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ABSTRACT

New data storage technologies such as the recently introduced
Intel® Optane ™ DC Persistent Memory Module (PMM) offer
exciting opportunities for optimizing the query processing
performance of database workloads. In particular, the unique
combination of low latency, byte-addressability, persistence,
and large capacity make persistent memory (PMem) an
attractive alternative along with DRAM and SSDs. Exploring
the performance characteristics of this new medium is the
first critical step in understanding how it will impact the
design and performance of database systems. In this paper, we
present one of the first experimental studies on characterizing
Intel® Optane™ DC PMM’s performance behavior in the
context of analytical database workloads. First, we analyze
basic access patterns common in such workloads, such as se-
quential, selective, and random reads as well as the complete
Star Schema Benchmark, comparing standalone DRAM- and
PMem-based implementations. Then we extend our analysis
to join algorithms over larger datasets, which require using
DRAM and PMem in a hybrid fashion while paying special
attention to the read-write asymmetry of PMem. Our study
reveals interesting performance tradeoffs that can help guide
the design of next-generation OLAP systems in presence of
persistent memory in the storage hierarchy.
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1 INTRODUCTION

Hardware trends have greatly influenced the development
of data management systems. Historically, most of the data
was stored on (rotating) disks, and only small fractions
of the data would be kept in main memory (in a buffer
pool). The increase in DRAM card capacities along with the
increase in the number of DIMM slots per socket allowed
machines to have up to small terabytes of DRAM. This change
allowed systems to keep large fractions / all of their data
directly in memory. Main memory is more than an order of
magnitude faster than disk and allows random access. Thus,
in comparison to disk-based systems, in-memory database
systems offer significant performance improvements. A
number of in-memory data systems were proposed over the
years [9, 12, 16]. These systems make use of DRAM-only
storage and offer outstanding performance, but tend to fail
or degrade heavily if the data does not fit into main memory.

Current hardware trends have cast strong doubt on the
viability of pure in-memory systems. DRAM sizes are not
increasing significantly any more. Ten years ago, one could
conceivably buy a commodity server with 1TB of memory
for a reasonable price. Today, affordable main memory
sizes might have increased to 2TB, but going beyond that
disproportionately increases the costs. This limits scalability.
Further, these large main memory servers are multi-socket,
which introduces complexity in terms of handling remote
memory accesses (NUMA).

Over the past decade, memory technologies such as
byte-addressable persistent memory (PMem) (also called
non-volatile memory (NVM)) devices have been devel-
oped [3, 20]. Although they are slower, they have higher
densities than DRAM. The Intel® Optane™ DC Persistent
Memory Module (PMM) is the first such product on the
market [1]. The Intel® Optane " DC PMM is plugged directly
into the memory bus via traditional DIMM slots. It has 16
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times higher density (512GB capacity per card vs. 32GB
DRAM cards used in servers) and is cheaper per GB [14].

In this paper, we take a close look at using Intel® Optane™
DC PMMs in the context of analytical database workloads.
We evaluate the performance of three basic access patterns:
sequential, selective, and random, on both PMem and DRAM,
and explain why the runtime ratio would differ from the
PMem to DRAM bandwidth ratio. We present an implementa-
tion of the Star Schema Benchmark (SSB) [17], and compare
its performance with data starting in PMem vs. data starting
in DRAM, as well as against a state-of-the-art DRAM-based
in-memory OLAP DBMS. We further show that using a hybrid
system with DRAM and PMem can allow us to run much
larger workloads efficiently with minimal degradation in
performance in contrast to a purely DRAM-based, in-memory
system when the query intermediates fit in DRAM.

In a DRAM-based in-memory system, the memory is used
both for storing the data and as a scratch space during query
execution. In a hybrid system, data can be stored and accessed
directly from PMem, thereby freeing DRAM for query inter-
mediates. Hence, the only situations where we run out of
main memory are when the intermediates are larger than size
of DRAM, like when joining two large tables. PMem is unique
in that there is read-write asymmetry - the read throughput is
significantly higher than the write throughput. In this context,
we evaluate a number of join algorithms and analyze their per-
formance on the hybrid system. We show that a previous state-
of-the-art join algorithm, called Segmented Grace Hash Join
(SGHJ) [25], devolves into a Nested Loops Join (NL]J) when ap-
plicable. We propose simple rules to decide the join algorithm
to use when build-phase hash table does not fit in DRAM.

