[4[4[4[4[5]5[5]5]5[5]6]6]6]616]6]6]7[7[7]8[8]8[8]8[8]
2[2[4[7[7]7]8]

(517]
1[1[1[a]1]1[1]22]2[2]3[3[3[3[3]3[3]4[4[4[4]4[4]5][5]5[5]6[6]6]6]6[6]7[7[7[7]7[7[8[8]S[8[8[8[8]
2[2]2[5[5]5[7]

[416]
1[1[1]a]1[1]1]2]2]2[3]3]3][3[3[3[3]4]4[4]4]4]4[5[5][5]5]5]5]5]6]6]6]6]6]6]7[7[7]7]7[7[7]8]8[8[8]
2[2[2[2[4[6][8]

(818]
1[1[a[a[a[1[1]2][2]2[3]3]3][3[3]4]4[4[4]4[4[4[5[5]5[5]5]5]6]6]6]6]616]6[7][7[7][7]717]7[8]8[8]8]8]
2[2[2[2[3]3]8]

L518]
1[1[1[a]1]a[a]22]2[2]2[3[3[3[3]3[3]3[4[4[4]4[4]5][5[5]5]5[5]6]6]6]6]6]6]6[7[7[7[7[7[7[7]8[8]8]
2[2]4[8[8[8[8]

(415
1111 [1]1]2]2]2][2]2]2]2][3][3]4]4]4[4]4]4]4[5[5]5]5]6]6]6]6]6]6]6]7[7][7[7[7]78[8[8]8]8[8[8]
3[3[3[3[3[5[5]

L5171
1[afaa[a[a[a]2]2]2]2]2]2]2[3]3]3[3[3]4][4[4[4[4[4[4[5[5]5]5[5]5]516]616]6]6]7[7[7]8[8]8[8]8[8]
313l6]6]7]7]7]

L718]
1[a[a]a]a[a]1]2]2]2][2]2]2]2][3[3][3]3]3[3]3]4[4[4[4[5]5]5]5]5]6]6]6]6]6]6]6[7[7]7][7[7[7]7]8[8]8]
4[4[4[5]5]8[8]

(818]
1[1[1]a]a[1]1]2]2]2[2]2]3]3[3[3[3]3]3[4]4]4]4[4[5]5]5]5]5]6]6]6]6]6]6]6]7[7[7]7]7[8[8[8]8[8[8]
2[2[4[4[5[5[7]

L718]
1[11]a]a[1]1]2]2]2]2]2]3]3][3][3[3]4]4[4]4[4]4[5[5]5]5]5]5]6]6]6]6]6]6]7]7[7[7[7]7[8[8]8]8[8]8]
2[2[3[3[5(7]8]

[416]
1[a[1]a]a[1]1]2]2]2][2]2]2]3[3[3][3]4]4[4]4[4]4[5[5]5]5]5]5]6]6]6]6]6]6]7][7[7[7]7][7[8[8]8]8[8[8]

[2]3]3[4[5][7[8
3[6

7 Generators for m=4,n=7

7.1 Proposition. Define the set

X = {(7), (8,6), (10,4), (12,2), (8,8,5), (9,6,6), (10,7,4), (10,8, 3), (10,10,1), (11,6,4), (11,8,2), (12,6,3), (12,7,2), (12,8,1), (12,9),
(13,4,4), (13,6,2), (13,7,1), (13,8), (14,5,2), (14,6,1), (14,7), (15,4,2), (16,4,1), (16,5), (17,2, 2), (18, 3), (10,6,6,6), (9,8,6,5), (8,8,8,4),
(10, 8, 6, 4), (10, 10, 4, 4), (11,7, 6, 4), (11, 8,5, 4), (10, 8,7, 3), (10,9, 6, 3), (12, 6, 6, 4), (12, 8,4, 4), (11, 8,6, 3), (11,9, 5, 3), (10, 8, 8, 2), (11, 10, 4, 3),

(10,10,6,2), (13,7,4,4), (12,7,6,3), (12,8,5,3), (12,9,4,3), (11,8,7,2), (11,9,6,2), (11,10,5,2), (10,10,7,1), (14,6,4,4),
(13,7,5,3), (13,8,4,3), (13,9,3,3), (12,8,6,2), (12,9,5,2), (11,8,8,1), (12,10,4,2), (11,9,7,1), (12,11,3,2), (11,10,6,1),

(14,8,5,1), (14,9,4,1), (13,8,7), (14,10,3,1), (13,9,6), (14,11,2,1), (13,10,5), (13,11,4), (13,12,3), (16,6,4,2), (16,7, 3,2),

(13, 6,6, 3),

(12,12, 2,2),
(11,11, 5, 1), (10, 10, 8), (14, 7, 4, 3), (13,7, 6, 2), (13,8, 5, 2), (13,9, 4, 2), (12, 8,7, 1), (13, 10, 3, 2), (12,9, 6, 1), (12,10, 5, 1), (12,11,4, 1), (11, 10, 7),
(16, 4,4,4), (15,6,4,3), (14,6, 6,2), (14,7,5,2), (14,8,4,2), (13,7,7,1), (14,9, 3, 2), (13, 8,6, 1), (14, 10, 2, 2), (13,9, 5, 1), (12, 8,8), (13, 10,4, 1),
(12,9,7), (13,11, 3,1), (12,10,6), (13,12,2,1), (12,11,5), (13,13,1,1), (12,12,4), (15,6,5,2), (15,7,4,2), (15,8,3,2), (14,7,6,1), (15,9, 2, 2),

(16,8,2,2), (15,7,5,1), (15,8,4,1), (15,9,3,1), (14,8,6), (15,10,2,1), (14,9,5), (15,11,1,1), (14,10,4), (14,11,3), (14,12,2), (14
(14,14), (17,5,4,2), (17,6,3,2), (17,7,2,2), (16,6,5,1), (16,7,4,1), (16,8,3,1), (15,7,6), (16,9,2,1), (16,10,1,1), (15,9,4), (15
(15,11, 2), (15,12, 1), (18,4, 4, 2), (18,6, 2,2), (17,6,4,1), (17,7,3,1), (17,8, 2, 1), (16,7,5), (17,9, 1, 1), (16, 8, 4), (16, 9, 3), (16, 10, 2), (16, 11, 1),
(19,5,2,2), (18, 5,4, 1), (18,6,3, 1), (18,7,2,1), (17,6, 5), (17,9, 2), (17, 11), (20, 4, 2, 2), (19, 4,4, 1), (19,5, 3, 1), (19,6,2, 1), (19,7,1, 1), (18,7, 3),
(18,9, 1), (20,5, 2,1), (19, 5,4), (22,2, 2, 2), (21,4, 2, 1), (20,5, 3), (21,4, 3), (22,5, 1), (23, 3, 2), (11,8, 8, 8), (10, 10,8, 7), (11,9,8,7), (11,10,7,7),
(10,10, 9,6), (12,8,8,7), (11, 10,8,6), (11,11,7,6), (10,10, 10,5), (13,8,7,7), (12,9,8,6), (12,10,7,6), (12,11,6,6), (11,10,9,5), (11,11,8,5),
(13,8,8,6), (13,9,7,6), (13,10,6,6), (12,9,9,5), (12,10,8,5), (12,11,7,5), (11,10, 10,4), (12,12,6,5), (11,11,9,4), (14,8,7,6), (14,9,6,6),
(13,9,8,5), (13,10,7,5), (13,11,6,5), (12,10,9,4), (13,12,5,5), (12, 11,8,4), (12,12,7,4), (11,11, 10, 3), (15,7,7,6), (15,8,6,6), (14,8,8,5),
(14,9,7,5), (14, 10,6, 5), (13,9,9,4), (14,11, 5,5), (13, 10, 8,4), (13,11,7,4), (12, 10, 10, 3), (13, 12,6,4), (12,11, 9, 3), (13,13, 5,4), (12, 12,8, 3),
(16,7,6,6), (15,8,7,5), (15,9,6,5), (15,10,5,5), (14,9,8,4), (14,10,7,4), (14,11,6,4), (13,10,9,3), (14,12,5,4), (13,11,8,3), (14,13,4,4),
(13,12,7,3), (12,11, 10, 2), (13,13,6,3), (12,12,9,2), (16,7,7,5), (16,9,5,5), (15,9,7,4), (15,10,6,4), (14,9,9,3), (15,11, 5,4), (14, 10,8, 3),
(15,12, 4,4), (14,11, 7, 3), (13, 10, 10, 2), (14, 12, 6, 3), (13,11, 9, 2), (14, 13, 5, 3), (13, 12, 8, 2), (14, 14, 4, 3), (13,13, 7, 2), (12, 12, 10, 1), (17,7, 6, 5),
(17,8,5,5), (16,8,7,4), (16,9,6,4), (16,10,5,4), (15,9,8,3), (16,11,4,4), (15,10,7,3), (15,11,6,3), (14,10,9,2), (15,12,5,3), (14, 11,8, 2),
(15,13, 4,3), (14,12,7,2), (13,11, 10, 1), (15, 14, 3, 3), (14, 13,6,2), (13,12,9,1), (14, 14,5,2), (13,13,8,1), (12,12, 11), (18,6,6,5), (18,7,5,5),
(17,7,7,4), (17,9,5,4), (16,8,8,3), (16,9,7,3), (16, 10,6,3), (15,9,9,2), (16,11,5,3), (15, 10,8,2), (16,12,4,3), (15,11,7,2), (14,10, 10, 1),
(16,13, 3,3), (15,12,6,2), (14,11,9,1), (15,13,5,2), (14,12,8,1), (15, 14,4,2), (14,13,7,1), (13,12, 10), (15, 15,3,2), (14,14,6,1), (13,13,9),
(18,9, 4,4), (17,10,5,3), (16,9,8,2), (17,11,4,3), (16,10,7,2), (17,12, 3,3), (16,11,6,2), (15,10,9,1), (16,12,5,2), (15,11,8,1), (16, 13,4, 2),

