Technical Presentation

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Retrieving Top Weighted Triangles in Graphs

Raunak Kumar*
Cornell University
Ithaca, NY
raunak@cs.cornell.edu

Moses Charikar

Stanford University

Stanford, California
moses@cs.stanford.edu

ABSTRACT

Pattern counting in graphs is a fundamental primitive for many
network analysis tasks, and there are several methods for scaling
subgraph counting to large graphs. Many real-world networks have
a notion of strength of connection between nodes, which is often
modeled by a weighted graph, but existing scalable algorithms
for pattern mining are designed for unweighted graphs. Here, we
develop deterministic and random sampling algorithms that enable
the fast discovery of the 3-cliques (triangles) of largest weight, as
measured by the generalized mean of the triangle’s edge weights.
For example, one of our proposed algorithms can find the top-1000
weighted triangles of a weighted graph with billions of edges in
thirty seconds on a commodity server, which is orders of magnitude
faster than existing “fast” enumeration schemes. Our methods open
the door towards scalable pattern mining in weighted graphs.

CCS CONCEPTS

« Information systems — Top-k retrieval in databases; Social
networks; Recommender systems.

KEYWORDS

weighted graphs, subgraphs, random sampling, networks

ACM Reference Format:

Raunak Kumar, Paul Liu, Moses Charikar, and Austin R. Benson. 2020.
Retrieving Top Weighted Triangles in Graphs. In The Thirteenth ACM In-
ternational Conference on Web Search and Data Mining (WSDM °20), Feb-
ruary 3-7, 2020, Houston, TX, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3336191.3371823

1 INTRODUCTION

Small subgraph patterns, also called graphlets or network motifs,
are fundamental to the understanding of complex network struc-
ture [7, 34, 35]. One of the simplest non-trivial subgraph patterns is

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM °20, February 3-7, 2020, Houston, TX, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6822-3/20/02...$15.00
https://doi.org/10.1145/3336191.3371823

295

Paul Liu
Stanford University
Stanford, California

paulliu@stanford.edu

Austin R. Benson
Cornell University
Ithaca, NY
arb@cs.cornell.edu

the triangle (3-clique), and the basic problem of triangle counting
and enumeration has been studied extensively from theoretical
and practical perspectives [4, 8, 18, 48, 51]. These developments
are often driven by the desire to scale graph counting to large net-
works, where performing computations naively is infeasible. The
focus on triangles is in part spurred by the widespread use of the
pattern in graph mining applications, including community detec-
tion [9, 21, 45], network comparison [15, 33, 40], representation
learning [23, 46], and generative modeling [43, 44]. In addition,
triangle-based network statistics such as the clustering coefficient
are used extensively in the social sciences [12, 17, 31, 60].

Nearly all of the algorithmic literature on scalable counting or
enumeration of triangles focuses on unweighted graphs. However,
many real-world network datasets have a natural notion of weight
attached to the edges of the graph [5]. For example, edge weights
can capture tie strength in social networks [59], traffic flows in
transportation networks [27], or co-occurrence counts in projec-
tions of bipartite networks [62]. Such edge weights offer additional
insight into the network structure. Moreover, edge weights can
enrich the types of small subgraph patterns used in analysis. For
instance, the network clustering coefficient has been generalized to
account for edge weights [37, 38]; in these cases, a triangle is given
a weight derived from the weights of its constituent edges. Roughly
speaking, the a triangle’s weight is typically some combination of
the arithmetic mean, geometric mean, minimum, and maximum
of the edge weights of the triangle. All that being said, we still
lack algorithms for fast analysis of modern large-scale weighted
networks, especially for weighted triangle listing and counting.

In applications of weighted triangles in this big data regime, it
can often suffice to retrieve only the k triangles of largest weight
for some suitable k. For example, in large online social networks,
the weight of an edge could reflect how likely it is for users to com-
municate with each other, and top weighted triangles and cliques
in this network could be used for group chat recommendations. In
such a scenario, we would typically only be interested in a small
number of triangles whose nodes are very likely to communicate
with each other as opposed to finding all triangles in the graph.

Another application for finding top-weighted triangles is in pre-
diction tasks for higher-order network interactions. The goal of
“higher-order link prediction” is to predict which new groups of
nodes will simultaneously interact (such as which group of scien-
tists will co-author a paper in the future) [6]. In this setting, existing
algorithms first create a weighted graph where an edge weight is
the number of prior interactions that involve the two end points.

Technical Presentation

After, top-weighted triangles in this graph are predicted to appear
as higher-order interactions in the future (weight here is measured
by a generalized mean of the triangle’s edge weights). Again, it is
not necessary to find all triangles since only the top predictions will
be acted upon. Existing triangle enumeration algorithms do not
scale to massive graphs for these problems, and we need efficient
algorithms for retrieving triangles in large weighted graphs.

In this work, we address the problem of enumerating the top-
weighted triangles in a weighted graph. To be precise, let G =
(V,E, w) be a simple, undirected graph with positive edge weights
w. We define the weight of a triangle (i, j, k) with edge weights w;;,
Wik, and w;y to be the p-mean of the edge weights:

1/p

mp(iij. k) = %(ij e (1)
Given G, an integer parameter k, and a scaling factor p, we develop
algorithms to extract the top-k triangles in G. We use top-k to refer
to the triangles having the k largest weights, or in other words,
the k heaviest triangles. Special cases of the p-mean include the
arithmetic mean (p = 1), geometric mean (p = 0), and harmonic
mean (p = —1), and in general the p-mean is a flexible measure
for the weight of a triangle. Furthermore, the p-mean subsumes
measures of weighted triangles from prior studies [6, 38].

At a high level, we develop two families of algorithms for finding
top-weighted triangles. The first family is deterministic and opti-
mized for extracting top-k weighted triangles for small k, typically
up to a few tens of thousands (Section 3). These algorithms take
advantage of the heavy-tailed edge weight distribution common
in real-world networks. In the most general case, we show that
under a modified configuration model, these algorithms are even
“distribution-oblivious,” in the sense that they can automatically
compute optimal hyper-parameters to the algorithm for a wide
range of input graph distributions. Additionally, the algorithmic
analysis is done in a continuous sense (rather than discrete), which
may be of independent interest. The second family of algorithms is
randomized and aims to find many heavy triangles that are not nec-
essarily the top-k (Section 4). We show how this family of sampling
algorithms is connected to prior sampling algorithms for counting
triangles on unweighted graphs [48]. Furthermore, we show that
these sampling algorithms are easily parallelizable.

A carefully tuned parallel implementation of our deterministic
algorithm performs well across a broad range of large weighted
graphs, even outperforming the fast random sampling algorithms
that are not guaranteed to enumerate all of the top-weighted tri-
angles. A parallel implementation running on a commodity server
with 64 cores can find the top 1000 weighted triangles in under 10
seconds on several graphs with hundreds of millions of weighted
edges and in 30 seconds on a graph with nearly two billion weighted
edges. We compare this with the off-the-shelf alternative approach,
which would be an intelligent triangle enumeration algorithm that
maintains a heap of the top-weighted triangles. Our proposed algo-
rithms are orders of magnitude faster than this standard approach.

