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ABSTRACT: Although perfluorination is known to enhance hydrophobicity
and change protein activity, its influence on hydration-shell structure and
thermodynamics remains an open question. Here we address that question
by combining experimental Raman multivariate curve resolution spectrosco-
py with theoretical classical simulations and quantum mechanical
calculations. Perfluorination of the terminal methyl group of ethanol is
found to enhance the disruption of its hydration-shell hydrogen bond
network. Our results reveal that this disruption is not due to the associated
volume change but rather to the electrostatic stabilization of the water
dangling OH···F interaction. Thus, the hydration shell structure of
fluorinated methyl groups results from a delicate balance of solute−water interactions that is intrinsically different from that
associated with a methyl group.

■ INTRODUCTION

The perfluorination of hydrocarbons or alkyl substituents often
increases their hydrophobicity as evidenced, for example, by
the decreased solubility of methane (CH4) upon fluorination
(to CF4)

1 and the increased aqueous contact angle of
polyethylene (PE) upon fluorination (to PTFE).2 Moreover,
the introduction of short, perfluorinated alkyl groups in
biomolecules strongly affects their thermodynamic, kinetic,
and binding properties.3−17 This power is reflected in the many
drug and agrochemical candidates with perfluoroalkyl sub-
stituents that now exist.18−21 Predictively understanding the
influence of fluorination on such aqueous processes requires
quantifying the associated solute−water interactions, as those
interactions determine hydration free energies and thus also
the influence of water on folding and binding processes.22

Although previous infrared spectroscopic studies have
provided intriguing hints regarding the influence of fluorina-
tion on hydration,23,24 they have not quantified the associated
changes in hydration-shell structure and thermodynamics.
Here we do so by combining Raman multivariate curve
resolution (Raman-MCR) spectroscopy with classical molec-
ular dynamics (MD) simulations and ab initio interaction
energy calculations. Our Raman-MCR spectra reveal striking
differences between the hydration-shell structures of ethanol
(EtOH) and 2,2,2-trifluoroethanol (TFE) dissolved in water.
Comparisons of those experimental results with molecular
dynamics simulation predictions obtained using classical force
fields facilitate the definitive assignment of the observed
fluorination-induced hydration-shell structure changes, quanti-

tatively link those changes to hydration thermodynamics, and
establish the electrostatic origin of these changes.
Perfluorination is known to influence solute−water inter-

actions, but it is clear that open questions remain.
Perfluoroalkanes (C1 to C3; with 1 to 3 carbons) have less
favorable hydration free energies (ΔGHyd) than the analogous
alkanes.1,25−28 Whereas the hydration free energies of C1-to-
C3 alkanes are essentially identical despite increasing volume,
those of the analogous perfluoroalkanes become more positive
with growing number of carbons, suggesting that perfluorina-
tion may decrease solute−water attraction. However, differ-
ences in hydration free energy between large (C8) alkanes and
perfluoroalkanes from simulation have been attributed
primarily to the different volume of these molecules (rather
than a decrease in solute−water attraction),29 suggesting that
perfluorination may increase repulsive (entropic) excluded-
volume contributions to hydration. In either case, because
aggregation would be expected to decrease both solvent-
accessibility and excluded volume one might have guessed that
perfluorination would lead to increased aggregation: for a
solute aggregation process, the water-mediated contribution to
the solute−solute interaction potential is equal to the
difference between the hydration free energy of the aggregate
and the (sum of the) hydration free energies of the solutes at
infinite dilution. However, molecular balance experiments
indicate that the solvent-mediated component of the
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interaction potential between perfluoro (C6) substituents is
indistinguishable from that between the analogous alkyl
groups;30 the entropy contribution to the free energy of
binding of benzensulfonamide ligands with alkyl or fluoroalkyl
(C2 to C5) tails to carbonic anhydrases, measured using
isothermal titration calorimetry, is only partially explained by
the different area of the ligand tails;13 replacing −CH3 by
−CF3 in the side chain of an amino acid at the binding site of
the protein BPTI dramatically increases binding to β-trypsin.14

The above results suggest that the hydration shell of small
alkyl and perfluoroalkyl groups should differ, but no previous
experimentally grounded comparisons have been performed to
critically detect and quantify such differences. We have found
that the population of non-hydrogen-bonded (“dangling”)
water hydroxy (OH) groups at the water−hydrophobe
interface, transient hydration shell defects, provides a sensitive
means of quantifying and understanding how perfluorination
alters hydration-shell structure and thermodynamics. Prior
studies have reported the presence of such dangling OH
structures, detectable as a vibrational peak near 3600
cm−1,31−38 both at macroscopic and molecular hydrophobic
interfaces. At macroscopic air−water and oil−water interfaces,
experiments and simulations suggest that 20%−30% of the
interfacial water molecules have one dangling hy-
droxy.31,32,36,37,39−45 In molecular hydrophobic hydration
shells, the dangling OH structures have about a 10 times
lower probability (per first hydration-shell water molecule)46

but increase with increasing n-alcohol chain-length34 and with
increasing solute negative partial charge.34,47 In this work, we
present both experimental and theoretical results revealing the
marked increase in the hydration-shell dangling OH
population upon perfluorination of ethanol’s methyl group.
We further show that this increased population does not result
from the larger volume of −CF3 relative to −CH3 but rather is
due to the negative partial charge of the F atoms, which
electrostatically stabilize the hydration-shell dangling OH
structures. Moreover, we find that the dangling OH groups
in the hydration shells of −CF3 and −CH3 have virtually
identical frequencies, thus indicating that the associated
interaction is exceptionally weak, as further confirmed and
quantified by experimental and theoretical comparisons of the
−CF3···HO− and −CH3···HO− interaction enthalpies and
entropies. Our results indicate that the mechanism behind the
formation of dangling OH structures is inherently different for
EtOH and TFE, which suggests that not only are −CF3 and
−CH3 chemically different but also they are intrinsically
different with regards to their hydrophobicity.