(15,12,7,1), (14,11,10), (16,14,3,2), (15,13,6,1), (14,12,9), (16,15,2,2), (15,14,5,1), (14,13,8), (15,15,4,1), (14,14,7),

(15,6, 6, 1),

,13,1),
, 10, 3),

(19,7,5,4),

(18,7,7,3), (17,9,7,2), (18,11,3,3), (16,9,9,1), (17,11,5,2), (16,10,8,1), (17,12,4,2), (16,11,7,1), (15,10,10), (17,13,3,2), (16,12,6,1),
(15,11, 9), (17, 14, 2, 2), (16, 13,5, 1), (15,12, 8), (16, 14,4, 1), (15,13, 7), (16, 15, 3, 1), (15, 14, 6), (16, 16, 2, 1), (15, 15, 5), (20, 6, 5, 4), (19, 10, 3, 3),
(17,14, 3, 1),
(16,13, 6), (17,15,2,1), (17,16,1, 1), (16, 15,4), (16,16,3), (19,7,7,2), (17,9,9), (18,12,4,1), (17,11,7), (18,13,3,1), (18,14,2,1), (17, 13,5),
(18,15,1, 1), (17, 14,4), (17,15,3), (17,16, 2), (22,5,4,4), (21,6,5,3), (21,8,3,3), (20,11, 2,2), (18,9,8), (19,12,3,1), (18,11,6), (19,13,2,1),

(17,9,8,1), (18,11,4,2), (18,12,3,2), (17,11,6,1), (16,10,9), (18,13,2,2), (17,12,5,1), (16,11,8), (17,13,4,1), (16,12,7),

(19,14,1,1), (18,15,2), (18,17), (22,7,3,3), (19,13,3), (19,15,1), (19,16), (23,5,4,3), (23,6,3,3), (21,12,1,1), (24,4,4,3),
(21,7,7), (25,5,3,2), (24,5,5,1), (26,4,3,2), (25,8,1,1), (28,3,2,2), (27,4,3,1), (12,10, 10,10), (11,11,11,9), (12,11, 10,9),
(13,10,10,9), (13,11,9,9), (12,11,11,8), (12,12,10,8), (14,10,9,9), (13,11,10,8), (13,12,9,8), (13,13,8,8), (12,12,11,7),

(14,10, 10,8), (14,11,9,8), (14,12,8,8), (13,11,11,7), (13,12,10,7), (13,13,9,7), (12,12,12,6), (15,10,9,8), (15,11,8,8),

(14,12,9,7), (14,13,8,7), (13,12,11,6), (14,14,7,7), (13,13,10,6), (16,9,9,8), (16,10,8,8), (15,10,10,7), (15,11,9,7),
(14,11,11,6), (15,13,7,7), (14,12,10,6), (14,13,9,6), (13,12,12,5), (14,14,8,6), (13,13,11,5), (17,9,8,8), (16,10,9,7),

(16,12,7,7), (15,11,10,6), (15,12,9,6), (15,13,8,6), (14,12,11,5), (15,14,7,6), (14,13,10,5), (15,15,6,6), (14,14,9,5),

(17,9,9,7), (17,11,7,7), (16,10,10,6), (16,11,9,6), (16,12,8,6), (15,11,11,5), (16,13,7,6), (15,12,10,5), (16,14,6,6),
(14,12,12,4), (15,14,8,5), (14,13,11,4), (15,15,7,5), (14,14,10,4), (13,13,13,3), (17,11,8,6), (17,12,7,6), (16,11, 10,5),
(16,12,9,5), (16,13,8,5), (15,12,11,4), (16,14,7,5), (15,13,10,4), (16,15,6,5), (15,14,9,4), (14,13,12,3), (16,16,5,5),

(14,14,11,3), (19,9,7,7), (18,9,9,6), (17,11,9,5), (17,12,8,5), (16,11,11,4), (17,13,7,5), (16,12,10,4), (16,13,9,4),
(17,15,5,5), (15,13,11,3), (16,15,7,4), (15,14,10,3), (14,13,13,2), (16,16,6,4), (15,15,9,3), (14,14,12,2), (18,12,7,5),
(18,13,6,5), (17,12,9,4), (18,14,5,5), (17,13,8,4), (16,12,11,3), (17,14,7,4), (16,13,10,3), (17,15,6,4), (16,14,9,3),
(17,16,5,4), (16,15,8,3), (15,14,11,2), (17,17,4,4), (16,16,7,3), (15,15,10,2), (14,14,13,1), (21,7,7,7), (19,13,5,5),
(18,13,7,4), (17,12,10,3), (17,13,9,3), (16,12,12,2), (18,15,5,4), (17,14,8,3), (16,13,11,2), (17,15,7,3), (16,14, 10,2),
(17,16,6,3), (16,15,9,2), (15,14,12,1), (17,17,5,3), (16,16,8,2), (15,15,11,1), (14,14,14), (18,12,9,3), (18,13,8,3),
(19,15,4,4), (17,13,10,2), (17,14,9,2), (16,13,12,1), (18,16,5,3), (17,15,8,2), (16,14,11,1), (18,17,4,3), (17,16,7,2),
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(23,5,5,2),