2 ADDITIONAL RELATED WORK

Due to wide applicability, there is a plethora of research on un-
weighted triangle-related algorithms. In the context of enumeration

296

WSDM ’20, February 3-7, 2020, Houston, TX, USA

algorithms, recent attention has focused on the distributed and
parallel setting [3, 14, 41, 53]. These algorithms typically employ
an optimized brute force method on each machine [10, 30], with
the main algorithmic challenge in deciding how to partition the
data amongst the machines. Although each machine uses a brute
force algorithm, early research shows that these algorithms run in
time almost linear in the number of edges so long as the degeneracy
of the graph is small [13], which has led to efficient enumeration
algorithms [8, 53]. For comparison with our methods, we modify
such a fast enumeration method (specifically Nodelterator++ [53])
to retain the top-k weighted triangles. Although enumeration algo-
rithms are agnostic to edge weights, the sheer number of triangles in
massive graphs renders such an approach prohibitively expensive.

When triangle enumeration is infeasible, algorithms focus instead
on triangle counts or graph statistics such as clustering coefficients.
Again, these statistics are in the unweighted regime, as only the
number of triangles are considered. There is a progression of sam-
pling methods depending on what kind of structures one is sampling
from the graph. At a basic level, edge-based sampling methods sam-
ple an edge and counts all incident triangles on that edge. So-called
wedge-based methods sample length-2 paths [48], and this concept
has been generalized for counting 4-cliques [26]. Finally, tiered-
sampling combines sampling of arbitrary subgraphs to count larger
subgraphs (with a focus on 4-cliques and 5-cliques) [52]. Beyond
enumeration and sampling, there are several other triangle-based
algorithms, such as graph sparsification [19, 39, 56], spectral and
matrix methods [2, 55], and approaches for computing clustering
and closure coefficients [42, 47, 48, 63]. Hasan and Dave provide a
deeper review on triangle counting [22].

All of the above methods are for triangles. These ideas have
been extended in several ways. There are sampling methods for
estimating counts of more general motifs [1, 11, 25] and motifs
with temporal structure [32] as well as parallel clique enumeration
methods [16]. Still, these methods do not work for weighted graphs,
where subgraph patterns appear in generalizations of the clustering
coefficient [36] as well as in graph decompositions [50].

3 DETERMINISTIC ALGORITHMS

We begin by developing two types of deterministic algorithms for
finding the top-k weighted triangles in a graph, where the triangle
weight is a generalized p-mean of its edge weights as defined in
Eq. (1). A robust baseline is to use a fast triangle enumeration
algorithm for unweighted graphs, compute the weight on each
triangle, and pick out the top-k weighted triangles (or, to save
memory, maintain a heap of the top-weighted triangles). In our
tests, we use an optimized sequential version of Nodelterator++ [8],
which is the basis for many parallel enumeration algorithms. We
call this a “brute force” approach. Although faster, parallel versions
of the brute force approach exist, our results in Section 5 show that
brute force with perfect parallelism would require over 2000 cores
to beat our sequential deterministic algorithm in certain cases.
The brute force approach is agnostic to the distribution of edge
weights—it is the same regardless of the weights. However, we
expect that triangles of large weight are formed by edges of large
weight. We exploit this intuition below to develop faster algorithms.

Technical Presentation

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Algorithm 1: Static heavy-light algorithm for finding top-
weighted triangles.

Algorithm 2: Dynamic heavy-light algorithm for finding
the top-k weighted triangles.

Input: Weighted graph G = (V, E, w), scaling p, number of
triangles k
1 He—{e€E:we>r1}
2 T « all triangles formed by edges in H
3 return k triangles in T with largest p-mean weight

At a high level, our main deterministic algorithm will try to dynam-
ically partition the edges into “heavy” and “light” classes based on
edge weight. Following this partition, we find triangles adjacent to
the heavy edges until the top-k heaviest are identified.

A simple heavy-light algorithm. As a precursor to our dynamic
algorithm, consider the following static threshold-based algorithm.
Given a threshold 7, partition the edges into a “heavy” set H = {e |
we > 7} and a “light” set L = E \ H. For a large threshold 7, we
expect most edges to be in L. Thus, the subgraph induced by H is
small, and we can use an enumeration algorithm to get a collection
of heavy triangles (Algorithm 1). This is not guaranteed to find the
heaviest triangles as edges in H might only be in triangles with
edges in L. However, in practice, the heaviest triangles often have
all edges in H. With no additional asymptotic cost, we can also use
existing enumeration algorithms to find triangles with just one or
two heavy edges. Unfortunately, the constant factor slow-down
substantially increases running time on real-world graphs.

In practice, we find that this simple algorithm vastly outperforms
brute force and can always find the top-weight triangle given a
proper threshold; thus, this method is a robust baseline. Nonetheless,
there are a couple of issues with this “static” heavy-light algorithm.
The first is that since the algorithm relies on a static threshold 7 to
partition the edges into light and heavy sets, many more triangles
may be enumerated than is necessary. The second is the difficulty
in finding an appropriate threshold 7 given no prior knowledge of
the input graph. In the next section, we develop a dynamic variant
of Algorithm 1 to deal with these issues.

3.1 Dynamic heavy-light algorithm

We now develop a dynamic algorithm that uses the concepts of Al-
gorithm 1 but is significantly more efficient. Suppose we preprocess
the edges E = {ep, €2, ..., em—1} so that they are sorted by decreasing
weight (w; > w;ii1 where w; denotes the weight of the i-th edge).
Our dynamic heavy-light algorithm maintains a dynamic partition
of the edges into three sets based on weight:

e S={e,...,ep} are the “super-heavy” edges of the h largest
weights;
e H={ey,1,...,e} are the “heavy” edges consisting of the

next [— h edges of largest weights; and
o L ={ey4q,.-.,em—1} are the remaining “light” edges that
are neither heavy nor super-heavy.
As the algorithm evolves, we adjust the sets S, H, and L by changing
the values of h and I. Any triangle can be broken down into a
combination of super-heavy, heavy, and light edges. As a first-order
approximation, we would expect the heaviest class of triangles
to have three super-heavy edges, the next heaviest to have two
super-heavy edges and one heavy edge, and so on down to the case
of three light edges. Furthermore, by considering the edges in a

297

Input: Weighted graph G = (V, E, w), scaling p, number of
triangles k, parameter ap.
1 Sort E in decreasing order of weight
2 Initialize threshold 7 = oo, triangle set T = 0
3 Initialize partitions S=H =0,L =E
4 Initialize edge pointers h =1 = -1
// We take the convention that e_; = co.

5 while there are < k triangles above weight r in T do
p

6 if wiyp > w, ", then

7 Move e;,q from L to H.

8 Y = triangles formed by e;,; and 2 edges from SUH

9 Z = triangles formed by e;,{, 1 edge from L, and 1
edge from S UH

10 T=TUu(YuZz), 1=1+1

11 else

Move e, from H to S.