In summary, we make the following contributions:

e We present an analysis of basic access patterns seen in
analytical workloads on DRAM and PMem.

e We present an implementation of SSB and show that,
while PMem read bandwidth is 3x lower than DRAM read
bandwidth, on-average, the workload is only 1.6x slower
when data is in PMem vs. when data is in DRAM.

o Wepresentadetailed evaluation of larger-than-DRAM algo-
rithms for running joins on a hybrid DRAM-PMem system.

Overall, we believe our results can offer an insightful
guide to implementors as to what sorts of basic performance
behaviors can be expected when running OLAP workloads
in the hybrid setting with Intel® Optane™ DC PMM.

2 BACKGROUND
2.1 Persistent Memory

Persistent memory (PMem), also called non-volatile memory
(NVM), is a class of memory technologies that combines the
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Figure 1: Schematic of a Hybrid DRAM+PMem System

low latency and byte-addressability of DRAM with the persis-
tence and large capacity of SSD. The first commercially avail-
able PMem is the one by Intel called the Intel® Optane™ DC
Persistent Memory Module (PMM) [1]. PMM comes in DIMM
form factor and embeds up to 512GB storage capacity, i.e., dou-
ble the capacity of the largest DIMMs available (256GB) and
order of magnitude higher than 32GB DRAM DIMM:s used in
servers today. Figure 1 shows a typical system configuration
of the hybrid system on a single node with DRAM and PMM.
Each socket has 12 DIMM slots. 6 DIMM slots are occupied by
32GB DDR4 DRAM modules and the other 6 slots are occupied
by 512GB PMMs. That totals to 192GB of DRAM and 3TB of
PMem per socket. The processor communicates with DRAM
using the standard DDR4 protocol, whereas for PMM it uses
the DDR-T protocol, both happening via the Integrated Mem-
ory Controller (IMC). PMMs use 256B cache line access granu-
larity, which is larger than the 64B cache line access granular-
ity used in DRAM. The PMM has an on-DIMM Apache Pass
controller that translates 64B load/stores into 256B accesses.
The PMM operates in three different modes:

e Memory Mode: PMMs act as volatile, byte-
addressable main memory. DRAM acts as a cache for
PMM and is not visible to the user.

e App Direct Mode: PMMs act as persistent storage
separate from the primary memory hierarchy.

e Mixed Mode: Part of PMMs is used as main memory
and the remaining part is used as persistent storage.
DRAM acts as cache for PMM.

The advantage of the Memory Mode is that it works
transparently for legacy software. The DRAM serves as an
additional hardware-managed caching layer (“L4 cache").
However, it does not provide fine-grained control over where
the data resides, and past work has shown that Memory
Mode adds around 10% overhead compared to App Direct



Mode [24]. For this reason, we focus on using App Direct
Mode in the remainder of this paper. When we use PMem in
the App Direct Mode, the memory appears as a block storage
device. User can allocate memory on the device by creating
a file and map the file into address space as follows:

col = pmem_map_file("/mnt/pmem12/col", col_size,
PMEM_FILE_CREATE, 0666, &len, &is_pmem);

The resulting pointer can be used like an array in memory.
Note that accesses to col bypass the OS block cache.

2.2 Related Work

Researchers have worked on adapting OLTP databases to use
PMem. Chen et al. proposed the wB-Tree [10], an NVM-based
persistent B+-Tree that keeps sorted in-direction arrays to mit-
igate the fact that tree nodes are kept unsorted. Furthermore,
Yang et al. proposed the NV-Tree [26], a cache-conscious
B-Tree that does not enforce the consistency of the inner
nodes since they can be rebuilt from the leaf nodes, thereby
reducing the number of PMem writes. Other NVM-based
structures that build on the above techniques and further
optimize failure-atomicity handling have been proposed, e.g.,
the FPTree [18], the Write-Optimal Adaptive Radix Tree [15],
and the Bz-Tree [4]. Arulraj et al. proposed to adapt the cost
model of query optimizers to take into account PMem’s
read/write asymmetry [5]. In-memory OLAP workloads are
largely read-only. Van Ren et al. proposed using PMem as
a part of three-tiered hierarchy for OLTP workloads [23].
Psaropoulos et al. worked on hiding the latency difference
between PMem and DRAM for database applications by
interleaving the execution of parallel work in index joins and
tuple reconstruction using coroutines [19]. These techniques
are only effective on single-threaded processing; we largely
focus on running in parallel using all threads, at which point
queries are bandwidth-bound and not latency-bound.
Andrei et al. present architectural choices involved in
integrating NVM into the SAP HANA in-memory DBMS [2].
Their work focuses on storage design to support OLTP and
OLAP workloads, whereas in this paper we focus on the
performance aspect of using the hybrid system. Van Renen
et al. performed performance evaluations of PMM in terms
of bandwidth and latency [24], and developed guidelines for
efficient usage of PMM and tuned I/O primitives, namely
log writing and block flushing. We build on the insights
of this to characterize performance on OLAP workloads.
PMem is unique in that there is read-write asymmetry - read
throughput is significantly higher than write throughput.
This requires a redesign of algorithms to reduce the number
of writes to durable storage. Viglas proposed the Segmented
Grace Hash Join (SGH]J) [25], which, unlike the regular Grace
Hash Join (GHJ) [13], materializes only a fraction of the input
partitions, and continuously iterates over the rest of the input