(12,12,9,9),
(15,9,9,9),

(14,11

,10,7),

(15,12,8,7),
(16,11,8,7),

(13,13

,12,4),

(15,13,9,5),
(17,13, 6, 6),
(15,15, 8,4),

(15,12
(17,11
(15,13
(17,11
(15,13
(17,12
(16,15

,12,3),
,10,4),
12, 2),
,11,3),
,13,1),
, 11, 2),
.10, 1),



(15,14,13), (18,18,3,3), (17,17,6,2), (16,16,9,1), (15,15,12), (18,11,11,2), (19,13,7,3), (18,12,10,2), (18,13,9,2), (17,12,12,1),
(17,13,11,1), (18,15,7,2), (17,14, 10, 1), (16, 13, 13), (19,17, 3,3), (17, 15,9, 1), (16, 14, 12), (18,17,5,2), (17, 16,8, 1), (16, 15,11), (18, 18,4, 2),
(17,17,7,1), (19,13,8,2), (18,12, 11, 1), (18, 13, 10, 1), (20, 16, 3, 3), (18, 14,9, 1), (17, 13, 12), (18,15,8, 1), (19, 17,4, 2), (17, 15, 10), (19, 18, 3, 2),
(18,17,6,1), (17,16,9), (19,19,2,2), (18,18,5,1), (17,17,8), (19,11,11,1), (19,13,9,1), (18,13,11), (18,14,10), (19,18,4,1), (18,17,7),
(19,19, 3, 1), (21,17, 2, 2), (19, 15, 8), (20, 18, 3, 1), (19,17, 6), (20, 19, 2, 1), (19, 18, 5), (19, 19, 4), (20, 11, 11), (20, 19, 3), (26,6, 5,5), (22, 18,1, 1),
(21,19, 2), (21,20,1), (23,19), (28,5,5,4), (29,5,5,3), (31,5,3,3), (32,5,5), (13,12,12,12), (13,13,12,11), (14,12,12,11), (14,13,11,11),
(13,13,13,10), (15,12,11,11), (14,13,12,10), (14,14,11,10), (16,11,11,11), (15,12,12,10), (15,13,11,10), (15,14, 10,10), (14,13,13,9),
(14,14,12,9), (16,12,11,10), (16,13,10,10), (15,13,12,9), (15,14,11,9), (15,15,10,9), (14,14,13,8), (17,11,11,10), (17,12, 10,10),
(16,12,12,9), (16,13, 11,9), (16, 14, 10,9), (15,13, 13,8), (16, 15,9,9), (15, 14,12,8), (15,15,11,8), (14, 14, 14, 7), (18,11, 10, 10), (17, 12,11, 9),
(17,13,10,9), (17,14,9,9), (16,13,12,8), (16,14,11,8), (16,15,10,8), (15,14,13,7), (16,16,9,8), (15,15,12,7), (18,12,10,9), (18,13,9,9),
(17,12,12,8), (17,13,11,8), (17,14, 10,8), (16,13,13,7), (17,15,9,8), (16,14,12,7), (17, 16,8,8), (16,15,11,7), (15,14, 14,6), (16,16, 10,7),
(15,15,13,6), (18,12,11,8), (18,13,10,8), (18,14,9,8), (17,13,12,7), (18,15,8,8), (17,14,11,7), (17,15,10,7), (16,14,13,6), (17,16,9,7),
(16,15,12,6), (17,17,8,7), (16,16,11,6), (15,15,14,5), (19,13,9,8), (18,12,12,7), (18,13,11,7), (18,14,10,7), (17,13,13,6), (18,15,9,7),
(17,14,12,6), (17,15,11,6), (16,14, 14,5), (18,17,7,7), (17,16, 10,6), (16,15,13,5), (17,17,9,6), (16, 16,12,5), (15,15,15,4), (19,13,10,7),
(19,14,9,7), (18,13,12,6), (18,15,10,6), (17,14,13,5), (17,15,12,5), (18,17,8,6), (16,15,14,4), (18,18,7,6), (17,17,10,5), (19,13,11,6),
(20,15,7,7), (19,14,10,6), (18,13,13,5), (19,15,9,6), (18,15,11,5), (17,15,13,4), (19,18,6,6), (18,17,9,5), (17,16,12,4), (16,15, 15,3),
(18,18,8,5), (17,17,11,4), (16,16, 14,3), (19,13,12,5), (19,14,11,5), (18, 14,13,4), (17, 15,14, 3), (18,17,10,4), (17,16, 13,3), (19,19,6,5),
(17,17,12,3), (16,16, 15,2), (19,13,13,4), (18,14, 14,3), (18,15,13,3), (17,15,15,2), (20,19,5,5), (19,18,8,4), (17,16, 14,2), (19,19,7,4),
(18,18, 10, 3), (17,17, 13,2), (16,16, 16,1), (18,15, 14,2), (20,19,6,4), (18,17,12,2), (17,16,15,1), (19,19,8,3), (17,17, 14,1), (19, 15,13, 2),
(18,15, 15, 1), (18, 16, 14, 1), (21, 20, 4, 4), (18, 17,13, 1), (17, 16, 16), (20, 20, 6, 3), (19, 19,9, 2), (17, 17, 15), (19, 15, 14, 1), (18, 16, 15), (18, 17, 14),
(21,21,4,3), (19,15,15), (19,17,13), (22,21,3,3), (21,21,5,2), (19,19,11), (20,15,14), (23,22,2,2), (22,22,4,1), (21,21,7), (24,23,1,1),
(23,23,3), (25,23,1), (25,24), (14,14, 14,14), (15,14,14,13), (15,15,13,13), (16,14,13,13), (15, 15,14,12), (17,13,13,13), (16,14, 14,12),
(16,15,13,12), (16, 16,12,12), (15,15,15,11), (17,14,13,12), (17,15,12,12), (16,15,14,11), (16,16,13,11), (18,13,13,12), (18,14,12,12),
(17,14, 14,11), (17,15,13,11), (17,16,12,11), (16,15,15,10), (17,17,11,11), (16,16,14,10), (19,13,12,12), (18,14,13,11), (18,15,12,11),
(18,16,11,11), (17,15,14,10), (17,16,13,10), (17,17,12,10), (16,16,15,9), (19,13,13,11), (19,15,11,11), (18,15,13,10), (17,15,15,9),
(18,17,11,10), (18,18,10,10), (17,17,13,9), (20,14,11,11), (19,14,13,10), (19,15,12,10), (19,16,11,10), (18,15,14,9), (19,17,10,10),
(18,16, 13,9), (18,17,12,9), (17, 16, 15, 8), (18, 18,11, 9), (17,17, 14, 8), (20, 15, 11, 10), (19, 14, 14, 9), (19, 15, 13,9), (18, 15, 15, 8), (18,17, 13, 8),
(17,16, 16,7), (19,19,9,9), (17,17,15,7), (21,15, 10, 10), (19,18, 11,8), (19,19, 10,8), (17,17, 16,6), (20,15, 13,8), (19, 15,15,7), (20, 19,9, 8),
(18,17,15,6), (19,19,11,7), (17,17,17,5), (18,17,16,5), (20,15,15,6), (18,17,17,4), (21,21,7,7), (19,17,16,4), (18,18,17,3), (19,17, 17, 3),
(19, 18,16, 3), (18,18, 18,2), (19, 18,17,2), (19,19, 16,2), (20,17,17,2), (19, 18,18,1), (19,19,17,1), (20,18,17,1), (20,19, 16,1), (19,19, 18),
(21,17,17,1), (20,18,18), (20, 19,17), (21,19, 16), (22,17,17), (28,26, 1,1), (27, 27,2), (29,27), (16,16, 16, 15), (17,16, 15, 15), (18, 15, 15, 15),
(17,16, 16, 14), (17,17,15,14), (18,16, 15,14), (18,17, 14,14), (17,17,16,13), (19,15,15,14), (19,16, 14, 14), (18,16, 16,13), (18,17, 15,13),
(18,18, 14,13), (17,17,17,12), (20,15, 14,14), (19,16,15,13), (19,17, 14,13), (19,18,13,13), (18,17,16,12), (18,18,15,12), (20,15, 15,13),
(20,17,13,13), (19,17,15,12), (18,17,17,11), (19,19,13,12), (20,19,12,12), (19,19,14,11), (21,15,15,12), (20,17, 15,11), (19,17,17,10),
(19, 19, 19, 6), (20, 19,19, 5), (21,19, 19, 4), (20, 20, 20, 3), (21, 20, 19, 3), (21, 20, 20, 2), (21, 21, 19, 2), (21, 21, 20, 1), (22, 20,20, 1), (22,21, 19, 1),
(21, 21, 21), (22,21,20), (23,21,19), (31,31,1), (18,18,17,17), (19,17,17,17), (18,18,18,16), (19,18,17,16), (19,19, 16,16), (20,17,17, 16),
(20,18, 16, 16), (19,18,18,15), (19,19,17,15), (21,17,16,16), (20,18,17,15), (20,19,16,15), (20,20, 15,15), (19,19,18,14), (21,19, 15,15),
(21, 21, 14, 14), (23,22, 22,3), (23, 23,22, 2), (23,23, 23,1), (24, 23,22,1), (24,23, 23), (25, 23,22), (34,34,1,1), (20,19, 19,19), (20,20, 19, 18),
(21,19,19,18), (21,20,18,18), (20,20,20,17), (22,19,18,18), (21,20,19,17), (21,21,18,17), (22,21,17,17), (25,25,25,2), (26,25,25,1),
(27,25,25), (21,21,21,21), (22,21,21,20), (22,22,20,20), (23,21,20,20), (22,22,21,19), (23,23,19,19), (23,23,23,22), (24,23,22,22),
(25, 25, 24, 24), (49,49)}.

Here we truncated trailing zeros from the 4-partitions. The set X is the set of minimal generators
of the semigroup of 4-partitions p that have a,(d[7]) > 0.

8 Tableau computation results for Proposition 5.1

In the following we list the actual tableaux from our computer computations described in the proof of
Proposition 5.1.

We start with the case n = 6, m = 3. The only partition where we were not able to generate all the
semistandard tableaux was A\ = (45,45), so we generated random semistandard tableaux and tested

