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Abstract

Geometric Complexity Theory is an approach towards the separation of fundamental algebraic
complexity classes. Two papers by Mulmuley and Sohoni (SIAM J Comput 2001, 2008) pursue
this goal via representation theoretic multiplicities in coordinate rings of specific group varieties.
The papers also conjecture that the vanishing behavior of these multiplicities would be sufficient
to separate complexity classes (so-called occurrence obstructions). The existence of such strong
occurrence obstructions has been recently disproven in 2016 in two successive papers, Ikenmeyer-
Panova (Adv. Math.) and Bürgisser-Ikenmeyer-Panova (J. AMS).

This raises the question whether separating group varieties via representation theoretic multi-
plicities is stronger than separating them via occurrences. This paper provides for the first time a
setting where separating with multiplicities can be achieved, while the separation with occurrences
is provably impossible. Our setting is surprisingly simple and natural: We study the variety of
products of homogeneous linear forms (the so-called Chow variety) and the variety of polynomials
of bounded border Waring rank (i.e. a higher secant variety of the Veronese variety).

As a side result we prove a slight generalization of Hermite’s reciprocity theorem, which proves
Foulkes’ conjecture for a new infinite family of cases.

An extended abstract of this paper was published in the conference proceedings of the 46th International Colloquium
on Automata, Languages, and Programming (ICALP 2019).
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1 Introduction

In two landmark papers on geometric complexity theory [MS01, MS08] Mulmuley and Sohoni sug-
gested the use of representation theoretic multiplicities to separate group varieties that correspond to
complexity classes. The goal of this approach is to achieve complexity lower bounds that lead to the
separation of algebraic complexity classes such as VP and VNP (see [BCS97] or [Sap17] for the precise
definitions, which will not be important in this paper). At the heart of the approach was the hope
that so-called occurrence obstructions (see Section 2) would be sufficient to separate VP and VNP.
In [IP17, BIP19] it was shown that occurrence obstructions are too weak to provide the necessary
separation, at least for the group varieties that were originally proposed by Mulmuley and Sohoni.
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But representation theoretic multiplicities might still be able to separate VP and VNP when we look
at the finer separation criterion via multiplicity obstructions (see also Section 2). Unfortunately, so
far all known separations of group varieties via multiplicity obstructions could also in fact be obtained
via occurrence obstructions, or at least there was no setting in which multiplicity obstructions were
provably stronger than occurrence obstructions, see e.g., [BI11, BI13]. Indeed, little is known about
multiplicity obstructions in general, as the required multiplicities are often #P-hard to compute, see
e.g., [Nar06, BI08, BOR09], which implies that a polynomial time algorithm for their computation can
only exist if P=NP.

Scott Aaronson raised the question about the existence of a setting where multiplicity obstructions
are provably more powerful than occurrence obstructions. In this paper we give the first example of
such a situation in a finite setting, see Theorem 2.3 below.

Theorem 2.3 is not only about finite settings: For the first time multiplicity obstructions are used
to separate families of polynomials, even though the separation is extremely modest. Prior work on
obstructions focused on tensors instead of polynomials ([BI11, BI13]).

As a side result we prove a slight generalization of Hermite’s reciprocity theorem, which proves
Foulkes’ conjecture (see (2.1)) for a new infinite family of cases, see Theorem 3.5.

2 Representation theoretic obstructions

In this section we review how to separate group varieties via representation theoretic multiplicities. The
setup is in complete analogy to the geometric complexity theory approach of Mulmuley and Sohoni.
We then list our main result, see Theorem 2.3.

Consider the space Anm := C[x1, . . . , xm]n of complex homogeneous polynomials of degree n in m
variables. Let V := A1

m be the space of homogeneous degree 1 polynomials. In this paper we compare
two subvarieties of Anm. The first is the so-called Chow variety

Chnm := {`1 · · · `n | `i ∈ V } ⊆ Anm,

which is the set of polynomials that can be written as a product of homogeneous linear forms, see e.g.,
[Lan11, §8.6]. In algebraic complexity theory this set is known as the set of polynomials that have
homogeneous depth-two algebraic circuits of the form ΠnΣ, i.e., circuits that consists of an n-ary top
product gate of linear combinations of variables. The second variety is called a higher secant variety
of the Veronese variety and can be written as

Pownm,k := {`n1 + · · ·+ `nk | `i ∈ V } ⊆ Anm,

which is the closure of the set of all sums of k powers of homogeneous linear forms. Note that from
a general principle it follows that the Zariski closure equals the Euclidean closure in this case, see
e.g., [Mum95, §2.C] where this is shown for every constructible set. The polynomials in Pownm,k are
exactly those that have border Waring rank at most k, see e.g., [Lan11, §5.4]. In algebraic complexity
theory this set is known as the set of polynomials that can be approximated arbitrarily closely by
homogeneous depth-three powering circuits of the form ΣkΛnΣ, i.e., a k-ary sum of n-th powers of
linear combinations of variables.

Anm is generated as a vector space by the powers vn, v ∈ V , see e.g., [Lan11, Ex. 2.6.6.2]. Given
two elements g1, g2 ∈ GLm := GL(V ), and given v ∈ V , we clearly have g1(g2v) = (g1g2)v. Thus
we say that V admits a GLm-action. This natural action of GLm on V lifts canonically to Anm via
g(vn) := (gv)n, g ∈ GLm, v ∈ V , and linear continuation. Both varieties Chnm and Pownm,k are closed
under this action, i.e., for g ∈ GLm and v ∈ Chnm we have gv ∈ Chnm, and analogously v ∈ Pownm,k
implies gv ∈ Pownm,k. A variety that is closed under the action of GLm is called a GLm-variety.

Let C[Anm] denote the coordinate ring of Anm, i.e., the polynomial ring in dimAnm =
(
n+m−1

n

)
many

variables, where these variables are in 1:1 correspondence to the monomials in Anm. The action of GLm
on Anm lifts to a linear action of GLm on C[Anm] via the canonical pullback as follows:

(gf)(h) := f(g−1h), g ∈ GLm, f ∈ C[Anm], h ∈ Anm.
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Moreover, the action respects the natural grading of C[Anm], so that each homogeneous degree d part
C[Anm]d is a finite dimensional vector space that is closed under the action of GLm.

Recall that a finite dimensional vector space W that is closed under a linear action of GLm is called a
GLm-representation. This is equivalent to the existence of a group homomorphism % : GLm → GL(W ).
If we choose bases, then we can interpret GLm ⊆ Cm×m and GL(W ) ⊆ CdimW×dimW and % is described
by (dimW )2 many coordinate functions, which are functions in m2 many variables. If these functions
are polynomials, then we call W a polynomial representation. Our main representation of interest,
C[Anm]d, is a polynomial representation. A linear subspace of W that is closed under the action
of GLm is called a subrepresentation. Subrepresentations of polynomial representations are clearly
polynomial representations again. For every GLm-representation W we have that W and 0 are two
trivial subrepresentations. If W has no other subrepresentations, then we call W irreducible. A linear
map ϕ : W1 → W2 between two GLm-representations is called equivariant if gϕ(f) = ϕ(gf) for all
f ∈ W1, g ∈ GLm. If there exists an equivariant vector space isomorphism from W1 to W2, then we
say that W1 and W2 are isomorphic GLm-representations. An m-partition of D ∈ N is a nonincreasing
list of m nonnegative integers that sum up to D. Every irreducible polynomial GLm-representation
has an associated isomorphism type, which is an m-partition, see e.g., [Ful97, Ch. 8]. Two irreducible
GLm-representations are isomorphic iff their isomorphism types coincide. We denote by {λ}m the
irreducible GLm-representation corresponding to the m-partition λ. We write {λ} = {λ}m is m is clear
from the context.

The group GLm is linearly reductive, which means that every GLm-representation W decomposes
into a direct sum of irreducible GLm-representations, see e.g., [Kra85, AII.5, Satz 4]. The number
of times an irreducible representation of type λ occurs in the decomposition is called the multiplicity
of λ in W , written multλ(W ). Even though this decomposition is usually not unique, the notation
multλ(W ) makes sense, because the multiplicities are independent of the actual decompositions.

The multiplicity aλ(d[n]) := multλ(C[Anm]d) is the infamous plethysm coefficient, which is the ob-
ject of study in Foulkes’ conjecture and also in Problem 9 in Stanley’s famous list of open prob-
lems [Sta00]. If we pad an m-partition λ with m′ − m many zeros to obtain the m′-partitions
λ′ = (λ1, . . . , λm, 0, . . . , 0), then multλ(C[Anm]d) = multλ′(C[Anm′ ]d), see e.g., [Ike12, Lem. 4.3.2]. For
the sake of simplicity we identify m-partitions with m′-partitions that arise from padding zeros. This
justifies leaving out the parameter m in the notation aλ(d[n]) by assuming that m is large enough.
Foulkes’ conjecture states that

Conjecture : aλ(n[d]) ≤ aλ(d[n]) for all d ≥ n. (2.1)

Conjecture (2.1) is known to be true (moreover, equality holds: aλ(d[n]) = aλ(n[d])) for all 2-partitions
λ, which is often called Hermite reciprocity [Her54]. We make modest progress on this conjecture by
proving it for many families of 3-partitions, see Corollary 4.10.

Let Z be a GLm-variety, e.g., Z = Chnm or Z = Pownm,k. Then the vanishing ideal I(Z) := {f ∈
C[Anm] | ∀h ∈ Z : f(h) = 0} is also closed under the action of GLm, which is easy to verify: If f(h) = 0
for all h ∈ Z, then also (gf)(h) = f(g−1h) = 0, because g−1h ∈ Z. Since the action respects the
grading, each homogeneous degree d part I(Z)d is a GLm-representation. The coordinate ring C[Z] is
defined as the quotient algebra C[Anm]/I(Z) and each homogeneous part C[Z]d = C[Anm]d/I(Z)d is a
GLm-representation. Equivalently, we can define C[Z] as the set of restrictions of functions in C[Anm]
to Z.

For most sets of parameters we have Pownm,k 6⊆ Chnm, but there are some exceptions. Clearly

Pownm,1 ⊆ Chnm. Moreover, Pown1,k = Chn1 for all n ≥ 1, k ≥ 1; and Pow1
m,k = Ch1m for all m ≥ 1, k ≥ 1.

It is also easy to see that Pow2
2,2 ⊆ Ch22, because `21 + `22 = (`1 + i`2)(`1 − i`2), where i2 = −1. More

generally, (`1 +ζ`2)(`1 +ζ2`2) · · · (`1 +ζn`2) = `n1 +ζ
n(n+1)

2 `n2 for ζn = 1, which implies Pownm,2 ⊆ Chnm.
For m = 2, k ≥ 1, n ≥ 1, we have Pownm,k ⊆ Chnm by the fundamental theorem of algebra. These are
the only exceptions, as for n ≥ 2, m ≥ 3, k ≥ 3 we have Pownm,k 6⊆ Chnm: the polynomial xn + yn + zn

of the Fermat curve is in Pownm,k and its irreducibility implies (since n ≥ 2) that xn + yn + zn /∈ Chnm.
We will see that for specific settings of parameters there exist multiplicity obstructions that prove

3



Pownm,k 6⊆ Chnm, but there do not exist occurrence obstructions that prove this fact (see the definitions
below). Our approach works as follows and is in complete analogy to the approach proposed in
[MS01, MS08] to separate group varieties arising from algebraic complexity theory. If Pownm,k ⊆ Chnm,
then the restriction of functions gives a canonical GLm-equivariant surjection

C[Chnm]d � C[Pownm,k]d.

In this case, Schur’s lemma (e.g., [GW09, Lemma 4.1.4]) implies that

multλ(C[Chnm]d) ≥ multλ(C[Pownm,k]d). (2.2)

for all m-partitions λ. Therefore, a partition λ that violates (2.2) proves that Pownm,k 6⊆ Chnm. Such a λ
is called a multiplicity obstruction. If additionally multλ(C[Chnm]d) = 0, then λ is called an occurrence
obstruction.

Since Chnm and Pownm,k are subvarieties of Anm and since all λ for which multλ(C[Anm]d) > 0 are
m-partitions of dn, it follows that if multλ(C[Chnm]d) > 0 or multλ(C[Pownm,k]d) > 0, then λ is an
m-partition of dn.

2.3 Theorem (Main Theorem).
(1) Asymptotic result: Let m ≥ 3, n ≥ 2, k = d = n+1, λ = (n2−2, n, 2). We have multλ(C[Chnm]d) <
multλ(C[Pownm,k]d), i.e., λ is a multiplicity obstruction that shows Pownm,k 6⊆ Chnm.
(2) Finite result: In two finite settings we can show a slightly stronger separation:

(a) Let k = 4, n = 6, m = 3, d = 7, λ = (n2 − 2, n, 2) = (34, 6, 2). Then multλ(C[Chnm]d) = 7 < 8 =
multλ(C[Pownm,k]d), i.e., λ is a multiplicity obstruction that shows Pownm,k 6⊆ Chnm.

(b) Similarly, for k = 4, n = 7, m = 4, d = 8, λ = (n2 − 2, n, 2) = (47, 7, 2) we
have multλ(C[Chnm]d) < 11 = multλ(C[Pownm,k]d), i.e., λ is a multiplicity obstruction that shows
Pownm,k 6⊆ Chnm.
Both separations (a) and (b) cannot be achieved using occurrence obstructions, even for arbitrary k:
for all m-partitions µ that satisfy aµ(d[n]) > 0 we have multλ(C[Chnm]d′) > 0 in these settings.

One would like to show that there are no occurrence obstructions in all cases (1), but this is wrong if
n is not large enough with respect to m, see Prop. 3.15. Even for m = 3 or m = 4 ruling out occurrence
obstructions as in (2) is done by a large-scale computer calculation which is only suitable for a finite
case, but not for sequences as in (1). The papers [IP17, BIP19] rule out occurrence obstructions for
families, but only in ranges where they would give very strong new algebraic circuit lower bounds,
so that we expect it to be difficult to find multiplicity obstructions in those cases. Note also that
[IP17, BIP19] are only dealing with padded polynomials, for which [KL14] guarantees λ to have a very
restricted shape.

We expect multiplicity obstructions to be more powerful than occurrence obstructions in most cases
relevant for geometric complexity theory, and Theorem 2.3 resolves the challenge of finding a setting
in which the corresponding multiplicities and occurrences could actually be computed in a reasonable
amount of time, while the setting is also involved enough so that a difference between occurrence
obstructions and multiplicity obstructions could be witnessed.

2.4 Remark. The partition (n2−2, n, 2) is known to be the type of one of Brill’s classical set-theoretic
equations for Chnm, see [Gua18].

3 Proof of the main theorem

The main theorem (Theorem 2.3) makes a statement about the finite situations k = 4, n = 6, m = 3,
d = 7 and k = 4, n = 7, m = 4, d = 8, as well as the general situation m ≥ 3, n ≥ 2, k = d = n + 1.
As a first step, in all these cases we show that

multλ(C[Pownm,k]d) = aλ(d[n]). (3.1)

In the finite cases the following computer calculation suffices to prove (3.1).
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3.2 Proposition. mult(34,6,2)(C[Pow6
3,4]7) = 8 = a(34,6,2)(7[6]) and mult(47,7,2)(C[Pow7

3,4]8) = 11 =
a(47,7,2)(8[7]).

Proof. The plethysm coefficient computations were performed with the LiE software. The rest is a
small computer calculation completely analogous to the ones in [BIP19, Sec. 6]. The details can be
found in Section 6.

For the general situation the equality (3.1) is a consequence of the following result on power sums
proved in [BIP19, Prop. 3.2]:

3.3 Proposition. If λ is an m-partition of dn and k ≥ d, then multλ(C[Pownm,k]d) = aλ(d[n]).

As a second step we will use the following lemma for λ = (n2 − 2, n, 2).

3.4 Lemma (see also [Lan17, Sec. 9.2.3]). Let λ be an m-partition and n ≥ m. Then
multλ(C[Chnm]d) ≤ aλ(n[d]).

Proof. Let GLn(x1 · · ·xn) := {g(x1 · · ·xn) | g ∈ GLn} ⊆ Ann denote the GLn-orbit of x1 · · ·xn. We
denote by GLn(x1 · · ·xn) the Zariski closure of this orbit, which equals its Euclidean closure by the
same principles as in Section 2. Choose bases and embed Anm ⊆ Ann, so that Chnm is the intersection
of Anm and GLn(x1 · · ·xn). This implies (via arguments analogous to that for the plethysm coefficient
([Ike12, Lem. 4.3.2])) that the multiplicity of the irreducible GLm-representation {λ}m in C[Chnm]d
equals the multiplicity of the irreducible GLn-representation {λ}n in C[GLn(x1 · · ·xn)]. In other words

multλ(C[Chnm]d) = multλ(C[GLn(x1 · · ·xn)]d).