to process the remaining partitions. The associated read
amplification does not hurt performance given the read-write
asymmetry. We revisit this work and show that SGHJ
devolves into either GHJ or read-only Nested Loops Join (NL])
based on the size of the build relation and memory buffer size.

3 ANALYTICS ON PMEM

In this section, we evaluate the performance of running
analytical workloads on a hybrid system with DRAM and
PMem. We compare the performance of key access patterns
and a SQL query benchmark with data stored on DRAM
vs. with data stored on PMem. In this section, we restrict
ourselves to the case where the dataset fits in DRAM. A key
benefit of using PMem is the ability to process datasets much
larger than size of DRAM. In the next section, we examine
the case when data does not fit in DRAM.

We start by comparing the performance of DRAM vs. PMem
on three key access patterns seen in analytical workloads:

e Sequential Access (Read and Write): Associated with
accessing the columns before any selections.

e Selective Access (Read): Associated with accessing a
column after a selection or selective join.

e Random Access (Hash Probe): Associated with joins.

Then, we evaluate the performance of the Star Schema
Benchmark on a hybrid system and contrast it with a purely
in-DRAM solution.

For the experiments, we are using a two-socket, 2nd
Generation Intel® Xeon® Scalable Processor (Cascade Lake)
system with 24 physical (48 virtual) cores on each node. Each
socket’s memory configuration is as shown in Figure 1. All
the experiments were run on a single socket using all 48
virtual cores unless otherwise stated. The machine is running
Fedora with a Linux kernel version 4.15.6. All results are
reported as an average of 3 runs.

3.1 Performance of Basic Access Patterns

In this section, we look at three common access patterns that
occur in analytical workloads run in an in-memory column-
store to evaluate how their performance changes with PMem.

Sequential Access

To compare performance on sequential accesses, we measure
the read and write bandwidth of DRAM and PMem using
streaming read and streaming write, respectively, with
varying number of threads. Note that each thread runs on
a separate physical core.

Figure 2a shows the results for sequential read. The single-
thread read bandwidth for DRAM and PMem is 8.7 GBps
and 4.1 GBps, respectively. We note that twelve threads are
sufficient to saturate bandwidth on both DRAM and PMem.
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The peak read bandwidth of DRAM and PMem s 102 GBps and
32 GBps, respectively. Hence, PMem is 3.2x slower for reads.

Figure 2b shows the results for sequential write. The
single-thread write bandwidth for DRAM and PMem is 7.2
GBps and 7 GBps, respectively. The peak write bandwidth
of DRAM is 79GBps. For PMem, the write bandwidth peaks
at 8.5 GBps with two threads. Using additional threads
decreases the bandwidth achieved.

We define A to be the ratio of the maximum read bandwidth
to the maximum write bandwidth for the medium. Using
the bandwidth numbers, we get Aprans is 1.3 and Appfen is
3.8 — there is significant asymmetry in the read and write
bandwidth of PMem.

Selective Access

In a query with multiple selection predicates, after the first
predicate is evaluated, entries in subsequent columns with
predicates are selectively accessed based on whether they
passed all previous predicates. To mimic this access pattern,
we scan an array of 500 million 4-byte integers and selec-
tively access every j entry, where j is the number of entries

skipped. Figure 2c shows the results. Time taken with array on
PMem drops when skip size is greater than 256B (which is the
granularity of accesses to PMem) compared to 64B for DRAM.