Y = triangles formed by e}, and 2 edges from L
T=TUY, h=h+1

end

Update threshold 7 = W‘Z + 2W‘f

end

12

13

14

15

16

17

8 return k triangles in T with largest p-mean weight

=

specific order, we can also obtain useful bounds on the weight of the
heaviest triangles we have not yet enumerated. Suppose we have
enumerated all triangles containing three super-heavy edges. Then
the heaviest triangle not yet enumerated must have at least one
edge from H or L. This upper bounds the p-th power of the weight
of that triangle to be %(ZWOP + WZ). Our method tries to enumerate
triangles so that this bound decreases as quickly as possible.

Algorithm 2 outlines our procedure. Each step of the algorithm
consists of two steps: (i) update the partition by moving an edge to
a heavier class; and (ii) enumerate triangles whose edges come from
certain classes. At the end of each step, we maintain the invariant
that we have enumerated all triangles with at least one super-heavy
edge or at least two heavy edges. This invariant allows us to obtain
a bound 7 on the heaviest triangle we have not yet enumerated. The
constant @y of Algorithm 2 determines how edges get promoted to
heavier classes; this parameter is used in our analysis to optimize the
expected decrease in the threshold . We will specify this constant
later in our analysis. When the algorithm begins, the partitions are
initialized with S = H = 0, L = {eq,...,em-1}, and 7 = co. The
algorithm runs until it enumerates k triangles above a dynamically
decreasing threshold 7 = W‘Z + 2w‘lO (Line 16 of Algorithm 2).

Let 7* be the weight of the k-th heaviest triangle. As soon as
7 < 7*, we will have enumerated all of the top-k triangles. This al-
gorithm solves both issues of our static heavy-light algorithm. If the
threshold 7 hits * exactly, we only enumerate around k triangles.
As 7 is computed on the fly, there is no need to choose the threshold
at which we partition the edges. In the following sections, we show
the algorithm’s correctness and derive the optimal parameter value
of ap, or show how an optimal @) can be implicitly computed.

Technical Presentation

3.2 Algorithm correctness

We claim that at the end of each iteration of the while loop in
Algorithm 2, T contains the top-|T| weighted triangles in the graph.

We first bound the heaviest possible triangle not yet enumerated.
Observe that when an edge moves from L to H (Line 6), all triangles
including that edge and at least one edge from SUH are enumerated
and when an edge moves from H to S (Line 11) all triangles includ-
ing that edge are enumerated. Thus, the if-else clause maintains
the invariant that all triangles with at least one edge from S or at
least two edges from H are enumerated. Now consider any triangle
with weight at least wﬁ + ZW;7 . By case analysis, there must either
exist two edges with weight at least w;, or one edge with weight
at least wy,. This means that either two edges are from H, or one
edge is from S. In either case, our invariant ensures that the trian-
gle must have been enumerated. Similar reasoning shows a tight

threshold is w? . + w” _ + w

h+1 I+1 1+2’
an unenumerated triangle. However, this sum is at most WZ + 2wf
due to the monotonicity of the edge weights.

Since 7 is monotonically decreasing, this implies that at the end
of each iteration of the while loop in Algorithm 2, T contains the
top-|T| weighted triangles in the graph (there may be triangles
not enumerated with equal weight to one of the triangles in T).
Therefore, as a corollary of this claim, Algorithm 2 correctly returns
the top-k triangles, provided the graph has at least k triangles.
Note that correctness is independent of the parameter a;,. We next
analyze how we might set this parameter in an optimal way.

as ey, 1, €141, €142 is potentially

3.3 Optimizing parameter settings

We now derive principled ways for setting the parameter aj in
Algorithm 2. Although the algorithm is discrete, we present a simple
analysis using continuous differentials. Let wy(t) and w;(t) be the
weight of edges ey, and e; at time t respectively (one can think of
t as a continuous counter for the while loop iterations). At time ¢,
the threshold is 7(t) = wp,(¢)P + 2w;(t)P. As a proxy to maximizing
the enumeration rate, we maximize the rate at which the threshold
decreases. To do this, we maximize the derivative dz /d¢ by adjusting
wp(t) and wj(t) based on the input parameter a,.

The derivatives dwy, /dt and dw;/dt approximate the maximum
change in wy, or w; “per unit of computation time.” In each iteration
of the while loop, we can choose to spend time decreasing wy, or
wj. Thus, a rough approximation to the derivatives is the ratio of
the change in weight (by incrementing either the k or I pointer) to
the computational cost of changing the corresponding pointer.

Let w.p, := max{w : w < wy} and let CDF(w) and PDF(w) be
the cumulative and probability density functions of the edge weight
distribution. If we move the edge pointer ey, the average change in
wy, is the ratio of (wy, — w.y,) to the number of edges of weight wy,.
The number of edges of weight wy, is proportional to CDF(wy,) —
CDF(w_p,), so the average change in wy, is approximately

wp — Wep N 1
CDF(wy) — CDF(w.p,) ~ PDF(wp)

@

Similarly, the change in wy is approximately 1/PDF(w;).

Analysis for power-law distributed weights. At this point, we
are free to continue our analysis with any model for for the distri-
bution of weights on G. One important analyzable case is a power

298

WSDM 20, February 3-7, 2020, Houston, TX, USA

Dataset: tags-stack-overflow Dataset: wikipedia

10-1] ® H best fit powerlaw 102 Hl best fit powerlaw
B empirical fraction W empirical fraction
1072 1073
=4 3 [=
_g 10~ _g 104
E 10~ E 10-5
&= =
105 106
-6
10 107
10° 10' 102 10° 10* 10° 102 10° 10% 10° 10° 107 10°
edge weight edge weight

Figure 1: Edge weight distribution in two datasets (see Section 5.1
for a description of the datasets). These plots suggest that a power
law distribution on edge weights is a reasonable assumption. With
this, we have a simple condition to choose which pointer to move
in the dynamic heavy-light algorithm (Line 6 of Algorithm 2).

law distribution on the weights, and this type of distribution is a
reasonable model for several of our datasets (Fig. 1). Thus in this
section, we carry out the analysis assuming that the edge weights
follow a power law distribution with parameter f.

Formally, let X be a random variable. We say X follows a power
law distribution with parameter f > 1 and some constant a > 0
if (X > x) ~ ax'"P for large x. Thus, the probability that a
random edge weight is greater than or equal to w is O(w'=#) and
this implies that the probability that a random edge weight is equal
to w is O(w™#) for large w. Using this assumption we can write the
change in wy, and wy as O(Wf) and O(wf) respectively.