■ METHODS
Experimental Methods. All aqueous solutions were prepared

using ultrapurified water (18.2 MΩ cm resistivity, Milli-Q UF Plus).
Ethanol (200 proof, anhydrous, Decon Laboratories, Inc.) was used
without further purification, and 2,2,2-trifluoroethanol (99.5+%,
Sigma-Aldrich) was used after distillation. In view of the toxicity of
the fluorinated alcohols, solutions were prepared in a fume hood and
enclosed in O-ring-sealed glass vials for Raman spectroscopic analysis.
The custom-built micro-Raman system has been previously

described.48,49 Briefly, it consists of a 514.5 nm Argon-ion laser
(Melles-Griot 43 Series) with ∼20 mW of power at the sample
contained in a 1 cm spectroscopic glass cell and mounted in a
temperature-controlled sample stage (LC-600, Quantum Northwest).
A long-working distance 20× (Mitutoyo Inc.) objective is used to
focus the laser into the center of the glass cell and collect the
backscattered Raman light, which is subsequently focused using an f =

50 mm achromatic lens onto a 7 × 100 μm core (6-around-1) fiber
optic bundle (LEONI Fiber Optics, Inc.). The other end of the
bundle, whose fibers are arranged in a linear stack, are coupled to the
entrance slit of a 300 mm focal length imaging spectrograph
(SpectraPro300i, Acton Research Inc.), equipped with a 300 gr/mm
grating, and a thermoelectrically cooled CCD camera (Princeton
Instruments Inc., Pixis 400, 1340 × 400 pixel). Duplicate 5 min
spectra were acquired for all samples to produce Raman spectra with a
signal-to-noise ratio of ∼10 000:1 at the water OH band maximum.
Self-modeling curve resolution (SMCR)50 was used to obtain solute-
correlated (SC) spectra from pure water and solution spectra.

The thermodynamic analyses of the high-frequency OH hydration-
shell structure were extracted using a method similar to that
previously used to quantify the high-frequency water structure around
CO2

47 and dangling−OH structures in the hydration shells of
nonpolar groups.34 Specifically, to obtain the Gibbs free energy (ΔG),
enthalpy (ΔH), and entropy (ΔS), SMCR was used to find the
nonnegative minimum area spectrum for the high-frequency SC water
feature, and then the pure solvent spectrum was further subtracted
from the SC spectrum, so as to obtain the high-frequency feature that
has a near-zero baseline on either side of the peak (as was done to
obtain SI Figure S7 in ref 47). First, the ratio of the Raman cross
section for solute CH groups and water OH groups (ΩCH/ΩOH) is
calculated for each solution and temperature as follows:49
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Here, ICH
S is the area of the C−H stretch band of the solute, IOH

W the
area of the O−H stretch band in the pure water, 2[W] ∼ 2 × 55.5 mol
dm−3 = 111 mol dm−3 the concentration of OH bonds in water, nCH
the number of C−H bonds per solute, and [S] the concentration of
solute. Thus, the average number of dangling OH structures per
hydration shell ⟨k⟩ is obtained using eq 2, as previously described.34
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In eq 2, f represents a factor that can account for a difference between
the Raman cross sections of hydrogen-bonded and non-hydrogen
bonded OH groups (as discussed in Experimental Results). The
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band after normalization to the solute CH band area. When the
probability that each hydration-shell water molecule forms a dangling
OH defect is treated using a lattice model, the quantity ⟨k⟩ is
predicted to be approximately equal to the equilibrium constant
constant, K, pertaining to the transformation of a hydration shell with
no dangling OH defects to one that contains a single such defect (as
previously described).34 Thus, the following expressions may be used
to obtain the thermodynamics parameters associated with the
formation of a high-frequency dangling OH structure in the hydration
shell of the solute:
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where R is the ideal gas constant and T is temperature.
Molecular Dynamics with Classical Force Fields. The water

model used in this work is TIP4P-Ew.51 In this model, hydrogen
atoms have a charge qH = +0.52422e and Lennard-Jones (LJ)
parameters set to zero; oxygen has no charge and LJ parameters εOO =
0.680946 kJ mol−1 and σOO = 3.16435 Å; a negative charge of
magnitude qM = −1.04844e is located along the direction bisecting the
region between the two hydrogens, 0.1250 Å from the oxygen atom.
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Ethanol was modeled using three different force fields: OPLS,52

GAFF,53 and a variant of GAFF denoted as GAFFH where the LJ ε
parameter of nonpolar hydrogen atoms was optimized against the
hydration free energy of ethane (see SI section 2) and the remaining
LJ parameters are from GAFF. 2,2,2-Trifluoroethanol was modeled
using 4 different force fields: the Vymet̆al54 force field, the Gerig55

force field and two variants of GAFF denoted as TFE-Robalo and
TFE-RobaloH. The TFE-Robalo variant differs from GAFF only in its
LJ fluorine parameters, which are those reported in ref 56; the TFE-
RobaloH variant differs from GAFF in both its LJ fluorine parameters
(also from ref 56) and its nonpolar hydrogen atoms, which are the
same as those used in EtOH-GAFFH. For all GAFF-based force fields,
charges were calculated using the RESP57 procedure at the RHF/6-
31G* level of theory (following two sequential geometry
optimizations at the MP2 and then RHF level of theory using the
6-31G* basis set), with the ESP surface evaluated at roughly 50 points
per atom in four layers corresponding to a scaling of all atomic van
der Waals radii of 1.4, 1.6, 1.8, and 2.0. RESP fits were performed with
Gaussian 0358 and Antechamber,59 and the conversion of the resulting
topology files from AMBER60 format into Gromacs61−67 format was
carried with the ACPYPE68 software. Note that models EtOH-GAFF
and EtOH-GAFFH have identical charges; the same occurs for models
TFE-Robalo and TFE-RobaloH (Figure S3).
Free energies of hydration were calculated using free energy

perturbation (FEP), by progressively decoupling solute−solvent
interactions in a cubic simulation box consisting of a single solute
molecule surrounded by liquid. The systems were assembled using the
built-in tools in Gromacs. First, Coulombic interactions were scaled
by a parameter λC, which adopted the value of 0.00 (fully coupled),
0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60,
0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, and 1.00 (fully decoupled).
Second, with fully decoupled Coulombic interactions, LJ interactions
were scaled by a λLJ parameter, set to 0.00 (fully coupled), 0.03, 0.06,
0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.30, 0.33, 0.36, 0.39, 0.42,
0.44, 0.46, 0.48, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58,
0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70,
0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.82, 0.84,
0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98, and 1.00 (fully decoupled), for
a total of 80 coulomb- and LJ-decoupling steps. Simulations used a
time-step of 2 fs, and constraints (LINCS69) were applied to all bonds
involving hydrogen atoms. Integration of the equations of motion was
done using a leapfrog Langevin dynamics algorithm with a collision
frequency of 1 ps−1 set at the desired temperature T = 298 K. The van
der Waals interactions were modeled with a cutoff of 1.2 nm (and
switched to zero between 1.0 and 1.2 nm), and long-range dispersion
corrections were applied to both pressure and energy. Long-range
electrostatics were treated with the PME70 scheme with a 1.2 nm
cutoff, a grid spacing of 0.1 nm, and a fourth-order interpolation.
Energies were collected from the individual simulations using the
BAR method as implemented in Gromacs. For each value of λC/LJ, a
steepest descent minimization was followed by a L-BFGS
minimization, after which 100 ps of NVT equilibration and 100 ps
of NpT equilibration took place. The production runs for each λC/LJ
were 5 ns long. A similar protocol was employed in our previous
work56 (with shorter, 2 ns production runs) and found to yield
converged free energies of hydration for single amino acids in water;
the length of the production runs was increased to 5 ns for even
greater accuracy.
To investigate the formation of dangling OH groups in the