Random Access

Hash Join (HJ) is the most popular join algorithm for in-
memory DBMS. Hash Join runtimes are typically dominated
by the probe phase, which involves random access into a
hash table in memory. To compare performance of DRAM
vs. PMem on random access, we measure the runtime of the
probe phase of the following join query:

SELECT SUM(A.v + B.v) AS checksum
FROM A, B
WHERE A.k = B.k

where each table, A and B, consists of two 4-byte integer
columns, k, v. The two tables are joined on key k. We keep the
size of the probe table fixed at 256 million tuples, totaling 2
GB of raw data. We use a hash table with 50% fill rate. We vary
the size of the build table such that it produces a hash table of
the desired size in the experiment. The hash table resides on
DRAM or PMem depending on the test. The microbenchmark
is the same as what past works use [6-8, 21].

Figure 3 shows the results. When the hash table fits in the
L2/L3 cache, the performance is the same for both memories,
as the performance is bound by cache bandwidth and not
by where data starts out. Once hash table size is bigger than
L3 cache, we end up doing random access into the hash
table stored in respective memories. The access granularity
of PMem is 256B while for DRAM is 64B - a factor of 4x.
Further, DRAM read bandwidth is 3.2x higher than that of
PMem. Hence, one would expect at least 12x difference in
performance. However, we observe that, when the hash table
size is 16GB, the ratio of DRAM to PMem runtime is 8x.

To understand the reason for this, we plot the theoretical
runtimes that would be achieved assuming memory band-
width is saturated. If the hash table size is larger than the size
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of the last level cache, we expect the runtime to be:

Tt < I
h

runtime=
P

where |P| is the cardinality of the probe table, B, and By, are
the read bandwidths of the memories on which the probe
table and hash table reside respectively, C is the cache line
size accessed on probe, and r is the probability of an access
hitting the last level cache. The first term is the time taken to
scan the probe table from the respective memory. The second
term is the time for probing the hash table. Note that each
probe accesses an entire cache line. A similar model can be
used when hash table is smaller than size of last level cache.
We refer the interested reader to our complete cost model
published in an earlier study [22]. The runtimes based on the
model are plotted as DRAM Model and PMem Model for DRAM
and PMem, respectively.

PMem Model closely tracks the actual performance with
an error of 3% at the plateau. DRAM Model, on the other hand,
is 30% less than the actual runtime. This is due to memory
controller not being able to fulfill requests at DRAM memory
bandwidth speed, hence the memory stalls. In conclusion,
random accesses to PMem are 8x slower than to DRAM.

3.2 Star Schema Benchmark Performance

Now that we have a good understanding of how different
access patterns behave on both DRAM and PMem, we will
evaluate the performance of a workload of full SQL queries
on both DRAM and PMem. For the workload, we use the Star
Schema Benchmark (SSB) [17]. SSB is a simplified version
of the more popular TPC-H benchmark. It has one fact table
lineorder, and four dimension tables date, supplier, customer,
part, which are organized in a star schema fashion. There are
a total of 13 queries in the benchmark, divided into 4 query
flights. In our experiments, we first run the benchmark with
a scale factor of 100, which will generate the fact table with
120 million tuples. The total dataset size is around 70GB.

We implement the benchmark queries in C++ and compare
the performance of queries with data starting out in PMem

(Standalone (PMem)) to performance with data starting out
in DRAM (Standalone (DRAM)). As a sanity check, we also
compare against Hyper (Hyper (DRAM)), a state-of-the-art
in-memory OLAP DBMS. Note that the Hyper runtimes
exclude the query compilation time.

Figure 4 shows the results. The queries in the Star Schema
Benchmark canbebroken into two sets: 1) the query flight g1.x
consists of queries with selections directly on the fact table
with no joins and 2) the query flights ¢q2.x, ¢3.x, g4.x consist
of queries with no selections on fact table and multiple joins —
some of which are selective. Comparing Standalone (DRAM)
to Standalone (PMem) on set 1, queries with Standalone
(PMem) are on average 3x slower than Standalone (DRAM).
Query runtimes in set 1 is dominated by sequential and
skipped access patterns. Hence their performance ratio is
close to the bandwidth ratio of the two memories.

