
A Study of the Fundamental Performance
Characteristics of GPUs and CPUs

for Database Analytics
Anil Shanbhag

MIT
anil@csail.mit.edu

Samuel Madden
MIT

madden@csail.mit.edu

Xiangyao Yu
University ofWisconsin-Madison

yxy@cs.wisc.edu

ABSTRACT
There has been significant amount of excitement and recent
work on GPU-based database systems. Previous work has
claimed that these systems can perform orders of magnitude
better than CPU-based database systems on analytical
workloads such as those found in decision support and
business intelligence applications. A hardware expert would
view these claims with suspicion. Given the general notion
that database operators are memory-bandwidth bound, one
would expect the maximum gain to be roughly equal to the
ratio of the memory bandwidth of GPU to that of CPU. In
this paper, we adopt a model-based approach to understand
when and why the performance gains of running queries
on GPUs vs on CPUs vary from the bandwidth ratio (which
is roughly 16× on modern hardware). We propose Crystal, a
library of parallel routines that can be combined together to
run full SQL queries on a GPU with minimal materialization
overhead. We implement individual query operators to
show that while the speedups for selection, projection,
and sorts are near the bandwidth ratio, joins achieve
less speedup due to differences in hardware capabilities.
Interestingly, we show on a popular analytical workload that
full query performance gain from running on GPU exceeds
the bandwidth ratio despite individual operators having
speedup less than bandwidth ratio, as a result of limitations
of vectorizing chained operators on CPUs, resulting in a
25× speedup for GPUs over CPUs on the benchmark.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380595

CCS CONCEPTS
• Computer systems organization → Heterogeneous
(hybrid) systems; • Information systems → Query
operators.
ACMReference Format:
Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the
Fundamental Performance Characteristics of GPUs and CPUs for Database
Analytics. In 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA.ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3318464.3380595

1 INTRODUCTION
In the past decade, special-purpose graphics processing
units (GPUs) have evolved into general purpose computing
devices, with the advent of general purpose parallel program-
ming models, such as CUDA [3] and OpenCL [7]. Because of
GPU’s high compute power, they have seen significant adop-
tion in deep learning and in high performance computing [4].
GPUs also have significant potential to accelerate memory-
bound applications such as database systems. GPUs utilize
High-Bandwidth Memory (HBM), a new class of RAM that
has significantly higher throughput compared to traditional
DDR RAM used with CPUs. A single modern GPU can have
up to 32 GB of HBM capable of delivering up to 1.2 TBps
of memory bandwidth and 14 Tflops of compute. In contrast,
a single CPU can have hundreds of GB of memory with up
to 100 GBps memory bandwidth and 1 TFlop of compute.

This rise in memory capacity, coupled with the ability to
equip a modern server with several GPUs (up to 20), means
that it’s possible to have hundreds of gigabytes of GPU
memory on a modern server. This is sufficient for many
analytical tasks; for example, one machine could host several
weeks of a large online retailer’s (with say 100M sales per
day) sales data (with 100 bytes of data per sale) in GPU
memory, the on-time flight performance of all commercial
airline flights in the last few decades, or the time, location,
and (dictionary encoded) hash tags used in every of the
several billion tweets sent over the past few days.
In-memory analytics is typically memory bandwidth

bound. The improved memory bandwidth of GPUs has led
some researchers to use GPUs as coprocessors for analytic

https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3318464.3380595

query processing [15, 24, 44, 48]. However, previous work
leaves several unanswered questions:
• GPU-based database systems have reported a wide range
of performance improvement compared to CPU-based
database systems, ranging from 2× to 100×. There
is a lack of consensus on how much performance
improvement can be obtained from using GPUs. Past work
frequently compares against inefficient baselines, e.g.,
MonetDB [24, 44, 48] which is known to be inefficient [28].
The empirical nature of past work makes it hard to
generalize results across hardware platforms.
• Past work generally views GPUs strictly as an coprocessor.
Every query ends up shipping data from CPU to GPU over
PCIe. Data transfer over PCIe is an order of magnitude
slower than GPU memory bandwidth, and typically less
than the CPU memory bandwidth. As a result, the PCIe
transfer time becomes the bottleneck and limits gains. To
the extent that past work shows performance improve-
ments using GPUs as an coprocessor, much of those gains
may be due to evaluation against inefficient baselines.
• There has been significant improvement in GPU hardware
in recent years. Most recent work on GPU-based data-
base [15] evaluates on GPUs which have memory capacity
and bandwidth of 4 GB and 150 GBps respectively,
while latest generation of GPUs have 8× higher capacity
and bandwidth. These gains significantly improve the
attractiveness of GPUs for query processing.
In this paper, we set out to understand the true nature of

performance difference between CPUs and GPUs, by per-
forming rigorous model-based and performance-based anal-
ysis of database analytics workloads after applying optimiza-
tions for both CPUs and GPUs. To ensure that our implemen-
tations are state-of-the-art, we use theoretical minimums de-
rived assuming memory bandwidth is saturated as a baseline,
and show that our implementations can typically saturate
the memory bus, or when they cannot, describe in detail why
they fall short. Hence, although we offer some insights into
the best implementations of different operators on CPUs and
GPUs, the primary contribution of this paper is to serve as
a guide to implementors as to what sorts of performance dif-
ferences one should expect to observe in database implemen-
tations on modern versions of these different architectures.

Past work has used GPUs mainly as coprocessors. By com-
paring an efficient CPU implementation of a query processor
versus an implementation that uses the GPU as a coproces-
sor, we show that GPU-as-coprocessor offers little to no gain
over a pure CPU implementation, performing worse than
the CPU version for some queries. We argue that the right
setting is having the working set stored directly on GPU(s).
We developed models and implementations of basic

operators: Select, Project, and Join on both CPU and GPU to
understand when the ratio of operator runtime on CPUs to

runtime on GPUs deviates from the ratio of memory band-
width of GPU to memory bandwidth of CPU. In the process,
we noticed that the large degree of parallelism of GPUs leads
to additional materialization. We propose a novel execution
model for query processing on GPUs called the Tile-based ex-
ecution model. Instead of looking at GPU threads in isolation,
we treat a block of threads (“thread block”) as a single execu-
tion unit, with each thread block processing a tile of items.
The benefit of this tile-based execution model is that thread
blocks can now cache tiles in shared memory and collectively
process them. This helps avoid additional materialization.
This model can be expressed using a set of primitives where
each primitive is a function which takes as input of set of
tiles and outputs a set of tiles. We call these primitives block-
wide functions. We present Crystal, a library of block-wide
functions that can be used to implement the common SQL
operators as well as full SQL queries. Furthermore, we use
Crystal to implement the query operators on the GPU
and compare their performance against equivalent state-of-
the-art implementations on the CPU. We use Crystal to
implement the Star-Schema Benchmark (SSB) [29] on the
GPU and compare it’s performance against our own CPU
implementation, a state-of-the-art CPU-based OLAP DBMS
and a state-of-the-art GPU-based OLAP DBMS. In both
cases, we develop models assuming memory bandwidth is
saturated and reason about the performance based on it.

In summary, we make the following contributions:
• We show that previous designs which use the GPU as a
coprocessor show no performance gain when compared
against a state-of-the-art CPU baseline. Instead, using
modern GPU’s increased memory capacity to store
working set directly on the GPU is a better design.
• We present Crystal, a library of data processing prim-
itives that can be composed together to generate efficient
query code that can full advantage of GPU resources.
• We present efficient implementations of individual opera-
tors for both GPU and CPU. For each operator, we provide
cost models that can accurately predict their performance.
• We describe our implementation of SSB and evaluate both
GPU and CPU implementations of it. We present cost
models that can accurately predict query runtimes on the
GPU and discuss why such models fall short on the CPU.

2 BACKGROUND
In this section, we review the basics of the GPU architecture
and describe relevant aspects of past approaches to running
database analytics workloads on CPU and GPU.

2.1 GPUArchitecture
Many database operations executed on the GPU are
performance bound by the memory subsystem (either

SM-1

Registers

L1 SMEM

SM-2

Registers

L1 SMEM

SM-N

Registers

L1 SMEM

L2	Cache

Global	Memory
Off chip
On chip

Figure 1: GPUMemoryHierarchy

shared or global memory) [48]. In order to characterize the
performance of different algorithms on the GPU, it is, thus,
critical to properly understand its memory hierarchy.
Figure 1 shows a simplified hierarchy of a modern GPU.