Now we analyze the computational cost of changing e, and e;.
To do this we impose a simple configuration model on the way
that G is generated [20]. We assume that each vertex v draws its
degree d from a univariate degree distribution 9 with the sum of
degrees being even. We assume that the graph is generated from
the following random process: (1) each vertex v starts out dy, stubs.
While there are stubs available, two random stubs are drawn from
the set of all stubs, and the vertices corresponding to those stubs are
connected. Furthermore, upon connection a random edge weight
drawn from the edge weight distribution is assigned to the edge.
At the end, all self-loops in the graph are discarded. Note that these
assumptions are quite strong, however we find that even this simple
analysis yields good estimates for optimal values of @ in practice
(see Section 5). We now analyze the expected cost to increment the h
or [pointer. Let G := G[SU H] and G := G[L], and let dyy denote
the average degree in a graph U. With appropriate data structures
for checking the existence of edges in Gy, the cost of incrementing
h is bounded by the degree sum of the endpoints of e, in G, which
is on average O(dg,). Assuming that Gy has approximately as
many edges as G (valid in the case of small k), dg, = dg. Thus the
computational cost of moving e, is approximately O(dg).

Similarly, the cost of moving e; is bounded by the degree sum of
the endpoints of ¢; in Gy, which is on average O (dg,,). Since the
number of edges in Gy is exactly |S U H|, the assumptions on the
weight distribution say that JGH = O(CDF(wj)dg). Thus, the cost

of moving e; is approximately O(wll_ﬁ dg). Combining this with
Eq. (2), we obtain the following expressions for the derivatives
dwy,/dt = 0wl /dg). dwi/dt = 0w dg). ()

Since w; and wy, are decreasing, both derivatives are monotoni-
cally decreasing as the algorithm progresses. This property means

Technical Presentation

that greedily choosing the pointer to increment is optimal. The
threshold decrease rate is dz/dt = pwi_ldwh/dt + 2pw§’_1dwl/dt.
Since at each iteration of the algorithm we can only choose to
change one of e, or e;, we should greedily change the pointer that
gives the most “bang per buck”, i.e., choose e, and e; such that

_ _ 9P
wh ™ dwy /dt = 2w dwy/dt = wy, ~O(wl P*””). o

In other words, we should maintain the edge pointers ey, and e; such
that the weights are separated geometrically by a, = 2 - p—+:rﬁ
Distribution-oblivious dynamic heavy-light algorithm. The
analysis in the previous section yields a fast algorithm given a
known prior on the power law parameter of the weight distribution.
In many applications, this can be easily and robustly estimated. In
this section, we present a method for which the parameter a;, can be
implicitly estimated on the fly. This does not change the correctness
of the algorithm but can change the running time in practice.

Although we assumed a power-law distribution on the edge
weights, our analysis is actually much more general than that. As
long as the derivatives dwy,/dt and dw;/dt are monotonic, our
greedy method of incrementing the pointers will be optimal. For the
derivatives to be monotonically decreasing, the only requirement is
that the PDF of the weight distribution is monotonically increasing
as the weight decreases. This includes a wide family of distributions
such as power laws and uniform distributions.

Furthermore, the analysis we used to derive a;, can also be used to
compute a implicitly. By maintaining an estimate of the derivatives
dwe,, /dt and dwe, /dt as the algorithm runs, we can compute all
the derivatives used in the analysis on the fly and greedily change
the pointer with higher value of wP~1dw/dt (Eq. (4)).

Following the analysis in the previous section, the change in
weight for ey, is estimated by the ratio of wj, — w_j, and the number
of edges that have weight wy, and similarly for e;. The compu-
tational cost of changing e; can be estimated by the sum of the
degrees of the endpoints of e; in Gy, and similarly for ej, with Gy.
Consequently, we can obtain a “distribution-oblivious” algorithm
that works on a family of monotone distributions.

In our experiments, we find that this automatic way of implicitly
computing a, is successful, although in practice noise in the deriv-
ative estimates may cause this algorithm to be slower than using a
fixed value of @). We find that setting o) = 1.25 works well.

4 RANDOM SAMPLING ALGORITHMS

In this section, we develop random sampling algorithms designed
to sample a large collection of triangles with large weight. More
formally, given a generalized p-mean as a weight function, these
algorithms all sample triangles exactly proportional to their weight.
The main difference between the algorithms is how efficiently they
can generate samples.

We specifically generalize two types of sampling schemes that
have been used to estimate triangle counts in unweighted graphs.
The first scheme is based on edge sampling [28, 39, 57], where
we first sample one edge and then enumerate triangles adjacent
to the sampled edge. The second method uses ideas from wedge
sampling [48], where we sample two adjacent edges and check
whether these two edges induce a triangle. Although these ideas

299

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Algorithm 3: Weighted edge sampling (ES) algorithm

Input: Weighted graph G = (V, E, w), scaling p, number of
iterations t, number of triangles k
1 Initialize triangle set T « 0
2 for iteration1,...,t do
3 Sample edge (a, b) o< Wzb
4 for each neighbor ¢ € N(a) N N(b) do

5 ‘ T —TU{(ab,c)}
6 end
7 end

8 return k triangles in T with largest p-mean weight

were designed for triangle counting in unweighted graphs, we
show how they can be adapted and extended to design algorithms
that sample highly weighted triangles. The major benefits of these
algorithms are that they are simple to implement and also easy
parallelize, since samples can be trivially generated in parallel.
Throughout this section, we assume that our weighting function
for a triangle is any generalized p-mean as given in Eq. (1). Since the
weight ordering of triangles is independent of the scaling by 1/3
and the exponent 1/p, we can consider the more simple function:

wp(abc) =wh +wh +wh . (5)

For a given vertex a € V, we will use N(a) to denote the set of
neighbors of a: N(a) = {b € V | (a,b) € E}, and d, to be the
(unweighted) degree of node a (i.e., dg = |[N(a)|).

4.1 Weighted edge sampling

We first discuss an edge sampling (ES) algorithm (Algorithm 3).
The algorithm is based on a simple two-step procedure. First, we
sample a single edge according to the following distribution:

Pr(sample edge (a, b)) := wf:b/Z, Z = Y(u,v)eE WZU.

Second, after we sample an edge (a, b), we enumerate all triangles
(a, b, c) incident to (a, b). These two steps are repeated several times.

The above procedure has a few issues. First, it takes O(d, + dp)
time to find triangles adjacent to an edge (a, b), which can be ex-
pensive in graphs where high-degree nodes are connected; we
get around this in our next sampling scheme. Second, there is no
guarantee that the above procedure will generate at least k unique
triangles. Moreover, even if the algorithm samples a sufficient num-
ber of triangles, it is not necessarily the case that these are the
top-weighted triangles. The latter issue is an inherent limitation of
random sampling schemes in general. All that being said, the pro-
cedure has the nice property of being biased in terms of sampling
triangles with high weight, formalized as follows.