The vector space C[GLn(x1 · · ·xn)]d consists of exactly the restrictions of polynomials in C[Ann]d to the
orbit GLn(x1 · · ·xn). The coordinate ring C[GLn(x1 · · ·xn)] is also graded and its homogeneous degree
d part C[GLn(x1 · · ·xn)]d consists of all homogeneous degree d regular functions on GLn(x1 · · ·xn), in
particular

multλ(C[GLn(x1 · · ·xn)]d) ≤ multλ(C[GLn(x1 · · ·xn)]d).

The right-hand side can be understood via geometric invariant theory as follows (see [Ike12,
Sec. 3.4(A)]):

multλ(C[GLn(x1 · · ·xn)]d) = multλ∗(C[GLn]Hd ),

where H = {diag(α1, . . . , αn) |
∏n
i=1 α1 = 1} o Sn ⊆ GLn is the stabilizer of x1 · · ·xn, and λ∗ is

the isomorphism type of the dual (i.e., contragredient) representation of {λ}, i.e., {λ∗} = {λ}∗. The
algebraic Peter-Weyl theorem (see e.g., [Kra85, II.3.1 Satz 3], [GW09, Thm. 4.2.7], or [Pro07, Ch. 7,
3.1 Thm.]) states that

C[GLn] =
⊕
λ

{λ} ⊗ {λ∗}

and we conclude
multλ∗(C[GLn]Hd ) = dim{λ}H .

There are several ways of seeing that dim{λ}H = aλ(n[d]), see e.g., [Lan17, Sec. 9.2.3] or [Ike18,
Prop. 3.3]. This proves the lemma.

Now an argument using symmetric functions is used to prove the following theorem.

3.5 Theorem. a(n2−2,n,2)((n+ 1)[n]) = 1 + a(n2−2,n,2)(n[n+ 1]).

Theorem 3.5 is a corollary of more general results, see Corollary 4.10.
This finishes the proof that (n2 − 2, n, 2) is a multiplicity obstruction in all cases of Theorem 2.3.
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No occurrence obstructions

To finish the proof of Theorem 2.3(2), it remains to show that there are no occurrence obstructions in
the finite situation n = 6, m = 3 and n = 7, m = 4. We will primarily go into more detail for the first
case and the second one will be proven similarly. We will do this by showing that

for n = 6, m = 3, and for all m-partitions µ of dn : aµ(d[n]) > 0 implies multµ(C[Chnm]d) > 0
(3.6)

Note that this claim is independent of k. We start proving (3.6) by giving a complete classification of
when aµ(d[n]) > 0 for the case n = 6, m = 3.

First, the following lemma states that for a few special µ the plethysm coefficient always vanishes.

3.7 Lemma. Let λ̄ := (λ2, λ3, . . .) denote λ without its first row. If λ is an m-partition of dn and
λ̄ ∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)}, then aλ(d[n]) = 0.

Proof. This is proved by a finite calculation for all cases but (3, 3) as Thm 1.10(a) in [IP17]. Exactly
the same calculation can be used to also prove the result for the additional partition (3, 3).

For characterizing the set of all µ for which aµ(d[n]) is positive, we observe that they form a finitely
generated semigroup and hence we only need to find the semigroup’s generators:

If aµ(d[n]) > 0 and aν(d′[n]) > 0, then aµ+ν(d+ d′[n]) > 0. (3.8)

A detailed proof of (3.8) can be found for example in [BI18, Prop. 21.2.6].

3.9 Proposition. Define the set
X := {(6), (6, 6), (8, 4), (10, 2), (6, 6, 6), (8, 6, 4), (10, 4, 4), (9, 6, 3), (8, 8, 2), (10, 6, 2), (11, 5, 2), (10, 7, 1), (12, 4, 2), (11, 6, 1), (10, 8), (14, 2, 2),
(13, 4, 1), (13, 5), (15, 3), (8, 8, 8), (10, 8, 6), (11, 7, 6), (10, 9, 5), (11, 8, 5), (10, 10, 4), (12, 7, 5), (11, 9, 4), (13, 6, 5), (12, 8, 4), (11, 10, 3), (13, 7, 4),
(12, 9, 3), (13, 8, 3), (12, 10, 2), (15, 5, 4), (14, 7, 3), (13, 9, 2), (13, 10, 1), (16, 5, 3), (15, 7, 2), (14, 9, 1), (17, 4, 3), (15, 8, 1), (15, 9), (19, 3, 2),
(18, 5, 1), (17, 7), (10, 10, 10), (11, 10, 9), (12, 10, 8), (13, 9, 8), (12, 11, 7), (13, 10, 7), (14, 9, 7), (13, 11, 6), (15, 8, 7), (13, 12, 5), (16, 7, 7), (15, 9, 6),
(14, 11, 5), (13, 13, 4), (15, 10, 5), (15, 11, 4), (14, 13, 3), (16, 11, 3), (15, 13, 2), (15, 14, 1), (17, 13), (13, 12, 11), (14, 11, 11), (13, 13, 10), (15, 11, 10),
(14, 13, 9), (16, 11, 9), (15, 13, 8), (15, 14, 7), (18, 9, 9), (15, 15, 6), (17, 17, 2), (18, 17, 1), (26, 5, 5), (15, 14, 13), (16, 13, 13), (15, 15, 12), (17, 17, 8),
(18, 15, 15), (17, 17, 14), (25, 23), (45, 45)}.

Here we truncated trailing zeros from the 3-partitions. The set X is the set of minimal generators of
the semigroup of 3-partitions µ that have aµ(d[6]) > 0.

The proof of Proposition 3.9 proceeds in several steps.
A direct computation with the LiE software verifies aµ(d[6]) > 0 for all µ ∈ X \ {(45, 45)} such

that d = |µ|/6. The case d = 15 runs into memory problems when using LiE. Other software such as
Schur stops working when d = 8. We used the formula [Stu08, Cor. 4.2.8] to verify a(45,45)(15[6]) > 0.

We call the number of nonzero parts the length of a partition. We use a brute-force computer
verification and a direct computation with LiE to show that for d ≤ 26 every partition µ of length
≤ 2 with aµ(d[6]) > 0 is a sum of partitions from the set X. The same computation is done for all
3-partitions, but only up to d ≤ 14. The following proposition states that these finite computations
completely describe all cases.

3.10 Proposition. If λ is a 3-partition of 6d, d ≥ 15, and λ̄ /∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)}, then λ
is a sum of partitions from X.

Proof. For 15 ≤ d ≤ 17 we use a computer calculation to show that we can write every such partition
λ as a sum of partitions from X. For d > 17 we prove this inductively by showing that we can write
every 3-partition λ of 6d with λ̄ /∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)} as a sum of one of the partitions
(6), (6, 6) or (6, 6, 6) and a smaller λ′ with again λ̄′ /∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)}.

Let ci denote the number of columns in λ with exactly i boxes for i ∈ {1, 2, 3}. Since we have at
least 108 boxes in λ, the pigeonhole principle implies that at least one must be true: c1 ≥ 6, c2 ≥ 10
or c3 ≥ 10.

In the case c1 ≥ 6 we have λ = λ′ + (6) with, by induction, λ′ being a sum of elements from X
since λ̄′ = λ̄. In the case c2 ≥ 10 we have λ = λ′ + (6, 6) with λ′ being a sum of elements from X
as λ′2 ≥ 4. In the case c3 ≥ 10 we have λ = λ′ + (6, 6, 6) with λ′ being a sum of elements from X as
λ′3 ≥ 4.
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This finishes the proof of Proposition 3.9.
To prove (3.6) it is sufficient (and necessary) to show that multµ(C[Chnm]d) > 0 for all µ ∈ X, be-

cause a semigroup property analogous to (3.8) holds (the same proof applies, e.g., [BI18, Prop. 21.2.6]):

If multµ(C[Chnm]d) > 0 and multν(C[Chnm]d′) > 0, then multµ+ν(C[Chnm]d+d′) > 0. (3.11)

If the length of µ is at most 2, we use the following general result.

3.12 Proposition. Let µ be a 3-partition of length at most 2. If aµ(d[n]) > 0, then multµ(C[Chnm]d) >
0.

Proof. We use an inheritance result: If for a 2-partition µ we have multµ(C[Chn2 ]d) > 0, and ν is the
3-partition that arises from µ by adding a single 0, then multν(C[Chn3 ]d) > 0. The proof is completely
analogous to other inheritance results, see e.g., [Ike12, Lemma 4.3.2 or Sec. 5.3]. Now for 2-partitions µ
we have aµ(d[n]) = multµ(C[Chn2 ]d), because every homogeneous polynomial in 2 variables decomposes
as a product of homogeneous linear polynomials by the fundamental theorem of algebra, see also e.g.,
[Lan17, Exa. 9.1.1.8]. This is how the Hermite reciprocity can be proved. An even simpler argument
works if µ has length 1.

We finish the proof of (3.6) by using a computer calculation to verify that for all 3-partitions µ ∈ X
of length 3 we have multµ(C[Ch63]) > 0, see Proposition 5.1.

This finishes the proof of Theorem 2.3(2a). The proof of Theorem 2.3(2b) is completely analogous
as follows. Let m = 4, n = 7.

3.13 Lemma. Let λ̄ := (λ2, λ3, . . .) denote λ without its first row. If λ is an m-partition of dn and
λ̄ ∈ Y for Y := {(1), (1, 1), (1, 1, 1), (2, 1), (2, 1, 1), (2, 2, 1), (3, 1), (3, 1, 1), (3, 2, 1), (3, 3), (3, 3, 1),
(3, 3, 2), (3, 3, 3), (4, 1, 1), (4, 3, 3), (5, 1, 1), (5, 5, 5), (6, 1, 1)}, then aλ(d[n]) = 0.

Proof. This is proven exactly like Lemma 3.7.

The semigroup of 4-partitions λ that have aλ(d[7]) > 0 has 948 generators, listed in Proposition 7.1.
They form a set that we again call X.

We again use a direct computation with the LiE software to verify aµ(d[7]) > 0 for all
µ ∈ X \ {(49, 49), (24, 24, 23, 23)}. For both the remaining partitions µ ∈ {(49, 49), (24, 24, 23, 23)}
we prove multµ(C[Ch74]d) > 0 using our computer calculations which also implies aµ(d[7]) > 0.

To prove those are all the generators we use the following proposition which is proved completely
analogously to Proposition 3.10.

3.14 Proposition. If λ is a 4-partition of 7d, d ≥ 14, and λ̄ /∈ Y , then λ is a sum of partitions from
X.

For the next finite case (n = 7, k = d = 8, m = 5) we reached the computational limit of our
implementation. Here we were able to find 5016 generating partitions of the semigroup of 4-partitions
µ that have aµ(d[7]) > 0. Unfortunately these do not generate everything excluding the exceptions yet.
We were able to verify for 5000 generating partitions µ that multµ(C[Chnm]d) > 0. For the remaining
ones, we used up to 200 GB of RAM, but this was not sufficient.

Some occurrence obstructions

As we degenerate the parameter settings and let n get closer to m, multiplicity obstructions tend to
become occurrence obstructions. More precisely, for m = 3 and values of n < 6, and for (m,n) = (4, 6),
some multiplicity obstructions are actually also occurrence obstructions, as the following proposition
shows.

3.15 Proposition. The following partitions give occurrence obstructions that show Pownm,d 6⊆ Chnm.
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m n λ d aλ(d[n]) aλ(n[d])
3 2 (2, 2, 2) 3 1 0
3 3 (7, 3, 2) 4 1 0
3 4 (11, 9, 8) 7 1 0
3 5 (12, 9, 9) 6 1 0
4 6 (14, 14, 13, 13) 9 11 0

Proof. The plethysm coefficient computations were performed with the LiE software. Lemma 3.4
implies that multλ(C[Chnm]d) ≤ aλ(n[d]) = 0. Proposition 3.3 implies multλ(C[Pownm,d]d) > 0.

See [BHI17, Prop. 4] for additional occurrence obstructions in the case n = 3.

4 Plethysm inequalities

We are interested in the plethysm coefficients aλ(d[m]) for certain values of λ and d,m. Here we
compute such values for infinite families of parameters and in particular, prove Theorem 3.5.

We will work over the ring of symmetric functions Λ, defined as the ring of formal power series (in
finitely or infinitely many variables) which are invariant under any transposition of the variables. For
the definitions and main identities see e.g., [Sta99]. Plethysms of symmetric functions are described
also there in Appendix 2 of Chapter 7, here we review the necessary definitions.

The characters of the irreducible GLr–module Wλ are the Schur functions sλ(x1, . . . , xr), where
x1, . . . , xr correspond to the eigenvalues of the conjugacy class representative from GLr. Their com-
binatorial interpretation is as the generating function over all semi-standard Young tableaux with
entries 1, ..., r, but we will use certain determinantal formulas as described below. The complete ho-
mogeneous symmetric functions h` are defined as s(`) and are the characters of the Sym` module. The

Symd(Symn(Cr)) module is obtained as the composition of the two representations. The image in
Symn(Cr) of a diagonal matrix from GLr with entries (i.e. eigenvalues) x1, . . . , xr on the diagonal
has eigenvalues all the N :=

(
n+r−1
r−1

)
degree n monomials in x1, . . . , xr. Hence, the character of the

representation Symd(Symn(Cr)) of GLN can be obtained by evaluating the character hd of Symd at
the monomials, i.e. the eigenvalues above. This gives us the definition of the symmetric function
plethysm hd[hn(x1, . . . , xr)], that is, the evaluation of hd on the variables consisting of all degree n
monomials, i.e.,

hd[hn(x1, . . . , xr)] := hd(x
n
1 , x

n−1
1 x2, x

n−1
1 x3, . . . , x

α1
1 · · ·xαrr , . . .),

where α = (α1, . . . , αr) runs over all compositions of n, i.e., finite sequences of r nonnegative numbers
that sum up to n.

In general, knowing the character of a representation contains all the information to obtain the
multiplicities of the irreducible decomposition via the inner product of characters. As the Schur
functions sλ are the irreducible characters for GLr, the inner product is equivalent to an inner product
in the ring Λ, where {sλ}λ is an orthonormal basis. In other words, the multiplicity of the Weyl
module of weight λ is given by the multiplicity of the Schur function sλ in the expansion of hd[hm].
We will now compute this via the inner product in the ring Λ of symmetric functions, using some basic
properties of this ring as found in [Sta99] and [Mac95].

We have that aλ(d[n]) is the multiplicity of {λ} in SymdSymn, translated into characters this is
also the coefficient at sλ of the expansion of hd[hn] in Schur function. By their orthonormalitiy, this
is the same as

aλ(d[n]) = 〈sλ, hd[hn]〉 (4.1)

We now invoke various symmetric function identities in order to compute the above inner product.
The Schur functions sλ can be expressed via the Jacobi-Trudi formula (see again [Sta99, Ch. 7]) as a
signed sums of homogeneous symmetric functions, namely

sλ = det [hλi−i+j ]
`(λ)
i,j=1 , (4.2)
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the inner product (4.1) can then be computed via a signed sum of inner products of the form
〈hµ, hd[hn]〉. We remark that the orthogonal dual basis for the complete homogeneous symmetric
functions is the monomial symmetric functions, i.e.

〈hµ,mν〉 = δµ,ν ,

so we need to express hd[hn] in terms of the monomial symmetric functions, defined by

mν(x1, . . . , xr) :=
∑
σ∈Sr

x
νσ(1)
1 x

νσ(2)
2 · · ·xνσ(r)r ,

where the sum ranges over all distinct permutations of (1, 2, . . . , r) and ν is completed with 0s to the
length r. Since the monomial symmetric functions form a basis for Λ, we can expand any symmetric
function in it uniquely. Let

hd[hn] =
∑
ν

cνmν ,

for some constants cν (i.e. the coefficients in this expansion). Since each mν has a unique leading
monomial (in the lexicographic order) xν11 x

ν2
2 · · · , finding cν is equivalent to extracting the coefficient

at the single monomial xν11 · · · from the monomial expansion of the corresponding symmetric function
as a polynomial, i.e.

cν = (xν11 x
ν2
2 . . .)@hd[hn(x1, x2, . . .)],

where to avoid confusion with the plethysm notation we denote by (X)@f the coefficient of the
monomial X in the monomial expansion of the polynomial f .

Let ν be a partition of length `. By the above remarks we need to consider only the truncated
expansion hd[hn(x1, . . . , x`)] as only the monomials in x1, . . . , x` will be relevant.