The lowest and largest memory in the hierarchy is the
global memory. A modern GPU can have global memory
capacity of up to 32 GB with memory bandwidth of up to
1200 GBps. Each GPU has a number of compute units called
Streaming Multiprocessors (SMs). Each SM has a number of
cores and a fixed set of registers. Each SM also has a shared
memory which serves as a scratchpad that is controlled by
the programmer and can be accessed by all the cores in the
SM. Accesses to global memory from a SM are cached in the
L2 cache (L2 cache is shared across all SMs) and optionally
also in the L1 cache (L1 cache is local to each SM).
Processing on the GPU is done by a large number of

threads organized into thread blocks (each run by one
SM). Thread blocks are further divided into groups of
threads called warps (usually consisting of 32 threads). The
threads of a warp execute in a Single Instruction Multiple
Threads (SIMT) model, where each thread executes the same
instruction stream on different data. The device groups
global memory loads and stores from threads in a single
warp such that multiple loads/stores to the same cache line
are combined into a single request. Maximum bandwidth
can be achieved when a warp’s access to global memory
results in neighboring locations being accessed.
The programming model allows users to explicitly

allocate global memory and shared memory in each thread
block. Shared memory has an order of magnitude higher
bandwidth than global memory but has much smaller
capacity (a few MB vs. multiple GB).
Finally, registers are the fastest layer of the memory

hierarchy. If a thread block needs more registers than
available, register values spill over to global memory.

2.2 Query Execution on GPU
With the slowing of Moore’s Law, CPU performance
has stagnated. In recent years, researchers have started
exploring heterogeneous computing to overcome the scaling
problems of CPUs and to continue to deliver interactive
performance for database applications. In such a hybrid

CPU-GPU system, the two processors are connected via
PCIe. The PCIe bandwidth of a modern machine is up to
16 GBps, which is much lower than the memory bandwidth
of either CPU or GPU. Therefore, data transfer between
CPU and GPU is a serious performance bottleneck.
Past work in the database community has focused on

using the GPU as a coprocessor, which we call the coprocessor
model. In this model, data primarily resides in CPU’s main
memory. For query execution, data is shipped from the CPU
to the GPU over PCIe, so that (some) query processing can
happen on the GPU. Results are then shipped back to the
CPU. Researchers have worked on optimizing various data-
base operations under the co-processor model: selection [40],
join [18, 19, 22, 34, 38, 39, 47], and sort [16, 42]. Several full-
fledged GPU-as-coprocessor database query engines have
been proposed in recent years. Ocelot [20] provides a hybrid
analytical engine as an extension to MonetDB. YDB [48] is
a GPU-based data warehousing engine. Both systems used
an operator-at-a-time model, where an operator library con-
taining GPU kernel implementations of common database
operators such as scans and joins is invoked on batches of tu-
ples, running each operator to completion before moving on
to the next operator. Kernel fusion [46] attempted to hide in-
efficiency associated with running multiple kernels for each
query like in the operator-at-a-time model. Kernel fusion
fused operator kernels with producer-consumer dependency
when possible to eliminate redundant data movement. As
kernel fusion is applied as a post-processing step, it will miss
opportunities where kernel configurations are incompatible
(like the one in described in Section 3.2). HippogriffDB [24]
used GPUs for large scale data warehousing where data re-
sides on SSDs. HippogriffDB claims to achieve 100× speedup
over MonetDB when the ratio of memory bandwidth of
GPU to CPU is roughly 5×. We have not been able to get the
source code to compare against the system. More recently,
HorseQC [15] proposes pipelined data transfer between
CPU and GPU to improve query runtime. As we show in
the next section, using HorseQC ends up being slower than
running the query efficiently directly on the CPU.
Commercial systems like Omnisci [6], Kinetica [5],

and BlazingDB [2] aim to provide real-time analytical
capabilities by using GPUs to store large parts (or all) of the
working set. The setting used in this paper is similar to ones
used by these systems. Although these systems use a design
similar to what we advocate, some have claimed 1000×
performance improvement by using GPUs [1] but have not
published rigorous benchmarks against state-of-the art CPU
or GPU databases, which is the primary aim of this paper.

2.3 Query Execution on CPU
Database operators have been extensively optimized for
modern processors. For joins, researchers have proposed

using cache-conscious partitioning to improve hash join
performance [9–11, 25]. Schuh et al. summarized the
approaches [36]. For sort, Satish et al. [35] and Wassenberg
et al. [45] introduced buffered partitioning for radix sort.
Polychroniou et al. [31] presented faster variants of radix sort
that use SIMD instructions. Sompolski et al. [41] showed that
combination of vectorization and compilation can improve
performance of project, selection, and hash join operators.
Polychroniou et al. [30] presented efficient vectorized
designs for selections, hash tables, and partitioning using
SIMD gathers and scatters. Prashanth et al. [27] extended
the idea to generate machine code for full queries with SIMD
operators. We use ideas from these works, mainly the works
of Polychroniou et al. [30, 31] for our CPU implementations.
C-Store [43] and MonetDB [12] were among the first

column-oriented engines, which formed the basis for
analytical query processing. MonetDB X100 [13] introduced
the idea of vectorized execution that was cache aware and
reduced memory traffic. Hyper [28] introduced the push-
based iteration and compiling queries into machine code
using LLVM. Hyper was significantly faster than MonetDB
and brought query performance close to that of handwritten
C code. We compare the performance of our CPU query
implementations against MonetDB [12] and Hyper [28].

3 OURAPPROACH
In this section, we describe the tile-based execution model
we use to execute queries on GPU efficiently. We begin by
showing why the coprocessor model used by past works is
a suboptimal design and motivate why storing the working
set directly on the GPU in a heterogeneous system (as done
by all commercial systems) is a better approach. Through
an example, we illustrate the unique challenges associated
with running queries in a massively-parallel manner on
the GPU. We show how by treating the thread block as the
basic execution unit with each thread block processing a
tile of items (similar to vector-based processing on the CPU
where each thread processes a vector of items a time) leads
to good performance on the GPU. We call this approach
the tile-based execution model. Finally, we show how this
model can be expressed using a set of primitives where each
primitive is a function which takes as input of set of tiles and
outputs a set of tiles. We call these primitives block-wide
functions. We present Crystal, a library of block-wide
functions that can be composed to create a full SQL query.

3.1 Failure of the CoprocessorModel
While past work has claimed speedups from using GPUs
in the coprocessor model, there is no consensus among past
work about the performance improvement obtained from

SELECT SUM(lo_extendedprice * lo_discount) AS revenue
FROM lineorder
WHERE lo_quantity < 25
AND lo_orderdate >= 19930101 AND lo_orderdate <= 19940101
AND lo_discount >= 1 AND lo_discount <= 3;

Figure 2: Star Schema Benchmark Q1.1

q1
.1

q1
.2

q1
.3

q2
.1

q2
.2

q2
.3

q3
.1

q3
.2

q3
.3

q3
.4

q4
.1

q4
.2

q4
.3

m
ea
n

Queries

0

100

200

300

400

T
im

e
(i
n
m
s)

MonetDB

GPU Coprocessor

Hyper

Figure 3: Evaluation on the Star Schema Benchmark

using GPUs, with reported improvements varying from 2×
to 100×.
Consider Q1.1 from the Star Schema Benchmark (SSB)

shown in Figure 2. For simplicity, assume all column
entries are 4-byte integers and L is the number of entries in
lineorder. An efficient implementation on a CPU will be
able to generate the result using a single pass over the 4 data
columns. The optimal CPU runtime (RC) is upper bounded
by 16L/Bc where Bc is the CPU memory bandwidth. This is
an upper bound because, if the predicates are selective, then
we may be able to skip entire cache lines while accessing
the lo_extendedprice column. In the coprocessor model,
we have to ship 4 columns of data to GPU. Thus, the query
runtime on the GPU (RG) is lower bounded by 16L/Bp where
Bp is the PCIe bandwidth. The bound is hit if we are able to
perfectly overlap the data transfer and query execution on
GPU. However, since Bc >Bp in modern CPU-GPU setups,
RC < RG , i.e., running the query on CPU yields a lower
runtime than the running query with a GPU coprocessor.

To show this empirically, we ran the entire SSB with scale
factor 20 on an instance where CPU memory bandwidth is
54 GBps, GPU memory bandwidth is 880 GBps, and PCIe
bandwidth is 12.8 GBps. The full workload details can be
found in Section 5.1 and the full system details can be
found in Table 2. We compare the performance of the GPU
Coprocessor with two OLAP DBMSs: MonetDB and Hyper.
Past work on using GPUs as a coprocessor mostly compared
their performance against MonetDB [24, 44, 48] which is
known to be inefficient [28]. Figure 3 shows the results. On
an average, GPU Coprocessor performs 1.5× faster than
MonetDB but it is 1.4× slower than Hyper. For all queries, the
query runtime in GPU coprocessor is bound by the PCIe

transfer time. We conclude the reason past work was able
to show performance improvement with a GPU coprocessor
is because their optimized implementations were compared
against inefficient baselines (e.g., MonetDB) on the CPU.
With the significant increase in GPU memory capacity,

a natural question is how much faster a system that treats
the GPU as the primary execution engine, rather than as
an accelerator, can be. We describe our architecture for such
a system in the rest of this section.