PROPOSITION 4.1. The probability that a triangle (a, b, ¢) is enu-
merated in a given iteration of Algorithm 3 is wp(a, b,c)/Z, where

Z=YecE W€~

Proor. The probability that any edge (u, v) is sampled initially
is wy, o,/Z. Triangle (a, b, c) is enumerated if any one of if edge

(a,), (b, c), or (a, c) is this sampled edge. o

While ES is simple to describe, making the algorithm fast in
practice requires careful implementation. First, a natural way of

Technical Presentation

Algorithm 4: Weighted wedge sampling (WS) algorithm

Input: Weighted graph G = (V, E, w), scaling p, number of
iterations t, number of triangles k
1 Initialize triangle set T < 0
2 for iteration1,...,t do
3 Sample node a with probability as in Eq. (6)
4 Sample b € N(a) with probability as in Eq. (7)
5 Sample ¢ € N(a) with probability as in Eq. (8)

6 if nodes a, b, ¢ form a triangle then
7 ‘ T «— TUA{(a,b,c)}
s end

9 return k triangles in T with largest p-mean weight

sampling an edge is to simply pick one at random with probabil-
ity proportional to its weight, but this is slow because there are a
large number of edges. However, there is typically a much smaller
number of unique edge weights. Thus, we first first sample an edge
weight and then sample an edge with this weight. Pre-processing
of sampling probabilities for this approach involves iterating over
the edges and computing two quantities—a cumulative edge weight
(in order to sample an edge weight) and a map of edge weight
to edges (in order to sample an edge given an edge weight). This
pre-processing step can take much longer than the sampling loop if
implemented naively. In a sorted list of edges, all edges that share
the same edge weight lie in a contiguous chunk, and this signifi-
cantly speeds up the process of computing the above quantities.

4.2 Weighted wedge sampling

One of the issues with the simple edge sampling scheme described
above is that we have to look over the neighbors of the end points
of the sampled edge in order to find triangles. This can be expensive
if the degrees of these nodes are large. An alternative approach is
to sample adjacent edges, called wedges, with large weight and then
check if each wedge induces a triangle. This scheme is called wedge
sampling (WS) and has been used as a mechanism for estimating
the total number of triangles in an unweighted graph [48, 58].

Algorithm 4 outlines the overall sampling scheme. Each iteration
of the algorithm has three steps. First, we sample a node with a bias
towards nodes participating in heavily weighted edges. Specifically,
let D(a) = 2 pen(a) wa denote the sum of edge weights incident
to a. We sample node a according to the following distribution:

Pr(sample a) = Wi(a)/Z; =2 - d, - D(a)/Z1, (6)

where Z is a normalizing constant. Next, we sample a neighbor of
node a, again with a bias towards nodes that participate in heavily

weighted edges. The specific distribution is

Pr(sample b € N(a) | a) = Wa(b | a)/Z2 o
7
i= (da - W', + D(a))/ Zs,

where Z3 is a normalizing constant. We have now produced a single
edge and want to produce an adjacent edge. We do this by sampling
another neighbor of a, this time with probability

Pr(sample ¢ € N(a) | a,b) = Ws(c | a,b)/Z3

= (Whe +w0,)/Zs, ©

300

WSDM ’20, February 3-7, 2020, Houston, TX, USA

where Z3 is again a normalizing constant. If the sampled wedge
{(a, b), (a, ¢)} induces a triangle, then we add it to our collection.

Similar to the unweighted scheme of Seshadhri et al. [48], we
have the following result.

PROPOSITION 4.2. A given iteration of Algorithm 4 samples trian-
gle(a, b, ¢) with probability wy(a, b, ¢)/ Z, where Z = 3.,y dv-D(v).

Proor. The normalizing constants in Egs. (6) to (8) are Z; =
2% vevdo - D(v), Zy = Wi(a), and Z3 = Wa(b | a) Thus, the
probability of sampling wedge (a, b, ¢) centered on a is equal to

Wbl

Z L 73 Z Z
Thus, the probability of sampling any of the three wedges consisting
of nodes a, b and c is equal to

(Wl + Whe)/Z1 + (whe +])1 21 + (Wh, + W) 24,

Plugging in the expression for Z; shows that this probability is

equal to wy(a, b, ¢)/Z. Since triangle (a, b, ¢) is sampled if any of its
three wedges is sampled, this yields the desired result. O

4.3 Number of samples

Propositions 4.1 and 4.2 says that Algorithms 3 and 4 tend to sample
edges with large weight, but this does not guarantee that the top
weighted triangles are enumerated. Standard probabilistic analysis
can give us some sense on how many iterations we need for a
given triangle. Specifically, if ¢ = wp(a, b, ¢)/Z is the probability of
sampling a triangle (a, b, ¢), then for any § € (0,1), s > log(1/5)/q
samples guarantees that (a, b, c¢) is enumerated with probability at
least 1 — §. To see this, let r = 1 — (1 — q)° denote the probability
that triangle (a, b, ¢) is sampled at least once in s samples. Using
the fact that 1 — x < exp(—x), we get that r > 1 —exp(—sq) > 1-6.
This analysis says that the normalizing constant for wedge sam-
pling drives up the number of samples required to see top weighted
triangles with high probability, as compared to edge sampling. How-
ever, obtaining samples in Algorithm 3 can be more costly as we
might have to find common neighbors of large-degree nodes. It is
not immediately clear which algorithm is better, but our results in
the next section show that edge sampling is superior in practice.

5 NUMERICAL EXPERIMENTS

We now report the results of several experiments measuring the
performance of our deterministic and random sampling algorithms
compared to competitive baselines such as the static heavy-light
thresholding method from Algorithm 1.! We find that edge sam-
pling (ES) works much better than wedge sampling (WS), but our
deterministic heavy light algorithm is even faster across a wide
range of datasets, outperforming the baselines by orders of magni-
tude in terms of running time.

5.1 Data

We used a number of datasets in order to test the performance of
our algorithms.? Table 1 lists summary statistics of the datasets and
we describe them briefly below.

'Implementations of our algorithms and code to reproduce results are available at

https://github.com/raunakkmr/Retrieving-top- weighted-triangles- in-graphs.
’Data available at http://www.cs.cornell.edu/~arb/data/index html.

Technical Presentation

Table 1: Summary statistics of datasets.

d ight
dataset #nodes # edges _cdeeweisht
mean max
tags-stack-overflow 50K 4.2M 13 469

threads-stack-overflow 2.3M 21M 1.1 546
Wikipedia-clickstream 4.4M 23M 347 817TM
Ethereum 38M 103M 2.8 1.9M

AMiner 93M 324M 1.3 13K

reddit-reply 8.4M 435M 1.5 165K

MAG 173M 545M 1.7 38K

Spotify 3.6M 19B 86 2.8M

tags-stack-overflow [6]. On Stack Overflow, users ask, answer,
and discuss computer programming questions, and users annotate
questions with 1-5 tags. The nodes in this graph correspond to
tags, are the weight between two nodes is the number of questions
jointly annotated by the two tags.

threads-stack-overflow [6]. This graph is constructed from a
dataset of user co-participation on Stack Overflow question threads.
Nodes correspond to users and the weight of an edge is the number
of times that two users appeared in one of these threads.
Wikipedia-clickstream [61]. This graph is derived from Wikipedia
clickstream data from request logs in January, 2017 that capture
how users transition between articles (only transitions appearing at
least 11 times were recorded). The nodes of the graph correspond to
articles and the weight between two nodes is the number of times
users transitioned between the two pages.