only those which guaranteed fast evaluation.
[

(6) (6,6) (8,4)
1[aa]a]a]1 1[1]1]1]1]1]2]2]
2[2[2]2]2]2 2[2[2[2]3]3]
(10,2) (6,6,6)  Bobank (8,6,4)  Gbhh
t1]]1]1]1]2]2]3]3] t[i]1]1]1]1]2]2]2] 1a]a]a]1]1]2]2]
2[2[2]2 2]2]2[3]3]3] 2]2[2]2]3]3]3]3]
(10,4,4) BB (9,6,3) [0 (8,8,2) [l
111}1}1}1}2\2\2\2\ 111}1}1}1\2\2\3\3\3\ 1
2[2[3[3[3[3 2[2[2[2]3 2]
(10,6,2)  [s[3] (11,5,2)  [[3) ( [3]
11 1}1}1\1\2\2\2\2\3\3\ 1 1}1}1}1}1}2\2\2\2\2\
2[2[3[3 2[3[3[3]3]3
(125472) 1313 (1176a 1) 3] (
1111 1]2]2]2]2]3]3]3]3] 1[a1]a]a]1]2]2]2]2]2]3]3] m AT
: : 1[1[1[11]2]2[3[3]3[3]3]
2[2] 2[3[3]3] ! !
(14, 27 2) [5[3] (137 47 1) 3] (13, 5) 2[2[2[2[3
- 2[2 1[1]a]a]1]1]2]2]3]3]
[ 2RRREEEEE ABBEEE
2]2[2]2]3][3]3]3 2[2[2]2]3]3]3]3]
(15,3) (2[2[3] (8,8,8) 3[3]a]4[4]4]4]4 (10,8,6) 4[4[4[a]4]a
11]1]1]1]1]2][2]3]3]3] 1] ]a]1]1]2]2]2]3] 11]1]1]1]1]2]2]4]4]4]
2[2[2]2]3][3]3] 2]2]2[3]3[4]4]4]4] 2[2[2[2]3]3]4]4]
(11,7,6) ala]ala]4]a (10,9,5)  [lalalal (11,8,5) 3[33[3]4
1[1]1]1]1]1]2]2]3]3] 1[1]1]1]1]1]2]2]3]3]3]3] 1[1]1]1]1]1]2]2]3]3]4]
2[2[2]2]3]3]3]3]4]4] 2]2]2]2]3][3]4] 2[2]2]2]3[3]3]3]4]
(10,10,4) 4]4]4]4 (12,7, 5) 4]4]4]4]4 (11,9,4) 4]4l4l4
11111 1}2\2\3\3\3\3\3\ 1111 1}1}2}2}2\2\2\2\ 1]1]1 1}1}1}2}2}2}2}4\
2[2[2[2[3]4 3]3[3[3[3[3]4]4 2(2[3[3[3]3]4]4]4]4
(13,6,5)  [aafalls (12,8,4)  [alalals (11,10,3) Bl
11]1]a]1]1]2]2]2]2]2]2]4] 1[a1]a]a1]2]2]2]2]2]2] 1[a]t]a]a]1]2]2[2]2]2]2]4]
3]3]3]3]3[3]4] 33]3[3]3[3]4[4]4] 3]3]3]3]3]3]4]4]
(13,7,4)  [alalals (12,9,3)  [alal4] (13,8,3)  [ally]
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a]af1]1]t]2]2]2]2]2]2] 11]1]1]1]1]2]2]3]3]3]3]3]4]4] [1]1]1]1]1]2]2]2]2]2]2]4]4]
(12 10 2) 33[3]3]3[3]4[4]4]4] (15 5 4) 2[2]2]2[3] (14 7 3) 3]3]3]3[3]3]4]
414] Ig) 4]4]4]4 s by 1414]4]
1] 1]1]2]2]2]2]2]2]4] 1[a]a]a]]1]2[2]2]2]2]2]4] 1[1]a]]1]1]2]2]2]2]3]3]3]4]4]4]
3]3[3]3[3[3]4]4]4 [33]3]3]3]3]44]4 [2]2]3]3]3
(13,9,2) iy (13,10,1) [1 (16,5,3) [l
1[1]1[a]1]1][2]2]2][2]2]2]4]4]4] 1afa]a]a]a]2]2]2]2]2]2[4]4] 1[1]a]a]1]1]2]2]2]2[3]3[3]3]3]4]4]
(15 7 2) 3]3]3]3]3[3]4] (14 9 1) 33]3]3]3]3]4[4]4] (17 4 3) 2[2]3]4]
1414] s Iy 14 3 Ty (414]4]
;;};};};}1}2}1}2\2\ [2[4]4]4] (15,9) MMM EEEEEEREREN ;;;\1\1\1\2\2\2\2\3\3\3\3\3\4\4\4\4\
(15,8,1) [ ) (2[2[2]2]4[4]4]4[4] (19,3,2) iy
;mém1\z\zmz\zm3\3\4\4\4\4&17 7 MMM 2RRRREEERA IE 283
(18,5,1) [ ’ [2la[2lal4l4l4] (10, 10, 10) [ala[alals[5]s[55]5]
1a]a]a]a]a]2]2]3]3]4] 1[1a]a]a]a]2]2]2]2]2]2] 1[a]t]1]1]1]2]2]2]2]2]2]5]
2[2][2]2[3[3[3[3]4]5] 3]3[3[3[3]3]4]4]5]5] 3]3]3]3][3]3]4[4]5]
11,10,9) [afalalalsls050505 12,10,8) [a]a]a]4]5]5]5]5 13,9,8 a[4]a]4[5]5]5]5
k) b ) Y
1[a]a]a]a]a]2]2]2[2]2]2] 11]a]a]1]1]2]2]2]2[2]2]4] 1a]a]a]a]a]2]2]2]2]2]2]4]5]
3]3]3]3]3[3]4[4]5[5]5] 313]3[3]3]3]4]5]5]5] 3[3[3]3]3[3]4]5]5]
12, 117 4]4]4]4]5]5]5 13,10,7 4l4l4]4]5]5]5 14,9,7 44]4]4]5]5]5
) b ) )
1] 1]1]2]2]2]2]2]2]5] 1111 1]1]2[2]4]4]4]4]4]5]5] 1[1fa]a]1]1]2]2]2]2]2]2]5]
3]3[3[3[3[3]4]4]5]5]5] 2[2]2]2[3]3]4]5] 3]3]3]3]3]3]4[4]5]5]5]5]
(13,11,6) [alalal45]5 (15,8,7) 3[3[3[3[5[5]5 (13,12,5) [alafalls
1[a]a]a]1]1]2]2][2]2]2]2]4]5]5]5] 1111112}2}2}2\2\2\3\;\1\ 111111}2}2}2}2}2}2\3\3\
3]3[3[3[3[3]4 3]3[3[3[4]4]4]4]4 3]3[3[3[4]4]5]5[5]5]5
(1677) 44]4]4]5]5]5 (15,9,6) 51515155]5 (14,11,5) 4]4]4]4]5
1[1]1]a]1]1]2]2]2]3]3]3]4] 1[af1]afa1]2]2]2]2][2]2]3]3]4] 1[at]a]a1]2]2]2]2]2]2]3]3]5]
2[2]2]3[3[3]4[4]4]4]4]5]5] 3[3[3[3]4[5]5[5]5]5] 3]3]3]3]4]a]4]4]4[4]5]
(13,13,4) [l (15,10,5) [ala[ala]s (15,11,4) [sls05
111 1}1}1}2}2}2}2}2}2}4}4\ 1]1]1 1}1}1}2}2}2}2}2}2\4\4\ 5[5] 1]1 LH \1}2}2}2}2}2}2}4}4\5\
3[3[3[3[3[3[4]4]4[4[5[5]5 313[3[3[3[3[4]4[4]4[5 3[3[3[3 4]4]4]4]5]5]5
(14,13,3) [l (16,11,3) L0 (15,13,2) [503)
EEERERREREEY  (17,13)  RRRREe BRRRRRERBEBBRE
(15,14,1) [5 ) [8[s]s[sla[4]a]4]a]4[5]5[5] (13,12, 11) [alalalals[5[6[6lelslo
t1]]1]1]1]2]2]3]3]4]5]5]6] 1[1]1]1]1]1]2]2]3]3]4]5]5] t[1]a]a]1]1]2]2]2]2]2]2]3]3]5]
2[2[2]2]3][3]3]3]4]5]5 2]2[2[2]3]3]3]3]4]5]5]6]6] 313]3[3]4]4]4[4]4]4]5]
(14,11, 11) [lafalas]506lc]6]els (13,13, 10) [alalal1[5[5[c[c]s]s (15,11, 10) [s]5]s[5]6lelsl6lels
1[a]a]a]1]1]2]2]2]2]2]2[3]3] 1afa]af1]1]2[2]2]2]2[2]4]4]4]6] 1[1fa]a]1]1]2]2]2]2]2]2]3]3]6]
3]3[3]3]4[4]5[5]5]5]5]5]6] 3|3[3[3]3[3]4]4]4]5 3]3]3]3]4]4]5]5[5]5]5]5]6]
(14139) 4]4]4]4]6]6]6]6]6 (16,11,9) 51515156]6]6]6]6 (15,13,8) 4]4]4]4]6]6]6]6
1[a]a]a]1]1]2]2]2]2]2]2]3]3]6] 1[1]a]afa]a]2[2]3]3]3[3[3[3]5][5[5]6] 1[afa]a]a]1]2]2]2]2]2]2]3]3]5]
3]3]3]3]4[4]5]5]5]5]5]5]6]6] 2[2]2]2[4]4]5]5]5 3]3]3]3]4]4]4[4]4]4]5]6]6]6]6]
(15 14 ) 44]4]4]6]6]6 (1899) 4]4]4]4]6]6]6]6]6 (15,15,6) 505(556]6
1[1]a]a1]1]2]2[2]2]3]3]4]4]5]5]5] 1[afi]afa]1]2]2]2]2][2]2][4]4]5]5]5]5] 11 1]2]2]2]2]3]3]3]3]4]4]4]4]4]5]5]5]5]6]6]6]
2[2]3]3]3[3]4[4]4]a]5]5]5]6]6]6]6] 3[3[3[3]3[3]4[4]4]4]5]5]6]6]6]6]6] 2[2[3]3]4
(17,17,2) [sld] (18,17,1) |4 (26,5,5)  [5l5l6l6ls
1[afa]i]1]]2]2]2]2]2]2]3]3]7] 1afa]a]a]1]2[2]2]2]2][2]3]3]7]7] 1[1]a]a]a]1]2]2]2]2][2]2]3]3]5]
3[3[3[3[4[4]5]5]5[5[5[5[6]7] 3[3[3[3[4[4]5[5[5[5[5[5]6 3]3[3[3[4]4|4|4]4]4]5]6]6]6]6]
(15,14, 13) [alala[alslsle[o[6]rl7l7[z (16,13, 13) [aa[alalslc[o[6l6lrl7]7[7 (15,15,12) [5l5[50506lcltlrlrl7lre
1[1]1]1]1]1[2[2]2]2]2]2]4[4]4]4]6] 11]1]1]1]1]2[2[3]4]4]4][4[5]6]6]7]8] 1[1]1]1]1]1]2]2[2]2]2]2[3]3]6]6]7]
313[3]3]3]3]4[4]5]5]5]5]5]5]6]7]7] 2]2[2[2]3]4]5]5]5]5]6]7]7]7 313]3]3]4[4]5]5]5]5]5]5]6]6]7]8]8]
(1717 ) 6l6l6l6]7[7]7]7 (18 15, 15)333345660788888 (17,17,14)4 4[4f6l6[7[7]7]7]8[8[8[8
[l ]2f2[a]2f2[3[3[3[4[5]6[c[6]6[c[7]7[7[s]
(25,23)  [alslslslalalalalals]515[5 5 6177 ]7]s]sIs[s]s]
[aTaafa e a]2]2]3]3]3]4]a[4]4]5]5]6]6]6]6]6]7[7[ 7 [ 8 [ 8899 [1o[1o]tt]1]11]12[12]12]13]13]13[13]14]14]14]
(45 45) \2\2\2\2\’5\3\’;\1\1\ﬁ\5\5\5\6\7\7\7\8\8\8\9\9\9\9\1(1\1(1\1[1\10\11\11\11\12\12\12\13\13\14\14\1:1\15\15\15\15\15\15\