As a service to the reader we provide here a short list of the main objects for reference:
• mλ: the monomial symmetric functions
• hλ: the complete homogeneous symmetric functions
• sλ: the Schur functions
• aλ(d[m]): the coefficient of sλ in the Schur expansion of the plethysm hd[hm]
• pr(a, b): the number of partitions of r which fit inside an a× b rectangle
• (X)@f : The coefficient of the monomial X in the monomial expansion of the polynomial f
We have the following formula for the h’s, see e.g., [Sta99]:

hN (x1, . . . , xr) =
∑

(b):b1+b2+···=N

xb11 x
b2
2 · · · ,

where (b) = (b1, b2, . . . , br) runs over all (weak) compositions of N . Hence, assuming some total
ordering for compositions αi of n, we have

hd[hn(x1, . . . , xr)] = hd[. . . , x
αi , . . .] =

∑
(b):|b|=d

x
∑
i biα

i

.

Thus for the coefficients cν we have:

cν(d, n) := (xν)@hd[hn] = 〈hν , hd[hn]〉 = #{(b) : |b| = d,
∑
i

biα
i = ν}. (4.3)

By the Jacobi-Trudi identity (4.2) this gives a formula for computing the plethysm coefficients as

aλ(d[n]) = 〈det [hλi−i+j ]
`(λ)
i,j=1 , hd[hn]〉 =

∑
π∈S`(λ)

sgn(π)cλ+π−(1,2,...)(d, n), (4.4)

where the permutations π are viewed as vectors with entries 1, 2, . . . , `(λ).
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We now turn towards the proof of Theorem 3.5 and consider sλ for λ = (λ1, λ2, 2) for some k ≥ 2.
By the Jacobi-Trudi identity (4.4) we need to compute only cν for ν having at most 3 parts, with
ν3 = 0, 1, 2. Let pr(a, b) denote the number of partitions of r which fit inside an a × b rectangle, its
generating function is the q-binomial coefficient (see [Sta11]):(

a+ b

a

)
q

=
(1− q) · · · (1− qa+b)

(1− q) · · · (1− qa)(1− q) · · · (1− qb)
=

ab∑
r=0

pr(a, b)q
r

4.5 Proposition. We have the following generating function identities for cν(d, n), where `(ν) ≤ 3
and ν3 ≤ 2 (we omit the argument (d, n) of cν(d, n) below):

c(L,k,2) = (qk)@
((
n
1

)
q

(
n+d−2
n

)
q

+
(
n−1
1

)
q

(
n+d−1
n

)
q

+ q
(
n
2

)
q

(
n+d−2
n

)
q

)
c(L,k,1) = (qk)@

(
n
1

)
q

(
n+d−1
n

)
q

c(L,k,0) = (qk)@
(
n+d
n

)
q

= pk(n, d)

Proof. By formula (4.3), we have

c(L,k,0) = #{(b) : |b| = d,
∑

biα
i = (L, k)}.

Hence, the only αi involved are of the form αi = (n−ai, ai), and after renumerating, we can assume
ai = i. So we are counting compositions b of d, s.t.

∑
i bii = k for i = 0 . . . n. This is exactly the

same as specifying an integer partition γ of k by the number of its parts, i.e. γ = (0b0 , 1b1 , . . . , nbn),
such that b0 + · · ·+ bn = d. These restrictions are equivalent to γ fitting inside an n× d box, and the
number of such γ is exactly pk(d, n).

Next, when the second part in ν is 1, we have the following. Since ν3 = 1, the condition
∑
i biα

i
3 =

ν3 = 1 implies that there is a single i, such that biα
i
3 6= 0, and in fact must be 1, so bi = αi3 = 1.

After renumeration, we can assume that i = 0 (for separation purposes) with b0 = α0
3 = 1 and

α0 = (n− 1− r, r, 1) for r = 0 . . . n− 1. For the remaining bs and αs we have∑
i

biα
i = (L, k)− (n− 1− r, r) = (L+ r − n+ 1, k − r)

with b1 + · · · = d− 1, and |αi| = n. This number is now, by the previous case, (qk−r)@
(
n+d−1
n

)
q
. The

total number is thus

c(L,k,1) =
n−1∑
r=0

(qk−r)@

(
n+ d− 1

n

)
q

= (qk)@
n−1∑
r=0

qr
(
n+ d− 1

n

)
q

= (qk)@

(
n

1

)
q

(
n+ d− 1

n

)
q

.

Finally, when ν3 = 2 we have the following two distinct options:
Either there is an index i, such that biα

i
3 = ν3 = 2, or i < j with biα

i
3 = 1 and bjα

j
3 = 1.

In the first case we have biα
3
i = 2 – either bi = 2, in which case αi = (n− 1− r, 1) and the rest of

the b’s sum to d− bi = d− 2, which brings us to the previous case (of (L, k, 1)), so the number is

(qk)@

(
n

1

)
q

(
n+ d− 2

n

)
q

.

Otherwise, bi = 1 and αi3 = 2. As in the case ν3 = 1, let i = 0 and α0 = (n− 2− r, r, 2), b0 = 1, so
we are looking for the number of (b1, . . .) with |b| = d−1 and such that

∑
i biα

i = (L−n+r+2, k−r)
for all possible r = 0, . . . , n− 2. So this is

n−2∑
r=0

(qk−r)@

(
n+ d− 1

n

)
q

= (qk)@

(
n− 1

1

)
q

(
n+ d− 1

n

)
q
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Last, when there are i < j with biα
i
3 = 1 and bjα

j
3 = 1, let i = −1, j − 0 (again, renumerating for

simplicity), with α−1 = (n − 1 − r1, r1, 1) and α0 = (n − 1 − r2, r2, 1) with 0 ≤ r1 < r2 ≤ n − 1. We
thus have for the remaining α and bs that b1 + · · · = d− 2, and

∑
i biα

i = (L− (n− 1− r1)− (n− 1−
r2), k − r1 − r2). By the first case, this is

(qk−r1−r2)@
(
n+d−2
n

)
q
. Summing over all possible 0 < r1 < r2 ≤ n− 1, we have

(qk) @
∑

0≤r1<r2≤n−1

qr1+r2
(
n+ d− 2

n

)
q

= (qk)@q
∑

0≤r1≤r2−1≤n−2

qr1+(r2−1)
(
n+ d− 2

n

)
q

= (qk)@q

(
n− 2 + 2

2

)
q

(
n+ d− 2

n

)
q

,

where the last identity follows from interpreting (r2 − 1, r1) as a partition in the 2× n− 2 rectangle.
Summing over all the cases considered here, we get the desired total coefficient.

As an application of the above formulas, and an example, we first compute some easier cases, the
first one being well known and classical (see e.g., [Stu93, Cor. 4.2.8]).

4.6 Proposition. The plethysm coefficient for a two-row partition λ = (L, k) is equal to

a(L,k)(d[n]) = (qk) @ (1− q)
(
n+ d

d

)
q

= pk(d, n)− pk−1(d, n).

The plethysm coefficient for the three-row partition λ = (L, k, 1) is equal to

a(L,k,1)(d[n]) = (qk) @

(
(1− qn)

(
n+ d− 1

n

)
q

)
− (qk+1) @ (1− q2)

(
n+ d

n

)
q

= pk(d− 1, n)− pk+1(n, d) + pk−1(n, d)− pk(d, n) + pk(d, n− 1)

Proof. Following equation (4.4), and applying the formulas from Proposition 4.5 we have that

a(L,k)(d[n]) = c(L,k,0) − c(L+1,k−1,0) = (qk) @

(
n+ d

n

)
q

− (qk−1) @

(
n+ d

n

)
q

= pk(d, n)− pk−1(d, n).

The formula in the statement follows from the fact that (qk−1) @ F = (qk) @ qF for any Laurent
polynomial F in q. For the second case, we follow the same formulas and derive

a(L,k,1)(d[n]) = c(L,k,1) − c(L,k+1,0) − c(L+1,k−1,1) + c(L+2,k−1,0)

= (qk) @

(
n

1

)
q

(
n+ d− 1

n

)
q

− (qk+1) @

(
n+ d

n

)
q

− (qk−1) @

(
n

1

)
q

(
n+ d− 1

n

)
q

+ (qk−1) @

(
n+ d

n

)
q

= (qk) @

(
(1− q)1− qn

1− q

(
n+ d− 1

n

)
q

)
− (qk+1) @ (1− q2)

(
n+ d

n

)
q

= (qk) @ (1− qn)

(
n+ d− 1

n

)
q

− (qk+1) @ (1− q2)

(
n+ d

n

)
q

,

which establishes the first expression for a(L,k,1)(d[n]). For the second one we observe that(
d+ n

n

)
q

−
(
d+ n− 1

d

)
q

=

(
d+ n− 1

n− 1

)
q

(
1− qd+n

1− qn
− 1

)
= qn

1− qd

1− qn
[d+ n− 1]!q
[d]!q[n− 1]!q

= qn
(
d+ n− 1

n

)
q

and then take the corresponding coefficients of the q−binomials via their combinatorial interpretation
as number of partitions inside a rectangle.
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4.7 Corollary. For every two-row partition (L, k) of dn we have a(L,k)(d[n]) = a(L,k)(n[d]) (which is
the well-known Hermite reciprocity) and also a(L,k,1)(d[n]) = a(L,k,1)(n[d]).

Proof. The first equality is obvious by the combinatorial interpretation – partitions inside d× n rect-
angle are in one-to-one correspondence with partitions inside a n × d rectangle by diagonal flip. So
pk(d, n) = pk(n, d) and pk−1(d, n) = pk−1(n, d), and by the first equation in Proposition 4.6 the equality
follows.

To see the case of the three-row partition (L, k, 1) from Proposition 4.6 we just compare all the
terms using the symmetry again

a(L,k,1)(d[n])− a(L,k,1)(n[d]) = pk(d− 1, n) + pk(d, n− 1)− pk+1(n, d) + pk−1(n, d)− pk(d, n)

−pk(n− 1, d)− pk(n, d− 1) + pk+1(d, n)− pk−1(d, n) + pk(n, d) = 0.

4.8 Proposition. The plethysm coefficient for λ = (L, k, 2) is equal to

aλ(d[n]) = (qk+1) @

((
n+ d− 2

n

)
q

q(1− qn)(1− q2 + q − qn)

1− q2

+

(
n+ d− 1

n

)
q

(qn+1 − 1) + (1− q)
(
n+ d

n

)
q

)
Proof. Following equation (4.4), we have that

aλ(d[n]) = c(L,k,2) − c(L,k+1,1) − c(L+1,k−1,2) + c(L+1,k+1,0) + c(L+2,k−1,1) − c(L+2,k,0).

Substituting the formulas for the c’s from Proposition 4.5, and observing that (qk+j) @ f = (qk) @ q−jf
for any j, we have that

aλ(d[n]) = (qk+1) @

(
(q − q2)

((
n

1

)
q

(
n+ d− 2

n

)
q

+

(
n− 1

1

)
q

(
n+ d− 1

n

)
q

+ q

(
n

2

)
q

(
n+ d− 2

n

)
q

)

+(q2 − 1)

(
n

1

)
q

(
n+ d− 1

n

)
q

+ (1− q)
(
n+ d

n

)
q

)
Simplifying the above expression by grouping terms for the same binomial coefficients together we
obtain

aλ(d[n]) = (qk+1) @

((
n+ d− 2

n

)
q

q(1− qn)(1− q2 + q − qn)

1− q2

+

(
n+ d− 1

n

)
q

(qn+1 − 1) + (1− q)
(
n+ d

n

)
q

)

4.9 Proposition. Let λ = (L, k, 2). We have that

aλ(d[n])− aλ(n[d]) = (qk) @

(
n+ d− 2

n− 1

)
q

(qn − qd) (1− qd−1)(1− qn−1)

(1− qd)(1− qn)
.
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Proof. Set [a]!q := (1 − q) · · · (1 − qa), a variant of the usual factorial q-analogue but multiplied by
(1− q)a, and consider the desired difference via the formula in Proposition 4.8:

aλ(d[n])− aλ(n[d]) = (qk+1) @{ ((
n+ d− 2

n

)
q

q(1− qn)(1− q2 + q − qn)

1− q2
+

(
n+ d− 1

n

)
q

(qn+1 − 1)

−
(
n+ d− 2

d

)
q

q(1− qd)(1− q2 + q − qd)
1− q2

−
(
n+ d− 1

d

)
q

(qd+1 − 1)
)

=
[n+ d− 2]!q

[n− 2]!q[d− 2]!q

q(qn−1 − qd−1)

(1− qn−1)(1− qd−1)
− [n+ d− 1]!q

[n− 1]!q[d− 1]!q

(1− q)(qn − qd)
(1− qn)(1− qd)

=

(
n+ d− 2

n− 1

)
q

(qn − qd)
(

1− (1− qn+d−1)(1− q)
(1− qn)(1− qd)

)
=

(
n+ d− 2

n− 1

)
q

(qn − qd)q(1− q
d−1)(1− qn−1)

(1− qd)(1− qn)

}
Finally, observe that the RHS is a polynomial divisible by q, so the coefficient at qk+1 is the same as
the coefficient at qk after dividing by q.

We are now ready to prove Theorem 3.5 as a corollary of the above computations. This verifies
Foulkes’ conjecture for an infinite family of cases:

4.10 Corollary. [Theorem 3.5] Let d = n+ 1 and λ = (n2 + n− 2− k, k, 2). Then aλ((n+ 1)[n])−
aλ(n[n+ 1]) ≥ 0, with

aλ((n+ 1)[n])− aλ(n[n+ 1]) =


0, when k < n,

1, when k = n,

> 0, when k > n and n ≥ 7,

with the exception in the last case when n = 8, and k = 35 when a(35,35,2)(9[8]) = a(35,35,2)(8[9]).

Proof. Then by the Proposition 4.9 we have

aλ((n+ 1)[n])− aλ(n[n+ 1]) = (qk) @

(
2n− 1

n− 1

)
q

(qn − qn+1)
(1− qn)(1− qn−1)

(1− qn+1)(1− qn)

= (qk) @

(
2n− 1

n− 1

)
q

(qn − qn+1)
(1− qn−1)

1− qn+1
= (qk) @

(
2n− 1

n− 2

)
q

(qn − qn+1)

The last line follows by absorbing the fraction into the q-binomial coefficient. It is now evident,
that since the q-binomial coefficient expands into a polynomial of q (with coefficients given by p∗(n−
2, n+ 1)), multiplying it with qn or qn+1 gives two polynomials whose lowest order terms are qn and
qn+1 respectively. So if k < n, there is no term of such degree, and the coefficient is 0. When k = n we
see that such term can only come from the first polynomial’s first (lowest order) term, which is exactly
qn since

(
2n−1
n−2

)
q
qn = qn(1 + q + 2q2 + · · · ) = qn +O(qn+1). Therefore we obtain the case k = n.

Let now k > n, and set k = n+ r + 1 for some r ≥ 0. We have that

aλ((n+ 1)[n])− aλ(n[n+ 1]) = (qr+1) @

(
2n− 1

n− 2

)
q

− (qr) @

(
2n− 1

n− 2

)
q

= pr+1(n+ 1, n− 2)− pr(n+ 1, n− 2)

= g((n2 − n− 3− r, r + 1), (n+ 1)n−2, (n+ 1)n−2) > 0,
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where g denotes the Kronecker coefficient for the symmetric group Sn for the 3 given partitions, and
the last identity and the strict positivity are shown to hold for n ≥ 9 in [PP13], and the other cases
are verified by direct expansion of the q-binomial coefficients. In particular, we have that p26(9, 6) =
227 = p27(9, 6) which gives the only exceptional 0 plethysm.

5 Computer calculations

The following computer calculation for Proposition 5.1 is a refinement and speedup of the computation
performed in [CIM16]. Indeed, a run of the method from [CIM16] would take significantly too long
to prove Proposition 5.1 in any reasonable time. Our new method makes extensive use of memory
resources, while the method from [CIM16] uses almost no memory.

5.1 Proposition. If X is defined as in Proposition 3.9, then for all µ ∈ X of length 3 we have
multµ(C[Ch63]) > 0.

If X is defined as in Proposition 7.1, then for all µ ∈ X we have multµ(C[Ch74]) > 0.

Proof. For a vector space U let
⊗

δU denote its δ-th tensor power. The computation that verifies
Proposition 5.1 is based on the famous Schur-Weyl duality (see e.g., [Pro07, Ch. 9, eq. (3.1.4)] or
[GW09, eq. (9.1)]): ⊗dnCm '

⊕
λ

{λ} ⊗ [λ], (5.2)

where the sum is over all m-partitions of dn, {λ} is the irreducible GLm-representation of type λ, and
[λ] is the irreducible Sdn-representation of type λ, which is called the Specht module.