Ethereum. Ethereum is a blockchain-based computing platform
for decentralized applications. Transactions update state in the
Ethereum network, and each transaction has a sender and a receiver
address. We create a graph where the nodes are addresses and the
weight between two nodes is the number of transactions between
the two addresses, using all transactions on the platform up to
August 17, 2018, as provided by blockchair.com.

AMiner and MAG [49, 54]. These graphs are constructed by two
large bibliographic databases—AMiner and the Microsoft Academic
Graph. We construct weighted co-authorship graphs, where nodes
represent authors and the weight between two nodes is the number
of papers they have co-authored. Papers with more than 25 authors
were omitted from the graph construction.

reddit-reply [24, 32]. Users on the social media web site reddit.com

interact by commenting on each other’s posts. We derive a graph
from a collection of user comments. Nodes are users and the weight
of an edge is the number of interactions between the two users.
Spotify. As part of a machine learning challenge, the music stream-
ing platform Spotify released a large number of user “listening ses-
sions,” each consisting of a set of songs. We constructed a weighted
graph where the nodes represent songs and the weight of an edge
is the number of times that the songs co-appeared in a session.

5.2 Algorithm benchmarking

We evaluate the performance of our proposed algorithms: (i) ran-
dom edge sampling (ES) as in Algorithm 3; (ii) random wedge
sampling (WS) as in Algorithm 4; (iii) the static heavy-light (SHL)
scheme as in Algorithm 1 (see below for how we set the thresholds);
(iv) the dynamic heavy-light scheme (DHL) as in Algorithm 2; (v)

301

WSDM 20, February 3-7, 2020, Houston, TX, USA

-
=)

100

o
©

80

4
o

60

accuracy
©
kS

40

time (seconds)

e
o

20

0.0

0 20 40 60 80 100 % 20 40 60 80 100
percentage of edges labelled heavy percentage of edges labelled heavy

Figure 2: Accuracy and running time as a function of edges labeled
“heavy” by the thresholding for the static heavy-light algorithm (Al-
gorithm 1) on the Ethereum dataset for k = 1,000. As the threshold
decreases, a larger percentage of edges are labelled heavy. This in-
creases the accuracy but also increases the running time. For rea-
sonable accuracy levels, we find that the running time is slower than
our optimized dynamic heavy-light algorithm (Algorithm 2), which
achieves 100% accuracy (see Table 2).

auto heavy-light (auto-HL), which is the distribution-obvlivious
adaptation of DHL that automatically adjusts edge promotion to
optimize the decrease in the threshold. As a baseline, we use an
optimized sequential version of Nodelterator++ [8, 13, 53], which
we call “brute force” (BF). This algorithm iterates over vertices with
decreasing degree, and for each vertex, enumerates triangles that
are formed by neighboring vertices with lower degree. All methods
were implemented in C++, and all experiments were executed on a
64 core 2.20 GHz Intel Xeon CPU with 200 GB of RAM. We used
parallel sorting for all algorithms and parallel sampling for the
random sampling algorithms; other parts of the algorithms were
executed sequentially. We evaluated the algorithms for two values
of k: 1,000 and 100,000, using the arithmetic mean (p = 1 in Eq. (1)).

Recall that DHL (Algorithm 2) uses a power law distribution
model of the edge weights and sets a parameter a;, based on the
power law exponent. We fix &y = 1.25 for our experiments, which
works well across a range of datasets.

The random sampling algorithms are not guaranteed to enu-
merate all of the top-k weighted triangles. Instead, we measure
the performance of these algorithms in terms of running time and
accuracy (the fraction of top-k triangles actually enumerated). We
ran ES long enough to achieve at least 94% (k = 1,000) or 50% (k =
100,000) accuracy on all datasets. We also ran WS long enough for
it to achieve at least 50% accuracy (for both values of k). However,
in practice, its performance is poor, and we terminate the algorithm
if it takes longer than BF to achieve this accuracy level.

Similarly, the static heavy-light algorithm (Algorithm 1) is not
guaranteed to achieve 100% accuracy since it relies on a fixed thresh-
old to partition the edges as heavy and light and only enumerates
triangles formed by heavy edges. As the threshold decreases, a
larger number of edges are labelled heavy. This increases the ac-
curacy but also slows down the algorithm. Figure 2 illustrates this
trade-off on the Ethereum dataset, and a similar trend is observed
on the other datasets. In our experiments, we labelled the top 10%
of edges as heavy and report the accuracy. As we discuss below,
SHL is slower and attains sub-100% accuracy in practice; improving
the accuracy would only make this baseline slower.

Table 2 lists the running times of the algorithms. BF did not ter-
minate on Spotify after 24 hours, so running times for this baseline
are not available on that dataset. We highlight a few important
findings. First, our deterministic methods DHL and Auto-HL excel

Technical Presentation

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Table 2: Running times of all of our algorithms in seconds averaged over 10 runs. BF is brute force enumeration of trian-
gles, which is the out-of-the-box baseline; ES is the parallel edge sampling algorithm (Algorithm 3); WS is the parallel wedge
sampling algorithm (Algorithm 4); DHL is the dynamic heavy-light deterministic algorithm (Algorithm 2); Auto-HL is the
distribution oblivious modification of the dynamic heavy-light discussed in Section 3.3; and SHL is the static heavy-light
threshold deterministic algorithm (Algorithm 1). ES was run to achieve 94% (k = 1,000) or 50% (k = 100,000) accuracy, while
WS was run to achieve just 50% accuracy and was stopped early if taking longer than BF (or longer than SHL on the Spotify
dataset). SHL is an approximation, and we report its accuracy in the final column. Overall, our deterministic algorithms (DHL
or Auto-HL) are fast and achieve 100% accuracy. ES is slightly faster in some cases, but it is approximate.

k dataset BF ES WS DHL Auto-HL SHL Accuracy (SHL)
tags-stack-overflow 1271 0.57 11.28 .08 0.09 0.54 0.99
1000 threads-stack-overflow 3492 131 >34.92 0.53 0.38 1.55 0.55
Wikipedia-clickstream 16.32 14.31 >1632 5.44 7.26 2.02 0.87
Ethereum 5291 9.03 >52.91 8.12 6.94 11.90 0.28
Aminer 243.75 3.72 >243.75 13.35 12.36 43.47 0.32
reddit-reply 4047.62 5.19 341.17 5.02 4.74 102.65 0.51
MAG 512.24 4.92 48.58 29.19 20.89 72.49 0.91
Spotify >86400 60.33 >5300 31.82 30.79 5388.45 1.00
tags-stack-overflow 13.06 0.58 >13.06 0.23 0.23 0.62 0.28
100000 threads-stack-overflow 3399 1.19 >33.99 1.82 1.73 1.63 0.32
Wikipedia-clickstream 17.34 13.64 >17.34 5.49 7.24 2.15 0.13
Ethereum 57.35 10.03 >57.35 18.11 19.87 11.70 0.11
Aminer 245.28 3.45 >245.28 15.38 13.91 43.28 0.24
reddit-reply 3857.57 6.52 >3857.57 6.87 7.49 98.34 0.34
MAG 52480 4.25 >524.80 29.52 21.37 75.97 0.10
Spotify >86400 47.27 >5300 30.57 29.89 5384.17 0.92

at retrieving the top-k triangles. They achieve perfect accuracy and
are orders of magnitude faster than BF. For instance, these algo-
rithms get a 1000x speedup on reddit-reply (k = 1,000) and more
than a 2000x speedup on Spotify (k = 100,000). These algorithms
also outperform SHL by a significant margin in both running time
and accuracy. For example, despite being 30x slower on reddit-reply,
SHL only achieves 50% accuracy (k = 1,000). Again, our determinis-
tic algorithms always achieve 100% accuracy, and do so in a fraction
of the time taken by the baseline methods BF and SHL.