3.2 Tile-based ExecutionModel
While a modern CPU can have dozens of cores, a modern
GPU like Nvidia V100 can have 5000 cores. The vast increase
in parallelism introduces some unique challenges for data
processing. To illustrate this, consider running the following
simple selection query as a micro-benchmark on both a
CPU and a GPU:
Q0: SELECT y FROM R WHERE y > v;

On the CPU, the query can be efficiently executed as
follows. The data is partitioned equally among the cores.
The goal is to write the results in parallel into a contiguous
output array. The system maintains a global atomic counter
that acts as a cursor that tells each thread where to write
the next result. Each core processes its partition by iterating
over the entries in the partition one vector of entries at a
time, where a vector is about 1000 entries (small enough to
fit in the L1 cache). Each core makes a first pass over the first
vector of entries to count the number of entries that match
the predicate d . The thread increments the global counter
by d to allocate output space for the matching records, and
then does a second pass over the vector to copy the matched
entries into the output array in the allocated range of the
output. Since the second pass reads data from L1 cache,
the read is essentially free. The global atomic counter is
a potential point of contention. However, note that each
thread updates the counter once for every 1000+ entries and
there are only around 32 threads running in parallel at any
point. The counter ends up not being the bottleneck and the
total runtime is approximately D

BC
+ Dσ

BC
where D is the size

of the column, and BC is the memory bandwidth on the CPU.
We could run the same plan on the GPU, partitioning the

data up among the thousands of threads. However, GPU
threads have significantly fewer resources per thread. On
the Nvidia V100, each GPU thread can only store roughly 24
4-byte entries in shared memory at full occupancy, with 5000
threads running in parallel. Here, the global atomic counter
ends up becoming the bottleneck as all the threads will at-
tempt to increment the counter to find the offset into the
output array. To work around this, existing GPU-based data-
base systems would execute this query in 3 steps as shown
in Figure 4(a). The first kernel K1 would be launched across

Load tile of items

Generate Bitmap

Compute Block-wide
Prefix Sum

Atomic update
global counter

Block-wide shuffle

Coalesced Write

Read entries

Evaluate predicate
and count matched

Prefix sum over count

Write out matched entries
at appropriate offset

Write count

Read entries, prefix sum

(a) Current (b) With Tile-based processing

Kernel

K1

K2

K3

K1

Figure 4: Running selection on GPU
a large number of threads. In it, each thread would read in
column entries in a strided fashion (interleaved by thread
number) and evaluate the predicate to count the number of
entries matched. After processing all elements, the total num-
ber of entries matched per thread would be recorded in an
array count, where count[t] is number of entries matched
by thread t. The second kernel K2 would use the count ar-
ray to compute the prefix sum of the count and store this in
another array pf. Recall that for an array A of k elements,
the prefix sum pA is a k element array where pA[j]=

∑j−1
i=0Aj .

Thus, the ith entry in pf indicates the offset at which the ith
thread should write its matched results to in the output array
o. Databases used an optimized routine from a CUDA library
like Thrust [8] to run it efficiently in parallel. The third kernel
K3 would then read in the input column again; here the ith
thread again scans the ith stride of the input, using pf[i] to
determine where to write the satisfying records. Each thread
also maintains a local counter ci , initially set to 0. Specifically
for each satisfying entry, thread i writes it to pf[i]+ci and
then increments ci . In the end, o[pf[t]] ... o[pf[t+1] -
1] will contain the matched entries of thread t.

The above approach shifts the task of finding offsets into
the output array to an optimized prefix sum kernel whose
runtime is a function ofT (whereT is the number of threads
(T <<n)), instead of finding it inline using atomic updates
to a counter. As a result, the approach ends up being signifi-
cantly faster than the naive translation of the CPU approach
to the GPU. However, there are a number of issues with this
approach. First, it reads the input column from global mem-
ory twice, compared to doing it just once with the CPU ap-
proach. It also reads/writes to intermediate structures count
and pf. Finally, each thread writes to a different location in
the output array resulting in randomwrites. To address these
issues, we introduce the Tile-based executionmodel.

Tile-based processing extends the vector-based processing
on CPU where each thread processes a vector at a time to
the GPU. Figure 5 illustrates the model. As discussed earlier
in Section 2.1, threads on the GPU are grouped into thread

thread

Vector (~1000 elems)

threadblock

Tile
(~ 1000 elems)

(a) On CPU (b) On GPU
number of threads

elems
per
thread

Figure 5: Vector-based to Tile-based executionmodels.

3 1 12 8 6 9 15 10 1 4 7 2 11 5 16 13

2 1 4 3

Generate bitmap

0 2 3 7 11

6 11 9 12 15 7 16 8 10 13

Compute histogram

Generate prefix sum

0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1

Load tile

Gen shuffled tile

global counter

Input column

Result Array

global memory shared memory X accesses by thread 0

Figure 6: Query Q0 Kernel running y > 5 with tile size
16 and thread block size 4

blocks. Threads within a thread block can communicate
through shared memory and can synchronize through
barriers. Hence, even though a single thread on the GPU
at full occupancy can hold only up to 24 integers in shared
memory, a single thread block can hold a significantly larger
group of elements collectively between them in shared
memory. We call this unit a Tile. In the Tile-based execution
model, instead of viewing each thread as an independent
execution unit, we view a thread block as the basic execution
unit with each thread block processing a tile of entries at a
time. One key advantage of this approach is that after a tile
is loaded into shared memory, subsequent passes over the
tile will be read directly from shared memory and not from
global memory, avoiding the second pass through global
memory described in the implementation above.

Figure 4(b) shows how selection is implemented using the
tile-based model. The entire query is implemented as a single
kernel instead of three. Figure 6 shows a sample execution
with a tile of size 16 and a thread block of 4 threads for the
predicate y>5. Note that this is just for illustration, as most
modern GPUs would use a thread block size that is a multiple
of 32 (the warp size) and the number of elements loaded
would be 4–16 times the size of the thread block. We start
by initializing the global counter to 0. The kernel loads a tile
of items from global memory into the shared memory. The
threads then apply the predicate on all the items in parallel
to generate a bitmap. For example, thread 0 evaluates the
predicate for elements 0,4,8,12 (shown in red). Each thread
then counts the number of entries matched per thread
to generate a histogram. The thread block co-operatively
computes the prefix sum over the histogram to find the
offset each thread writes to in shared memory. In the

BlockLoad y

BlockPred y > v

BlockScan

Atomic update
global counter

BlockShuffle

BlockStore

(a) SELECT y FROM R WHERE y > v

K1
BlockLoadSel y

AndPred y > v

BlockScan
Atomic update
global counter

BlockShuffle

BlockStore

K1BlockLoad x

BlockPred x > w

Block-wide function

(b) SELECT y FROM R WHERE x > w AND y > v

Figure 7: Implementing queries using Crystal

example, threads 0,1,2,3 match 2,1,4,3 entries respectively.
The prefix sum entries 0,2,3,7 tell us thread 0 should write
its matched entries to output at index 0, thread 1 should
write starting at index 2, etc. We increment a global counter
atomically by total number of matched entires to find the
offset at which the thread block should write in the output
array. The shuffle step uses the bitmap and the prefix sum
to create a contiguous array of matched entries in shared
memory. The final write step copies the contiguous entries
from shared memory to global memory at the right offset.
By treating the thread block as an execution unit, we

reduce the number atomic updates of the global counter
by a factor of size of tile T . The kernel also makes a single
pass over the input column with the Gen Shuffled Tile
ensuring that the final write to the output array is coalesced,
solving both problems associated with approach used in
previous GPU databases.

The general concept of the tile-based executing model i.e.,
dividing data into tiles and mapping threadblocks to tiles
has been used in other domains like image processing [21]
and high performance computing [8]. However, to the
best of our knowledge this is the first work that uses it
for database operations. In the next section, we present
Crystal, a library of data processing primitives that can be
composed together to implement SQL queries on the GPU.

3.3 Crystal Library
The kernel structure in Figure 6 contains a series of steps
where each is a function that takes as input a set of tiles, and
outputs a set of tiles. We call these primitives block-wide func-
tions. A block-wide function is a device function1 that takes
in a set of tiles as input, performs a specific task, and outputs
a set of tiles. Instead of reimplementing these block-wide
functions for each query, which would involve repetition of
non-trivial functions, we developed a library called Crystal.
1Device functions are functions that can be called from kernels on the GPU

Primitive Description
BlockLoad Copies a tile of items from global memory to shared memory. Uses vector instructions to load full tiles.
BlockLoadSel Selectively load a tile of items from global memory to shared memory based on a bitmap.
BlockStore Copies a tile of items in shared memory to device memory.
BlockPred Applies a predicate to a tile of items and stores the result in a bitmap array.
BlockScan Co-operatively computes prefix sum across the block. Also returns sum of all entries.
BlockShuffle Uses the thread offsets along with a bitmap to locally rearrange a tile to create a contiguous array of matched entries.
BlockLookup Returns matching entries from a hash table for a tile of keys.
BlockAggregate Uses hierarchical reduction to compute local aggregate for a tile of items.