For a GLm-representation W , a highest weight vector of type λ is a vector f ∈ W such that two
properties hold: (1) diag(α1, α2, . . . , αm)f = αλ1

1 · · ·αλmm f , where diag(α1, α2, . . . , αm) denotes the
diagonal matrix with αi on the main diagonal, and (2) gf = f for every upper triangular matrix
g ∈ GLm with 1s on the main diagonal. The highest weight vectors of type λ in W form a vector space,
which we call HWVλ(W ). Its dimension conveniently coincides with the multiplicity of λ in W (see
e.g., [BI18, Prop 12.2.5]):

multλ(W ) = dimHWVλ(W ). (5.3)

Let SymδU ⊆
⊗

δU denote the Sδ-invariant subspace and let U∗ denote the vector space dual to U .
There are canonical isomorphisms C[U ]d ' Symd(U∗) ' (SymdU)∗. Observe that there are canonical
GLm-equivariant surjections:⊗dnCm '

⊗d(
⊗nCm∗)∗ � Symd(Symn(Cm∗))∗︸ ︷︷ ︸

=C[Anm]d

� C[Chnm]d,

where the first surjection is the symmetrization Sd,n := 1
d!(n!)d

∑
σ∈SnoSd σ over the wreath product

Sn oSd and the second surjection is the restriction of functions from Anm to the subvariety Chnm. Now,
restricting to the highest weight vector space of type λ, we obtain surjections

HWVλ(
⊗dnCm) � HWVλ(C[Anm]d) � HWVλ(C[Chnm]d). (5.4)

To prove that multλ(C[Chnm]d) > 0 we combine (5.3) with (5.4), so our goal is to find a nonzero
vector in HWVλ(

⊗
dnCm) that does not vanish under the composition of both surjections in (5.4). The

vector space HWVλ(
⊗

dnCm) is well known and we construct its elements as follows. For a partition
λ = (λ1, . . . , λm) let µ be its transposed partition, i.e., µi := |{j | λi ≥ j}|. If we depict a partition
by its Young diagram, which is a top-left justified array of boxes, λi in each row, then µ is obtained
by reflecting λ at its diagonal, hence the name “transposed partition”. It is straightforward to verify
that the following vector vλ is contained in HWVλ(

⊗
dnCm):

vλ := vµ1
⊗ vµ2

⊗ · · · ⊗ vµλ1 ,
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where vi := e1 ∧ e2 ∧ · · · ∧ ei := 1
i!

∑
σ∈Si sgn(σ)eσ(1) ⊗ · · · ⊗ eσ(i) is a highest weight vector of type

(1, 1, . . . , 1︸ ︷︷ ︸
i times

). Equation (5.2) combined with the fact that {λ} contains a single highest weight vector

line of type λ and no highest weight vector of any other type (see e.g., [Kra85, III.1.4, Satz 1]) implies
that {πvλ | π ∈ Sdn} is a generating set of the vector space HWVλ(

⊗
dnCm) (cp. [Ike12, Claim 4.2.13]).

Thus {Sd,nπvλ | π ∈ Sdn} is a generating set of HWVλ(C[Anm]d). The evaluation of Sd,nπvλ at a point
p ∈ Anm = SymnCm∗ is known to equal the tensor contraction

(p⊗d)Sd,nπvλ, (5.5)

see e.g., [Ike12, Sec. 4.2(A)]. Since p⊗dSd,n = p⊗d, (5.5) equals

(p⊗d)πvλ, (5.6)

as observed e.g., in [Ike12, p. 39]. Therefore, the statement dimHWVλ(C[Chnm]d) > 0 is equivalent
to the existence of a π ∈ Sdn and a p ∈ Chnm such that (5.6) is nonzero. The search for (π, p) is an
algorithmic challenge that we tackle as follows. We choose a random p ∈ Chnm, i.e., p = `1 · · · `n =
1
n!

∑
σ∈Sn `σ(1) ⊗ · · · ⊗ `σ(i), `i ∈ Cm∗. To compute (5.6) we aim to not expand πvλ, because a tensor

contraction
(`i1 ⊗ `i2 ⊗ · · · ⊗ `idn)πvλ (5.7)

is just a product of determinants of matrices of size ≤ m, and such determinants are efficiently
computable. If we expand p⊗d into a sum of summands of the form `i1 ⊗ `i2 ⊗ · · · ⊗ `idn , then
we obtain (n!)d many summands, which for n = 6 quickly exceeds our computational recources,
even for reasonably low d. Therefore we use a dynamic programming approach that is based on the
combinatorial interpretation of the summation (5.6) from [CIM16], which we describe next.

We identify λ with its Young diagram, which we interpret as a cardinality |λ| subset of N×N. Let
µ be the transpose of λ, so µi denotes the length of the i-th column of λ. A placement ϑ on λ is a map
λ → {1, . . . , n}. To each placement ϑ and each column index i the corresponding determinant detϑ,i
is defined as the determinant of the top µi × µi submatrix of the m × µi matrix that is given by the
linear forms `ϑ(1,i), `ϑ(2,i), . . . , `ϑ(µi,i). We number the positions in λ columnwise from left to right, top
to bottom, so that each position b ∈ λ gets a number j(b) ∈ {1, . . . , nd}. Given π ∈ Snd we construct
the Young tableau T of shape λ by filling λ at position b with the number T (b) := dπ(j(b))/ne. For
example, if λ = (2, 2), d = n = 2, and π is the transposition (2 3), then T = 1 1

2 2 . The tableau T contains
each number from {1, . . . , d} exactly n times (and each tableau T which contains each number from 1
to d exactly n times can be otained from some π). A short calculation, which for example is done in
[CIM16], shows that (5.6) equals ∑

proper ϑ

λ1∏
i=1

detϑ,i, (5.8)

where a placement ϑ is proper if ϑ places each number onto each number in T exactly once, i.e., for
every i ∈ {1, . . . , n} and j ∈ {1, . . . , d} there exists exactly one b ∈ λ with (ϑ(b), T (b)) = (i, j).

The above description was used to perform the computations in [CIM16]. We now discuss some
adjustments for the computations that we use. For a placement ϑ on λ and for a partition ν ⊆ λ we
denote by ϑ|ν the restriction of ϑ to ν. We say that a placement ϑ on λ extends a placement ψ on
ν ⊆ λ iff ϑ|ν = ψ. Let λ≤k denote the set of boxes in the first k columns of the Young diagram λ, and
λ>k denote the set of boxes of λ that are in columns > k. For a placement ψ on λ≤k and a placement
ϕ on λ>k let ψϕ denote the unique placement on λ that extends both ψ and ϕ.

Our algorithm constructs all proper placements ϑ on λ using a standard breadth-first search in a
columnwise manner from left to right, top to bottom. In this way we first obtain ϑ|λ≤1 , then ϑ|λ≤2 ,
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and so on. For each placement ψ on λ≤k we observe that

∑
proper ϑ extending ψ

λ1∏
i=1

detϑ,i =

(
k∏
i=1

detψ,i

) ∑
proper ϑ extending ψ

λ1∏
i=k+1

detϑ,i


︸ ︷︷ ︸

=:α(ψ)

. (5.9)

Two placements ψ and ψ′ on λ≤k are called equivalent if they can be obtained from each other by
permuting entries between positions that have the same number in T . The crucial observation is that
α(ψ) = α(ψ′) if ψ is equivalent to ψ′. Therefore we can store and reuse each α(ψ) that we encounter
throughout the algorithm without computing it again. Although this requires a significant amount of
memory, it enables us to crucially cut down the computation time. 1

Define κi(T
≤k) as the number of times the number i appears in the first k columns of T . Then the

number of non-equivalent ψ can easily be calculated as

λ1∑
k=1

d∏
i=1

(
n

κi(T≤k)

)
(5.10)

Note that depending on T the number of non-equivalent ψ can wildly vary and with it also our
running time and memory usage. Generally, it seems that semistandard tableaux, i.e., tableaux with
non-decreasing rows and strictly increasing columns, can be evaluated faster. It is sufficient to restrict
our attention to semistandard T only, see e.g., [Ike12, Sec. 4.3(A)]. For many partitions there were
too many semistandard tableaux in order to generate all of them, so a set of random semistandard
tableaux was chosen in these cases. In either case we tested the chosen tableaux by increasing value
of (5.10). Additionally, as soon as we find

∏k
i=1 detψ,i to be zero we do not have to evaluate the

corresponding α(ψ). Numerical problems were avoided by working over a finite field.

The actual tableaux found in both these calculations can be found in Section 8.

6 Tableau computation results for Proposition 3.2

Proof of Proposition 3.2. We computed the following 8 tableaux that index a basis of
HWV34,6,2(C[A6

3]7), in complete analogy to [BIP19, Sec. 6]. The corresponding functions can be readily
evaluated at 8 random points in Pow6

3,4 to obtain an 8 × 8 matrix whose non-singularity proves the
first part of Proposition 3.2.

1 1 1 1 1 1 2 2 2 2 2 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7
2 3 3 3 4 5
3 4

1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 7 7
2 2 4 4 5 5
6 6

1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7
2 2 2 5 5 5
4 4

1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 4 4 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7
2 4 4 4 4 7
5 5

1 1 1 1 1 1 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7
2 2 2 2 4 4
3 6

1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 7 7 7 7 7 7
2 3 5 6 6 6
4 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7
3 3 4 5 5 7
4 6

1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7
2 2 3 3 6 7
4 5

1Since α(ψ) for any placement ψ on λ≤k only depends on α(ψ′) for some placements ψ′ on λ≤k+1 we don’t have to
keep the results for all k at the same point in time, which again cuts down our memory usage by a small factor. This
was especially relevant for the case m = 4, n = 7, although not sufficient for all partitions.
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The second part is proved analogously by studying HWV47,7,2(C[A7
3]8) and using the following 11

tableaux.

1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 8 8 8 8 8 8
2 2 4 7 7 7 8
5 7

1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 8
2 2 2 5 5 5 7
4 6

1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 8
2 2 2 2 4 6 8
8 8

1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 8 8
2 2 2 2 3 3 8
5 8

1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8
2 2 4 8 8 8 8
4 5

1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8 8
3 3 3 3 3 5 5
5 7

1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 8 8 8 8 8 8
3 3 6 6 7 7 7
7 8

1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8
4 4 4 5 5 8 8
8 8

1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8 8
2 2 4 4 5 5 7
7 8

1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8
2 2 3 3 5 7 8
4 6

1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8
2 3 3 4 5 7 8
3 6

7 Generators for m = 4, n = 7

7.1 Proposition. Define the set
X := {(7), (8, 6), (10, 4), (12, 2), (8, 8, 5), (9, 6, 6), (10, 7, 4), (10, 8, 3), (10, 10, 1), (11, 6, 4), (11, 8, 2), (12, 6, 3), (12, 7, 2), (12, 8, 1), (12, 9),