hydration shell of EtOH and TFE, the simulation boxes consisted of a
single solute molecule surrounded by ≈2 nm of water, assembled
using the built-in tools in Gromacs. The dynamics of water
moleculesand, therefore, the formation of dangling hydroxy
structures in the hydration shell of a solutecan be greatly affected
by the use of a thermostat and a barostat. To minimize such effects,
our measurements are taken from constant-volume simulations (NVT
ensemble, no barostat required) with a weakly coupled thermostat
(0.05 ps−1 collision frequency for the Langevin dynamics integrator).
The initial configurations for the production simulations are extracted
from a 2 ns simulation in the constant pressure and temperature

ensemble (steepest descent minimization followed by a L-BFGS
minimization, after which 100 ps of NVT equilibration and 100 ps of
NpT equilibration took place), under the condition that the
configuration’s volume does not differ by more than 0.5 Å3 from
the average ensemble volume. Finally, the NVT production run spans
25 ns, with sample collection occurring every 0.1 ps. Simulations were
performed at T = (278, 298, 318, 338, 358) K. All simulations were
carried out with Gromacs. Unless otherwise mentioned, the
simulation conditions were the same as for the free energy
calculations.

The thermodynamics of the formation of dangling hydroxy
structures were evaluated for the population of water molecules for
which the oxygen atom is within 5.531 or 5.690 Å of the carbon atom
in the −CH3 (EtOH) or −CF3 (TFE) group, respectively. These
distances correspond to the first minimum of the radial distribution
function of water oxygen atoms around the carbon atom in CH4/CF4
(results not shown). A dangling hydroxy structure is considered to
exist if one hydroxy group from this population of water molecules is
pointing toward the −CH3 (EtOH) or −CF3 (TFE) group (see
Results and Discussion and the Supporting Information for the
specific criteria used in identifying dangling hydroxys). Statistics for
dangling hydroxy structures were collected using our own scripts
running in VMD.71

Symmetry-Adapted Perturbation Theory. Dimers consisting
of one water molecule and one alcohol molecule (either EtOH or
TFE) were collected from MD simulations using the EtOH-GAFFH
or TFE-RobaloH force fields (see Results and Discussion) at 298 K.
The criteria for collecting a water−alcohol dimer configuration were
(i) the water molecule oxygen atom is within 3.5 Å of the −CH3/−
CF3 hydrogen/fluorine atom in the alcohol, i.e., within a distance that
allows the water molecule to have a dangling hydroxy group; (ii) the
water molecule oxygen atom is beyond 4.5 Å of the carbon atom
bound to the alcohol group in EtOH/TFE, so that the only direct
interaction between the water molecule and the alcohol molecule
occurs at the site of the alcohol’s hydrophobic group. Configurations
were collected both for water molecules with one dangling hydroxy
and water molecules with no dangling hydroxy structures; in either
case, the nondangling hydroxy groups were hydrogen-bonded to other
water molecules. The number of collected dimer configurations was
EtOH, dangling: 938; TFE, dangling: 1314; EtOH, bound: 689; and
TFE, bound: 1000.

For each dimer configuration, a wave function-based symmetry-
adapted perturbation theory (SAPT; refs 72 and 73 provide a
comprehensive review on the topic) calculation was performed to
decompose the total interaction energy between water and alcohol
into induction, electrostatic, exchange, and dispersion contributions.
SAPT calculations were conducted with the Psi4 software74 at the
DF-SAPT2+(CCD)δMP2 level of theory, employing the augmented,
correlation-consistent, triple-ζ Dunning basis sets (aug-cc-
pVTZ).75−78 This level of theory was found to provide “the most
accurate overall model chemistry” in a comparative study of a series of
SAPT methodologies.79 In short, the interaction energy is treated as a
second-order expansion of the intra- and intermolecular potentials.79

Dispersion interactions are calculated with coupled-cluster dou-
bles80,81 via the natural orbitals formalism;82 an MP2 correction is
applied to account for high-order induction−dispersion coupling.79

The frozen core approximation is used in the treatment of nonvalence
electrons, and a density-fitting approximation83,84 is employed for
two-electron integrals in self-consistent field Hartree−Fock calcu-
lations, together with a superposition-of-atomic-densities estimate for
the initial density-fitted orbitals.

■ RESULTS AND DISCUSSION
Experimental Results. Figure 1 shows Raman spectra and

Raman-MCR results obtained from pure water and
1 mol dm−3 aqueous solutions of ethanol and 2,2,2-
trifluoroethanol. The measured (unprocessed) Raman spectra
of pure water shown in panel A contains peaks arising from the
water OH stretch (near 3400 cm−1), bend (near 1650 cm−1),
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as well as low-frequency OH···O stretch (near 200 cm−1), and
other low-frequency and collective vibrations and combination
bands.85 The measured Raman spectra of the aqueous
solutions in panel A reveal additional features arising from
intramolecular vibrational modes of EtOH and TFE, including
the CH stretch bands (near 2900 cm−1). Note that the latter
band is larger for EtOH than TFE (although they both have
the same concentration) because EtOH has five CH groups,
while TFE has only two. The EtOH and TFE CH and
hydration-shell OH spectra shown in panel B were obtained
from a Raman-MCR decomposition of the measured solution
spectra into pure water and solute-correlated components. The
SC OH stretch bands arise primarily from hydration-shell
water molecules whose vibrational spectra are perturbed by the
solute. Clearly these hydration-shell spectra both look
significantly different than the OH stretch band of pure
water (the dashed-blue band in the inset panel), and the
hydration shell of TFE also looks remarkably different from
that of EtOH. More specifically, the larger area of the SC
hydration-shell spectrum of EtOH as compared to that of TFE
implies that more water molecules are perturbed by EtOH
than by TFE. This is particularly the case in the lower-
frequency portion of the OH stretch band (near 3200 cm−1)
corresponding to a shoulder which also becomes more intense
in highly tetrahedral ice and clathrate structures.86,87 Thus, the
fact that the 3200 cm−1 shoulder is relatively more prominent
in the hydration shell of EtOH than TFE, as well as in pure
water, implies that the hydration shell of EtOH has a more
tetrahedral structure than pure water. On the other hand, the