We now give the tableaux for the case n = 7, m = 4. We list them in short notation, using row-wise
encoding and a dot to separate rows. Commas separate the tableaux. Furthermore, we write A instead
of 10, B instead of 11, etc. Repeated letters are written in short form, e.g., instead of 111 we write 13.

17, 17226, 1723.24) 1725.22, 17263236, 1723.26.36, 17236.26.3, 172°36.223, 17235.2632, 17263.23647, 1723.2436.3, 172.2632.35,
17234.263.32, 172534.2233, 172332.2435, 17234.26.36.46, 1723.2434.33, 172333.24.34, 172364.2645.3.4, 17235.26346.3.4, 172335.24.32,
172°3%.22.32, 172432.2334.3, 17233.2432.34, 172°34.2232.3, 172334.213.32, 172332.243%.3, 172034.23%.345 .4, 17233.2134.32,
17223.2532.34, 17273.3643 .41 172233.253.33, 172734.3642.4%, 1723346.26.314, 172336462134, 1726344235433, 1723246.263.314,
1723.2642.36.45 172354.263245.4, 17253645.224.34, 172343.2643 36,4, 17234%.2642.36 4, 172314.26345.324, 1723043.26.343 4,
17233045.24.34.4, 1723542.2644.3.4, 172732.3545 .42, 1723645.263.46.56, 1725344.223643 | 17263.23542 34 4, 1723332132 .32,
1723445.26324.3.4, 172634.23245.34.4, 172633.23345.34.4, 17233543 243.4%, 172234%.2534.354.4, 17235.263243 4%, 172343.2634.3542 4,
1727342.364%.42, 1723342243645, 172537.224657 4, 172234.2534.354.4%, 17244.2632.3543, 17234.26342.3°4.43, 17237475.265067,
1723144.203243.3, 1723344.204.3142 17213.233346.334, 17273425.3645.56, 172334.2044.3%42 1722314.25346.32, 172.2632.3543 44,
1723344.20343.3% ) 172345.26356.3545.4, 17234.2645.33.42) 17273.364350 445, 1723244.2642.354, 1723542.20324% 4, 17232.2642.354.44,
17243.2632.3543 4, 1723342264434 4, 1723343.204.3%.43, 172324426342 344, 1723042263457 4%, 1723544.26.324.42 | 1723343.26343.3%4,
172735.304255.455, 172334.243245.3%4, 1723344.26.394.42, 17273.364356.44.5, 17273.364250.45.5, 17232.26343.3% 44, 17246.263256.3545,
1723444.26.334.42, 172332.24346.3% 4, 17233643.24.34% 4, 1723%4.2643.3%.43, 17223644.2542.3.4, 172°3.223%46.32.4, 172344.2634.32.42,
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1723343.264.3%4.42, 17223345.2534.33 .4, 172346.263256.3%45, 17223643.254.342 4, 172334.26455.34456 172234.2°342.35 4%,
17234.24314.3344 4, 1723644.264356.3.5, 17223445.2534.3%.4, 1723%44.2632.342 4, 172232.2534%.3%4.4, 17234*.26435.36.55,
1723242.2634.3% 44, 1725342.2235.34% .4, 1723%4*.263.334.42, 1723445.2643.35.56, 17246.263256.354.5, 17264.237455.45667,
17233742.244557 1722343.253.354.4%) 1727345.364255 445, 17273.364756.506.6°, 1723%4.2063243.342.4, 172344.26456.365.42,
17234952.26454.36.5, 17233246.2435457, 172534656.22354.3.5, 1723%4.2634.3342 43| 1723545.26456.32.45, 172324.26342.3%4.43,
172334.24365.465.55, 17230425.2656.34% 4, 1723%4.20342.3243 4, 17234455.26345.3°425, 1723466.263576.3546°, 17232.263242.3%4°
17253%45.22.32.42, 17233345.24.34.42) 1723.2434.3345 42, 172333.2444.34 43 17263.2354250.344 .45, 17253346.2232.324,
172244.25334.3%42, 172235455.25345°.3.5, 1727325.3°4450.43 17233343 .24.34 44, 17234652.263.3545.5%, 1723465.263455.35567
17234.21305.34°5.455, 17223645.2534555.4.5, 17213346.2332.324, 17233246.24324.33) 1727345%.364552.45.5, 1723456.26565.306.49,
1722364.253465%.53 ) 172345.263456.35467.5, 17237.26425%.45.53 1723343.2132.31.41 172345.20345%.35452.5, 17213246.2333.32 4,
172733.314556.42 5, 1721233542324 4, 1722343.2°324.3145 ) 17273533043 44 .54, 1723142263243 342 1723645.2634552.45%.5,
172234.253243.3443, 17235425.20355.3445.4, 1723242.26342.3143 172332643 342,42, 1722343 .2°32.3% 4%, 172232.2534%.34 43,
1725.2237452.4554 5, 17237.204253 4553 5, 17223432532 3443 4, 172332.24344.344.42, 17273.36475.506%.64, 17234455.2634256.32,
172445.2335457.32 4, 1723415.26435.3652 1723422632342 43 172375.2047.5062.65, 172734.365762.46.6%, 17223343.2533.343 4,
17237.2642506.45560, 1726345.23555.34%66.46, 172°3%45.22324.32.4, 17223.253243.3%4% 4, 172334.2136.465% .51, 17231445.2634356.32,
172343265536 4452 172334.243%.3343 43 172365.263465.45466.56, 17273.304351.445.52) 17223443.2532.34% 4, 172342.2032.343 42,
1723244.263242.33 4, 172434%.23334.33.42) 1725343243243 3% 4, 17223.2°324.3%43.43, 17273.36435.4452.5%, 17234552.264254 365,
17234556.2645.3656°.6, 17233.24304.4654 53, 172334.2432.3442.41, 1723343.263243 .32 4, 1723335.24344.465.5%, 172734.36435.435% .52,
172374252.26445%.4.5, 1727335.31476.556.6°, 172235.2534756.50.6%, 17234762.2650.366°.5, 172334.243%4.334%.42, 172334°.2634256.3% 5,
17234653 .2645367.365, 1723%425.26450.31.41) 172734304353 435,53 17253143.22342.324.4, 172735.304253.4%5.52, 172134.233343 334,42,
172347.265664.3063.5, 17245.263255.35452.4, 172334.21364.4555.52, 17233342.2134.334.43, 172734.36465.5663.6%, 1723465.2632452.3151,
1725364555.224.34.52, 1723343.243%4.324.42, 17235.26324.465% 53, 17203742 2445567.4.5, 1723%4%55.26.345.435, 17243%43.2334.334.42,
172434.23334.3345.42, 172374.26566%.4561.5, 17243443.2334.3242 4, 17234%5.204354.36.52, 17235452.26324.4%5% 5,
172°3%4655.2235.324.5, 17223456.25342.3%.415, 17223%45.2545.3445.5%, 172345°.265265.366.45, 17232476.26596°.3%6.5,
1723334556.213.3%45.4, 172232465.253.3145.5°, 17233241.213243.33 | 17223241.253343.32, 17234652.265560.366.4, 1722334°5.253356.34.4,
172365.2634453 435,52, 1723425%.2645.36 4152 1727356.364762.596.63, 172635%.23°445.342.4, 1727352.364253 4752
17234252.26354.354.445 17223455.253245.314.5°, 172233.253245.32.42 172942233752 45 55 1723543234232 42,
1722364%.2545760.34.46, 1722334%5.254350.3% 1723.243442.3343 42, 17232.263245.33455.45%, 172°3%43.2242 32,42, 1723247.26576%.3564,
1726335.233465.3453.52, 1723325.2439452.4554, 1723344522433 .46 55, 17232454.2634.34452.4%5, 1723334%.24324.32.42,
17234566.243565.3455.46, 17223343.25342.3%.42) 17273.364752 556364, 172334.243245°.3145.415, 1723243.263242 33 42
17233.243142.3243 42 17263425%.2374.3435% 45, 172134%.233142.32.42, 172732.374554.425.52, 17273%4.3%4354 43 .53
172334.21475.3353 .53 17243242.233244.3% 4, 172324.26345.31435.4255, 172346.2635062.35456.6, 1723342.243%42.33 43,
17223343.253243.32 4, 172234°.253425%.3%53, 1723455%.2634567.3553 4, 17233452.243652 4653 1723342.2632.3243 42,
17253.2032.3543 4454 1725344222343 .32.42, 1723342.2436.4555 52, 172332.213244.3342 4, 1723465.26355.35456%.6°,
1723443.264257 33 42, 1726.2374253 4567.5%, 1723324.243554.46.53, 1725526323543 4452, 17243342.23324.324% 4, 17223%4.2535.4653 .53,
1723%4254.2044.314.5% ) 172324752.2635467.345, 1723324.21324.3342.43 ) 1723344150.24.334.425, 17237452.2046.556.63,
1722324654.253.344.5% 17243%453.233%4.45 54, 172353.2643.3652 4152 1727324.35465.5662.67, 1723242.263242.3%4.42,
172334.243652.4653 52 172734.364252.4452 53, 172334456.21324.34425 ) 1723552.26324.465% 52 172234652.253255 3% 4,
172344452.264255.33 .4, 172233.25465.34452 54 172344253.26455.33.53, 17236456.26346562.556.63, 17233%5.243%425.45.5,