(13, 4, 4), (13, 6, 2), (13, 7, 1), (13, 8), (14, 5, 2), (14, 6, 1), (14, 7), (15, 4, 2), (16, 4, 1), (16, 5), (17, 2, 2), (18, 3), (10, 6, 6, 6), (9, 8, 6, 5), (8, 8, 8, 4),
(10, 8, 6, 4), (10, 10, 4, 4), (11, 7, 6, 4), (11, 8, 5, 4), (10, 8, 7, 3), (10, 9, 6, 3), (12, 6, 6, 4), (12, 8, 4, 4), (11, 8, 6, 3), (11, 9, 5, 3), (10, 8, 8, 2), (11, 10, 4, 3),
(10, 10, 6, 2), (13, 7, 4, 4), (12, 7, 6, 3), (12, 8, 5, 3), (12, 9, 4, 3), (11, 8, 7, 2), (11, 9, 6, 2), (11, 10, 5, 2), (10, 10, 7, 1), (14, 6, 4, 4), (13, 6, 6, 3),
(13, 7, 5, 3), (13, 8, 4, 3), (13, 9, 3, 3), (12, 8, 6, 2), (12, 9, 5, 2), (11, 8, 8, 1), (12, 10, 4, 2), (11, 9, 7, 1), (12, 11, 3, 2), (11, 10, 6, 1), (12, 12, 2, 2),
(11, 11, 5, 1), (10, 10, 8), (14, 7, 4, 3), (13, 7, 6, 2), (13, 8, 5, 2), (13, 9, 4, 2), (12, 8, 7, 1), (13, 10, 3, 2), (12, 9, 6, 1), (12, 10, 5, 1), (12, 11, 4, 1), (11, 10, 7),
(16, 4, 4, 4), (15, 6, 4, 3), (14, 6, 6, 2), (14, 7, 5, 2), (14, 8, 4, 2), (13, 7, 7, 1), (14, 9, 3, 2), (13, 8, 6, 1), (14, 10, 2, 2), (13, 9, 5, 1), (12, 8, 8), (13, 10, 4, 1),
(12, 9, 7), (13, 11, 3, 1), (12, 10, 6), (13, 12, 2, 1), (12, 11, 5), (13, 13, 1, 1), (12, 12, 4), (15, 6, 5, 2), (15, 7, 4, 2), (15, 8, 3, 2), (14, 7, 6, 1), (15, 9, 2, 2),
(14, 8, 5, 1), (14, 9, 4, 1), (13, 8, 7), (14, 10, 3, 1), (13, 9, 6), (14, 11, 2, 1), (13, 10, 5), (13, 11, 4), (13, 12, 3), (16, 6, 4, 2), (16, 7, 3, 2), (15, 6, 6, 1),
(16, 8, 2, 2), (15, 7, 5, 1), (15, 8, 4, 1), (15, 9, 3, 1), (14, 8, 6), (15, 10, 2, 1), (14, 9, 5), (15, 11, 1, 1), (14, 10, 4), (14, 11, 3), (14, 12, 2), (14, 13, 1),
(14, 14), (17, 5, 4, 2), (17, 6, 3, 2), (17, 7, 2, 2), (16, 6, 5, 1), (16, 7, 4, 1), (16, 8, 3, 1), (15, 7, 6), (16, 9, 2, 1), (16, 10, 1, 1), (15, 9, 4), (15, 10, 3),
(15, 11, 2), (15, 12, 1), (18, 4, 4, 2), (18, 6, 2, 2), (17, 6, 4, 1), (17, 7, 3, 1), (17, 8, 2, 1), (16, 7, 5), (17, 9, 1, 1), (16, 8, 4), (16, 9, 3), (16, 10, 2), (16, 11, 1),
(19, 5, 2, 2), (18, 5, 4, 1), (18, 6, 3, 1), (18, 7, 2, 1), (17, 6, 5), (17, 9, 2), (17, 11), (20, 4, 2, 2), (19, 4, 4, 1), (19, 5, 3, 1), (19, 6, 2, 1), (19, 7, 1, 1), (18, 7, 3),
(18, 9, 1), (20, 5, 2, 1), (19, 5, 4), (22, 2, 2, 2), (21, 4, 2, 1), (20, 5, 3), (21, 4, 3), (22, 5, 1), (23, 3, 2), (11, 8, 8, 8), (10, 10, 8, 7), (11, 9, 8, 7), (11, 10, 7, 7),
(10, 10, 9, 6), (12, 8, 8, 7), (11, 10, 8, 6), (11, 11, 7, 6), (10, 10, 10, 5), (13, 8, 7, 7), (12, 9, 8, 6), (12, 10, 7, 6), (12, 11, 6, 6), (11, 10, 9, 5), (11, 11, 8, 5),
(13, 8, 8, 6), (13, 9, 7, 6), (13, 10, 6, 6), (12, 9, 9, 5), (12, 10, 8, 5), (12, 11, 7, 5), (11, 10, 10, 4), (12, 12, 6, 5), (11, 11, 9, 4), (14, 8, 7, 6), (14, 9, 6, 6),
(13, 9, 8, 5), (13, 10, 7, 5), (13, 11, 6, 5), (12, 10, 9, 4), (13, 12, 5, 5), (12, 11, 8, 4), (12, 12, 7, 4), (11, 11, 10, 3), (15, 7, 7, 6), (15, 8, 6, 6), (14, 8, 8, 5),
(14, 9, 7, 5), (14, 10, 6, 5), (13, 9, 9, 4), (14, 11, 5, 5), (13, 10, 8, 4), (13, 11, 7, 4), (12, 10, 10, 3), (13, 12, 6, 4), (12, 11, 9, 3), (13, 13, 5, 4), (12, 12, 8, 3),
(16, 7, 6, 6), (15, 8, 7, 5), (15, 9, 6, 5), (15, 10, 5, 5), (14, 9, 8, 4), (14, 10, 7, 4), (14, 11, 6, 4), (13, 10, 9, 3), (14, 12, 5, 4), (13, 11, 8, 3), (14, 13, 4, 4),
(13, 12, 7, 3), (12, 11, 10, 2), (13, 13, 6, 3), (12, 12, 9, 2), (16, 7, 7, 5), (16, 9, 5, 5), (15, 9, 7, 4), (15, 10, 6, 4), (14, 9, 9, 3), (15, 11, 5, 4), (14, 10, 8, 3),
(15, 12, 4, 4), (14, 11, 7, 3), (13, 10, 10, 2), (14, 12, 6, 3), (13, 11, 9, 2), (14, 13, 5, 3), (13, 12, 8, 2), (14, 14, 4, 3), (13, 13, 7, 2), (12, 12, 10, 1), (17, 7, 6, 5),
(17, 8, 5, 5), (16, 8, 7, 4), (16, 9, 6, 4), (16, 10, 5, 4), (15, 9, 8, 3), (16, 11, 4, 4), (15, 10, 7, 3), (15, 11, 6, 3), (14, 10, 9, 2), (15, 12, 5, 3), (14, 11, 8, 2),
(15, 13, 4, 3), (14, 12, 7, 2), (13, 11, 10, 1), (15, 14, 3, 3), (14, 13, 6, 2), (13, 12, 9, 1), (14, 14, 5, 2), (13, 13, 8, 1), (12, 12, 11), (18, 6, 6, 5), (18, 7, 5, 5),
(17, 7, 7, 4), (17, 9, 5, 4), (16, 8, 8, 3), (16, 9, 7, 3), (16, 10, 6, 3), (15, 9, 9, 2), (16, 11, 5, 3), (15, 10, 8, 2), (16, 12, 4, 3), (15, 11, 7, 2), (14, 10, 10, 1),
(16, 13, 3, 3), (15, 12, 6, 2), (14, 11, 9, 1), (15, 13, 5, 2), (14, 12, 8, 1), (15, 14, 4, 2), (14, 13, 7, 1), (13, 12, 10), (15, 15, 3, 2), (14, 14, 6, 1), (13, 13, 9),
(18, 9, 4, 4), (17, 10, 5, 3), (16, 9, 8, 2), (17, 11, 4, 3), (16, 10, 7, 2), (17, 12, 3, 3), (16, 11, 6, 2), (15, 10, 9, 1), (16, 12, 5, 2), (15, 11, 8, 1), (16, 13, 4, 2),
(15, 12, 7, 1), (14, 11, 10), (16, 14, 3, 2), (15, 13, 6, 1), (14, 12, 9), (16, 15, 2, 2), (15, 14, 5, 1), (14, 13, 8), (15, 15, 4, 1), (14, 14, 7), (19, 7, 5, 4),
(18, 7, 7, 3), (17, 9, 7, 2), (18, 11, 3, 3), (16, 9, 9, 1), (17, 11, 5, 2), (16, 10, 8, 1), (17, 12, 4, 2), (16, 11, 7, 1), (15, 10, 10), (17, 13, 3, 2), (16, 12, 6, 1),
(15, 11, 9), (17, 14, 2, 2), (16, 13, 5, 1), (15, 12, 8), (16, 14, 4, 1), (15, 13, 7), (16, 15, 3, 1), (15, 14, 6), (16, 16, 2, 1), (15, 15, 5), (20, 6, 5, 4), (19, 10, 3, 3),
(17, 9, 8, 1), (18, 11, 4, 2), (18, 12, 3, 2), (17, 11, 6, 1), (16, 10, 9), (18, 13, 2, 2), (17, 12, 5, 1), (16, 11, 8), (17, 13, 4, 1), (16, 12, 7), (17, 14, 3, 1),
(16, 13, 6), (17, 15, 2, 1), (17, 16, 1, 1), (16, 15, 4), (16, 16, 3), (19, 7, 7, 2), (17, 9, 9), (18, 12, 4, 1), (17, 11, 7), (18, 13, 3, 1), (18, 14, 2, 1), (17, 13, 5),
(18, 15, 1, 1), (17, 14, 4), (17, 15, 3), (17, 16, 2), (22, 5, 4, 4), (21, 6, 5, 3), (21, 8, 3, 3), (20, 11, 2, 2), (18, 9, 8), (19, 12, 3, 1), (18, 11, 6), (19, 13, 2, 1),
(19, 14, 1, 1), (18, 15, 2), (18, 17), (22, 7, 3, 3), (19, 13, 3), (19, 15, 1), (19, 16), (23, 5, 4, 3), (23, 6, 3, 3), (21, 12, 1, 1), (24, 4, 4, 3), (23, 5, 5, 2),
(21, 7, 7), (25, 5, 3, 2), (24, 5, 5, 1), (26, 4, 3, 2), (25, 8, 1, 1), (28, 3, 2, 2), (27, 4, 3, 1), (12, 10, 10, 10), (11, 11, 11, 9), (12, 11, 10, 9), (12, 12, 9, 9),
(13, 10, 10, 9), (13, 11, 9, 9), (12, 11, 11, 8), (12, 12, 10, 8), (14, 10, 9, 9), (13, 11, 10, 8), (13, 12, 9, 8), (13, 13, 8, 8), (12, 12, 11, 7), (15, 9, 9, 9),
(14, 10, 10, 8), (14, 11, 9, 8), (14, 12, 8, 8), (13, 11, 11, 7), (13, 12, 10, 7), (13, 13, 9, 7), (12, 12, 12, 6), (15, 10, 9, 8), (15, 11, 8, 8), (14, 11, 10, 7),
(14, 12, 9, 7), (14, 13, 8, 7), (13, 12, 11, 6), (14, 14, 7, 7), (13, 13, 10, 6), (16, 9, 9, 8), (16, 10, 8, 8), (15, 10, 10, 7), (15, 11, 9, 7), (15, 12, 8, 7),
(14, 11, 11, 6), (15, 13, 7, 7), (14, 12, 10, 6), (14, 13, 9, 6), (13, 12, 12, 5), (14, 14, 8, 6), (13, 13, 11, 5), (17, 9, 8, 8), (16, 10, 9, 7), (16, 11, 8, 7),
(16, 12, 7, 7), (15, 11, 10, 6), (15, 12, 9, 6), (15, 13, 8, 6), (14, 12, 11, 5), (15, 14, 7, 6), (14, 13, 10, 5), (15, 15, 6, 6), (14, 14, 9, 5), (13, 13, 12, 4),
(17, 9, 9, 7), (17, 11, 7, 7), (16, 10, 10, 6), (16, 11, 9, 6), (16, 12, 8, 6), (15, 11, 11, 5), (16, 13, 7, 6), (15, 12, 10, 5), (16, 14, 6, 6), (15, 13, 9, 5),
(14, 12, 12, 4), (15, 14, 8, 5), (14, 13, 11, 4), (15, 15, 7, 5), (14, 14, 10, 4), (13, 13, 13, 3), (17, 11, 8, 6), (17, 12, 7, 6), (16, 11, 10, 5), (17, 13, 6, 6),
(16, 12, 9, 5), (16, 13, 8, 5), (15, 12, 11, 4), (16, 14, 7, 5), (15, 13, 10, 4), (16, 15, 6, 5), (15, 14, 9, 4), (14, 13, 12, 3), (16, 16, 5, 5), (15, 15, 8, 4),
(14, 14, 11, 3), (19, 9, 7, 7), (18, 9, 9, 6), (17, 11, 9, 5), (17, 12, 8, 5), (16, 11, 11, 4), (17, 13, 7, 5), (16, 12, 10, 4), (16, 13, 9, 4), (15, 12, 12, 3),
(17, 15, 5, 5), (15, 13, 11, 3), (16, 15, 7, 4), (15, 14, 10, 3), (14, 13, 13, 2), (16, 16, 6, 4), (15, 15, 9, 3), (14, 14, 12, 2), (18, 12, 7, 5), (17, 11, 10, 4),
(18, 13, 6, 5), (17, 12, 9, 4), (18, 14, 5, 5), (17, 13, 8, 4), (16, 12, 11, 3), (17, 14, 7, 4), (16, 13, 10, 3), (17, 15, 6, 4), (16, 14, 9, 3), (15, 13, 12, 2),
(17, 16, 5, 4), (16, 15, 8, 3), (15, 14, 11, 2), (17, 17, 4, 4), (16, 16, 7, 3), (15, 15, 10, 2), (14, 14, 13, 1), (21, 7, 7, 7), (19, 13, 5, 5), (17, 11, 11, 3),
(18, 13, 7, 4), (17, 12, 10, 3), (17, 13, 9, 3), (16, 12, 12, 2), (18, 15, 5, 4), (17, 14, 8, 3), (16, 13, 11, 2), (17, 15, 7, 3), (16, 14, 10, 2), (15, 13, 13, 1),
(17, 16, 6, 3), (16, 15, 9, 2), (15, 14, 12, 1), (17, 17, 5, 3), (16, 16, 8, 2), (15, 15, 11, 1), (14, 14, 14), (18, 12, 9, 3), (18, 13, 8, 3), (17, 12, 11, 2),
(19, 15, 4, 4), (17, 13, 10, 2), (17, 14, 9, 2), (16, 13, 12, 1), (18, 16, 5, 3), (17, 15, 8, 2), (16, 14, 11, 1), (18, 17, 4, 3), (17, 16, 7, 2), (16, 15, 10, 1),
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(15, 14, 13), (18, 18, 3, 3), (17, 17, 6, 2), (16, 16, 9, 1), (15, 15, 12), (18, 11, 11, 2), (19, 13, 7, 3), (18, 12, 10, 2), (18, 13, 9, 2), (17, 12, 12, 1),
(17, 13, 11, 1), (18, 15, 7, 2), (17, 14, 10, 1), (16, 13, 13), (19, 17, 3, 3), (17, 15, 9, 1), (16, 14, 12), (18, 17, 5, 2), (17, 16, 8, 1), (16, 15, 11), (18, 18, 4, 2),
(17, 17, 7, 1), (19, 13, 8, 2), (18, 12, 11, 1), (18, 13, 10, 1), (20, 16, 3, 3), (18, 14, 9, 1), (17, 13, 12), (18, 15, 8, 1), (19, 17, 4, 2), (17, 15, 10), (19, 18, 3, 2),
(18, 17, 6, 1), (17, 16, 9), (19, 19, 2, 2), (18, 18, 5, 1), (17, 17, 8), (19, 11, 11, 1), (19, 13, 9, 1), (18, 13, 11), (18, 14, 10), (19, 18, 4, 1), (18, 17, 7),
(19, 19, 3, 1), (21, 17, 2, 2), (19, 15, 8), (20, 18, 3, 1), (19, 17, 6), (20, 19, 2, 1), (19, 18, 5), (19, 19, 4), (20, 11, 11), (20, 19, 3), (26, 6, 5, 5), (22, 18, 1, 1),
(21, 19, 2), (21, 20, 1), (23, 19), (28, 5, 5, 4), (29, 5, 5, 3), (31, 5, 3, 3), (32, 5, 5), (13, 12, 12, 12), (13, 13, 12, 11), (14, 12, 12, 11), (14, 13, 11, 11),
(13, 13, 13, 10), (15, 12, 11, 11), (14, 13, 12, 10), (14, 14, 11, 10), (16, 11, 11, 11), (15, 12, 12, 10), (15, 13, 11, 10), (15, 14, 10, 10), (14, 13, 13, 9),
(14, 14, 12, 9), (16, 12, 11, 10), (16, 13, 10, 10), (15, 13, 12, 9), (15, 14, 11, 9), (15, 15, 10, 9), (14, 14, 13, 8), (17, 11, 11, 10), (17, 12, 10, 10),
(16, 12, 12, 9), (16, 13, 11, 9), (16, 14, 10, 9), (15, 13, 13, 8), (16, 15, 9, 9), (15, 14, 12, 8), (15, 15, 11, 8), (14, 14, 14, 7), (18, 11, 10, 10), (17, 12, 11, 9),
(17, 13, 10, 9), (17, 14, 9, 9), (16, 13, 12, 8), (16, 14, 11, 8), (16, 15, 10, 8), (15, 14, 13, 7), (16, 16, 9, 8), (15, 15, 12, 7), (18, 12, 10, 9), (18, 13, 9, 9),
(17, 12, 12, 8), (17, 13, 11, 8), (17, 14, 10, 8), (16, 13, 13, 7), (17, 15, 9, 8), (16, 14, 12, 7), (17, 16, 8, 8), (16, 15, 11, 7), (15, 14, 14, 6), (16, 16, 10, 7),
(15, 15, 13, 6), (18, 12, 11, 8), (18, 13, 10, 8), (18, 14, 9, 8), (17, 13, 12, 7), (18, 15, 8, 8), (17, 14, 11, 7), (17, 15, 10, 7), (16, 14, 13, 6), (17, 16, 9, 7),
(16, 15, 12, 6), (17, 17, 8, 7), (16, 16, 11, 6), (15, 15, 14, 5), (19, 13, 9, 8), (18, 12, 12, 7), (18, 13, 11, 7), (18, 14, 10, 7), (17, 13, 13, 6), (18, 15, 9, 7),
(17, 14, 12, 6), (17, 15, 11, 6), (16, 14, 14, 5), (18, 17, 7, 7), (17, 16, 10, 6), (16, 15, 13, 5), (17, 17, 9, 6), (16, 16, 12, 5), (15, 15, 15, 4), (19, 13, 10, 7),
(19, 14, 9, 7), (18, 13, 12, 6), (18, 15, 10, 6), (17, 14, 13, 5), (17, 15, 12, 5), (18, 17, 8, 6), (16, 15, 14, 4), (18, 18, 7, 6), (17, 17, 10, 5), (19, 13, 11, 6),
(20, 15, 7, 7), (19, 14, 10, 6), (18, 13, 13, 5), (19, 15, 9, 6), (18, 15, 11, 5), (17, 15, 13, 4), (19, 18, 6, 6), (18, 17, 9, 5), (17, 16, 12, 4), (16, 15, 15, 3),
(18, 18, 8, 5), (17, 17, 11, 4), (16, 16, 14, 3), (19, 13, 12, 5), (19, 14, 11, 5), (18, 14, 13, 4), (17, 15, 14, 3), (18, 17, 10, 4), (17, 16, 13, 3), (19, 19, 6, 5),
(17, 17, 12, 3), (16, 16, 15, 2), (19, 13, 13, 4), (18, 14, 14, 3), (18, 15, 13, 3), (17, 15, 15, 2), (20, 19, 5, 5), (19, 18, 8, 4), (17, 16, 14, 2), (19, 19, 7, 4),
(18, 18, 10, 3), (17, 17, 13, 2), (16, 16, 16, 1), (18, 15, 14, 2), (20, 19, 6, 4), (18, 17, 12, 2), (17, 16, 15, 1), (19, 19, 8, 3), (17, 17, 14, 1), (19, 15, 13, 2),
(18, 15, 15, 1), (18, 16, 14, 1), (21, 20, 4, 4), (18, 17, 13, 1), (17, 16, 16), (20, 20, 6, 3), (19, 19, 9, 2), (17, 17, 15), (19, 15, 14, 1), (18, 16, 15), (18, 17, 14),
(21, 21, 4, 3), (19, 15, 15), (19, 17, 13), (22, 21, 3, 3), (21, 21, 5, 2), (19, 19, 11), (20, 15, 14), (23, 22, 2, 2), (22, 22, 4, 1), (21, 21, 7), (24, 23, 1, 1),
(23, 23, 3), (25, 23, 1), (25, 24), (14, 14, 14, 14), (15, 14, 14, 13), (15, 15, 13, 13), (16, 14, 13, 13), (15, 15, 14, 12), (17, 13, 13, 13), (16, 14, 14, 12),
(16, 15, 13, 12), (16, 16, 12, 12), (15, 15, 15, 11), (17, 14, 13, 12), (17, 15, 12, 12), (16, 15, 14, 11), (16, 16, 13, 11), (18, 13, 13, 12), (18, 14, 12, 12),
(17, 14, 14, 11), (17, 15, 13, 11), (17, 16, 12, 11), (16, 15, 15, 10), (17, 17, 11, 11), (16, 16, 14, 10), (19, 13, 12, 12), (18, 14, 13, 11), (18, 15, 12, 11),
(18, 16, 11, 11), (17, 15, 14, 10), (17, 16, 13, 10), (17, 17, 12, 10), (16, 16, 15, 9), (19, 13, 13, 11), (19, 15, 11, 11), (18, 15, 13, 10), (17, 15, 15, 9),
(18, 17, 11, 10), (18, 18, 10, 10), (17, 17, 13, 9), (20, 14, 11, 11), (19, 14, 13, 10), (19, 15, 12, 10), (19, 16, 11, 10), (18, 15, 14, 9), (19, 17, 10, 10),
(18, 16, 13, 9), (18, 17, 12, 9), (17, 16, 15, 8), (18, 18, 11, 9), (17, 17, 14, 8), (20, 15, 11, 10), (19, 14, 14, 9), (19, 15, 13, 9), (18, 15, 15, 8), (18, 17, 13, 8),
(17, 16, 16, 7), (19, 19, 9, 9), (17, 17, 15, 7), (21, 15, 10, 10), (19, 18, 11, 8), (19, 19, 10, 8), (17, 17, 16, 6), (20, 15, 13, 8), (19, 15, 15, 7), (20, 19, 9, 8),
(18, 17, 15, 6), (19, 19, 11, 7), (17, 17, 17, 5), (18, 17, 16, 5), (20, 15, 15, 6), (18, 17, 17, 4), (21, 21, 7, 7), (19, 17, 16, 4), (18, 18, 17, 3), (19, 17, 17, 3),
(19, 18, 16, 3), (18, 18, 18, 2), (19, 18, 17, 2), (19, 19, 16, 2), (20, 17, 17, 2), (19, 18, 18, 1), (19, 19, 17, 1), (20, 18, 17, 1), (20, 19, 16, 1), (19, 19, 18),
(21, 17, 17, 1), (20, 18, 18), (20, 19, 17), (21, 19, 16), (22, 17, 17), (28, 26, 1, 1), (27, 27, 2), (29, 27), (16, 16, 16, 15), (17, 16, 15, 15), (18, 15, 15, 15),
(17, 16, 16, 14), (17, 17, 15, 14), (18, 16, 15, 14), (18, 17, 14, 14), (17, 17, 16, 13), (19, 15, 15, 14), (19, 16, 14, 14), (18, 16, 16, 13), (18, 17, 15, 13),
(18, 18, 14, 13), (17, 17, 17, 12), (20, 15, 14, 14), (19, 16, 15, 13), (19, 17, 14, 13), (19, 18, 13, 13), (18, 17, 16, 12), (18, 18, 15, 12), (20, 15, 15, 13),
(20, 17, 13, 13), (19, 17, 15, 12), (18, 17, 17, 11), (19, 19, 13, 12), (20, 19, 12, 12), (19, 19, 14, 11), (21, 15, 15, 12), (20, 17, 15, 11), (19, 17, 17, 10),
(19, 19, 19, 6), (20, 19, 19, 5), (21, 19, 19, 4), (20, 20, 20, 3), (21, 20, 19, 3), (21, 20, 20, 2), (21, 21, 19, 2), (21, 21, 20, 1), (22, 20, 20, 1), (22, 21, 19, 1),
(21, 21, 21), (22, 21, 20), (23, 21, 19), (31, 31, 1), (18, 18, 17, 17), (19, 17, 17, 17), (18, 18, 18, 16), (19, 18, 17, 16), (19, 19, 16, 16), (20, 17, 17, 16),
(20, 18, 16, 16), (19, 18, 18, 15), (19, 19, 17, 15), (21, 17, 16, 16), (20, 18, 17, 15), (20, 19, 16, 15), (20, 20, 15, 15), (19, 19, 18, 14), (21, 19, 15, 15),
(21, 21, 14, 14), (23, 22, 22, 3), (23, 23, 22, 2), (23, 23, 23, 1), (24, 23, 22, 1), (24, 23, 23), (25, 23, 22), (34, 34, 1, 1), (20, 19, 19, 19), (20, 20, 19, 18),
(21, 19, 19, 18), (21, 20, 18, 18), (20, 20, 20, 17), (22, 19, 18, 18), (21, 20, 19, 17), (21, 21, 18, 17), (22, 21, 17, 17), (25, 25, 25, 2), (26, 25, 25, 1),
(27, 25, 25), (21, 21, 21, 21), (22, 21, 21, 20), (22, 22, 20, 20), (23, 21, 20, 20), (22, 22, 21, 19), (23, 23, 19, 19), (23, 23, 23, 22), (24, 23, 22, 22),
(25, 25, 24, 24), (49, 49)}.