relative low intensity of the 3200 cm−1 shoulder in the TFE
hydration shell indicates that these water molecules are less
tetrahedral than pure water. Even more interestingly, both the
hydration shells of EtOH and TFE contain small high-
frequency features (between 3600 and 3700 cm−1) associated
with dangling OH structures that appear to be either not
hydrogen-bonded or more weakly hydrogen-bonded than the
average hydrogen-bonded structures in water.34,46−48 This
band results from water dangling OH around both solutes. It is
not related to a weak intramolecular interaction between the
alcohol hydroxy and the −CF3 group in TFE, which has been
shown to exist at low temperature and for isolated TFE
molecules;88 see data and discussion in SI section 1. Most
strikingly, the intensity of the dangling OH band in the
hydration shell of TFE is significantly larger than that in the
hydration shell of EtOH. Thus, the hydration shell of TFE not
only is less tetrahedral but also contains a larger number of
dangling OH defects than the hydration shell of EtOH.
Figure 2 shows temperature-dependent results obtained in

order to further elucidate the thermodynamics associated with

the formation of the dangling OH defects. Panels A and B
show the temperature-dependent increase in the intensity of
the dangling OH bands in both the TFE and EtOH hydration
shells. These peaks have been background-subtracted assuming
that the background resembled the shape of the OH stretch
band of pure water in this spectral region. Note the different
vertical scales in panels A and B, reflecting the larger intensity
of the dangling OH feature on the hydration shell of TFE than
EtOH. Panels C and D show the temperature dependence of
ΔG/T = −R ln ⟨k⟩ and ΔG = −RT ln ⟨k⟩ (eq 3), where ⟨k⟩ is
the average number of dangling OH structures obtained from
the area of the dangling OH band, after normalization to the
solute CH band area, and correcting for the measured CH/OH
Raman cross-sectional ratio as further described below. Note

Figure 1. Measured Raman spectra (A) and Raman-MCR SC spectra
(B) obtained from water and 1 mol dm−3 aqueous solutions of
ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). The Raman
spectra in panel A are unprocessed (except for subtracting a constant
baseline offset). The solid curves spectra in panel B are solute-
correlated (SC) spectra of EtOH and TFE (with their experimental
intensities, pertaining to the same 1 mol dm−3 concentration), and the
inset panel shows an expanded view of the OH stretch region,
compared to that of pure water (arbitrarily scaled to the same peak
intensity as the EtOH SC OH band).

Figure 2. Temperature dependence of the dangling OH peaks in the
hydration shell of (A) TFE and (B) ethanol used to obtain the (C)
enthalpy and (D) entropy as associated with the formation of such
structures (relative to the structure of pure water). The dangling OH
peaks in panels A and B were obtained from the corresponding SC
spectra, after background subtraction in this spectral region. The error
bars on the points reflect the experimental reproducibility of the CH/
OH area ratios, and the error bars on the ΔH and ΔS value are
obtained from the corresponding error in the slope of the linear fits.
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that ⟨k⟩ is expected to be approximately equal to the
probability of forming a dangling OH structure in the
hydration shell, and thus, ΔG is the corresponding Gibbs
energy change associated with forming such a structure
(relative to pure water), as further described below and
consistent with previous work.34

The thermodynamics results obtained as described above are
shown in Figure 2C,D. These results indicate that, at
temperatures ranging from 2 to 80 °C, the CH/OH Raman
cross-sectional ratios are essentially temperature-independent
but are not the same for the two solutes, as the ratio is
1.22 ± 0.01 for EtOH and 1.07 ± 0.02 for TFE. Our
assumption that f = 1 (in eq 2) implies that the Raman cross
section of a dangling OH group is the same as the average
Raman cross section of each OH group in liquid water. Note
that previous theoretical gas-phase water-cluster-based pre-
dictions have estimated that the Raman cross section of a
dangling OH group is about half that of a hydrogen-bonded
OH group.34 If we had assumed that this cross section ratio
also pertains to the dangling OH defects that we have
observed, then that would require setting f = 2. However,
introducing such a Raman cross section change would have a
relatively small influence on our spectroscopically derived
thermodynamic results, as setting f to 2 rather than 1 would
decrease both ΔG and −TΔS by −RT ln 2 (approximately
−1.7 kJ/mol at 20 °C) and would not have any effect on the
experimental ΔH values.34

The results shown in Figure 2C indicate that the formation
of a dangling OH defect is slightly more favorable (less
endothermic) in the hydration shell of TFE than EtOH. This
suggests that the dangling OH is enthalpically stabilized by
approximately −5 kJ/mol when interacting with the fluorine
atoms on TFE. Such an enthalpic stabilization of dangling OH-
like structures has previously been observed to result from the
formation of a π-hydrogen bond between water and benzene,48

as well as the formation of a weak hydrogen bond between
water and CO2.

47 The results shown in Figure 2D indicate that
the dangling OH defects are entropically stabilized to
approximately the same extent for both TFE and EtOH
(which was also the case in the hydration shells of benzene and
CO2).
The greater intensity, and thus population, of the water

dangling OH of TFE than of EtOH is consistent with the
enthalpic stabilization of the dangling OH structure by TFE.
Given this scenario, the similar frequency of the TFE and
EtOH dangling OH peaks appears at first sight surprising, as
several other cases in which the dangling OH-like structures
are stabilized have also been accompanied by a red-shift of the
dangling OH peak frequency as might be expected if the
dangling OH is weakly hydrogen bonded.47,48 In fact, however,
evidence that the relationship between water OH frequency
and hydrogen bond strength is far from straightforward
abounds. For example, water−water hydrogen bonds are far
more red-shifted than water−benzene π hydrogen bonds,
although both have similar bond strengths (ΔΔH is only 3 kJ/
mol);48 the water−benzene and water−phenol π hydrogen
bonds differ in strength by ΔΔH = 4 kJ/mol, but the donating
water OH has the same frequency.48 More generally,
calculations assuming that frequency shifts are simply Stark
shifts show that water hydrogen bond strength correlates
remarkably imperfectly with OH frequency,89 and ab initio
calculations90,91 have shown that hydrogen bonds involving
nonpolar donor (X−H) groups may be either blue- or red-

shifted. Our present work and the literature examples cited
here suggest that such nonmonotonic behavior may also occur
in the case of polar O−H groups, but definitively settling this
question will require future detailed theoretical studies. The
available evidence supports the notion that the minimal red-
shift of the TFE dangling OH, and the different temperature
dependence of the dangling OH frequency in both systems, is
not inconsistent with the fact that the −CF3···HO− interaction
is energetically (or enthalpically) more favorable than the
−CH3···HO− interaction, as clearly evidenced by the temper-
ature dependence of the dangling OH peak intensities
(discussed above).