ES performs much better than WS. WS struggles to achieve high
accuracy and is not competitive with the BF baseline or SHL. On
the other hand, ES is quite competitive with even DHL and Auto-
HL. ES retrieves the top 1,000 triangles on the AMiner and MAG
datasets with 99% accuracy at speedups of 2x or 4x over DHL and
Auto-HL. A similar speedup is observed for k = 100,000, but ES only
achieves 50% accuracy in these cases. Even though ES works well in
these cases, our deterministic algorithms are still competitive. We
conclude that intelligent deterministic approaches work extremely
well for finding top weighted triangles in large weighted graphs.

All of our algorithms except BF and WS sort edges by weight in
a pre-procesing step. Surprisingly, this pre-processing step is a com-
putational bottleneck, and parallel sorting is crucial to achieving
high performance. In turn, this negates the possible benefit of paral-
lel sampling for the randomized algorithms over our deterministic
methods, whose main routines are inherently sequential.

302

6 DISCUSSION

Subgraph patterns, and triangles in particular, are used extensively
in graph mining applications. However, most of the existing lit-
erature focuses on counting or enumeration tasks in unweighted
graphs. In this paper, we developed deterministic and random sam-
pling algorithms for finding the heaviest triangles in large weighted
graphs. With some tuning, our main deterministic algorithm can
find these triangles in a few seconds on graphs with hundreds of
millions of edges or in 30 seconds on a graph with billions of edges.
This is orders of magnitude faster than what one could achieve
with existing fast enumeration schemes and is usually much faster
than even our randomized sampling algorithms.

We anticipate that our work will enable scientists to better ex-
plore large-scale weighted graphs and can also spur new algorithmic
developments on subgraph listing and counting in weighted graphs.
For example, an interesting avenue for future research would be the
development of random sampling algorithms that sample triangles
with probability proportional to some arbitrary function of their
weight, chosen to converge to the top weighted triangles faster.
This could make random sampling approaches competitive with
our fast deterministic methods. The edge sampling method can also
be generalized to k-clique sampling by sampling an edge and then
enumerating adjacent k-cliques, and we provide the details in an
extended version of this paper [29]. How to extend the determinis-
tic algorithms to top k-clique enumeration is less clear, so sampling
may be more appropriate for larger clique patterns.

Acknowledgements. This research was supported by NSF Awards
DMS-1830274 and CCF-1617577; ARO Award W911NF19-1-0057;

Technical Presentation

ARO MURI; Simons Investigator Award, Google Faculty Research
Award; Amazon Research Award; and Google Cloud resources.

REFERENCES

(1]

[10]

(1]
[12]

[13

[14

[15]

[16]
[17]

[18

[19]

[20

[21]
[22]

[23]

[24]
[25]
[26]
[27]

[28]

[29]

[30

[31

Nesreen K. Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. 2014.
Graph sample and hold: a framework for big-graph analytics. In KDD.

Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and Counting Given
Length Cycles. Algorithmica 17, 3 (1997), 209-223.

Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe. 2013. PATRIC: a
parallel algorithm for counting triangles in massive networks. In ICDM. 529-538.
Haim Avron. 2010. Counting triangles in large graphs using randomized matrix
trace estimation. In Workshop on Large-scale Data Mining: Theory and Applica-
tions.

Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, and Alessandro
Vespignani. 2004. The architecture of complex weighted networks. Proceed-
ings of the national academy of sciences 101, 11 (2004), 3747-3752.

Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Klein-
berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of
the National Academy of Sciences 115, 48 (2018), E11221-E11230.

Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order organi-
zation of complex networks. Science 353, 6295 (2016), 163-166.

Jonathan W. Berry, Luke A. Fostvedt, Daniel J. Nordman, Cynthia A. Phillips, C.
Seshadhri, and Alyson G. Wilson. 2015. Why Do Simple Algorithms for Triangle
Enumeration Work in the Real World? Internet Mathematics 11, 6 (2015), 555-571.
Jonathan W Berry, Bruce Hendrickson, Randall A LaViolette, and Cynthia A
Phillips. 2011. Tolerating the community detection resolution limit with edge
weighting. Physical Review E 83, 5 (2011), 056119.

Jonathan W Berry, Daniel] Nordman, Cynthia A Phillips, and Alyson G Wilson.
2010. Listing triangles in expected linear time on a class of power law graphs.
Technical Report. Technical report, Sandia National Laboratories.

Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro
Panconesi. 2017. Counting Graphlets: Space vs Time. In WSDM.

Ronald S Burt. 2007. Secondhand brokerage: Evidence on the importance of local
structure for managers, bankers, and analysts. AMJ (2007).

Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing
Algorithms. SIAM . Comput. 14, 1 (1985), 210-223.

Shumo Chu and James Cheng. 2011. Triangle listing in massive networks and its
applications. In KDD. 672-680.

Noshir S Contractor, Stanley Wasserman, and Katherine Faust. 2006. Testing mul-
titheoretical, multilevel hypotheses about organizational networks: An analytic
framework and empirical example. Academy of Management Review (2006).
Maximilien Danisch, Oana Denisa Balalau, and Mauro Sozio. 2018. Listing k-
cliques in Sparse Real-World Graphs. In WWW. 589-598.

Nurcan Durak, Ali Pinar, Tamara G Kolda, and C Seshadhri. 2012. Degree relations
of triangles in real-world networks and graph models. In CIKM. 1712-1716.
Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. 2017. Approximately Count-
ing Triangles in Sublinear Time. SIAM J. Comput. 46, 5 (jan 2017), 1603-1646.
Roohollah Etemadi, Jianguo Lu, and Yung H. Tsin. 2016. Efficient Estimation of
Triangles in Very Large Graphs. In CIKM. 1251-1260.

Bailey K. Fosdick, Daniel B. Larremore, Joel Nishimura, and Johan Ugander. 2018.
Configuring Random Graph Models with Fixed Degree Sequences. SIAM Rev.
(2018).