Table 1: List of block-wide functions

1 // Implements SELECT y FROM R WHERE y > v
2 // NT => NUM_THREADS
3 // IPT => ITEMS_PER_THREAD
4 template<int NT, int IPT>
5 __global__ void Q(int* y, int* out, int v, int* counter) {
6 int tile_size = get_tile_size();
7 int offset = get_tile_offset();
8 __shared__ struct buffer {
9 int col[NT * IPT];
10 int out[NT * IPT];
11 };
12 int items[IPT];
13 int bitmap[IPT];
14 int indices[IPT];
15
16 BlockLoadInt<NT, IPT>(col+offset,items,buffer.col,tile_size);
17 BlockPredIntGT<NT, IPT>(items,buffer.col,cutoff,bitmap);
18 BlockScan<NT, IPT>(bitmap,indices,buffer.col,
19 num_selections,tile_size);
20
21 if(threadIdx.x == 0)
22 o_off = atomic_update(counter,num_selections);
23
24 BlockShuffleInt<NT, IPT>(items,indices,buffer.out);
25 BlockStoreInt<NT, IPT>(buffer.out,out + o_off,num_selections);
26 }

Figure 8: Query Q0 Kernel Implemented with Crystal

Crystal2 is a library of templated CUDA device functions
that implement the full set of primitives necessary for
executing typical analytic SQL SPJA analytical queries.
Figure 7(a) shows an sketch of the simple selection query
implemented using block-wide functions. Figure 8 shows the
query kernel of the same query implemented with Crystal.
We use this example to illustrate the key features of Crystal.
The input tile is loaded from the global memory into the
thread block using BlockLoad. BlockLoad internally uses
vector instructions when loading a full tile and for the tail of
the input array that may not form a perfect tile, it is loaded in
a striped fashion element-at-a-time. BlockPred applies the
predicate to generate the bitmap. A key optimization that we
do in Crystal is instead of storing the tile in shared memory,
in cases where the array indices are statically known before
2The source code of the Crystal library is available at
https://github.com/anilshanbhag/crystal

hand, we choose to use registers to store the values. In this
case, items (which contains entries loaded from the column)
and bitmap are stored in registers. Hence, in addition to 24
4-byte values that a thread can store in shared memory, this
technique allows us to use roughly equal amount of registers
available to store data items. Next we use BlockScan to
compute the prefix sum. BlockScan internally implements
a hierarchical block-wide parallel prefix-sum approach [17].
This involves threads accessing bitmap entries of other
threads — for this we load bitmap into shared memory,
reusing buffer.col shared memory buffer used for loading
the input column. Shared memory is order of magnitude
faster than global memory, hence loads and stores to shared
memory in this case do not impact performance. After
atomic update to find offset in output array, BlockShuffle
is used to reorder the array and finally we use BlockStore
to write to output array. The code skips some minor details
like when the atomic update happens, since it is executed
on thread 0, the global offset needs to be communicated
back to other threads through shared memory.
In addition to allowing users to write high performance

kernel code that as we show later can saturate memory band-
width, there are two usability advantages of using Crystal:
• Modularity: Block-wide functions in Crystal make
it easy to use non-trivial functions and reduce boil-
erplate code. For example, BlockScan, BlockLoad,
BlockAggregate each encapsulate 10’s to 100’s of lines of
code. For the selection query example, Crystal reduces
lines of code from more than 300 to less than 30.
• Extensibility: Block-wide functions makes it is fairly
easy to implement query kernels of larger queries.
Figure 7(b) shows the implementation of a selection query
with two predicates. Ordinary CUDA code can be used
along with Crystal functions.
Crystal supports loading partial tiles like in Figure 7(b).

If a selection or join filters entries, we use BlockLoadSel
to load items that matched the previous selections based on
a bitmap. In this case, the thread block internally allocate
space for the entire tile, however, only matched entries are
loaded from global memory. Table 1 briefly describes the
block-wide functions currently implemented in the library.

To evaluate Crystal, we look at two microbenchmarks:

https://github.com/anilshanbhag/crystal

32 64 128 256 512 1024

Thread Blocksize

2

4

6

8

10

12

14

T
im

e
T

ak
en

(i
n

m
s)

Items Per Thread

1 2 4

Figure 9: Q0 performance with varying tile sizes

1) We evaluate the selection query Q0 with size of input
array as 229 and selectivity is 0.5. We vary the tile sizes.
We vary the thread block sizes from 32 to 1024 in multiples
of 2. We have three choices for the number of items per
thread: 1,2,4. Figure 9 shows the results. As we increase the
thread block size, the number of global atomic updates done
reduces and hence the runtime improves until the thread
block size approaches 512 after which it deteriorates. Each
streaming multiprocessor on the GPU holds maximum of
2048 threads, hence, having large thread blocks reduces
number of independent thread blocks. This affects utilization
particularly when thread blocks are using synchronization
heavily. Having 4 items per thread allows to effectively load
the entire block using vector instructions. With 2 items
per thread, there is reduced benefit for vectorization as half
the threads are empty. With 1 item per thread there is no
benefit. The best performance is seen with thread block size
of 128/256 and items per thread equal to 4. In these cases,
as we show later in Section 4.2 saturate memory bandwidth
and hence achieve optimal performance.
2) We evaluated the selection query Q0 using two ap-
proaches: independent threads approach (Figure 4(a)) and us-
ing Crystal (Figure 4(b)). The number of entries in the input
array is 229 and selectivity is 0.5. The runtime with the in-
dependent threads approach is 19ms compared to just 2.1ms
when using Crystal. Almost all of the performance improve-
ment is from avoiding atomic contention and being able to
reorder matched entries to write in a coalesced manner.
Across all of the workloads we evaluated, we found that

using thread block size 128 with items per thread equal to 4
is indeed the best performing tile configuration. In the rest of
the paper, we use this configuration for all implementations
using Crystal. All the implementations with Crystal are
implemented in CUDA C++. Since Crystal’s block-wide
functions are standard device functions, they can also called
directly from LLVM IR.

In the next section, we show how to use these block-wide
functions to build efficient operators on a GPU and compare
their performance to equivalent CPU implementations.

4 OPERATORSONGPUVS CPU
In order to understand the true nature of performance
difference of queries on GPU vs. CPU, it is important to
understand the performance difference of individual query
operators. In this section, we compare the performance of ba-
sic operators: project, select, and hash join on GPU and CPU
with the goal of understanding how the ratio of runtime on
GPU to runtime on CPU compares to the bandwidth ratio of
the two devices. We use block-wide functions from Crystal
to implement the operators on GPU and use equivalent
state-of-the-art implementations on CPU. We also present
a model for each of the operators assuming the operator
saturates memory bandwidth and show that in most cases
the operators indeed achieve these limits. We use the model
to explain the performance difference between CPU and
GPU. For the micro-benchmarks, we use a setup where
GPU memory bandwidth is 880GBps and CPU memory
bandwidth is 54GBps, resulting in a bandwidth ratio of 16.2
(see Section 5 for system details). In all cases, we assume
that the data is already in the respective device’s memory.

4.1 Project
We consider two forms of projection queries: one that
computes a linear combination of columns (Q1) and one
involving user defined function (Q2) as shown below:

Q1: SELECT ax1 + bx2 FROM R;

Q2: SELECT σ (ax1 + bx2) FROM R;

where x1 and x2 are 4-byte floating point values. The
number of entries in the input array is 229. σ is the sigmoid
function (i.e., σ (x)= 1

1+e−x) which can represent the output
of a logistic regression model. Note that Q1 consists of basic
arithmetic and will certainly be bandwidth bound. Q2 is
representative of the most complicated projection we will
likely see in any SQL query.
On the CPU side, we implement two variants: CPU and

CPU-Opt. CPU uses a multi-threaded projection where each
thread works on a partition of the input data. CPU-Opt
extends CPU with two extra optimizations: (1) non-temporal
writes and (2) SIMD instructions. Non-temporal writes
are write instructions that bypass higher cache levels and
write out an entire cache line to main memory without first
loading it to caches. SIMD instructions can further improve
performance. With a single AVX2 instruction, for example,
a modern x86 system can add, subtract, multiply, or divide a
group of 8 4-byte floating point numbers, thereby improving
the computation power and memory bandwidth utilization.

On the GPU side, we implement a single kernel that does
two BlockLoad’s to load the tiles of the respective columns,
computes the projection and does a BlockStore to store it
in the result array.