172235.2°3243.3155 4%, 1723334456.244.34 425, 1723245.206343.314353 172374.2045°62.45526°, 17223345%.2534.4652 5,
1724654.20325367.35.4, 1727324.394252.415.51) 1726353.2304552 42,52 17233453.213652.46.52 ) 172354353.2034251.342,
172324453.2634254.344, 17234656.2632506.3146.64, 17233%.213345%.465.52, 172455.263252.3542 54, 1723324.243552.465 54,
1723.24354.324553 454, 17233425.2436.455% .52 172334352.20435.3445% ) 17223442.2532455.35%.5, 172734.36465%6.5462.61,
172334555.24334.33.45%, 17223%4.2533425.4455 5, 17237.2643526.44556.6%, 17233345.24344.4552. 5%, 172453.2632.35425.4453,
17233425.264453.344.53, 17234553.26425365.3056, 1723242.263425.343.56, 17234.243%4.324453.45% 172324256.263.34425.43,
1723254.2042.3545.4452 172324326343 34453 51, 172234.2532435.3415%.5, 1727345.364652 5465.62, 1723243.206345%.3143 53,
172631445565.2335.4356, 17223465.2°3345%.33.52, 172735.3643526.415%.60, 1723456.2042556.36526°, 1723342.2132456.345.4%,
172233453.253465.3%.53, 1723642.263567.4%52.51, 172374252.264452 452.5, 1723°452.203242 445,51 1723325.21334.3245 456,
1722355.253245.4552 53, 1723356.2644560.346.43, 172334655.26456777.34.5, 1727346.35536°.456.5162, 172234°.2532435.345° 45,
172345.26324252.3445% 4, 17232425.2650.35465.4%6, 172234353.253435.3953.4, 1723756.2042536.4%6°.5%, 17234756.265364.3062.5%,
172345562.265%6.3664.42, 1723445%6.204%56°.305%6, 172345%6.265462.3664.45, 172734.36425260.445.546, 1723%453.26343.3345 .42,
17234956°.264556276.367, 1723245.263242.33456 .43 1724253 .26325.3545.4452 ) 17273245.3%45°.4°56°.62, 1724°66.203255.3545%6 4,
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1723242.2656.35465.4456, 17224254.2°335.3445.445, 1723°455.263243567.43.5, 172354%67.2032425777, 17223245%.253452.3455 4,
172735.36425°6%.4563.56, 17263244.2345567.342.45, 172345.264252.3652.4452, 1722374756.255677787, 17223342.253243.32.42
1727345.36457.50637.647°, 1722325°.2544.3552.43, 172345%.264526°.36562.4%, 17233242.2432.3343 42, 172235.2532435% 4453,
17224354.2533.3453 44, 172734.364957.55637.647°, 17273246.3°45°6.45562.5, 1723°5.206324564.495.5463, 1722334752.25335567.3,
172324352 2644533552 172334355.26445267.34 172334243342 4553 .54, 172234352.253435.3°453 5, 1723345.26566.34265.446,
172335445665.244.324.456, 17234252.26325.3445° 445, 1723046%.26345.4552.546%, 17273426.304452.45%65.56, 1723252.263425.345% 445,
17273.364352.445562.67, 17233242.243242.3%4.42, 1722344253353 435,53, 172324255.26342.314352, 172234.2533453 4652 52,
1723475.265697.35676.5°87, 17223%43.2534257.32.42 17273.364452 435267.53, 1725344354.223% 415,52, 1722344.253352.4652 53,
1726353.23°42567.34152.45, 172°334655.2232.324.52, 1723324%.2134353 3154 1722315.253343 415251 172346243452 .3352 53
1727324.39425367.44 .54 172332.2434353.315% 44, 1723425°.265657.35670.455, 1723477.265767.36627.617%, 172334536.2045%6.3146° .44,
1722324.254354.3553 .43 17273.304263 45535164, 17234%6%.204255 365264, 17223242.254552.355.54 1723744.20435161.5%.63,
17233253.2434354.34 44, 1722343.25324353.3445%, 172236.2534252 455253, 1723345.265762.3465.42, 1723243556.26436°.35452,
17224.253%52.34435.435% 1723743.2041526.5562.6%, 17233242.2434%52.344.5%, 1727362.30435%.445%6.6%, 17233%45.243%42.4452 .54
172324556.2642561.3556.416, 172°364354.22342.425.52) 1723343.204352.31452.53, 172425.263252.3542 4354, 17224365.253%5.31416.55
17223346.25345%.496.5%, 1723253.2644.35546.4%6%, 17273.3042546.455363.6%, 1724352.233143.324355 4, 17273%4.31425%65.416.54,
17273.35435%6.445462.6%, 1722415.253353.345% 42, 172737.354752.556170.63, 172324356.263456°.34436.5°, 17236456.2035573.465674.6°,
17234352.26556%.3061.4%, 1722345.25345563.35456°.56, 17223445.25334253 44,53, 172324355.2645267.35.43, 17237436.26445362.5%.64,
17233452.2432445.34425% ) 17243.233343.334353 454 1723245536.2635466.3142, 17223243.2534353 344,54, 172234%.25324.344252.5°
1724334554.23352.33.425, 172324352.204452 35525, 1722324.2534352.3455.43, 172734.36425%.445462.6°, 172354.204%64.365%.446°,
17233453.2432445.314253, 1722304.253435% 4352 52, 1725334352233 343 453 17223%425.253%5.4°53.52 ) 1727362.3643526%.415.56,
1722356.2°3243.3455.4465, 17223245.254253.3552.415, 172345362.263456.355%6.4°6%, 172304.2635362.4563 5462,
1725342.22344255.324.4%5, 1723455.2035697.35427°.5567, 172°7.2237425.45506.607¢, 1722304.2535265.45677.55,
17234564.26425°.365262.6, 172395562.26324456°.4%.5, 172735.364267.45577.5587, 1723364.24345762.4563.62, 1722364752.253546077.5.6,
17234455.26425%66.33.526, 17234354.2645365.3662.43, 1723345%.21324253 345.41, 172356.2032462.4553.5164,
172345%63.263456.3°5%6.4°62, 172345°7.2642667.36575.4456, 17234351.2045362.3064.4%, 1724394353 .233425.342 53,
1723245.264516.3°4564.41562, 17237.264756.566273.6171, 17233.21324253 34453 415, 17234.2131452.334254 435,
172734.36465.506275.6572, 17233415.26324253 3253 4, 17235.26324562.46526.546%, 17273%4.3142526°.4156.5%6,
17223452.2532435.34435.53, 172334256.24334456.334.6, 172354.263256°.456276.567, 172366.263435.44526.5462,
172334256°.265°62.314.445, 172233436.2°34436.4576.6, 172334252.203453.35452.43, 17234%6*.26342.3°452.5°63,
17223646568.254677786.3.5, 17234%5463.2634252.39456, 1722334151.253343567.35.5, 172345°67.26345617.3°4567*.4167,
172331435665.244.3345.426, 172314352.2032435.3452.52) 17234%63.20425.36562.5°62, 1722345%6.2°3456°.3%456.4152,
17235464.2634262.355.456, 172234%5.253255.34436% .46, 17233452.2642546.314565.4%, 17232435.2644562.3556%.5%6,
17273.354156.4353657.53676, 17234353.243554.3242.42, 17245°63.2632562.3545.4%6%, 1723245264.2645%.35456° .44,
17234355.21314252.33 42 17234%5°.204256476.3657.63, 17232452.2645%.3°456%.46%, 17235°.264265.36567°.45572,
1723435°62.2635264.3°46.4°, 1722345562.253425°.396%.56, 1723°42526.263246°.445.5%6, 172234254.2532.3443 4253,
1723245.26342526.34451.4365, 17239415362.20343516°.32, 17233456°.205°77.34426.4456, 172345568.265265.36778.4685,
1723252.204356.3°45%6.43565, 17234357.20326774.344473 | 172324552.26425563.35.64, 17233245.21345562.314565.4%,
172433.233442546.4°53.65, 1723445%67.263425266.3°4575, 17243475%6.233%546977.33, 172732.354356°.4*52.5462,
172324557.26456772.35574.54, 17223%4252.25334.4453 52, 1722324653.2533452.32.52, 1723425°.20342565.355677 .43,
17234567.265677.367584.4683, 17273242.39425367.435.5%, 1723450672.264265.3057°.416, 172232425%.25342.345% 43,
172415°.20325265.3543677, 172232453.2532.3344 4251 172334255.2433.3342 4352 172732.3543577.416°76.62, 17234352.265562.3663.4462,
172556.263264.3543 445262, 172445572.2632565.354367%, 1723346567.213245%6°7.316.7%, 172324162.2643.35536.5461,
17244526.26326.3°43.5562, 1727325.3°44526°.43526.52, 1723435363.26345363.3%4256.4, 172232405°6%.253.344.5263,
172237572.25476.50627°.64, 172455062.263256°77.35.42, 1722345%6.25342526*.3°56.446, 1723334262.243%4%5.5%6.64,