Here we truncated trailing zeros from the 4-partitions. The set X is the set of minimal generators
of the semigroup of 4-partitions µ that have aµ(d[7]) > 0.

8 Tableau computation results for Proposition 5.1

In the following we list the actual tableaux from our computer computations described in the proof of
Proposition 5.1.

We start with the case n = 6, m = 3. The only partition where we were not able to generate all the
semistandard tableaux was λ = (45, 45), so we generated random semistandard tableaux and tested
only those which guaranteed fast evaluation.
(6) 1 1 1 1 1 1 (6, 6)

1 1 1 1 1 1
2 2 2 2 2 2 (8, 4)

1 1 1 1 1 1 2 2
2 2 2 2

(10, 2)
1 1 1 1 1 1 2 2 2 2
2 2 (6, 6, 6)

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3 (8, 6, 4)

1 1 1 1 1 1 2 2
2 2 2 2 3 3
3 3 3 3

(10, 4, 4)

1 1 1 1 1 1 2 2 3 3
2 2 2 2
3 3 3 3 (9, 6, 3)

1 1 1 1 1 1 2 2 2
2 2 2 3 3 3
3 3 3 (8, 8, 2)

1 1 1 1 1 1 2 2
2 2 2 2 3 3 3 3
3 3

(10, 6, 2)

1 1 1 1 1 1 2 2 2 2
2 2 3 3 3 3
3 3 (11, 5, 2)

1 1 1 1 1 1 2 2 3 3 3
2 2 2 2 3
3 3 (10, 7, 1)

1 1 1 1 1 1 2 2 3 3
2 2 2 2 3 3 3
3

(12, 4, 2)

1 1 1 1 1 1 2 2 2 2 3 3
2 2 3 3
3 3 (11, 6, 1)

1 1 1 1 1 1 2 2 2 2 2
2 3 3 3 3 3
3

(10, 8)
1 1 1 1 1 1 2 2 3 3
2 2 2 2 3 3 3 3

(14, 2, 2)

1 1 1 1 1 1 2 2 2 2 3 3 3 3
2 2
3 3 (13, 4, 1)

1 1 1 1 1 1 2 2 2 2 2 3 3
2 3 3 3
3

(13, 5)
1 1 1 1 1 1 2 2 3 3 3 3 3
2 2 2 2 3

(15, 3)
1 1 1 1 1 1 2 2 2 2 3 3 3 3 3
2 2 3 (8, 8, 8)

1 1 1 1 1 1 2 2
2 2 2 2 3 3 3 3
3 3 4 4 4 4 4 4 (10, 8, 6)

1 1 1 1 1 1 2 2 3 3
2 2 2 2 3 3 3 3
4 4 4 4 4 4

(11, 7, 6)

1 1 1 1 1 1 2 2 3 3 3
2 2 2 2 3 3 3
4 4 4 4 4 4 (10, 9, 5)

1 1 1 1 1 1 2 2 2 3
2 2 2 3 3 4 4 4 4
3 3 3 4 4 (11, 8, 5)

1 1 1 1 1 1 2 2 4 4 4
2 2 2 2 3 3 4 4
3 3 3 3 4

(10, 10, 4)

1 1 1 1 1 1 2 2 3 3
2 2 2 2 3 3 3 3 4 4
4 4 4 4 (12, 7, 5)

1 1 1 1 1 1 2 2 3 3 3 3
2 2 2 2 3 3 4
4 4 4 4 4 (11, 9, 4)

1 1 1 1 1 1 2 2 3 3 4
2 2 2 2 3 3 3 3 4
4 4 4 4

(13, 6, 5)

1 1 1 1 1 1 2 2 3 3 3 3 3
2 2 2 2 3 4
4 4 4 4 4 (12, 8, 4)

1 1 1 1 1 1 2 2 2 2 2 2
3 3 3 3 3 3 4 4
4 4 4 4 (11, 10, 3)

1 1 1 1 1 1 2 2 2 2 4
2 2 3 3 3 3 4 4 4 4
3 3 4

(13, 7, 4)

1 1 1 1 1 1 2 2 2 2 2 2 4
3 3 3 3 3 3 4
4 4 4 4 (12, 9, 3)

1 1 1 1 1 1 2 2 2 2 2 2
3 3 3 3 3 3 4 4 4
4 4 4 (13, 8, 3)

1 1 1 1 1 1 2 2 2 2 2 2 4
3 3 3 3 3 3 4 4
4 4 4
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(12, 10, 2)

1 1 1 1 1 1 2 2 2 2 2 2
3 3 3 3 3 3 4 4 4 4
4 4 (15, 5, 4)

1 1 1 1 1 1 2 2 3 3 3 3 3 4 4
2 2 2 2 3
4 4 4 4 (14, 7, 3)

1 1 1 1 1 1 2 2 2 2 2 2 4 4
3 3 3 3 3 3 4
4 4 4

(13, 9, 2)

1 1 1 1 1 1 2 2 2 2 2 2 4
3 3 3 3 3 3 4 4 4
4 4 (13, 10, 1)

1 1 1 1 1 1 2 2 2 2 2 2 4
3 3 3 3 3 3 4 4 4 4
4 (16, 5, 3)

1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4
2 2 3 3 3
4 4 4

(15, 7, 2)

1 1 1 1 1 1 2 2 2 2 2 2 4 4 4
3 3 3 3 3 3 4
4 4 (14, 9, 1)

1 1 1 1 1 1 2 2 2 2 2 2 4 4
3 3 3 3 3 3 4 4 4
4 (17, 4, 3)

1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4
2 2 3 4
4 4 4

(15, 8, 1)

1 1 1 1 1 1 2 2 2 2 2 2 4 4 4
3 3 3 3 3 3 4 4
4

(15, 9)
1 1 1 1 1 1 2 2 3 3 3 3 3 3 4
2 2 2 2 4 4 4 4 4 (19, 3, 2)

1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4
2 2 3
4 4

(18, 5, 1)

1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 4
2 3 3 3 4
4

(17, 7)
1 1 1 1 1 1 2 2 2 2 2 2 3 3 4 4 4
3 3 3 3 4 4 4 (10, 10, 10)

1 1 1 1 1 1 2 2 3 3
2 2 2 2 3 3 3 3 4 4
4 4 4 4 5 5 5 5 5 5

(11, 10, 9)

1 1 1 1 1 1 2 2 3 3 4
2 2 2 2 3 3 3 3 4 5
4 4 4 4 5 5 5 5 5 (12, 10, 8)

1 1 1 1 1 1 2 2 2 2 2 2
3 3 3 3 3 3 4 4 5 5
4 4 4 4 5 5 5 5 (13, 9, 8)

1 1 1 1 1 1 2 2 2 2 2 2 5
3 3 3 3 3 3 4 4 5
4 4 4 4 5 5 5 5

(12, 11, 7)

1 1 1 1 1 1 2 2 2 2 2 2
3 3 3 3 3 3 4 4 5 5 5
4 4 4 4 5 5 5 (13, 10, 7)

1 1 1 1 1 1 2 2 2 2 2 2 4
3 3 3 3 3 3 4 5 5 5
4 4 4 4 5 5 5 (14, 9, 7)

1 1 1 1 1 1 2 2 2 2 2 2 4 5
3 3 3 3 3 3 4 5 5
4 4 4 4 5 5 5

(13, 11, 6)

1 1 1 1 1 1 2 2 2 2 2 2 5
3 3 3 3 3 3 4 4 5 5 5
4 4 4 4 5 5 (15, 8, 7)

1 1 1 1 1 1 2 2 4 4 4 4 4 5 5
2 2 2 2 3 3 4 5
3 3 3 3 5 5 5 (13, 12, 5)

1 1 1 1 1 1 2 2 2 2 2 2 5
3 3 3 3 3 3 4 4 5 5 5 5
4 4 4 4 5

(16, 7, 7)

1 1 1 1 1 1 2 2 2 2 2 2 4 5 5 5
3 3 3 3 3 3 4
4 4 4 4 5 5 5 (15, 9, 6)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 4
3 3 3 3 4 4 4 4 4
5 5 5 5 5 5 (14, 11, 5)

1 1 1 1 1 1 2 2 2 2 2 2 3 3
3 3 3 3 4 4 5 5 5 5 5
4 4 4 4 5

(13, 13, 4)

1 1 1 1 1 1 2 2 2 3 3 3 4
2 2 2 3 3 3 4 4 4 4 4 5 5
5 5 5 5 (15, 10, 5)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 4
3 3 3 3 4 5 5 5 5 5
4 4 4 4 5 (15, 11, 4)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 5
3 3 3 3 4 4 4 4 4 4 5
5 5 5 5

(14, 13, 3)

1 1 1 1 1 1 2 2 2 2 2 2 4 4
3 3 3 3 3 3 4 4 4 4 5 5 5
5 5 5 (16, 11, 3)

1 1 1 1 1 1 2 2 2 2 2 2 4 4 5 5
3 3 3 3 3 3 4 4 4 4 5
5 5 5 (15, 13, 2)

1 1 1 1 1 1 2 2 2 2 2 2 4 4 5
3 3 3 3 3 3 4 4 4 4 5 5 5
5 5

(15, 14, 1)

1 1 1 1 1 1 2 2 2 2 2 2 4 4 5
3 3 3 3 3 3 4 4 4 4 5 5 5 5
5

(17, 13)
1 1 1 1 1 1 2 2 2 2 2 2 3 3 5 5 5
3 3 3 3 4 4 4 4 4 4 5 5 5 (13, 12, 11)

1 1 1 1 1 1 2 2 2 2 2 2 5
3 3 3 3 3 3 4 4 5 5 5 6
4 4 4 4 5 5 6 6 6 6 6

(14, 11, 11)

1 1 1 1 1 1 2 2 3 3 4 5 5 6
2 2 2 2 3 3 3 3 4 5 5
4 4 4 4 5 5 6 6 6 6 6 (13, 13, 10)

1 1 1 1 1 1 2 2 3 3 4 5 5
2 2 2 2 3 3 3 3 4 5 5 6 6
4 4 4 4 5 5 6 6 6 6 (15, 11, 10)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 5
3 3 3 3 4 4 4 4 4 4 5
5 5 5 5 6 6 6 6 6 6

(14, 13, 9)

1 1 1 1 1 1 2 2 2 2 2 2 3 3
3 3 3 3 4 4 5 5 5 5 5 5 6
4 4 4 4 6 6 6 6 6 (16, 11, 9)

1 1 1 1 1 1 2 2 2 2 2 2 4 4 4 6
3 3 3 3 3 3 4 4 4 5 5
5 5 5 5 6 6 6 6 6 (15, 13, 8)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 6
3 3 3 3 4 4 5 5 5 5 5 5 6
4 4 4 4 6 6 6 6

(15, 14, 7)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 6
3 3 3 3 4 4 5 5 5 5 5 5 6 6
4 4 4 4 6 6 6 (18, 9, 9)

1 1 1 1 1 1 2 2 3 3 3 3 3 3 5 5 5 6
2 2 2 2 4 4 5 5 5
4 4 4 4 6 6 6 6 6 (15, 15, 6)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 5
3 3 3 3 4 4 4 4 4 4 5 6 6 6 6
5 5 5 5 6 6

(17, 17, 2)

1 1 1 1 1 1 2 2 2 2 3 3 4 4 5 5 5
2 2 3 3 3 3 4 4 4 4 5 5 5 6 6 6 6
6 6 (18, 17, 1)

1 1 1 1 1 1 2 2 2 2 2 2 4 4 5 5 5 5
3 3 3 3 3 3 4 4 4 4 5 5 6 6 6 6 6
6 (26, 5, 5)

1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6
2 2 3 3 4
5 5 6 6 6

(15, 14, 13)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 7
3 3 3 3 4 4 5 5 5 5 5 5 6 7
4 4 4 4 6 6 6 6 6 7 7 7 7 (16, 13, 13)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 7 7
3 3 3 3 4 4 5 5 5 5 5 5 6
4 4 4 4 6 6 6 6 6 7 7 7 7 (15, 15, 12)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 5
3 3 3 3 4 4 4 4 4 4 5 6 6 6 6
5 5 5 5 6 6 7 7 7 7 7 7

(17, 17, 8)

1 1 1 1 1 1 2 2 2 2 2 2 4 4 4 4 6
3 3 3 3 3 3 4 4 5 5 5 5 5 5 6 7 7
6 6 6 6 7 7 7 7 (18, 15, 15)

1 1 1 1 1 1 2 2 3 4 4 4 4 5 6 6 7 8
2 2 2 2 3 4 5 5 5 5 6 7 7 7 7
3 3 3 3 4 5 6 6 6 7 8 8 8 8 8 (17, 17, 14)

1 1 1 1 1 1 2 2 2 2 2 2 3 3 6 6 7
3 3 3 3 4 4 5 5 5 5 5 5 6 6 7 8 8
4 4 4 4 6 6 7 7 7 7 8 8 8 8

(25, 23)
1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 5 6 6 6 6 6 7 7 7 8
2 3 3 3 4 4 4 4 4 5 5 5 5 5 6 7 7 7 8 8 8 8 8

(45, 45)
1 1 1 1 1 1 2 2 3 3 3 4 4 4 4 5 5 6 6 6 6 6 7 7 7 8 8 8 9 9 10 10 11 11 11 12 12 12 13 13 13 13 14 14 14
2 2 2 2 3 3 3 4 4 5 5 5 5 6 7 7 7 8 8 8 9 9 9 9 10 10 10 10 11 11 11 12 12 12 13 13 14 14 14 15 15 15 15 15 15

We now give the tableaux for the case n = 7, m = 4. We list them in short notation, using row-wise
encoding and a dot to separate rows. Commas separate the tableaux. Furthermore, we write A instead
of 10, B instead of 11, etc. Repeated letters are written in short form, e.g., instead of 111 we write 13.