Q1 Q2
0

50

100

150

200

250

300

T
im

e
T

ak
en

(i
n

m
s)

90.5

282.4

64.0 69.6

3.9 3.9

CPU Model

GPU Model

CPU

CPU-Opt

GPU

Figure 10: Project microbenchmark

Model: Assuming the queries can saturate the memory
bandwidth, the expected runtime of Q1 and Q2 is

runtime=
2×4×N

Br
+
4×N
Bw

where N is the number of entries in the input array and
Br and Bw are the read and write memory bandwidth,
respectively. The first term of the formula models the
runtime for loading columns x1 and x2, each containing
4-byte floating point numbers. The second term models
the runtime for writing the result column back to memory,
which also contains 4-byte floating point numbers. Note
that this formula works for both CPU and GPU, by plugging
in the corresponding memory bandwidth numbers.
Performance Evaluation: Figure 10 shows the runtime of
queries Q1 and Q2 on both CPU and GPU (shown as bars) as
well as the predicted runtime based on the model (shown as
dashed lines). The performance of Q1 on both CPU and GPU
is memory-bandwidth bound. CPU-Opt performs better than
CPU due to the increased memory bandwidth efficiency. GPU
performs substantially better than both CPU implementa-
tions due to its much higher memory bandwidth. The ratio
of runtime of CPU-Opt to GPU is 16.56 which is close to the
bandwidth ratio of 16.2. The minor difference is because
read bandwidth is slightly lower than write bandwidth on
the CPU and the workload has a read:write ratio of 2:1.
A simple multi-threaded implementation of Q2 (i.e., CPU)

does not saturate memory bandwidth and is compute bound.
After using the SIMD instructions (i.e, CPU-Opt), perfor-
mance improves significantly and the system is close to
memory bandwidth bound. The ratio of runtime of CPU-Opt
to GPU for Q2 is 17.95. This shows that even for fairly com-
plex projections, good implementations on modern CPUs are
able to saturate memory bandwidth. GPUs do significantly
better than CPUs due to their high memory bandwidth,
with the performance gain equal to the bandwidth ratio.

4.2 Select
We now turn our attention to evaluating selections, also
called selection scans. Selection scans have re-emerged for

for each y in R:
if y > v:
output[i++] = v

(a)With branching

for each y in R:
output[i] = y
i += (y > v)

(b)With predication

Figure 11: Implementing selection scan

main-memory query execution and are replacing tradition
unclustered indexes in modern OLAP DBMS [32]. We use
the following micro-benchmark to evaluate selections:
Q3: SELECT y FROM R WHERE y < v;

where y and v are both 4-byte floating point values. The size
of input array is 229. We vary the selectivity of the predicate
from 0 to 1 in steps of 0.1.

To evaluate the above query on a multi-core CPU, we use
the CPU implementation described earlier in Section 3.2. We
evaluate three variants. The “naive” branching implementa-
tion (CPU If) implements the selection using an if-statement,
as shown in Figure 11(a). The main problem with the branch-
ing implementation is the penalty for branch mispredictions.
If the selectivity of the condition is neither too high nor
too low, the CPU branch predictor is unable to predict the
branch outcome. This leads to pipeline stalls that hinder
performance. Previous work has shown that the branch
misprediction penalty can be avoided by using branch-free
predication technique [33]. Figure 11(b) illustrates the predi-
cation approach. Predication transforms the branch (control
dependency) into a data dependency. CPU Pred implements
selection scan with predication. More recently, vectorized
selection scans have been shown to improve on CPU Pred
by using selective stores to buffer entries that satisfy
selection predicates and writing out entries using streaming
stores [30]. CPU SIMDPred implements this approach.

On the GPU, the query is implemented as a single kernel
as described in Section 3.2 and as shown in Figure 4(b). We
implement two variants: GPU If implements the selection
using an if-statement and GPU Pred implements it using
predication.
Model: The entire input array is read and only the matched
entries are written to the output array. Assuming the im-
plementations can write out the matched entries efficiently
and saturate memory bandwidth, the expected runtime is:

runtime=
4×N
Br
+
4×σ×N

Bw
where N is the number of entries in the input array, Br
and Bw are the read and write bandwidth of the respective
device, and σ is the predicate selectivity.
Performance Evaluation: Figure 12 shows the runtime of
the three algorithms on CPU, two algorithms on GPU, and
the performance models. CPU Pred does better than CPU
If at all selectivities except 0 (at 0, CPU If does no writes).

0.0 0.2 0.4 0.6 0.8 1.0

Selectivity

0

20

40

60

80

100

120

T
im

e
T

ak
en

(i
n

m
s)

CPU If

CPU Pred

CPU SIMDPred

CPU Model

GPU If

GPU Pred

GPU Model

Figure 12: Select Microbenchmark

Across the range, CPU SIMDPred does better than the two
scalar implementations. On GPU, there is no performance
difference between GPU Pred and GPU If — A single branch
misprediction does not impact performance on the GPU.
Both CPU SIMDPred and GPU If/Pred closely track their
respective theoretical models which assume saturation of
memory bandwidth. The average runtime ratio of CPU-to-
GPU is 15.8 which is close to the bandwidth ratio 16.2. This
shows that with efficient implementations, CPU implemen-
tations saturate memory bandwidth for selections and the
gain of GPU over CPU is equal to the bandwidth ratio.

4.3 Hash Join
Hash join is the most popular algorithm used for executing
joins in a database. Hash joins have been extensively studied
in the database literature, with many different hash join algo-
rithms proposed for both CPUs and GPUs [9–11, 14, 18, 23].
The most commonly used hash join algorithm is the no
partitioning join, which uses a non-partitioned global hash
table. The algorithm consists of two phases: in the build
phase, the tuples in one relation (typically the smaller
relation) are used to populate the hash table in parallel; in
the probe phase, the tuples in the other relation are used
to probe the hash table for matches in parallel. For our
microbenchmark, we focus on the following join query:
Q4: SELECT SUM(A.v + B.v) AS checksum

FROM A,B WHERE A.k = B.k

where each table A and B consists of two 4-byte integer
columns k,v . The two tables are joined on key k . We keep the
size of the probe table fixed at 256 million tuples, totaling 2
GB of raw data. We use a hash table with 50% fill rate. We
vary the size of the build table such that it produces a hash
table of the desired size in the experiment. We vary the size
of the hash table from 8KB to 1GB. The microbenchmark
is the same as what past works use [9–11, 36].
In this section, we mainly focus on the probe phase

which forms the majority of the total runtime. We discuss
briefly the difference in execution with respect to build

time at the end of the section. There are many hash table
variants, in this section we focus on linear probing due
to its simplicity and regular memory access pattern; our
conclusions, however, should apply equally well to other
probing approaches. Linear probing is an open addressing
scheme that, to either insert an entry or terminate the
search, traverses the table linearly until an empty bucket is
found. The hash table is simply an array of slots with each
slot containing a key and a payload but no pointers.

On the CPU side, we implemented three variants of linear
probing. (1) CPU Scalar implements a scalar tuple-at-a-time
join. The probing table is partitioned equally among the
threads. Each thread iterates over its entries and for each en-
try probes the hash table to find a matching entry. On finding
a match, it addsA.v+B.v to its local sum. At the end, we add
the local sum to the global sum using atomic instructions. (2)
CPU SIMD implements vertical vectorized probing in a hash
table [30]. The key idea in vertical vectorization is to process
a different key per SIMD lane and use gathers to access the
hash table. AssumingW vector lanes, we processW different
input keys on each loop iteration. In every round, for the
set of keys that have found their matches, we calculate
their sum, add it to a local sum, and reload those SIMD
lanes with new keys. (3) Finally, CPU Prefetch adds group
prefetching to CPU Scalar [14]. For each loop iteration,
software prefetching instructions are inserted to load the
hash table entry that will be accessed a certain number of
loop iterations ahead. The goal is to better hide memory
latency at the cost of increased number of instructions.

On the GPU side, we implemented the join as follows. We
load in a tile of keys and payloads from the probe side using
BlockLoad; the threads iterate over each tile independently
to find matching entries from the hash table. Each thread
maintains a local sum of entries processed. After processing
all entries in a tile, we use BlockAgg to aggregate the local
sums within a thread block into a single value and increment
a global sum with it.
Model: The probe phase involves making random accesses
to the hash table to find the matching tuple from the build
side. Every random access to memory ends up reading an
entire cache line. However, if the size of hash table is small
enough such that it can be cached, then random accesses
no longer hit main memory and performance improves
significantly. We model the runtime as follows:
1) If the hash table size is smaller than the size of the K th

level cache, we expect the runtime to be:

runtime=max (
4×2×|P |

Br
,(1−πK−1) (

|P |×C

BK
))

where |P | is the cardinality of the probe table, Br is the read
bandwidth from device memory, C is the cache line size
accessed on probe, BK is the bandwidth of level K cache in

which hash table fits and πK−1 is the probability of an access
hitting a K−1 level cache. The first term is the time taken to
scan the probe table from device memory. The second term
is the time for probing the hash table. Note that each probe
accesses an entire cache line. If the size of level K cache is
SK and size of the hash table is H, we define cache hit ratio
πK =min(SK/H ,1). The total runtime will be bounded by
either the device memory bandwidth or the cache bandwidth.
Hence, the runtime is the maximum of the two terms.
2) If the hash table size is larger than the size of the last
level cache, we expect the runtime to be:

runtime=
4×2×|P |

Br
+ (1−π) (|P |×C

Br
)

where π is the probability that the accessed cache line is the
last level cache.
Performance Evaluation: Figure 13 shows the perfor-
mance evaluation of different implementations of Join.
Both CPU and GPU variants exhibit step increase in
runtime when the hash table size exceeds the cache size of
a particular level. On the CPU, the step increases happen
when the hash table size exceeds 256KB (L2 cache size) and
20MB (L3 cache size). On the GPU, the step increase happens
when the hash table size exceeds 6MB (L2 cache size).