172354.26324252 415562.6°, 1724553.2032526°.395262.4, 17245567.20326572.3%467%.567, 1723334.2432576.324466.42,
1723425%6.263547.3°46°.44676, 1724355.26325266.3543677.4, 17244546.2632526.354%62.5, 1723°56.203242.45526%.5463
17223245.2°350.314265.4162, 1723324.2132455.3342567 .43, 17241556.203252657.3543676, 1724356.26325%63.394363 4,
1723563.2632452.46562.5462, 17230415.263435062.6°73.74, 1722315 .25334526.46526.6°, 17223%562.253%4.34652.546°,
172334356.24326777.3445.43, 172735.36425672 456376174, 17223425.253242.34425% 453, 17224%6.253%45%62.3446* 5%,
17223435266.2532.3443.45%6, 172324553.263425260.346.52, 17223452.2°3345362.4056°.5, 1723°.203245262.45563.5462,
17273.36435272.445567.607%, 172234256.2°35°6.3°46°7.41576, 17232455.204263 .35526.5463, 17273246.3°43565.435377.53,
1727362.3042562.4°5262.546, 172232476.2°536°76.3°67.51, 172334262.213250.31456° .44, 1722374.2°4526°.456270.5°7,
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1727346.3545637°.4°5267.54627, 172734.36536475.46373 547, 1726.2374536.456473 546274, 172345.263245263.3445%6% .53,
1724324354.2332445367.33, 17234567.20456778.367482.4578%, 172345567.263245647.34756275.4, 1723245%.203526%.34425.4463,
1723556.243%4564.3343562 .43, 172233426.2533454.3435%65 .4, 17234452.203245%6.315265.42, 172234526.2°345%6°.39456.4*562,
172345264.264252.36563.4152, 172425°64.263256377.354.415, 17223%4.2°324607.455376.5%6, 17242576.2632617°.3°627.4°7,
17223246°.2°3452.34°5%62.45, 172345°637.20456274.365672.4°6, 17249.263255.3546270.56°787, 17234°57.204267.365272 5474,
1723435467.263265.344475.53, 1722324552.25324252 3353, 172243556.2°335264.344162, 1722374.25452698.45675.55786,
1723425264.2645.305637.4476 ) 17223%4252.253345 556%.63, 1727356.30425627.456*72.5574, 172346*.263245.344253 435363,
172374573.26556274.456487.56, 17232425265.2034%5.34425%6.6, 17234462.2634262.354526.5°62, 172435%.23334352.334252 42,
1723245%617.205567°.3°4627.45, 1723%46.2632426.3435%62.45%6%, 17235%697.2642574.36526.4°572, 172235067.2534266.3°5708.4°86
1724324354.233245367.33 .43, 1722324453 25343546°.31.62, 172450683.263265.3°4778.45583, 1723415262.20436375.3567.5567,
1723467.263526373.35463.5°67, 172304.20342564.41526276.5467, 1722324362.254152.3556°.54, 172533452.22324255.3242 42,
172546526372.2236455647°.3, 172324%.203242564.335363.53, 17234560.203245376.34°536787.4, 172456.233°42567.3245647.5°67°,
17244526.26325264.395%62.43, 1723345362.26546%.3%42 4462, 172345%627.2034673.35526.4573, 1725435264.223643536%.34.52,
17273627.36425272.456°.5571, 172345%6.264526%.3056271.4°573 ) 1723425%6.2645%67°.30637.44627, 172415%62.2632526°.3°4377 5,
172455.2632657.354627°8.455785, 172436435365.2334.4%52.5262, 172345°.20352657.354637%.4567°, 1724252.263265.37452.415262,
172355365.20324356277.41 5%, 17223243.253445.31526°.5462, 1723456°.2632452637.3445676.5, 172345°73.205267.367484.4683
1723435362.26435262.36526.4, 17247567.2632536373.39536373, 1723%45263.20425%.3445264.43, 1723425567.2036072.354572.44572,
1723567.263245475.49527287.5, 17234%526%.263454672.354627% .45, 17233.24324352.3445462.4%56%, 17245537.26326572.3%4%674.5%,
172425%.2632677.3°57082.4585 ) 172735.364256472.4°6373.5°72, 172345%6372.2035262.3°457°.4°56, 1722355.2532477.5662768.6°80,
172235536.2°3246°7°.495672.5%, 172345267°.263452627.3°5%67.456%, 172345%64.2035676.3542687.415267, 172325%.26425262.35456°.44562,
17223456.253426571.3°56273.41, 172235463.2532456* 455276547, 172341678.26425574.36527386 4, 1722324156%7.254%56476.355.54,
1723244563.264356276.35627.55, 172324%66.263425376.344546787, 17224506.2°3346672.3442575.43 ) 17243567.26325637°.3564787 .44,
1722355%6.253245372.45674.697, 172435462.263253647.3543676 .4, 17234356%.265675.306637286.448, 1724%5%62.203253617.3542670 4,
172236452647.2534553670.52.62, 17234252672.2654627.3064.45574, 172324%562.203245%6.334526%.42, 1724°596.26325627°.3542575.647,
172245536.2°33454673.346174.46, 1723745.2645362786.51676897.64, 1723245262.2035%62.34425.44562, 1723456.263266.3442567°.417287,
172455627°.26326473.354527.456, 1722342578.25343678%.354778% .4, 172234562.2°345267.324%6% 45176 1723245.20453637.3546374.41672,
1722345%73.253454.3°456* 446374, 17233443526°.244556477.33.43, 1723747.26452627°.4°56387.54627, 172344673.2643567.365262.546373,
17245562.26326372.3545673.5°672, 1722325%6.2534256°7.34425670.43, 1723357.2433436°.33426277.42, 1724255.2032677.35567°82.45678°,
172334526°.264456708.344254678%, 17234964.2645627582.365672.5°8%, 1723245472.2645265.3°45627.44 74, 1723324465.24343536277.3%.5¢,
1722334252 .253456°.335262.5%, 17223943.2532445.566274.6°73, 17234°.243556°.3242526277.54, 1723456°.20325270.344252 415267,
172425678.263267.3747°82.41578%, 17223435362.2°3435262.3°4526%, 1725565.20326274.354372.44527, 17223245%6°.2°35161.344277 .44,
17273627.3642526574.4562.5°72, 172425572.263252637.3564.4574, 17233536°.26425262.3145262.44, 17223241536.2°3243563.3%6.62,
172234462.2°42556.3342526% .42, 172324682.2657.3546275.65728°, 17223245.254252657.3°56276.54, 1724250672.26326578°.355748.4568,
17243.2333425%.33425363 43564, 172235426.2°324256.435%62.53, 172425762.26326476.35426787.4%, 172324255.2052647°.3546272.4%6,
17245562.26326572.3942573.4472, 17223526.2533462.33435% 435264, 1723456276.2634254787.35536°97, 17224526.2°3%56.344252.445262,
172734%.30435627°8.50637286.62, 172343526.26536472.30627°.4152, 1723452637.20425267.305637.445274 ) 172244536.253151637.33436270.6,
17273.304356372.415367°.5%6387, 172345%62.20345274.35456%.4156273, 172234556.2°32436572.344%5267°,
172425262.263252.3545262.4456%, 172324*6272.20426°.3545274.5°7, 172345%6%7.26325647.344252674.447,