Simulation Results. Validating Force Fields against
Experimental Free Energies of Hydration of EtOH and TFE.
The free energies of hydration calculated here correspond to
the process of bringing a single solute molecule from the gas
phase to the same volume of water, without self-interactions,
and do not include the cost of polarizing the molecule when
bringing it into water. This cost is expected to be small (≈1
kcal mol−1)54 and should be similar for EtOH and TFE
because, given the low polarizability of hydrogen and of
fluorine, it will arise mostly from the polarization of the alcohol
OH.
Free energies of hydration were initially calculated for a

subset of force fields (EtOH-GAFF, EtOH-OPLS, TFE-
Vymet̆al ,and TFE-Gerig), describing either EtOH or TFE,
available in the literature (see Methods). The free energy of
hydration of EtOH is better captured with the GAFF than with
the OPLS force field (Table 1). The apparently good

performance of EtOH-GAFF masks the fact that the GAFF
force field LJ parameters result in too hydrophobic alkyl
moieties: the hydration free energies calculated with GAFF for
methane and ethane in TIP4P-Ew water are 10.67 and 10.96 kJ
mol−1 (ref 92), whereas the experimental values are 8.38 and
7.66 kJ mol−1, respectively.28

In the case of the TFE, the Vymet̆al force field provides the
best agreement with the experimentally measured ΔGHyd
though the difference between experiment and simulation is
still large (3.6 kJ mol−1 absolute difference). For the purpose of
comparing the differences in hydration between TFE and
EtOH, however, TFE-Vymet̆al is the worst performing model
because it has a more favorable hydration free energy than
EtOH-GAFF or EtOH-OPLS, in clear disagreement with
experiment. A striking feature of the TFE-Vymet̆al force field is
the uncommonly large partial charges on the fluorinated group
(qF = −0.32185e and qC = +0.90665e) when compared to the

Table 1. Free Energy of Hydration (kJ mol−1) of Ethanol
and Trifluoroethanol at 298 K from Experiment28 and
Calculated (FEP) Using the Indicated Force Fieldsa

ΔGHyd,FEP ΔGHyd,Exp

EtOH-OPLS −19.228 ± 0.013 −20.962
EtOH-GAFF −20.270 ± 0.021
EtOH-GAFFH −22.968 ± 0.034

TFE-Vymet̆al −21.594 ± 0.047 −18.033
TFE-Gerig −14.758 ± 0.032
TFE-Robalo −12.984 ± 0.024
TFE-RobaloH −13.963 ± 0.018

aSimulation data are presented as the sample mean and standard error
of the mean of five independent FEP simulations.
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charges obtained from the above-described RESP fit (qF =
−0.181277e and qC = +0.475746e; see Figure S3). The
resulting electrostatic interactions with water can (and do, as
described in SI section 6) have a drastic impact on the
occurrence of dangling hydroxy structures.
Given that the force fields that are best at reproducing the

hydration free energy of each molecule have a somewhat
incorrect description of the interaction between water and the
−CH3/CF3 groups, we opted to also include other force fields
in this study that minimize that shortcoming. The EtOH-
GAFFH model is similar to EtOH-GAFF but uses hydrogen LJ
parameters optimized against the hydration free energy of
ethane (see SI section 2 and Figure S2). The TFE-Robalo
model in Table 1 is GAFF-based but uses fluorine LJ
parameters optimized against the hydration free energy of
CF4. Finally, the TFE-RobaloH model is also GAFF-based but
uses the same optimized εH,H as EtOH-GAFFH and the same
optimized fluorine LJ parameters as TFE-Robalo.
Models EtOH-GAFFH, TFE-Robalo, and TFE-RobaloH thus

best describe the local interactions between water and the
−CH3/CF3 groups, which are the focus of this work. These
local interactions clearly matter for the hydration free energies:
ΔGHyd,FEP is 2.7 kJ mol−1 more negative for EtOH-GAFFH
than for EtOH-GAFF and is 1 kJ mol−1 more negative for
TFE-RobaloH than for TFE-Robalo. Nevertheless, the negative
hydration free energies of EtOH and TFE arise from the
interactions between the alcohol OH and water. Better
agreement with experimental ΔGHyd for TFE could be
obtained by optimizing those interactions, but given that this
work is not concerned with them, the existing level of
agreement (to within 1 kcal mol−1) was considered sufficient.
Identifying the Population of Dangling OH Groups from

Simulation. Simulations were performed with multiple force
fields for EtOH and TFE. In the main text we focus on the
models that best describe the local interaction of water with
the hydrophobic part of the solute while still qualitatively
reproducing the differences in the hydration free energies of
EtOH and TFE. Results for all models are shown and
discussed in the Supporting Information and are referenced in
the main text as appropriate.
To identify the specific population of OH groups that yields

the high-frequency OH band detected in Raman-MCR, we
tested multiple criteria that select OH groups that are not (or
are only weakly) hydrogen-bonded. The overall most
consistent definition (comparing with the thermodynamics of
dangling OH structure formation obtained from Raman-MCR)
is to consider dangling OH groups that do not donate a
hydrogen bond to another water molecule and that point to
the −CF3 (TFE) or −CH3 (EtOH) group, as illustrated in
Figure 3. The simulations also suggest that non-hydrogen-

bonded hydroxy groups with other orientations contribute to
some extent to the dangling OH band detected in the Raman-
MCR spectra of TFE (but not of EtOH) as discussed in SI
section 4. This contribution is secondary, however. The
discussion in the main text is based on the following definition
of dangling OH structures: the water oxygen is within 3.5 Å of
a fluorine (−CF3) or a hydrogen (−CH3) atom, and the
O−H···F/H angle is 160° < θ < 180°. This stringent definition
yields the best agreement for the thermodynamics of dangling
OH structures between SC Raman-MCR and simulation for
both solutions. Our qualitative conclusions hold also for a
broader definition (see SI section 6).
Figure 4 shows the number of dangling OH structures in the

hydration shell of −CF3 (TFE) and −CH3 (EtOH) from

classical simulations (see Figure S5 for other force fields and
criteria to identify defects). Most of the time, the hydration
shells of −CF3 and −CH3 have zero dangling OH structures;
the hydration shell of −CF3 contains more dangling OH
structures than that of −CH3; formation of 2 or more
simultaneous dangling OH structures occurs infrequently for
both solutes. These trends are consistent with our
experimental results, as discussed below.