Comparing the performance of the two memories on set
2, we see that queries in Standalone (PMem) are on average
1.4x slower than in Standalone (DRAM). In this set, in each
query, the fact table joins against multiple dimensions tables.
The query runtime is dominated by random access patterns in-
volved in the hash probing. Revisiting Eq. 1, we have the probe
table residing on PMem / DRAM, while the hash table fits in
DRAM — as a result, change in memory only increases the
first term, while the second term remains the same for both.

In aggregate, the geometric mean of runtimes of
Standalone (PMem) is 1.6x higher than that of Standalone
(DRAM).Hence, the performance hit from having data stored in
PMemiisless than the bandwidth ratio when the intermediates
fit in DRAM. In most commonly used workloads, the dimen-
sion tables are significantly smaller than fact tables; further,
hash table is built on select columns and not the entire table.

Finally, comparing Standalone (DRAM) to Hyper (DRAM)
shows that the former does on an average 1.17x better
than the latter. Hyper is likely using different underlying
implementation for certain operators. The comparison serves
as a sanity check and shows that our implementation is
competitive compared to a state-of-the-art OLAP DBMS.
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4 HANDLING LARGER DATASETS

In the previous section, we analyzed the performance of an
analytical workload in the hybrid system, when the dataset
and query intermediates fit in DRAM. In a DRAM-based
in-memory system, DRAM is used both for storing the data
and and as scratch space during query execution. In the
hybrid system, data resides on PMem. Hence, when handling
larger datasets, we have two scenarios: 1) when the query
intermediates fit in DRAM, and 2) when the intermediates are
larger than size of DRAM, like when joining two large tables.

4.1 Intermediates Fitin DRAM

In data warehouses modeled on a star schema, there are one
or more fact tables referencing any number of dimension
tables. The dimension tables are usually much smaller than
the fact tables. A query with Hash Joins ends up building hash
tables on the dimension tables. Hence, while the database
size may be larger than size of DRAM, it is possible to process
queries on this database using PMem with minimal changes,
as the query intermediates built during query execution fit in
DRAM. To show the performance characteristics of running
a workload where intermediates fit in DRAM, we run the
Star Schema Benchmark queries using Standalone (PMem)
with a scale factor of 1000 vs. with a scale factor of 100. In
the former, the fact table size is larger than size of DRAM.

Figure 5 shows the results. Note that the runtimes are
plotted on a log scale. The average ratio of query runtimes
is 11.4x and ratio of the geometric mean of the runtimes is
11.3x. This is close to ratio of data sizes which is 10x. Hence,
the performance scales linearly with the data size when
intermediates fit in DRAM.

4.2 Intermediates Larger than DRAM

A common example for having intermediates larger than the
DRAM size is when joining two large tables. In this section,

we discuss different join algorithms that can be used when
the hash table does not fit in DRAM and benchmark their
performance.

Grace Hash Join (GH))

Grace Hash Join (GHJ) is a commonly used join algorithm in
disk-based DBMS [11]. Given inputs T and V with |T| < |V]|
and a memory budget of M (M > V|T], i.e., GHJ is applicable),
GH]J would partition each side into k = [|T|/M] partitions
such that the tuples in the i*" partition of T join only with the
tuples in the i* partition of V. In the next step, each partition
pair is joined one at a time.

Segmented Grace Hash Join (SGHJ)

PMem is unique in that there is read-write asymmetry - the
read throughput s significantly higher than the write through-
put. GH]J involves writing to PMem; an alternative is to use the
Nested Loops Join (NLJ), which involves no writes. If A is the
read to write bandwidth ratio of the medium, depending on
the size of input relations and A, one could choose NL]J or GHJ.

Viglas studied this problem and presented a number of hy-
brid join algorithms that adapt to the read-write asymmetry
A, out of which the Segmented Grace Hash Join (SGHJ) was
found to be the best performing algorithm [25]. In SGHJ, given
anumber of partitions k =[|T|/M7], we choose to materialize
only some number, x, of them, and continuously iterate over
the rest of the inputs to process the remaining k —x partitions.