172345527.26425364 3652637472, 1723452.20325262.34425262.4456%, 17245563.26326274.354257.446272, 1723%4256°.2035°627°.3343572 .42,
172376.2043576.4452648%.5162782, 172736.3042526272.45567 7354672, 17249637.2632546273.3°4526275.5,
172304.263526272.4656272.546372, 172345%627°.2642526.306%.415274, 1723425363.20353617°.354572.4172,
1723245%637.264526373.355267°.4%, 17242557.203252673.354647.416°72, 17242566.20325637°.35467287.4162,
1724536578.203257°84.35452682.45567, 1722345.253526572.35467°8%.5°68%, 17234562.2032526.31425262.415%62,
172345473.26325264.34425637.4473, 17232435262.203452657.3445376.42, 1723425%68.2635367°.3546378°.446278,
172345%6.264252627.356472.4*527% ) 17242536473.203252674.3545.44562, 17234264748.2632457380.34446.5%62,
172456276.2632557869.3545265899 .4, 17235082.2634264.35456274.4467385, 172425%62.263256472.3%45267.44574,
17223425562.2532436%.314252.62, 172732.354356572.445262 735472, 17235563.264263748.3656728%.45783,
172343526°.2643536758.365267280.4, 172350628.2042637%8.365718.45628%, 17224557.253365.34426274 415272,

172324754 2052657286.355627°897, 17223245463.2°353647°.3442.4472, 172356628.204264728°.3567182.4°578,
1724563759.263255786.35452647890 .4, 172325%6272.26425637°.3°45627.4457, 17235673.2034263785.355637.4567282,
172334526°.26425277.34536287.44, 172325562.264252627.3°6374.4572, 17235%6%7.2034267582.3745%8% 44637,
172345°67%.20425637.30567382.44628%, 1723245262.2045%63.3°526274.4573, 1724254627°.203256%7.3°5273.4%62,
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172324456483.2634356373.3455748%, 172254627.2°3346472.344252674 445, 172236628.253426°738.4555738 547,
17242556272.26326°82.355748.4578%, 1723465.263246272.3*526372.546273, 1724*5367°9.20325467859.3°4265789° 4,
17223767.2°435627.44526273.546272, 17237.264452627.435263758.5362785, 1723456%.2034562748.3°5262728.4%787,
17242546572.2632527586.3545.41628, 17232453.2035%627.34426372.4462 73, 17245%6°.26325676.354257869.415%6896
172347627.2652637286.366272.55728, 1724356785.26325607896.354367589 A7 .4, 1723345%6.2432453637° 34426374 .43,
1724253657.26326275.3545287.44527, 1722345264.25345377.35526385.4582, 172234452.2534557°.35462 71824658,
172345%62.2642526272.305637.44527%, 17235%672.264264783.3065274.455628%, 172354656373879.263255647490 A7 4.5,
172234526.253245262.3442562.4%5262, 172235%674.2°34256180.3°5262.45738, 172425%67.2632526782.3°627°8.478*,
1723245%67%.2035%672.3142562.446372, 17235%627°.203456178%.3°425728.4156782, 172235067.2°3246182.342575.446278°,
172324253638.26353676.3142563786.43, 17232425%673.263425264.31435262 71, 17245673.263261784.354267282.4156278,
172445467°.263253637382.35436378%, 172235361.2°324637°.34425272.4452 ) 17234456273.203456°8.324352 74425386
17245269892.26325778.3542580.445369°, 1723450627.2645637385.3662728297.457, 172425363.20325262.354526272.447°,
17242556782.26325263.3°6374.457285, 172324526%73.2045%6272.355272 4562, 1724536*78.26325676.354262879.4453895

1727374 A.4553768592 546478295 A6.63, 17245%6978.2632567°.3°4278592.445389%, 17235%6372.2642567°9.3652685.4°56289¢,
172335367.2432447684.3145478397.42 ) 1724257682.20326374.3°63728%.45782, 172455%672.26325607282.3°4257385 .52,
17256628.26326473.35437284.44567282, 1722324°53637°.25334251617287.32, 17242526172.263252672.3%45273.41562,
1723426578.2045474829.3056728%.4152696, 17223536582.2534252675.3°5274.4568°, 172345574.26325637389.3442568°9.41639°
17223452637282.253453674.3545638%.4457, 172425568.263263738.3°4567°82.4456278°, 172243578.253367485.3444797 A.65728 A°,
1722546°8%.253346748.3442573 4152683, 172°34354637385.2239445364748297.3, 1722435%62.2533526473.344252674 .42,
17235°6282.2643627382.365673.4456278%, 172345%679.264537382.36748293 4558393 172235567.25324526728%.3442617.446 7383,
172425362.2032526272.354637%.4452 72, 17245°6272.26325637382.354256728%.4168, 172451617.2632627384.35425728.41526782,
1722425%63.25335%627°.3444627280.48, 17247769* A2.263250785 A5.35567820° B7, 1725°627282.263265728.3°4373 415284,
17245%637.2632637283.3%4527382.4556782, 1723°47.2632574829%.50662783.6772829%, 172455267287.26325463797.3%42563 74 A7,
17234353627282.26325467482.344464783, 1725463782.20326374.35437285.445%697, 17245367.2632574829*.354527849.45572892,
172324627°89.2045180.35456191.445267292, 172536172.263263748.3°4378%92.415489° | 17233252637.2434352627°8.3145%62780.43,
172345%6°.26325262719.31427386.4152895 17223456729.253456748.3°4628°91.567892 A7, 1723536°72.20437385.365268296.44526729,
1723782.26425267192.45564849.51627°89%, 1722351618.2°34263728.3°4527283 4457382, 172345°6%8.26352627282.354627282.457382,
172345639.2634526483.354527482.53738295, 172345°7289.26326789*.344256748.415628492,
1723597892.2634563728.3°42627849.44627389*, 17245362739.2032648%.35425749°.44536829, 17235476 A4.26436385 4.36526829°.44563792 A%,
17234546895.2034563 739 A%.355267489.45628° A2, 1724536789.20326271820.354257284.4453795, 172335°64.26425262738°.34426718297 43,
172234557385.232435618290.3443563 719 A7, 17235163729.26425627° A3.36568002.455689% A1, 17225%6273.253%462738.344252681.4162782,
1723425267382.264516729°.365627289.416°819, 1724577.2632647283.3°46272829°.456728292,
172425267°8.2632526280.3°4526796 A.4156379 A%, 172253669.2533467482.34425278%9.41527295
1723242536274.2634256473829.345368796.43, 1725%6378.2032637°829.3543 738392 4453689*,
17235455.2632467792.4°5628392 A5.648493 AB7, 17232425627%9.2045%6378%.375262728%96.445,
17232537°.264252678%9.3545262790 A.446182 A%, 1722345377.25325%8297 B.31426° A7.44628° BY,
1723452627°9.2045%6786 A2.3656395 AB3 455678 A* B, 1723245%6°78.26343562728492.314253718294 49,
1723334637782.2433568°92 4534556195 A2 B7 4, 17256%79.2632637382.3743728%9% 445378293
1722345%6738%.25324356478%92.344352627°9%, 172345367.264527594 A2.306572849 A% B.4%58392 ABS

17254627382 A.26326185.3°43749% A.4*53693 A5, 17223526°7°.2°342526738%92.35537899.45639%

17232425261749.26325467380 A.3343562895 A6.42, 17223526272.253425262783.35456°782.41527382,
172235578292.2°34261729.355267°8°.456278291, 1725767.26327692 45.35438192 B7 4178393 A2C7,
172353627382.26436278193.365372894 4.445637 A% 172642768.2375628596.4°5262789A42 B6.5463 A° BCT

17234526378 41.26353673829.3°45638%93.45573893 A3, 1724453627849 4.20325362749° 4.3°42563 72839 A° 4,
172345%627%9.2032526278%9.3%425267289*.4456278%9, 17234683 A4.264526372893.3065627393 A3 54627283943,
17234265795.243°56799 A3 BC.3245879 ABC® D.5%6 A2 B°C' DS, 17234536278%.26425262783 A%.36527493 A.4463794 A3,
17245%62784.263256372894.35452749% A3 4556282 A% 17234527°9.203252628° A.31425262829°.44563729 A
17233043565778°95 A B4C.243445562829 A B3CO DT E7, 172425262768.26325262786 B.3°4397 A* 425263 A3 BS,
172345%672892.203252627292.3442527383.44648393, 17245738292 A.20325263829% A.39426378292.556738 A,
1722324265739%.253245467383 A9.3342536 78493 ABT .42, 17235%7289° A.263246829 A* B2(C.3*42527% AB®.4*5638* AC®,
172244638 A9 D.253346473 AB®.344252 7483 BC0.558397C' D8, 1724253628392 B.263252639° A B.3°4526%73 A5 4*748* AB?,
172453637893.26325627382 A4.3°452738292 455628292 A3, 1723458192 A B.20345262729 B.3°4562 7389 A% 44637282 A2 B°,
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1723457809C.263245%729% A3 (3453627892 A% B3 569739 AB*C®, 172324562738%9.203536728392 4.34436394 44 B.435%6728 A2 BS,
1723253728392 A B.2642659* A2 B2.394527° A* 415262849 B*, 1723526%829%.243445627289 A°.3343562738 A2 B 4353728392 BCT
172435679° AB*.2334426478 A5 BC*.324°62 73829 BC3 D° 597289 ABD?E”

172343627291 A2.263426°7282 A% B2C.3°4%52 712829 AB* C2 .5°6278°92 ABC*,
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