Thermodynamics of Formation of Dangling Hydroxy
Groups Are Similar in Experiment and Simulation. The free
energy of formation of dangling hydroxy defects was calculated
from MD analogously to what was done experimentally (eq 3)
as

G RT klnΔ = − ⟨ ⟩ (6)

where ⟨k⟩ is the average number of dangling hydroxys per
simulation frame (i.e., per −CH3 or −CF3 hydration shell). For
comparison, we also calculated free energies of dangling
hydroxy formation as

G RT KlnΔ = − (7)

where K = P1/P0 and Pn is the probability of having a
simulation frame with exactly n dangling hydroxys.34 K is the
equilibrium constant describing the formation of a dangling
OH structure from a hydration shell without defects; ⟨k⟩ is a
good approximation to K only when defects are rare. The two
different definitions of the equilibrium constant yield almost
identical free energies, entropies, and enthalpies of dangling

Figure 3. Illustration of the formation of a dangling OH structure in
the hydration shell of ethanol. A hydrophobic hydration shell with no
dangling OH structures is in equilibrium with a hydration shell with
exactly one dangling OH structure (blue halo).

Figure 4. Probability of observing either 1 or 2 dangling water
hydroxy structures in the hydration shell of −CF3 (TFE; green) or
−CH3 (EtOH; black), calculated with MD at 298 K using a stringent
definition of dangling hydroxy (P(≥3) < 5 × 10−5).
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OH formation for the optimal (stringent) definition of
dangling OH structure (SI section 6, Figures S6 and S7, and
Tables S5 and S6), confirming that the approximation ⟨k⟩ = K
is valid. The discussion that follows is based on thermody-
namic quantities obtained from ⟨k⟩, to remain close to the
Raman-MCR-based analysis.
The free energies of formation of dangling OH defects

obtained with simulation (Figure 5) are similar to those
obtained from Raman-MCR (Figure 2(C,D)). ΔG is positive
for both solutes and is larger for EtOH than for TFE,
consistent with dangling OH structures being rarer near EtOH
than near TFE. Enthalpies of defect formation from MD are
only 4−5 kJ mol−1 lower (less positive) than the experimental
ones. The largest difference between experiment and
simulation is seen in the entropies, with entropies calculated
from MD being 1 order of magnitude lower (less positive)
than in experiment. Nevertheless, a slightly more positive
(ΔΔS = (5 ± 2) kJ K−1 mol−1) entropy of defect formation for
EtOH than for TFE is observed in simulation, in
semiquantitative agreement with experiment (ΔΔS =
(2 ± 4) kJ K−1 mol−1). We note that using broad criteria for
identifying dangling OH defects would bring the entropies
closer to the experimental values (see SI section 6) at the
expense of agreement with the experimental free energies. The
stringent definition of dangling OH structure, used throughout
the main text, provides the best overall agreement with
experiment, but the same picture emerges using other criteria.
More complex molecular models and/or definitions of
dangling OH structures could perhaps bring the simulation

results in full agreement with experiment, but our chosen
simulation and design setup is clearly sufficient to give insight
into formation of the spectroscopically active dangling OH
structures. Changes in the Lennard-Jones parameters of
hydrogen have almost negligible impact in the formation of
dangling OH defects: the free energy of formation of defects
and the corresponding enthalpies and entropies are almost
indistinguishable between EtOH-GAFFH and EtOH-GAFF,
and between TFE-RobaloH and TFE-Robalo (Figure S7A and
Table S6). In contrast, the results from TFE-Vymet̆al suggest
that the partial charges in the −CF3 group significantly impact
the thermodynamics of formation of dangling OH structures
(Figure S7A and Table S6).
The semiquantitative agreement between experiment and

simulation with respect to the thermodynamics of formation of
dangling OH defects confirms that this population consists
predominantly of water hydroxy groups that belong to the first
hydration shell of the −CH3/CF3 groups and for which the
O−H vector points to these groups.

Electrostatic Interactions Are Primarily Responsible for
Promoting Dangling OH Defects near TFE. Both simulation
and experiment confirm that the formation of dangling OH in
the hydrophobic hydration shells of EtOH and TFE is strongly
unfavorable because of the unfavorable enthalpy of the process.
This enthalpy is not very sensitive to dispersive interactions
between the solute and the water: the nonpolar hydrogen in
EtOH-GAFFH interacts roughly twice as strongly with its
environment as the same hydrogen in EtOH-GAFF (Table
S1), but the enthalpy of defect formation is the same (to

Figure 5. Temperature dependence of the free energy of dangling hydroxy formation for EtOH-GAFFH (black) or TFE-RobaloH (green),
calculated from MD simulations using a stringent definition of dangling hydroxy. Error bars are of the size of the data points; the data are collected
in Table S4. Dashed lines are linear fits to the data. Enthalpies of formation correspond to the slope of the linear fit in panel A, and entropies of
formation correspond to the slope of the linear fit in panel B; in both cases, the error corresponds to the error in the slope of the fit.