The total cost, J(x), of the algorithm is given by Eq. 2,
where r denotes the read cost per tuple. We scan the input to
extract the x partitions; we offload these partitions; and then
read them back to process their partial join. We therefore
fully scan T and V, write x(|T|+|V|)/k buffers, and next read
back the x(|T|+|V])/k buffers one pair at a time to process
the partial joins, where |T|/k (resp. |V|/k) is the size of each
partition of T (resp. V). The cost of this step is represented by
the first two factors in Eq. 2. In the next step, we iterate over
both inputs k —x times, each time processing one partition.
The cost of iterating over both inputs k —x times to process
the remaining partitions is r(k—x)(|T|+|V]).

IT|+|VI
k

J@)=r(IT1+1V)+rx(1+24)(

+r(k=x)(IT|+|V1)
The cost is parameterized by x, the number of partitions that
will be written. x is a measure of the write-intensity of the
algorithm. Simplifying the above:
JE)=r(ITI+IV) A+ A+ 1)x/k+(k—x))

The cost of GHJ is r(|T| +|V])(A+2). We can use SGH]J if it
costs less than that of GHJ. Here we found that a mistake
was made in the formulation of Viglas [25], which led to a

wrong conclusion that the choice of x is based on a non-linear
function of k and A. Correctly comparing the two costs, we

) )
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find that one can use SGHJ if:
(1+(A+D)x/k+(k—x))<A+2
k(1-x/k)<(1-x/k)(A+1)
k<A+1

Hence, we see that SGH] is faster, when k < A+1. The cost is
parameterized by x and the cost function can be rewritten as:

JE)=r(ITI+V)(1+k+((A+1)/k-1)x)

Since we know k < A+ 1, the cost is directly proportional to
x and minimized at x =0. Hence, the SGHJ, when applicable
(i-e., k <A+1), defaults to using the NLJ.

Array Join (AJ)

A key difference between PMem and SSD is that PMem is
byte-addressable and supports random access. In column
stores, in many occasions, the dimension tables are already
sorted and their keys are indexed (e.g., 0 to n). Hence in this
case we can do the join with the table in PMem by scanning the
probe side, for each table accessing the column entry directly
from PMem. This removes the need to build the hash table.

Experimental Evaluation

To join tables where the build side is bigger than the size
of DRAM, we have so far discussed three algorithms: GHJ,
NLJ, and AJ, where AJ is applicable only in specific scenarios
(and SGHJ was shown to default to NLJ). To evaluate their
performance, we use the same join benchmark used to
evaluate the random access pattern in Section 3.1. We keep
the size of the probe table fixed at 4 billion tuples, totaling
around 16GB. We keep the memory budget fixed at M =1GB
and vary the size of build side from 128 million (1GB) to
4 billion tuples (16GB). The key column of the build side
is Knuth-shuffled, except when evaluating AJ, in which
case, it is ordered 1 to n. For comparison, we also show the
performance when the hash join has sufficient memory to
store the entire hash table in DRAM (HJ in DRAM).

Figure 6 shows our results. As expected, HJ in DRAMis the
fastest. Let k = [|T|/M7] where T is the build side. For small
values of k, NLJ does better than GHJ. For PMem, A = 3.8;
based on our previous estimate we expect the transition point
at k = A + 1, which is 4.8. However, in the experiment the
transition happens when k > 3. This is because we ignored
the DRAM access cost in the equation previously, which
decreases the transition point.

The time taken in AJ is a constant, as it depends on the size
of the probe side, which is a constant in this microbenchmark.
AJ is the best algorithm when k > 12. Note that while PMem
supports random access, the granularity of PMem accesses
is 256B compared to 64B on DRAM. When k > 12, the size
of the build table is comparable to the size of the probe table
and the cost of building the partitions in GH]J is higher than
cost of 256B random accesses to PMem. If the build side is
not already indexed, one would be tempted to build a hash
table in PMem and then use AJ. Building a hash table on the
build side in PMem involves two write passes over the build
side and algorithm performs strictly worse than GH]J.

5 CONCLUSION

This paper analyzed the performance characteristics of
running analytical workloads on a hybrid system with
Persistent Memory and DRAM. We evaluated the difference
in performance on basic access patterns like hash probes and
use performance models to explain them. Our analysis on
SSB, a popular analytics benchmark, shows that using PMem
to store data leads to only 1.6x slowdown compared to purely
an in-DRAM system, while giving us an order of magnitude
higher data storage capacity. We discussed join algorithms
to handle the case when join hash tables do not fit in DRAM,
and presented simple rules to choose the right algorithm. Our
results should help system implementors effectively evaluate
the tradeoffs of using PMem when designing their systems.
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