We see that CPU SIMD performs worse than CPU Scalar,
even when the hash table is cache-resident. CPU-SIMD uses
AVX2 instructions with 256-bit registers which represent 8
lanes of 32-bit integers. With 8 lanes, we process 8 keys at a
time. However, a single SIMD gather used to fetch matching
entries from the hash table can only fetch 4 entries at a
time (as each hash table lookup returns an 8 byte slot. i.e.,
4-byte key and 4-byte value, with 4 lookups filling the entire
register). As a result, for each set of 8 keys, we do 2 SIMD
gathers and then de-interleave the columns into to 8 keys
and 8 values. This added overhead of extra instructions does
not exist in the scalar version. CPU SIMD is also brittle and
not easy to extend to cases where hash table slot size is larger
than 8 bytes. Note that past work has evaluated vertical vec-
torization with key-only build relations which do not exhibit
this issue [27, 30]. Comparing CPU Prefetch to CPU Scalar
shows that there is limited improvement from prefetching
when data size is larger than the L3 cache size. When the
hash table fits in cache, prefetching degrades the performs
due to added overhead of the prefetching instructions.
Due the step change nature of the performance curves,

the ratio of the runtimes varies based on hash table size.
When the hash table size is between 32KB and 128KB, the
hash table fits in L2 on both CPU and GPU. In this segment,
we observe that the runtime is bound by DRAM memory
bandwidth on CPU and L2 cache bandwidth on the GPU.
The average gains are roughly 5.5× which is in line with
the model. When the hash table size is between 1MB and

8KB 32KB 128KB 512KB 2MB 8MB 32MB 128MB 512MB

Hash Table Size

0

100

200

300

400

500

T
im

e
T

ak
en

(i
n

m
s)

CPU SIMD

CPU Prefetch

CPU Scalar

CPU Model

GPU

GPU Model

Figure 13: Join Performance.

4MB, the hash table fits in the L2 on the GPU and in the L3
cache on the CPU. The ratio of runtimes in this segment is
14.5× which is the ratio of L2 cache bandwidth on GPU to
the L3 cache bandwidth on the CPU. Finally when the hash
table size is larger than 128MB, the hash table does not fit
in cache on either GPU or CPU. The granularity of reads
from global memory is 128B on GPU while on CPU it is 64B.
Hence, random accesses into the hash table read twice the
data on GPU compared to CPU. Given the bandwidth ratio
is 16.2x, we would expect it as roughly 8.1x, however it is
10.5x due to memory stalls. The fact that actual CPU results
are slower than CPU Model is because the model assumes
maximum main memory bandwidth, which is not achievable
as the hash table causes random memory access patterns.
Discussion: The runtime of the build phase in the mi-
crobenchmark shows a linear increase with size of the
build relation. The build phase runtimes are less affected
by caches as writes to hash table end up going to memory.
In this section, we modeled and evaluated the no parti-

tioning join. Another variant of hash join is the partitioned
hash join. Partitioned hash joins use a partitioning routine
like radix partitioning to partition the input relations into
cache-sized chunks and in the second step run the join
on the corresponding partitions. Efficient radix-based
hash join algorithms (radix join) have been proposed for
CPUs [9–11, 14] and for the GPUs [34, 38]. Radix join
requires the entire input to be available before the join starts
and as a result intermediate join results cannot be pipelined.
Hence, while radix join is faster for a single join, radix joins
are not used for queries with multiple joins. While we do not
explicitly model/evaluate radix joins, our extended technical
report [37] discusses the radix partitioning routine that is
the key component of such joins. That discussion shows
that a careful radix partition implementation on both GPU
and CPU are memory bandwidth bound, and hence the per-
formance difference is roughly equal to the bandwidth ratio.

5 WORKLOADEVALUATION
Now that we have a good understanding of how individual
operators behave on both CPU and GPU, we will evaluate
the performance of a workload of full SQL queries on both
hardware platforms. We first describe the query workload
we use in our evaluation. We then present a high-level
comparison of the performance of queries running on GPU
implemented with the tile-based execution model versus
our own equivalent implementation of the queries on the
CPU. We also report the performance of Hyper [28] on CPU
and Omnisci [6] on the GPU which are both state-of-the-art
implementations. As a case study, we provide a detailed
performance breakdown of one of the queries to explain
the performance gains. Finally, we present a dollar-cost
comparison of running queries on CPU and GPU.

We use two platforms for our evaluation. For experiments
run on the CPU, we use a machine with a single socket
Skylake-class Intel i7-6900 CPU with 8 cores that supports
AVX2 256-bit SIMD instructions. For experiments run on
the GPU, we use an instance which contains an Nvidia V100
GPU. We measured the bidirectional PCIe transfer band-
width to be 12.8GBps. More details of the two instances are
shown in Table 2. Each system is running on Ubuntu 16.04
and the GPU instance has CUDA 10.0. In our evaluation, we
ensure that data is already loaded into the respective device’s
memory before experiments start. We run each experiment
3 times and report the average measured execution time.

5.1 Workload
For the full query evaluation, we use the Star Schema Bench-
mark (SSB) [29] which has been widely used in various data
analytics research studies [15, 24, 44, 48]. SSB is a simplified
version of the more popular TPC-H benchmark. It has one
fact table lineorder and four dimension tables date, supplier,
customer, part which are organized in a star schema fashion.
There are a total of 13 queries in the benchmark, divided into
4 query flights. In our experiments we run the benchmark
with a scale factor of 20 which will generate the fact table
with 120 million tuples. The total dataset size is around 13GB.

5.2 Performance Comparison
In this section, we compare the query runtimes of benchmark
queries implemented using block-wide functions on the GPU
(Standalone GPU) to an equivalent efficient implementation
of the query on the CPU (Standalone CPU). We also compare
against Hyper (Hyper), a state-of-the-art OLAP DBMS and
Omnisci (Omnisci), a commercial GPU-based OLAP DBMS.
In order to ensure a fair comparison across systems, we

dictionary encode the string columns into integers prior to
data loading and manually rewrite the queries to directly
reference the dictionary-encoded value. For example, a query

Platform CPU GPU
Model Intel i7-6900 Nvidia V100
Cores 8 (16 with SMT) 5000
Memory Capacity 64 GB 32 GB
L1 Size 32KB/Core 16KB/SM
L2 Size 256KB/Core 6MB (Total)
L3 Size 20MB (Total) -
Read Bandwidth 53GBps 880GBps
Write Bandwidth 55GBps 880GBps
L1 Bandwidth - 10.7TBps
L2 Bandwidth - 2.2TBps
L3 Bandwidth 157GBps -

Table 2: Hardware Specifications

with predicate s_region = ‘ASIA’ is rewritten with predi-
cate s_region = 2 where 2 is the dictionary-encoded value
of ‘ASIA’. Some columns have a small number of distinct
values and can be represented/encoded with 1-2 byte values.
However, in our benchmark we make sure all column entries
are 4-byte values to ensure ease of comparison with other
systems and avoid implementation artifacts. Our goal is to
understand the nature of the performance gains of equiv-
alent implementations on GPU and CPU, and not to achieve
best storage layout. We store the data in columnar format
with each column represented as an array of 4-byte values.
On the GPU, we use a thread block size of 256 with tile size
of 2056 (= 8×256) resulting in 8 entries per thread per tile.

Figure 14 shows the results. Comparing Standalone CPU
to Hyper shows that the former does on an average 1.17x
better than the latter. We believe Hyper is missing vectoriza-
tion opportunities and using a different implementation of
hash tables. The comparison shows that our implementation
is a fair comparison and it is quite competitive compared to
a state-of-the-art OLAP DBMS. We also compared against
MonetDB [12], a popular baseline for many of the past works
on GPU-based databases.We found that the Standalone CPU
is on an average 2.5× faster than MonetDB. We did not in-
clude it in the figure as it made the graph hard to read. We
also tried to compare against Pelaton with relaxed-operator
fusion [27].We found that the system could not load the scale
factor 20 dataset. Scaling down to scale factor 10, its queries
were significantly slower (>5×) than Hyper or our approach.