Figure 6. Temperature dependence of the free energy of dangling hydroxy formation for zero-atomic charge EtOH-GAFFH,0 (black) or zero-atomic
charge TFE-RobaloH,0 (green), calculated from MD simulations using a stringent definition of dangling hydroxy. Error bars are of the size of the
data points; the data are collected in Table S4. Dashed lines are linear fits to the data. Enthalpies of formation correspond to the slope of the linear
fit in panel A, and entropies of formation correspond to the slope of the linear fit in panel B; in both cases, the error corresponds to the error in the
slope of the fit.
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within statistical uncertainty) for both those models (Tables S5
and S6).
To establish the role of electrostatics in the mechanism of

formation of dangling OH defects, we conducted additional
NVT simulations of both alcohols, starting from the same
configuration as the previous NVT runs, but with null partial
charge at each solute atom. The results for these zero-charge
solutes are presented in Figure 6 (also Table S7 and Figure
S8). It is clear that removing the partial charges on the solute
eliminates the difference in the thermodynamics of defect
formation between both solutes: ΔG is now only 0.2 kJ mol−1

less positive for TFE than for EtOH (Figure 6), whereas for
the solutes with atomic charges the difference is several
kilojoules per mole (Figure 5). These results indicate that,
when considering only their Lennard-Jones interactions with
water, −CF3 strains the surrounding water network (i.e.,
facilitates the formation of dangling OH structures) only
marginally more than −CH3 despite its larger volume.
The different Lennard-Jones potential associated with

carbon-bound hydrogen and with fluorine implies that methyl
and trifluoromethyl groups differ both in size and in the
magnitude of their attractive interaction energy with water. To
check whether the similarity in the thermodynamics of
dangling OH structure formation observed in Figure 6 for
the two zero-charge solutes actually reflects the compensation
of these two factors rather than a true independence of volume,
we performed an additional control simulation for TFE. In this
second control, −CF3 approximately retains its original size,
but its attractive interaction with water is now close to that of
−CH3; all partial atomic charges are zero. Further details and
the corresponding results are presented in SI section 7. Again
we find that the thermodynamics of dangling OH formation in
the hydration shell of −CF3 in this TFE is very close to that of
−CH3 in the zero charge EtOH, despite their volume
difference. These results confirm that the thermodynamics of
formation of dangling OH structures are indeed insensitive to
volume changes associated with transforming a −CH3 group
into a −CF3 group. It follows that the most informative way to
compare the thermodynamics of dangling OH structures in the
hydration shell of these two solutes is to use thermodynamic

parameters reported per group as we do, rather than
normalized by volume or by area.
Eliminating the partial charges in the solutes has a

substantial impact in the formation of dangling OH defects
only around TFE: ΔG differs substantially between zero-
atomic charge TFE-RobaloH,0 and its charged counterpart,
whereas it is almost identical between zero-atomic charge
EtOH-GAFFH,0 and its charged version (compare Figures 5
and 6. Moreover, changes in ΔG for TFE when eliminating
charges reflect primarily changes in enthalpy: ΔH = (10.95 ±
0.5) kJ mol−1 for the zero-atomic charge TFE-RobaloH,0,
whereas ΔH = (6.26 ± 0.3) kJ mol−1 for its charged version. In
contrast, ΔH = (11.46 ± 0.4) kJ mol−1 for the zero-atomic
charge EtOH-GAFFH,0 and (12.54 ± 0.6) kJ mol−1 for its
charged version. It is the high polarity of the C−F bond
relative to the C−H bond that makes the enthalpy of dangling
OH formation in the hydrophobic shell of TFE less positive
(less unfavorable) than in EtOH. The picture that emerges is
that the thermodynamics of formation of dangling OH defects
is dominated by the enthalpic cost of breaking a water−water
hydrogen bond, but around TFE some of that cost is offset by
favorable electrostatic interactions between the dangling water
hydroxy and fluorine.
For both solutes, breaking a strong water−water hydrogen

bond to form a dangling hydroxy is entropically favored
because dangling hydroxys can access more configurations.
The entropy of defect formation is, however, somewhat less
favorable (less positive) for TFE than for EtOH (Figures 2 and
5). Comparison of the entropy of formation of dangling OH
structures of TFE-RobaloH (ΔS = (1.6 ± 1) J K−1 mol−1) with
that of its zero-atomic charge analogue ((6.5 ± 2) J K−1 mol−1)
points to the origin of this difference: the interactions between
dangling hydroxys and −CF3 groups are more directional
(explore fewer configurations) than with −CH3 groups, again
because of the polarity of the C−F bond.
Our conclusion that electrostatic interactions are primarily

responsible for promoting dangling OH structures in the
hydration shell of −CF3 (relative to −CH3) is based on force
fields with a commonly used but simple functional form: each
atom has a fixed partial charge; dispersion interactions are
represented via Lennard-Jones potentials. To put this

Figure 7. Total interaction energy of a water−alcohol dimer (EtOH−water in black, TFE−water in green) vs the distance between the water
oxygen atom and the closest −CH3 hydrogen (EtOH) or −CF3 fluorine (TFE) atom. The water molecule in the dimer has either one or zero
dangling hydroxys (left/right-hand side panels, respectively; insets show examples of configurations of water−TFE dimers). Configurations are
extracted from MD simulations at 298 K using the EtOH-GAFFH and TFE-RobaloH force fields. The number of data points for each configuration
is EtOH, dangling: 938; TFE, dangling: 1314; EtOH, nondangling: 689; TFE, nondangling: 1000. Energies are calculated at the DF-
SAPT2+(CCD)δMP2/aug-cc-pVTZ level of theory.
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conclusion on firmer ground, we performed symmetry-adapted
perturbation theory calculations on water−alcohol dimers and
decomposed their interaction energies into induction, electro-
static, exchange, and dispersion contributions. The dimers
were obtained from the MD simulations and thus are
representative of solution structures (which differ from typical
configurations in the gas phase93). This combination of
extensive conformational sampling and subsequent dissection
of the pairwise interactions by high-level ab initio methods has,
to the best of our knowledge, not yet been employed to
investigate the effects of halogenation on solvation. Such
approaches have been successful in providing insight into the
microscopic behavior of liquid water.94