17, 172.26, 1723.24, 1725.22, 17263.236, 1723.26.36, 17236.26.3, 172536.223, 17235.2632, 17263.23647, 1723.2436.3, 172.2632.35,
17234.263.32, 172534.2233, 172332.2435, 17234.26.36.46, 1723.2434.33, 172333.24.34, 172364.2645.3.4, 17235.26346.3.4, 172335.24.32,
172535.22.32, 172432.2334.3, 17233.2432.34, 172534.2232.3, 172334.243.32, 172332.2434.3, 172634.235.345.4, 17233.2434.32,
17223.2532.34, 17273.3643.44, 172233.253.33, 172734.3642.44, 1723346.26.344, 17233646.243.4, 1726344.23543.3, 1723246.263.344,
1723.2642.36.45, 172354.263245.4, 17253645.224.34, 172343.2643.36.4, 172344.2642.36.4, 172344.26345.324, 1723643.26.343.4,
17233645.24.34.4, 1723642.2644.3.4, 172732.3545.42, 1723645.263.46.56, 1725344.223643, 17263.23542.344.4, 172333.2432.32,
1723445.26324.3.4, 172634.23245.34.4, 172633.23345.34.4, 17233643.243.44, 1722344.2534.354.4, 17235.263243.44, 172343.2634.3542.4,
1727342.3643.42, 1723342.2436.45, 172537.224657.4, 172234.2534.354.44, 17244.2632.3543, 17234.26342.354.43, 17237475.265667,
1723444.263243.3, 1723344.264.3442, 17243.233346.334, 17273425.3645.56, 172334.2644.3442, 1722344.25346.32, 172.2632.3543.44,
1723344.26343.33, 172345.26356.3545.4, 17234.2645.33.42, 17273.364356.445, 1723244.2642.354, 1723542.263244.4, 17232.2642.354.44,
17243.2632.3543.4, 1723342.2644.34.4, 1723343.264.34.43, 1723244.26342.344, 1723642.263457.44, 1723544.26.324.42, 1723343.26343.334,
172735.364255.455, 172334.243245.344, 1723344.26.344.42, 17273.364356.44.5, 17273.364256.45.5, 17232.26343.34.44, 17246.263256.3545,
1723444.26.334.42, 172332.24346.34.4, 17233643.24.343.4, 172334.2643.34.43, 17223644.2542.3.4, 17253.223446.32.4, 1723444.2634.32.42,
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1723343.264.344.42, 17223345.2534.33.4, 172346.263256.3445, 17223643.254.342.4, 172334.26455.34456, 172234.25342.35.44,
17234.24344.3344.4, 1723644.264356.3.5, 17223445.2534.32.4, 1723444.2632.342.4, 172232.25345.344.4, 172344.26435.36.56,
1723242.2634.34.44, 1725342.2235.344.4, 1723344.263.334.42, 1723445.2643.36.56, 17246.263256.354.5, 17264.237455.45667,
17233742.244557, 1722343.253.354.43, 1727345.364255.44.5, 17273.364756.566.65, 172344.263243.342.4, 172344.26456.365.42,
17234652.26454.36.5, 17233246.2435457, 172534656.22354.3.5, 172334.2634.3342.43, 1723545.26456.32.45, 172324.26342.344.43,
172334.24365.465.55, 17236425.2656.344.4, 172344.26342.3243.4, 17234455.26345.35425, 1723466.263576.35465, 17232.263242.3345,
17253545.22.32.42, 17233345.24.34.42, 1723.2434.3345.42, 172333.2444.34.43, 17263.2354256.344.45, 17253346.2232.324,
172244.25334.3442, 172235465.253455.3.5, 1727325.354456.43, 17233343.24.34.44, 17234652.263.3545.54, 1723465.263455.35567,
17234.24365.3455.455, 17223645.2534555.4.5, 17243346.2332.324, 17233246.24324.33, 17273453.364552.45.5, 1723456.26566.366.46,
1722364.2534654.53, 172345.263456.35467.5, 17237.264254.45.53, 1723343.2432.34.44, 172345.263454.35452.5, 17243246.2333.32.4,
172733.344556.42.5, 1724.233542.3244.4, 1722343.25324.3443, 1727353.3643.44.54, 1723442.263243.342, 1723645.2634552.453.5,
172234.253243.3443, 17235425.26355.3445.4, 1723242.26342.3443, 17233.2643.3442.42, 1722343.2532.34.44, 172232.25344.34.43,
1725.2237452.4654.5, 17237.264253.4553.5, 1722343.2532.3443.4, 172332.24344.344.42, 17273.36475.5663.64, 17234455.2634256.32,
172445.2335457.32.4, 1723445.264354.3652, 172342.2632.3442.43, 172375.2647.5662.65, 172734.365762.46.65, 17223343.2533.343.4,
17237.2642566.45566, 1726345.23556.34566.46, 17253345.22324.32.4, 17223.253243.3443.4, 172334.2436.4653.54, 17234445.2634356.32,
172343.2655.36.4452, 172334.2433.3343.43, 172365.263465.45466.56, 17273.364354.445.52, 17223443.2532.343.4, 172342.2632.3443.42,
1723244.263242.33.4, 1724344.23334.33.42, 1723343.243243.34.4, 17223.25324.3443.43, 17273.36435.4452.54, 17234552.264254.365,
17234656.26455.36565.6, 17233.24364.4654.53, 172334.2432.3442.44, 1723343.263243.32.4, 1723335.24344.465.55, 172734.36435.4354.52,
172374252.264454.4.5, 1727335.34476.566.65, 172236.2534756.56.66, 17234762.2656.3665.5, 172334.24334.3343.42, 1723345.2634256.33.5,
17234653.2645367.365, 17233425.26456.34.44, 172734.364353.435.53, 17253443.22342.324.4, 172735.364253.455.52, 172434.233343.334.42,
172347.265664.3663.5, 17245.263255.35452.4, 172334.24364.4555.52, 17233342.2434.334.43, 172734.36465.5663.64, 1723465.2632452.3454,
1725364555.224.34.52, 1723343.24344.324.42, 172355.26324.4653.53, 17263742.2445667.4.5, 172334455.26.345.435, 17243343.2334.334.42,
172434.23334.3343.42, 172374.265663.4664.5, 17243443.2334.3242.4, 1723445.264354.36.52, 17235452.26324.4554.5,
1725344655.2235.324.5, 17223456.25342.35.445, 17223345.2545.3445.55, 1723455.265266.366.46, 17232476.265665.356.5,
1723334556.243.3345.4, 172232465.253.3445.55, 17233244.243243.33, 17223244.253343.32, 17234652.265566.366.4, 172233455.253356.34.4,
172365.2634453.435.52, 17234254.2645.36.4452, 1727356.364762.566.63, 1726353.2354454.342.4, 1727352.364253.4552,
17234252.26354.354.445, 17223455.253245.344.55, 172233.253245.32.42, 172442.233752.45.55, 17243543.2342.32.42,
17223644.2545766.34.46, 172233445.254356.34, 1723.243442.3343.42, 17232.263245.33455.455, 17253543.2242.32.42, 1723247.265763.3564,
1726335.233465.3453.52, 1723325.2435452.4654, 172334452.2433.46.55, 17232454.2634.34452.445, 17233344.24324.32.42,
17234566.243665.3455.46, 17223343.25342.33.42, 17273.364752.5563.64, 172334.2432455.3445.445, 1723243.263242.33.42,
17233.243442.3243.42, 172634253.2354.34353.45, 1724343.233442.32.42, 172732.354554.425.52, 1727344.334354.43.53,
172334.24475.3353.53, 17243242.233244.33.4, 172324.26345.34435.4255, 172346.2635662.354564.6, 1723342.243342.33.43,
17223343.253243.32.4, 1722345.2534254.3553, 17234553.2634567.3553.4, 17233452.243652.4653, 1723342.2632.3243.42,
17253.2632.3543.4454, 17253442.22343.32.42, 1723342.2436.4555.52, 172332.243244.3342.4, 1723465.26355.354564.63,
1723443.264257.33.42, 1726.2374253.4567.54, 1723324.243554.46.53, 17255.2632.3543.4452, 17243342.23324.3243.4, 1722334.25345.4653.53,
172334254.2644.344.53, 172324752.2635467.345, 1723324.24324.3342.43, 1723344456.24.334.425, 17237452.2646.5564.63,
1722324654.253.344.53, 172434453.23334.45.54, 172353.2643.3652.4452, 1727324.35465.5662.65, 1723242.263242.334.42,
172334.243652.4653.52, 172734.364252.4452.53, 172334456.24324.34425, 1723552.26324.4653.52, 172234652.253255.34.4,
172344452.264255.33.4, 172233.25465.34452.54, 172344253.26455.33.53, 17236456.26346562.556.63, 1723345.2433425.45.55,
172235.253243.3456.44, 1723334456.244.34.425, 17232454.26343.344353, 172374.2645562.455265, 172233454.2534.4652.5,
1724654.26325367.35.4, 1727324.354252.445.54, 1726353.2364552.42.52, 17233453.243652.46.52, 172354353.2634254.342,
172324453.2634254.344, 17234656.2632566.3446.64, 172334.2433454.465.52, 172455.263252.3542.54, 1723324.243552.465.54,
1723.24354.324553.454, 17233425.2436.4554.52, 172334352.26435.34454, 17223442.2532455.355.5, 172734.3646536.5462.64,
172334555.24334.33.452, 1722344.2533425.4455.5, 17237.2643526.44556.65, 17233345.24344.4552.54, 172453.2632.35425.4453,
17233425.264453.344.53, 17234553.26425366.3656, 1723242.263425.3443.56, 17234.24354.324453.454, 172324256.263.34425.43,
1723254.2642.3545.4452, 1723243.26343.34453.54, 172234.2532435.34455.5, 1727345.364652.5465.62, 1723243.263454.3443.53,
172634445566.2335.4356, 17223465.2533454.33.52, 172735.3643526.4454.66, 1723456.2642556.365265, 1723342.2432456.345.44,
172233453.253465.33.53, 1723642.263567.4552.54, 172374252.264452.452.5, 17235452.263242.445.54, 1723325.24334.3245.456,
1722355.253245.4652.53, 1723356.2644566.346.43, 172334655.26456777.34.5, 1727346.365363.466.5462, 1722343.2532435.3455.45,
172345.26324252.34454.4, 17232425.2656.35466.446, 172234353.253435.3553.4, 1723756.2642536.4565.53, 17234756.265364.3662.53,
172345562.26566.3664.42, 172344536.2643565.36536, 17234536.265462.3664.46, 172734.36425266.445.546, 17233453.26343.33454.42,
172346565.264566276.367, 1723245.263242.33456.43, 1724253.26325.3545.4452, 17273245.35455.45565.62, 1724566.263255.354526.4,
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1723242.2656.35466.4456, 17224254.25335.3445.445, 17235455.263243567.43.5, 172354567.2632425777, 172232454.253452.3455.4,
172735.36425563.4563.56, 17263244.2345667.342.45, 172345.264252.3652.4452, 1722374756.255677787, 17223342.253243.32.42,
1727345.36467.56637.6475, 17223255.2544.3552.43, 1723454.2645265.36562.45, 17233242.2432.3343.42, 172235.25324354.44.53,
17224354.2533.3453.44, 172734.364657.56637.6475, 17273246.3545564.45562.5, 172355.26324564.465.5463, 1722334752.25335567.3,
172324352.264453.3552, 172334355.26445267.34, 172334.243342.4553.54, 172234352.253435.35453.5, 1723345.26566.344265.446,
172335445666.244.324.456, 17234252.26325.34453.445, 17236464.26345.4552.5463, 17273426.364452.45465.56, 1723252.263425.34453.445,
17273.364352.445562.65, 17233242.243242.334.42, 17223444.253353.435.53, 172324255.26342.344352, 172234.2533453.4652.52,
1723475.265667.36676.5587, 17223443.2534257.32.42, 17273.364452.435267.53, 1725344354.2233.445.52, 1722344.253352.4652.53,
1726353.23542567.34452.45, 1725334655.2232.324.52, 17233244.2434353.34.54, 1722345.253343.4452.54, 172346.2434452.3352.53,
1727324.35425367.44.54, 172332.2434353.3454.44, 17234255.265667.36676.455, 1723477.265767.36627.6474, 172334536.264546.34465.44,
1722324.254354.3553.43, 17273.364263.4553.5464, 17234563.264255.365264, 17223242.254552.355.54, 1723744.26435464.53.63,
17233253.2434354.34.44, 1722343.25324353.34454, 172236.2534252.4552.53, 1723345.265762.3465.42, 1723243556.264366.35452,
17224.253352.34435.4354, 1723743.2644526.5562.64, 17233242.2434452.344.55, 1727362.364354.44536.64, 17233445.243342.4452.54,
172324556.2642564.3556.446, 1725364354.22342.425.52, 1723343.264352.34452.53, 172425.263252.3542.4354, 17224366.25335.34446.56,
17223346.253453.4666.54, 1723253.2644.35546.4366, 17273.3642546.455363.63, 1724352.233443.324355.4, 1727334.34425366.446.54,
17273.3643536.445462.64, 1722445.253353.34453.42, 172737.364752.556476.63, 172324356.2634565.34436.55, 17236456.2635573.465674.65,
17234352.265563.3664.44, 1722345.25345563.354563.56, 17223445.25334253.44.53, 172324355.2645267.35.43, 17237436.26445362.54.64,
17233452.2432445.344254, 17243.233343.334353.454, 1723245536.2635466.3442, 17223243.2534353.344.54, 1722344.25324.344252.55,
1724334554.23352.33.425, 172324352.264452.3552.5, 1722324.2534352.3455.43, 172734.364253.445462.65, 172354.264364.3653.4463,
17233453.2432445.344253, 1722364.2534353.4352.52, 1725334354.2233.343.453, 172234425.25335.4553.52, 1727362.36435264.445.546,
1722356.253243.3456.4466, 17223245.254253.3552.445, 172345362.263456.35536.4563, 172364.2635362.4663.5462,
1725342.22344256.324.425, 1723455.2635667.354275.5567, 17257.2237425.45566.6676, 1722364.2535266.46677.55,
17234564.264255.365262.6, 172355562.263244565.43.5, 172735.364267.45577.5587, 1723364.24345762.4563.62, 1722364752.253546677.5.6,
17234455.26425466.33.526, 17234354.2645365.3662.43, 17233453.24324253.345.44, 172356.2632462.4653.5464,
172345363.263456.35536.4562, 17234557.2642667.36575.4456, 17234354.2645363.3664.43, 1724354353.233425.342.53,
1723245.264546.354564.44562, 17237.264756.566273.6474, 17233.24324253.34453.445, 17234.2434452.334254.435,
172734.36465.566275.6572, 17233445.26324253.3253.4, 17235.26324562.46526.5464, 1727334.34425265.4456.546,
17223452.2532435.34435.53, 172334256.243344566.334.6, 172354.2632565.466276.567, 172366.263435.445264.5462,
1723342565.265562.344.445, 172233436.2534436.45764.6, 172334252.263453.33452.43, 17234464.26342.35452.5563,
17223646568.254677786.3.5, 1723445463.2634252.354564, 1722334454.253343567.35.5, 172345567.26345647.3545674.4467,
172334435666.244.3345.426, 172344352.2632435.3452.52, 17234563.26425.36562.5562, 172234536.2534565.35456.4452,
17235464.2634262.3553.456, 17223435.253256.344366.46, 17233452.2642546.344566.43, 17232435.2644562.35564.546,
17273.364456.4353657.53676, 17234353.243554.3242.42, 17245563.2632562.3545.4562, 1723245264.26454.354563.44,
17234355.24344252.33.42, 17234555.264256476.3657.63, 17232452.26454.354564.4463, 172355.264266.365675.45572,
1723435562.2635264.3546.43, 1722345562.2534255.3564.56, 1723542526.2632465.445.546, 172234254.2532.3443.4253,
1723245.26342526.34454.4366, 17234445362.263435465.32, 172334565.265577.34426.4456, 172345568.265266.36778.4685,
1723252.264356.354536.43565, 17234357.26326774.344473, 172324552.26425563.35.64, 17233245.24345562.344565.44,
172433.233442546.4553.66, 1723445467.263425266.354576, 1724347536.2333546677.33, 172732.3543565.4452.5462,
172324657.26456772.35574.54, 1722344252.25334.4453.52, 1722324653.2533452.32.52, 17234255.26342566.355677.43,
17234567.265677.367584.4683, 17273242.35425367.435.53, 1723456672.264265.36575.446, 1722324253.25342.3454.43,
1724455.26325266.3543677, 172232453.2532.3344.4254, 172334255.2433.3342.4352, 172732.3543577.446576.62, 17234352.265562.3663.4462,
172556.263264.3543.445262, 172445672.2632566.3543675, 1723346567.2432456657.346.75, 172324462.2643.35536.5464,
17244526.263264.3543.5562, 1727325.35445266.43526.52, 1723435363.26345363.354256.4, 172232465564.253.344.5263,