David F Gleich and C Seshadhri. 2012. Vertex neighborhoods, low conductance
cuts, and good seeds for local community methods. In KDD. 597-605.
Mohammad Al Hasan and Vachik S. Dave. 2018. Triangle counting in large
networks: a review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8, 2 (2018).
Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato
Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. 2012. RolX:
structural role extraction & mining in large graphs. In KDD.

Jack Hessel, Chenhao Tan, and Lillian Lee. 2016. Science, AskScience, and Bad-
Science: On the Coexistence of Highly Related Communities. In ICWSM. 171-180.
Shweta Jain and C. Seshadhri. 2017. A Fast and Provable Method for Estimating
Clique Counts Using Turan’s Theorem. In WWW. 441-449.

Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path Sampling: A Fast and Provable
Method for Estimating 4-Vertex Subgraph Counts. In WWW. 495-505.

Junteng Jia, Michael T. Schaub, Santiago Segarra, and Austin R. Benson. 2019.
Graph-based Semi-Supervised & Active Learning for Edge Flows. In KDD.
Mihail N Kolountzakis, Gary L Miller, Richard Peng, and Charalampos E
Tsourakakis. 2012. Efficient triangle counting in large graphs via degree-based
vertex partitioning. Internet Mathematics 8, 1-2 (2012), 161-185.

Raunak Kumar, Paul Liu, Moses Charikar, and Austin R Benson. 2019. Retrieving
Top Weighted Triangles in Graphs. arXiv:1910.00692 (2019).

Matthieu Latapy. 2008. Main-memory triangle computations for very large
(sparse (power-law)) graphs. Theor. Comput. Sci. 407, 1-3 (2008), 458—-473.
Barbara S Lawrence. 2006. Organizational reference groups: A missing perspec-
tive on social context. Organization Science 17, 1 (2006), 80—100.

303

(32]

[33

(34

[35

[37

[38

[39

[40

[41]

[42]

=
&

[44

[45

[46]

[47

[48

‘o
=

v
by

o
&,

T T T T
S 8 A

o
=)

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Paul Liu, Austin R. Benson, and Moses Charikar. 2019. Sampling Methods for
Counting Temporal Motifs. In WSDM. 294-302.

Priya Mahadevan, Calvin Hubble, Dmitri Krioukov, Bradley Huffaker, and Amin
Vahdat. 2007. Orbis: rescaling degree correlations to generate annotated internet
topologies. In ACM SIGCOMM Computer Communication Review.

Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal
Ayzenshtat, Michal Sheffer, and Uri Alon. 2004. Superfamilies of Evolved and
Designed Networks. Science (2004).

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.
Science 298, 5594 (2002), 824-827.

Jukka-Pekka Onnela, Jari Saramaki, Janos Kertész, and Kimmo Kaski. 2005. Char-
acterizing Motifs in Weighted Complex Networks. In AIP.

Jukka-Pekka Onnela, Jari Saramiki, Janos Kertész, and Kimmo Kaski. 2005. In-
tensity and coherence of motifs in weighted complex networks. PRE (2005).
Tore Opsahl and Pietro Panzarasa. 2009. Clustering in weighted networks. Social
networks 31, 2 (2009), 155-163.

Rasmus Pagh and Charalampos E Tsourakakis. 2012. Colorful triangle counting
and a mapreduce implementation. Inform. Process. Lett. 112, 7 (2012), 277-281.
Natasa Przulj. 2007. Biological network comparison using graphlet degree distri-
bution. Bioinformatics 23, 2 (2007), e177-e183.

Mahmudur Rahman and Mohammad Al Hasan. 2013. Approximate triangle
counting algorithms on multi-cores. In IEEE Big Data. 127-133.

Mahmudur Rahman and Mohammad Al Hasan. 2014. Sampling Triples from
Restricted Networks using MCMC Strategy. In CIKM. 1519-1528.

Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. 2007. An introduction
to exponential random graph p* models for social networks. Social Networks 29,
2 (May 2007), 173-191.

Pablo Robles, Sebastian Moreno, and Jennifer Neville. 2016. Sampling of attributed
networks from hierarchical generative models. In KDD. 1155-1164.

Karl Rohe and Tai Qin. 2013. The blessing of transitivity in sparse and stochastic
networks. arXiv (2013).

Ryan A. Rossi and Nesreen K. Ahmed. 2015. Role Discovery in Networks. IEEE
Transactions on Knowledge and Data Engineering 27, 4 (2015), 1112-1131.
Thomas Schank and Dorothea Wagner. 2005. Approximating Clustering Coeffi-
cient and Transitivity. J. Graph Algorithms Appl. 9, 2 (2005), 265-275.

C. Seshadhri, Ali Pinar, and Tamara G. Kolda. 2014. Wedge sampling for com-
puting clustering coefficients and triangle counts on large graphs. Statistical
Analysis and Data Mining 7, 4 (2014), 294-307.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul)
Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service
(MAS) and Applications. In WWW '15 Companion.

Hossein Azari Soufiani and Edo Airoldi. 2012. Graphlet decomposition of a
weighted network. In AISTATS. 54-63.

Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. 2017.
TRIEST: Counting Local and Global Triangles in Fully Dynamic Streams with
Fixed Memory Size. TKDD 11, 4 (jun 2017), 1-50.

Lorenzo De Stefani, Erisa Terolli, and Eli Upfal. 2017. Tiered sampling: An efficient
method for approximate counting sparse motifs in massive graph streams. In
IEEE BigData 2017. 776~786.

Siddharth Suri and Sergei Vassilvitskii. 2011. Counting triangles and the curse of
the last reducer. In WWW. 607-614.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
Miner. In KDD.

Charalampos E. Tsourakakis. 2008. Fast Counting of Triangles in Large Real
Networks without Counting: Algorithms and Laws. In ICDM. 608-617.
Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. 2009.
Doulion: counting triangles in massive graphs with a coin. In KDD.
Charalampos E Tsourakakis, Mihail N Kolountzakis, and Gary L Miller. 2011.
Triangle Sparsifiers. J. Graph Algorithms Appl. 15, 6 (2011), 703-726.

Duru Tiirkoglu and Ata Turk. 2017. Edge-Based Wedge Sampling to Estimate
Triangle Counts in Very Large Graphs. In ICDM. IEEE, 455-464.

Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods
and applications. Vol. 8. Cambridge university press.

Brooke Foucault Welles, Anne Van Devender, and Noshir Contractor. 2010. Is a
“friend” a friend? Investigating the structure of friendship networks in virtual
worlds. In CHI. 4027-4032.

Ellery Wulczyn and Dario Taraborelli. 2017. Wikipedia Clickstream.

Kuai Xu, Feng Wang, and Lin Gu. 2014. Behavior Analysis of Internet Traffic
via Bipartite Graphs and One-Mode Projections. IEEE/ACM Transactions on
Networking 22, 3 (June 2014), 931-942.

Hao Yin, Austin R. Benson, and Jure Leskovec. 2019. The Local Closure Coefficient:
A New Perspective On Network Clustering. In WSDM. 303-311.