We considered two types of configurations, “dangling” and
“nondangling”, illustrated in Figure 7. In the dangling
configuration the water molecule has 1 hydroxy pointing to
−CF3/−CH3; in the nondangling configuration, neither
hydroxy points to those groups. In the MD simulations, the
nondangling hydroxys are typically hydrogen-bonded to other
water molecules (not included in the SAPT calculations).
Figure 7 shows the total interaction energy for the dimers in

the two types of configurations as a function of the distance
between the water oxygen and either hydrogen (in −CH3) or
fluorine (in −CF3). Below a threshold of ∼2.6 Å for EtOH and
∼2.8 Å for TFE, interatomic repulsion dominates for both
dangling and nondangling configurations. Configurations
below 2.5 Å do not appear for EtOH because they do not
occur in the solution simulations. However, configurations
below 2.5 Å are still present in the solution simulations of TFE
even though the SAPT calculations for the dimer indicate they
are strongly energetically unfavorable. This difference reflects
the different way in which TFE and EtOH perturb the collective
water network. For nondangling configurations, individual
water molecules have negligible interactions with either EtOH
or TFE (Figure 7B): beyond the repulsion threshold, the
interaction energy oscillates around 0. In contrast, waters in
dangling conformations are, beyond the same threshold, clearly
attracted to TFEthe interaction energy is ∼ −5 kJ mol−1
but continue to interact negligibly with EtOH (Figure 7A).
These results are consistent with the lower (less positive)
enthalpy of formation of dangling OH defects near −CF3
relative to −CH3 observed both in MD and Raman-MCR: this
enthalpy is positive because of breaking a water−water
hydrogen bond, but part of this cost is offset for TFE because
of attractive interactions between TFE and the water with the
dangling OH defect.
To understand the origin of the favorable enthalpic

interaction between dangling OH structures and TFE, we
calculated the various components of the interaction energy of
the dimers as a function of distance (see Figure S9). In Figure
8 we show the difference, Δ⟨E⟩F−H, of the average contribution
of each interaction energy component, where the average is
done for distances beyond the repulsive thresholds. For the
nondangling configurations, all components have low absolute
magnitude and Δ⟨E⟩F−H is close to zero for all of them.
The situation changes for the dangling configurations:

dispersion (attractive) interactions are now substantially
more intense for the TFE−water dimer than for
EtOH−water, but likewise for the repulsive exchange
component. The largest difference between TFE−water and
EtOH−water dimers in dangling configurations is seen for the
(attractive) electrostatic interaction: it is negligible for EtOH−

water but markedly attractive for TFE−water, in line with our
force field-based observations.

■ CONCLUDING REMARKS
The emerging picture is that −CF3 indeed has the typical, weak
enthalpic interactions with water molecules expected of
hydrophobic moieties immersed in water (Figure 7B) but is
nevertheless not a typical hydrophobe. Dangling OH defects
are substantially less rare in the hydration shell of −CF3 than of
−CH3 (Figures 2 and 5) because the O−H bond vector
pointing toward the solute is weakly stabilized by the polar C−
F bond (Figures 6 and 8). This interaction somewhat offsets
the enthalpic cost of breaking strong water−water hydrogen
bonds.
Interactions between hydroxys and the C−F bond in

perfluoroalkyl groups have been detected using rotational
spectroscopy in clusters of fluorinated alcohols in the gas
phase;95 they have also been detected in clusters of water with
TFE in supersonic jet FTIR experiments.93 The present work
is the first quantitative, experimentally based confirmation that
these interactions, although weak compared with water−water
interactions, matter even in the presence of excess water.
Our prior simulation work indicates that dangling water

hydroxys also exist in the hydration shell of −CF3 in the side
chain of noncanonical amino acids and that the −CF3···HOH
interaction is a non-negligible contribution to the free energy
of hydration of tri- and hexafluorinated amino acids.92 The
magnitude of the contribution of −CF3···HOH interactions for
the ΔGHyd of amino acids92 and the present results suggest that
dangling OH defects in the hydration shell of −CF3 are weak
hydrogen bonds, despite the almost negligible red-shift in the
OH stretch frequency (Figure 2).
Our results hint that −CF3 will deviate substantially from the

typical (−CH3) hydrophobe particularly under low hydration
conditions, e.g., under confinement in protein-binding pockets
or in crevices on the protein surface. Under these conditions,
water−water hydrogen bonds are often fewer or more
distorted than in the bulk.96 The resulting dangling OH
defects may be stabilized by interactions with nearby −CF3
(but not with −CH3). As a result, the thermodynamics of

Figure 8. Difference of the average contributions (Δ⟨E⟩F−H = ⟨E⟩TFE
− ⟨E⟩EtOH) of induction, electrostatics, exchange, and dispersion to
the total interaction energy of a water−EtOH/TFE dimer. The water
molecule in the dimer has either one or zero dangling hydroxy
structures. Averages are calculated over all configurations for which
the energy is beyond the repulsive threshold (2.6 Å for EtOH, 2.8 Å
for TFE; see Figures 7 and S9).
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protein folding and protein−protein or protein−ligand binding
may be affected by the substitution of −CH3 by −CF3 much
beyond what would be expected for the associated volume
change. Inhibition studies of the BPTI-β-trypsin system
suggest this scenario is possible.14 Replacing −CH3 by −CF3
in the side chain of the aminobutanoic amino acid in position
15 of a mutant-BPTI dramatically increases binding to
(inhibition of) β-trypsin. X-ray crystallography shows that
the binding pocket in both systems contains water molecules in
similar positions, but with different dynamics as measured by
the B-factor. Systems such as the mouse major urinary protein,
the oligopeptide binding protein, the bovine apo-glycolipid
transfer protein, or the secretin pilot protein, whose binding
sites accommodate water, are interesting possibilities to further
investigate the generality of this mechanism.
Fluorinated solvents often beneficially impact the kinetics,

regioselectivity, and stereoselectivity of reactions for reasons
that are not completely understood.97 The possibility that
these changes occur via the facilitated interaction of dangling
water OH groups with transition states, similarly to what has
been proposed for “on water” reactions in the presence of
nonfluorinated hydrophobes,98 is worth exploring.
Prior work has shown that the hydration and aggregation of

hydrophobes depend strongly on the details of the solute (or
of the substituents in the solute), including the volume,
curvature, and magnitude of attractive solute−water inter-
actions.13,15,22,34,35,86,99−117 Our work adds to this body and
provides the strongest evidence to date that perfluoroalkyl
groups are a different category of hydrophobe. Our results
prove that, contrary to expectations, the larger volume of −CF3
is not the reason why this solute has a larger number of
dangling OH structures in its hydration shell, in contrast to
expectations based on classical theories of hydrophobic-
ity118,119 Other observables characterizing hydration may well
reflect the volume difference between perfluoroalkanes/alkyl
groups and their nonfluorinated analogues, but this depend-
ence should be proven rather than assumed. Our approach
(using control simulations with zero-charge solutes) is a useful
pathway to understand the thermodynamics of hydration or of
aggregation of molecules with perfluorolkyl groups, which
cannot be fully understood in terms of their larger volume
(relative to the corresponding alkylated moieties) as discussed
above.1,13,25−28,30
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