172237572.25476.566275.64, 172455662.263256577.35.42, 172234546.253425264.3556.446, 1723334262.2434455.566.64,
172354.26324252.445562.65, 1724653.26325265.355262.4, 17246567.26326572.354673.567, 1723334.2432576.324466.42,
172342536.263547.35465.44676, 1724355.26325266.3543677.4, 17244546.26325264.354362.5, 1723556.263242.455263.5463,
17223245.25356.344265.4462, 1723324.2432456.3342567.43, 17244556.263252657.3543676, 17243546.26325363.354363.4,
1723563.2632452.46562.5462, 17236445.263435662.6573.74, 17223453.25334526.46526.65, 172233562.25334.34652.5465,
172334356.24326777.3445.43, 172735.36425672.45637.6474, 17223425.253242.344253.453, 1722456.253345262.34464.55,
17223435266.2532.3443.4556, 172324553.263425266.346.52, 17223452.253345362.46565.5, 17235.263245262.46563.5462,
17273.36435272.445567.6674, 172234256.253556.354657.44576, 17232455.264263.35526.5463, 17273246.3543566.435377.53,
1727362.3642562.455262.546, 172232476.25536576.3567.54, 172334262.243256.344565.44, 1722374.2545265.456276.557,
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1727346.36456375.455267.54627, 172734.36536473.466373.547, 1726.2374536.466473.546274, 172345.263245263.3445264.53,
1724324354.2332445367.33, 17234567.26456778.367482.45784, 172345567.263245647.34556275.4, 17232454.2635264.34425.4463,
1723556.24344564.3343562.43, 172233426.2533454.3435366.4, 17234452.26324536.345266.42, 172234526.25345363.35456.44562,
172345264.264252.36563.4452, 172425564.263256377.354.445, 1722354.25324667.455376.546, 17242576.26326475.35627.457,
172232465.253453.3455362.45, 1723455637.26456274.365672.456, 17246.263256.3546276.565787, 17234557.264267.365272.5474,
1723435467.263266.344476.53, 1722324552.25324252.33.53, 172243556.25335264.344462, 1722374.25452668.45676.55786,
1723425264.26454.365637.4476, 1722344252.253345.5564.63, 1727356.36425627.456472.5574, 1723464.263245.344253.435363,
172374573.26556274.466487.56, 17232425265.263435.3442546.6, 17234462.2634262.354526.5562, 1724353.23334352.334252.42,
17232452647.2655675.354627.45, 1723446.2632426.3435462.45363, 172353667.2642574.36526.45572, 172235667.2534266.355768.4586,
1724324354.233245367.33.43, 1722324453.253435465.34.62, 172456683.263266.354778.45583, 1723445262.26436375.3667.5567,
1723467.263526373.35463.55673, 172364.26342564.44526276.5467, 1722324362.254452.35565.54, 172533452.22324255.3242.42,
172546526372.22364556475.3, 1723245.263242564.335363.53, 17234566.263245376.345536787.4, 172456.233542567.3245647.55675,
17244526.26325264.355362.43, 1723345362.265463.3442.4462, 1723455627.26346473.35526.4573, 1725435264.2236435363.34.52,
17273627.36425272.4565.5574, 17234536.2645264.3656274.45573, 172342546.26453675.36637.44627, 172445462.26325265.354377.5,
172456.2632657.35462758.455786, 172436435365.2334.4352.5262, 1723455.26352637.3546373.45673, 1724253.263265.35452.445262,
172355365.26324356277.44.53, 17223243.253445.345265.5462, 17234563.2632452637.3445676.54, 172345573.265267.367484.4683,
1723435362.26435262.365263.4, 17247567.2632536373.35536373, 1723345263.264253.3445264.43, 1723425567.2636672.354572.44572,
1723567.263245475.46527287.5, 1723445264.263454672.3546275.45, 17233.24324352.3445462.43565, 17245537.26326672.3542674.54,
1724256.2632677.3557682.4585, 172735.364256472.456373.5572, 17234536372.2635263.354575.4556, 1722355.2532477.5662768.6586,
172235536.253246575.465672.53, 1723452675.263452627.355367.4563, 172345464.2635676.3542687.445267, 1723253.26425262.354563.44562,
17223456.253426574.3556273.44, 172235463.25324564.455276.547, 172344678.26425574.36527386.4, 172232445637.254356476.355.54,
1723244563.264356276.35627.55, 172324466.263425376.344546787, 17224566.253346672.3442575.43, 17243567.263256375.3564787.44,
172235546.253245372.46674.657, 172435462.263253647.3543676.4, 172343564.265675.36637286.448, 172445462.263253647.3542676.4,
172236452647.2534653676.52.62, 17234252672.2654627.3664.45574, 1723243562.26324546.3345264.42, 17245556.263256273.3542573.647,
172245536.2533454673.346474.46, 1723746.2645362786.54676897.64, 1723245263.2635362.34425.44562, 1723456.263266.34425675.447287,
1724556273.26326473.354527.456, 1722342578.253436783.3547783.4, 172234562.25345267.324564.45476, 17232454.26453637.3546374.44672,
1722345273.253454.354564.446374, 172334435263.244556477.33.43, 1723747.264526275.4556387.54627, 172344673.2643567.365262.546373,
17246562.26326372.3545673.55672, 172232556.253425657.34425676.43, 1723357.24334365.33426277.42, 1724256.2632657.35567582.456785,
1723345265.264456768.3442546786, 17234664.2645627582.365672.5585, 1723245472.2645265.3545627.4474, 1723324465.24343536277.34.54,
1722334252.2534565.335262.53, 17223543.2532445.566274.6573, 172345.2435565.3242526277.54, 17234566.26325276.344252.445267,
172425678.263267.3547582.445784, 17223435362.253435262.3545263, 1725565.26326274.354372.44527, 17223245363.2535464.344277.44,
17273627.3642526374.4562.5572, 172425572.263252637.3564.4574, 172335363.26425262.3445262.44, 17223244536.2532435463.336.62,
172234462.2542556.33425264.42, 172324682.2657.3546275.657285, 17223245.254252657.3556276.54, 1724256672.263265785.355748.4568,
17243.23334253.33425363.43564, 172235426.253242564.435362.53, 172425762.26326476.35426787.43, 172324255.26526475.3546272.446,
17245662.26326572.3542573.4472, 17223526.2533462.334353.435264, 1723456276.2634254787.35536597, 172245264.253356.344252.445262,
1727344.3643562758.56637286.62, 172343526.26536472.366275.4452, 1723452637.26425267.365637.445274, 172244536.253454637.33436276.6,
17273.364356372.4453675.536387, 172345362.26345274.354563.4456273, 172234556.2532436572.344352675,
172425262.263252.3545262.44563, 17232446272.264265.3545274.557, 1723454627.26325647.344252674.447,
172345527.26425364.36526374.72, 1723452.26325262.34425262.44563, 17245663.26326274.354257.446272, 1723342565.263556275.3343572.42,
172376.2643576.44526485.5462782, 172736.3642526272.4556373.54672, 17246637.2632546273.354526273.5,
172364.263526273.4656272.546372, 17234536273.2642526.3664.445274, 1723425363.263536473.354572.4472,
17232453637.264526373.3552673.45, 17242557.263252673.354647.446272, 17242566.263256375.35467287.4462,
1724536578.263257584.35452682.45567, 1722346.253526572.35467583.55684, 17234562.2632526.34425262.445262,
172345473.26325264.34425637.4473, 17232435262.263452657.3445376.42, 1723425468.26353675.35463785.446278,
17234536.264252627.366472.445274, 17242536473.263252674.3545.44562, 17234264748.2632457386.34446.5662,
172456276.2632557869.3545265896.4, 17235682.2634264.35456274.4467385, 172425362.263256472.3545267.44574,
17223425562.25324363.344252.62, 172732.354356572.44526273.5472, 17235663.264263748.36567283.45783,
1723435265.2643536758.365267286.4, 172356628.264263738.365748.456284, 17224557.253365.34426274.445272,
172324754.2652657286.3556275897, 17223245463.253536475.3442.4472, 172356628.2642647283.3667482.45578,
1724563759.263255786.35452647896.4, 17232546272.264256373.3545627.4457, 17235673.2634263785.355637.4567282,
1723345265.26425277.34536287.44, 172325562.264252627.356374.4572, 172354637.2634267582.3545385.44637,
1723455673.26425637.36567382.446285, 1723245262.2645363.35526274.4573, 17242546273.26325637.355273.4562,
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172324456483.2634356373.34557484, 172254627.253346472.344252674.445, 172236628.2534265738.45537385.547,
17242566272.26326582.355748.45784, 1723465.263246272.34526372.546273, 17244536759.26325467869.3542657895.4,
17223767.25435627.44526273.546272, 17237.264452627.435263758.5362786, 172345463.2634562748.355262728.45785,
17242546572.2632527586.3545.44628, 17232453.26354627.34426373.446273, 17245265.26325676.354257869.44536896,
172347627.2652637286.366272.55728, 1724356785.26325667896.354367589A7.4, 172334546.24324536373.34426374.43,
1724253657.26326275.3545287.44527, 1722345264.25345377.35526385.4582, 172234452.25345573.354627482.46585,
172345262.2642526272.365637.445274, 172354672.264264783.365274.4556284, 172354656373879.263255647496A7.4.5,
172234526.253245262.3442562.435262, 1722354674.2534256486.355262.45738, 172425567.26325264782.3562758.4584,
17232453673.26353672.3442562.446372, 1723546273.2634564784.35425728.4456782, 172235667.253246482.3442575.4462785,
172324253638.26353676.3442563786.43, 172324253673.263425264.3443526274, 17245673.263264784.354267282.4456278,
1724454673.263253637382.354363785, 172235364.253246375.34425272.4452, 17234456273.26345658.32435274.425386,
17245266892.26325778.3542585.4453695, 1723456627.2645637385.3662728297.457, 172425363.26325262.354526272.4475,
17242556782.26325263.356374.457285, 172324526373.264536272.355272.4562, 1724536478.26325676.354262859.4453896,
1727374A.4653768592.546478295A6.63, 1724536678.26325675.354278592.4453895, 1723536372.264256759.3652686.45562896,
172335367.2432447684.3445478397.42, 1724257682.26326374.35637283.45782, 1724553672.26325667282.354257385.52,
17256628.26326473.35437284.44567282, 17223245536375.25334254647287.32, 17242526472.263252672.3545273.44562,
1723426578.2645474829.36567284.4452696, 17223536582.2534252673.355274.45685, 172345574.26325637389.344256869.446395,
17223452637282.253453674.35456385.4457, 172425568.263263738.354567382.44562783, 172243578.253367485.3444797A.66728A6,
1722546583.253346748.3442573.4452683, 172534354637385.2235445364748297.3, 1722435362.2533526473.344252674.42,
1723556282.2643627382.365673.44562783, 1723453679.264537382.36748293.4558393, 172235567.253245267284.3442647.4467383,
172425362.2632526272.3546373.445272, 1724556272.26325637382.3542567284.4468, 172454647.2632627384.35425728.44526782,
1722425463.2533536275.3444627286.48, 172477694A2.263256785A5.355678293B7, 17255627282.263265728.354373.445284,
172454637.2632637283.354527382.4556782, 1723547.26325748294.5662783.65728293, 172455267287.26325463797.354256374A7,
17234353627282.26325467482.344464783, 1725463782.26326374.35437285.4453697, 17245367.26325748294.354527849.45572892,
172324627589.2645486.35456494.445267292, 172536472.263263748.354378592.4454895, 17233252637.243435262758.3445362786.43,
172345365.26325262749.34427386.4452896, 17223456729.2534564748.354628594.567892A7, 1723536572.26437385.365268296.44526729,
1723782.26425267492.45564849.546273894, 1722354648.2534263728.354527283.4457382, 1723455638.26352627282.354627282.457382,
172345639.2634526483.354527482.53738296, 17234557289.2632647894.344256748.445628492,
1723567892.2634563728.3542627849.446273894, 17245362739.26326485.354257495.44536829, 17235476A.26436385A.365268295.44563792A5,
17234546895.2634563739A5.355267489.456285A2, 1724536589.26326274829.354257284.4453795, 172335564.264252627385.34426748297.43,
172234557385.2532435648296.3443563749A7, 17235463729.264256275A3.36568692.4556894A4, 1722556273.2533462738.344252684.4462782,
1723425267382.2645467295.365627289.4463849, 1724577.2632647283.35462728295.456728292,
17242526758.2632526286.354526796A.4456379A6, 172253669.2533467482.3442527859.44527295,
1723242536274.2634256473829.345368596.43, 172546378.26326373829.3543738392.44536894,
17235456.2632467792.455628392A6.648493AB7, 1723242562749.2645363785.355262728296.445,
172325375.26425267859.3545262796A.446482A6, 1722345377.2532548297B.344265A7.446285B6,
172345262759.264536786A2.3656396AB3.455678A4B4, 172324536578.26343562728492.344253748294.49,
1723334637782.2433568592A5.34556495A2B7.4, 172546479.2632637382.3543728393.445378293,
1722345467384.25324356478392.344352627395, 172345367.264527594A2.36572849A4B.4558392AB6,
17254627382A.26326485.35437494A.4453693A5, 17223526373.25342526738292.35537859.456394,
17232425264749.26325467386A.3343562896A6.42, 17223526272.253425262783.354563782.44527382,
172235578292.2534264729.355267383.456278294, 1725767.26327692A5.35438492B7.4478393A2C7,
172353627382.26436278493.365372894A.445637A6, 172642768.2375628596.455262789A2B6.5463A5BC7,
17234526378A4.26353673829.3545638393.45573893A3, 1724453627849A.263253627495A.354256372839A5.4,
172345262739.263252627839.344252672894.445627839, 17234683A.264526372893.365627393A3.546272839A3,
17234265795.243556769A3BC.3245879ABC5D.566A3B5CD6, 172345362784.26425262783A3.36527493A.4463794A3,
17245362784.263256372894.354527493A3.4556282A4, 1723452759.2632526285A.344252628295.44563729A6,
17233643565778596AB4C.243445662829A6B3C6D7E7, 172425262768.26325262786B.354397A4.425363A3B6,
1723453672892.263252627292.3442527383.44648393, 17245738292A.263252638293A.35426378292.556738A5,
17223242657394.253245467383A6.334253678493AB7.42, 17235472896A.2632464829A4B2C.34425275AB5.4456384AC6,
172244638A6D.253346473AB6.3442527483BC6.558397CD6, 1724253628392B.2632526395AB.354526273A5.447484AB5,
172453637893.26325627382A4.35452738292.455628292A3, 17234548492AB.263452627294B.3545627389A4.44637282A2B5,

23



1723457869C.26324537293A3C.34453627892A3B3.565739AB4C5, 17232456273839.263536728392A.34436394A4B.43536728A2B6,
1723253728392AB.26426594A2B2.3545275A4.445262849B4, 172352638294.243445627289A5.3343562738A2B6.4353728392BC7,
1724356795AB4.2334426478A5BC4.32456273829BC3D5.5672849ABD2E7,
172343627294A2.26342637282A3B2C.35425272829AB4C2.556278392ABC4,
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