Comparing Standalone GPU to Omnisci, we see that
our GPU implementation does significantly better than
Omnisci with an average improvement of around 16×. Both
methods run with the entire working set stored on the GPU.
Omnisci treats each GPU thread as an independent unit. As
a result, it does not realize benefits of blocked loading and
better GPU utilization got from using the tile-based model.
The comparison of Standalone GPU against Omnisci and
Standalone CPU to Hyper serve as a sanity check and show
that our query implementations are quite competitive.

Comparing Standalone GPU to Standalone CPU, we see
that the Standalone GPU is on average 25× faster than the

q1.1 q1.2 q1.3 q2.1 q2.2 q2.3 q3.1 q3.2 q3.3 q3.4 q4.1 q4.2 q4.3 mean

Queries

100

101

102

103

T
im

e
T

ak
en

(i
n

m
s)

Hyper (CPU)

Standalone (CPU)

Omnisci (GPU)

Standalone (GPU)

Figure 14: Star Schema Benchmark Queries

SELECT SUM(lo_revenue) AS revenue, d_year, p_brand
FROM lineorder, date, part, supplier
WHERE lo_orderdate = d_datekey
AND lo_partkey = p_partkey AND lo_suppkey = s_suppkey
AND p_category = 'MFGR#12' AND s_region = 'AMERICA'
GROUP BY d_year, p_brand

Figure 15: SSB Query 2.1

CPU implementation. This is higher than the bandwidth
ratio of 16.2. This is surprising given that in Section 4 we
saw that individual query operators had a performance gain
equal to or lower than the bandwidth ratio. The key reason
for the performance gain being higher than the bandwidth
ratio is the better latency hiding capability of GPUs. To
get a better sense for the runtime difference, in the next
subsection we discuss models for the full SQL queries and
dive into why architecture differences leads to significant
difference in performance gain from the bandwidth ratio.
5.3 Case Study
The queries in the Star Schema Benchmark can be broken
into two sets: 1) the query flight q1.x consists of queries
with selections directly on the fact table with no joins and
2) the query flights q2.x , q3.x , q4.x consist of queries with
no selections on fact table and multiple joins — some of
which are selective. In this section, we analyze the behavior
q2.1 in detail as a case study. Specifically, we build a model
assuming the query is memory-bandwidth bound, derive the
expected runtime based on the model, compare them against
the observed runtime, and explain the differences observed.
Figure 15 shows the query: it joins the fact table

lineorder with 3 dimension tables: supplier, part, and
date. The selectivity of predicates on p_category and
s_region are 1/25 and 1/5 respectively. The subsequent join
of part and supplier have the same selectivity.We choose a
query planwhere lineorder first joins supplier, then part,
and finally date, this plan delivers the highest performance
among the several promising plans that we have evaluated.
The cardinalities of the tables lineorder, supplier,

part, and date are 120M , 40k , 1M , and 2.5k respectively. The
query runs build phase for each of the 3 joins to build their
respective hash tables. Then a final probe phase runs the

joins pipelined. Given the small size of the dimension tables,
the build time is much smaller than the probe time, hence we
focus on modeling the probe time. On the GPU, each thread
block processes a partition of the fact table, doing each of
the 3 joins sequentially and updating a global hash table at
the end that maintains the aggregate. Past work [26] has
shown that L2 cache on the GPU is an LRU set associative
cache. Since hash tables associated with the supplier and
date table are small, we can assume that they remain in the
L2 cache. The size of the part hash table is larger than L2
cache. We model the runtime as consisting of 3 components:
1) The time taken to access the columns of the fact table:

r1= (
4|L|
C
+min(

4|L|
C
,|L|σ1)+min(

4|L|
C
,|L|σ1σ2)

+min(
4|L|
C
,|L|σ1σ2))×

C

Br

where σ1 and σ2 are join selectivities associated with join
with supplier and part tables respectively, |L| is the
cardinality of the lineorder table, C is size of cache line,
and Br is the global memory read bandwidth. For each
column except the first, the number of cache lines accessed
is the minimum of: 1) accessing all cache lines of the column
(4 |L |C) and 2) accessing a cache line per entry read (|L|σ).
2) Time taken to probe the join hash tables:

r2= (2×|S |+2×|D |+ (1−π) (|L|σ1))×
C

Br

where |S | and |D | are cardinalities of the supplier and
date table, (|L|σ1) represents the number of lookups into
the parthash table and π is the probability of finding the
part hash table lookup in the L2 cache.
3) Time taken to read and write to the result table:

r3= |L|σ1σ2×
C

Br
+ |L|σ1σ2×

C

Bw

The total runtime on GPU is r1+r2+r3. The key difference
with respect to CPU is that on the CPU, all three hash
tables fit in the L3 cache. Hence for CPU, we would have
r2 = (2× |S | + 2× |D | + 2× |P |). To calculate π , we observe
that the size of the part hash table (with perfect hashing)

is 2 × 4 × 1M = 8MB. With the supplier and date table
in cache, the available cache space is 5.7MB. Hence the
probability of part lookup in L2 cache is π =5.7/8. Plugging
in the values we get the expected runtimes on the CPU and
GPU as 47 ms and 3.7 ms respectively compared to actual
runtime of 125 ms and 3.86 ms.
We see that the model predicted runtime on the GPU is

close to the actual runtime whereas on the CPU, the actual
runtime is higher than the modeled runtime. This is in large
part because of the ability of GPUs to hide memory latency
even with irregular accesses. SIMT GPUs run scalar code, but
they “tie” all the threads in awarp to execute the same instruc-
tion in a cycle. For instance, gathers and scatter are written
as scalar loads and stores to non-contiguous locations. In a
way, CPU threads are similar to GPU warps and GPU threads
are similar to SIMD lanes. A key difference between SIMT
model on GPU vs SIMD model on CPU is what happens on
memory access. On the CPU, if a thread makes a memory
access, the thread waits for the memory fetch to return. If the
cache line being fetched is not in cache, it leads to a memory
stall. CPU have prefetchers to remedy this, but prefetchers
do not work well with irregular access patterns like join
probes. On the GPU, a single streaming multiprocessor (SM)
usually has 64 cores that can execute 2 warps (64 threads)
at any point. However, the SM can keep > 2 warps active
at a time. On Nvidia V100, each SM can hold 64 warps in
total with 2 executing at any point in time. Any time a warp
makes a memory request, the warp is swapped out from exe-
cution into the active pool and another warp that is ready to
execute ends up executing. Once the memory fetch returns,
the earlier warp can resume executing at the next available
executor cores. This is similar to swapping of threads on disk
access on CPU. This key feature allows GPUs to avoid the
memory stalls associated with irregular accesses as long as
enough other threads are ready to execute. Modeling query
performance of multi-join queries on CPUs is an interesting
open problem which we plan to address as future work.

5.4 Cost Comparison
The paper has so far demonstrated that GPUs can have
superior performance than CPUs for data analytics. How-
ever, GPUs are known to be more expensive than CPUs in
terms of cost. Table 3 shows both the purchase and renting
cost of CPU and GPU that match the hardware used in this
paper (i.e., Table 2). For renting costs, we use the cost of
EC2 instances provided by Amazon Web Services (AWS).
For CPU, we choose the instance type r5.2xlarge which
contains a modern Skylake CPU with 8 cores, with a cost
of $0.504 per hour. For GPU, we choose the instance type
p3.2xlarge whose specs are similar to r5.2xlarge plus it
has an Nvidia V100 GPU, with a cost of $3.06 per hour. The
cost ratio of the two systems is about 6×. For purchase costs,

Purchase Cost Renting Cost
CPU $2-5K $0.504 per hour
GPU $CPU + 8.5K $3.06 per hour

Table 3: Purchase and renting cost of CPU and GPU.

we compare the estimate of a single socket server blade to
the same server blade with one Nvidia V100 GPU. The cost
ratio of the two systems at the high end is less than 6×. The
average performance gap, however, is about 25× according
to our evaluation (cf. Section 5.2), which leads to a factor
of 4 improvement in cost effectiveness of GPU over CPU.
Although the performance and cost will vary a lot across dif-
ferent CPU and GPU technologies, the ratio between the two
will not change as much. Therefore, we believe the analysis
above should largely apply to other hardware selection.
5.5 Discussion
In this paper, we showed through our model-based analysis
and empirical evaluation that there is limited gain from
using GPUs as a coprocessor and that the runtime gain from
running queries on the GPU vs CPU is 1.5x the bandwidth
ratio of the two devices. We believe that these results should
help pivot the community towards treating GPUs as primary
execution engine. However, this paper largely focused on
using a single GPU, which has limited memory capacity.
There are many challenges that need to be addressed before
GPUs have widespread adoption that were beyond the scope
of this paper and make for exciting future work:
• Distributed+Hybrid It is possible to attach multiple
GPUs onto a single machine that can greatly increase the
aggregated HBM memory capacity. These machines will
also having significant CPU memory. Executing queries
on this heterogeneous system is still an open problem.
• CompressionData compression could be used to fit more
data into GPU’s memory. GPUs have higher compute
to bandwidth ratio than CPUs which could allow use of
non-byte addressable packing schemes.
• Strings/Non-Scalar Data Types Handling arbitrary
strings and array data types efficiently on GPUs is still
an open problem.

6 CONCLUSION
This paper compared CPUs and GPUs on database analytics
workloads. We demonstrated that running an entire SQL
query on a GPU delivers better performance than using
the GPU as an accelerator. To ease implementation of high-
performance SQL queries on GPUs, we developed Crystal, a
library supporting a tile-based execution model. Our analysis
on SSB, a popular analytics benchmark, shows that modern
GPUs are 25× faster and 4× more cost effective than CPUs.
This makes a strong case for using GPUs as the primary
execution engine when the dataset fits into GPU memory.

REFERENCES
[1] 1000X faster data exploration with GPUs. https://www.omnisci.com/

blog/mapd.
[2] BlazingDB. https://blazingdb.com.
[3] CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html.
[4] GPU-Accelerated Supercomputers Change the Balance of Power on the

TOP500. https://bit.ly/2UcBInt.
[5] Kinetica. https://kinetica.com/.
[6] OmniSci. https://omnisci.com.
[7] Opencl. https://www.khronos.org/opencl/.
[8] Thrust. https://thrust.github.io/.
[9] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core,

main-memory joins: Sort vs. hash revisited. Proceedings of the VLDB
Endowment, 7(1):85–96, 2013.

[10] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. Main-memory hash
joins on multi-core cpus: Tuning to the underlying hardware. InData
Engineering (ICDE), 2013 IEEE 29th International Conference on, pages
362–373. IEEE, 2013.

[11] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory
hash join algorithms for multi-core cpus. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of data, pages
37–48. ACM, 2011.

[12] P. A. Boncz et al. Monet: A next-generation DBMS kernel for
query-intensive applications. Universiteit van Amsterdam [Host], 2002.

[13] P. A. Boncz,M. Zukowski, andN.Nes. Monetdb/x100:Hyper-pipelining
query execution. In Cidr, volume 5, pages 225–237, 2005.

[14] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving hash
join performance through prefetching. ACM Transactions on Database
Systems (TODS), 32(3):17, 2007.

[15] H. Funke, S. Breß, S. Noll, V. Markl, and J. Teubner. Pipelined query pro-
cessing in coprocessor environments. In Proceedings of the 2018 Interna-
tional Conference on Management of Data, pages 1603–1618. ACM, 2018.

[16] N. Govindaraju et al. Gputerasort: high performance graphics
co-processor sorting for large database management. In SIGMOD, 2006.

[17] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan) with
cuda. GPU gems, 3(39):851–876, 2007.

[18] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander.
Relational joins on graphics processors. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, pages
511–524, 2008.

[19] J. He, M. Lu, and B. He. Revisiting co-processing for hash joins on the
coupled cpu-gpu architecture. PVLDB, 2013.

[20] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-
oblivious parallelism for in-memory column-stores. PVLDB, 2013.

[21] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance
code generation for stencil computations on gpu architectures. In
Proceedings of the 26th ACM international conference on Supercomputing,
pages 311–320. ACM, 2012.

[22] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. Gpu join processing
revisited. InDaMoN, 2012.

[23] H. Lang, V. Leis, M.-C. Albutiu, T. Neumann, and A. Kemper. Massively
parallel numa-aware hash joins. In In Memory Data Management and
Analysis, pages 3–14. Springer, 2015.

[24] J. Li, H.-W. Tseng, C. Lin, Y. Papakonstantinou, and S. Swanson.
Hippogriffdb: Balancing i/o and gpu bandwidth in big data analytics.
Proceedings of the VLDB Endowment, 9(14):1647–1658, 2016.

[25] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database
architecture for the new bottleneck: memory access. Proceedings of
the VLDB Endowment, 9(3):231–246, 2000.

[26] X. Mei and X. Chu. Dissecting gpu memory hierarchy through
microbenchmarking. IEEE Transactions on Parallel and Distributed
Systems, 2016.

[27] P. Menon, T. C. Mowry, and A. Pavlo. Relaxed operator fusion
for in-memory databases: Making compilation, vectorization, and
prefetching work together at last. Proceedings of the VLDB Endowment,
11(1):1–13, 2017.

[28] T. Neumann. Efficiently compiling efficient query plans for modern
hardware. Proceedings of the VLDB Endowment, 4(9):539–550, 2011.

[29] P.O’Neil, E.O’Neil, X. Chen, and S. Revilak. The star schemabenchmark
and augmented fact table indexing. In Technology Conference on Per-
formance Evaluation and Benchmarking, pages 237–252. Springer, 2009.

[30] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking simd
vectorization for in-memory databases. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, pages
1493–1508. ACM, 2015.

[31] O. Polychroniou and K. A. Ross. A comprehensive study of main-
memory partitioning and its application to large-scale comparison-and
radix-sort. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. ACM, 2014.

[32] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. Ku-
landaiSamy, J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, et al.
Db2 with blu acceleration: So much more than just a column store.
Proceedings of the VLDB Endowment, 6(11):1080–1091, 2013.

[33] K. A. Ross. Selection conditions in main memory. ACM Transactions
on Database Systems (TODS), 29(1):132–161, 2004.

[34] R. Rui and Y.-C. Tu. Fast equi-join algorithms on gpus: Design and
implementation. In Proceedings of the 29th International Conference
on Scientific and Statistical Database Management, page 17. ACM, 2017.

[35] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and
P. Dubey. Fast sort on cpus and gpus: a case for bandwidth oblivious
simd sort. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 351–362. ACM, 2010.

[36] S. Schuh, X. Chen, and J. Dittrich. An experimental comparison of
thirteen relational equi-joins in main memory. In Proceedings of the
2016 International Conference on Management of Data, pages 1961–1976.
ACM, 2016.

[37] A. Shanbhag, X. Yu, and S. Madden. A study of the fundamental
performance charecteristics of gpus and cpus for database analytics
(extended version). arXiv preprint, 2020.

[38] P. Sioulas, P.Chrysogelos,M.Karpathiotakis, R.Appuswamy, andA.Ail-
amaki. Hardware-conscious hash-joins on gpus. Technical report, 2019.

[39] E. A. Sitaridi and K. A. Ross. Ameliorating memory contention of olap
operators on gpu processors. In Proceedings of the Eighth International
Workshop on Data Management on New Hardware, pages 39–47. ACM,
2012.

[40] E. A. Sitaridi and K. A. Ross. Optimizing select conditions on gpus. In
Proceedings of the Ninth International Workshop on Data Management
on New Hardware, page 4. ACM, 2013.

[41] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. compilation
in query execution. In Proceedings of the Seventh InternationalWorkshop
on Data Management on New Hardware. ACM, 2011.

[42] E. Stehle and H.-A. Jacobsen. A memory bandwidth-efficient hybrid
radix sort on gpus. In SIGMOD. ACM, 2017.

[43] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, et al. C-store: a column-
oriented dbms. In Proceedings of the 31st international conference on
Very large data bases, pages 553–564. VLDB Endowment, 2005.

[44] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and X. Zhang.
Concurrent analytical query processing with gpus. Proceedings of the
VLDB Endowment, 7(11):1011–1022, 2014.

https://www.omnisci.com/blog/mapd
https://www.omnisci.com/blog/mapd
https://blazingdb.com
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://bit.ly/2UcBInt
https://kinetica.com/
https://omnisci.com
https://www.khronos.org/opencl/
https://thrust.github.io/

[45] J.Wassenberg andP. Sanders. Engineering amulti-core radix sort. InEu-
ropean Conference on Parallel Processing, pages 160–169. Springer, 2011.

[46] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili. Kernel weaver:
Automatically fusing database primitives for efficient gpu compu-
tation. In 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE, 2012.

[47] M. Yabuta, A. Nguyen, S. Kato, M. Edahiro, and H. Kawashima.
Relational joins on gpus: A closer look. IEEE Transactions on Parallel
and Distributed Systems, 28(9):2663–2673, 2017.

[48] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of processing data
warehousing queries on gpu devices. PVLDB, 2013.

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Architecture
	2.2 Query Execution on GPU
	2.3 Query Execution on CPU

	3 Our Approach
	3.1 Failure of the Coprocessor Model
	3.2 Tile-based Execution Model
	3.3 Crystal Library

	4 Operators on GPU vs CPU
	4.1 Project
	4.2 Select
	4.3 Hash Join

	5 Workload Evaluation
	5.1 Workload
	5.2 Performance Comparison
	5.3 Case Study
	5.4 Cost Comparison
	5.5 Discussion

	6 Conclusion
	References

