
Retrieving Top Weighted Triangles in Graphs

Raunak Kumar∗

Cornell University
Ithaca, NY

raunak@cs.cornell.edu

Paul Liu∗

Stanford University
Stanford, California

paul.liu@stanford.edu

Moses Charikar
Stanford University
Stanford, California

moses@cs.stanford.edu

Austin R. Benson
Cornell University

Ithaca, NY
arb@cs.cornell.edu

ABSTRACT

Pattern counting in graphs is a fundamental primitive for many

network analysis tasks, and there are several methods for scaling

subgraph counting to large graphs. Many real-world networks have

a notion of strength of connection between nodes, which is often

modeled by a weighted graph, but existing scalable algorithms

for pattern mining are designed for unweighted graphs. Here, we

develop deterministic and random sampling algorithms that enable

the fast discovery of the 3-cliques (triangles) of largest weight, as

measured by the generalized mean of the triangle’s edge weights.

For example, one of our proposed algorithms can find the top-1000

weighted triangles of a weighted graph with billions of edges in

thirty seconds on a commodity server, which is orders of magnitude

faster than existing “fast” enumeration schemes. Our methods open

the door towards scalable pattern mining in weighted graphs.

CCS CONCEPTS

• Information systems→ Top-k retrieval in databases; Social

networks; Recommender systems.

KEYWORDS

weighted graphs, subgraphs, random sampling, networks

ACM Reference Format:

Raunak Kumar, Paul Liu, Moses Charikar, and Austin R. Benson. 2020.

Retrieving Top Weighted Triangles in Graphs. In The Thirteenth ACM In-

ternational Conference on Web Search and Data Mining (WSDM ’20), Feb-

ruary 3–7, 2020, Houston, TX, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3336191.3371823

1 INTRODUCTION

Small subgraph patterns, also called graphlets or network motifs,

are fundamental to the understanding of complex network struc-

ture [7, 34, 35]. One of the simplest non-trivial subgraph patterns is

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM ’20, February 3–7, 2020, Houston, TX, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00
https://doi.org/10.1145/3336191.3371823

the triangle (3-clique), and the basic problem of triangle counting

and enumeration has been studied extensively from theoretical

and practical perspectives [4, 8, 18, 48, 51]. These developments

are often driven by the desire to scale graph counting to large net-

works, where performing computations naively is infeasible. The

focus on triangles is in part spurred by the widespread use of the

pattern in graph mining applications, including community detec-

tion [9, 21, 45], network comparison [15, 33, 40], representation

learning [23, 46], and generative modeling [43, 44]. In addition,

triangle-based network statistics such as the clustering coefficient

are used extensively in the social sciences [12, 17, 31, 60].

Nearly all of the algorithmic literature on scalable counting or

enumeration of triangles focuses on unweighted graphs. However,

many real-world network datasets have a natural notion of weight

attached to the edges of the graph [5]. For example, edge weights

can capture tie strength in social networks [59], traffic flows in

transportation networks [27], or co-occurrence counts in projec-

tions of bipartite networks [62]. Such edge weights offer additional

insight into the network structure. Moreover, edge weights can

enrich the types of small subgraph patterns used in analysis. For

instance, the network clustering coefficient has been generalized to

account for edge weights [37, 38]; in these cases, a triangle is given

a weight derived from the weights of its constituent edges. Roughly

speaking, the a triangle’s weight is typically some combination of

the arithmetic mean, geometric mean, minimum, and maximum

of the edge weights of the triangle. All that being said, we still

lack algorithms for fast analysis of modern large-scale weighted

networks, especially for weighted triangle listing and counting.

In applications of weighted triangles in this big data regime, it

can often suffice to retrieve only the k triangles of largest weight

for some suitable k . For example, in large online social networks,

the weight of an edge could reflect how likely it is for users to com-

municate with each other, and top weighted triangles and cliques

in this network could be used for group chat recommendations. In

such a scenario, we would typically only be interested in a small

number of triangles whose nodes are very likely to communicate

with each other as opposed to finding all triangles in the graph.

Another application for finding top-weighted triangles is in pre-

diction tasks for higher-order network interactions. The goal of

“higher-order link prediction” is to predict which new groups of

nodes will simultaneously interact (such as which group of scien-

tists will co-author a paper in the future) [6]. In this setting, existing

algorithms first create a weighted graph where an edge weight is

the number of prior interactions that involve the two end points.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

295

After, top-weighted triangles in this graph are predicted to appear
as higher-order interactions in the future (weight here is measured
by a generalized mean of the triangle’s edge weights). Again, it is
not necessary to find all triangles since only the top predictions will
be acted upon. Existing triangle enumeration algorithms do not
scale to massive graphs for these problems, and we need efficient
algorithms for retrieving triangles in large weighted graphs.

In this work, we address the problem of enumerating the top-
weighted triangles in a weighted graph. To be precise, let G =
(V , E,w) be a simple, undirected graph with positive edge weights
w . We define the weight of a triangle (i, j,k) with edge weightswi j ,
w jk , andwik to be the p-mean of the edge weights:

mp (i, j,k) :=

[

1

3
(w

p
i j +w

p

jk
+w

p

ik
)

]1/p

. (1)

GivenG , an integer parameter k , and a scaling factor p, we develop
algorithms to extract the top-k triangles in G . We use top-k to refer
to the triangles having the k largest weights, or in other words,
the k heaviest triangles. Special cases of the p-mean include the
arithmetic mean (p = 1), geometric mean (p = 0), and harmonic
mean (p = −1), and in general the p-mean is a flexible measure
for the weight of a triangle. Furthermore, the p-mean subsumes
measures of weighted triangles from prior studies [6, 38].

At a high level, we develop two families of algorithms for finding
top-weighted triangles. The first family is deterministic and opti-
mized for extracting top-k weighted triangles for small k , typically
up to a few tens of thousands (Section 3). These algorithms take
advantage of the heavy-tailed edge weight distribution common
in real-world networks. In the most general case, we show that
under a modified configuration model, these algorithms are even
“distribution-oblivious,” in the sense that they can automatically
compute optimal hyper-parameters to the algorithm for a wide
range of input graph distributions. Additionally, the algorithmic
analysis is done in a continuous sense (rather than discrete), which
may be of independent interest. The second family of algorithms is
randomized and aims to find many heavy triangles that are not nec-
essarily the top-k (Section 4). We show how this family of sampling
algorithms is connected to prior sampling algorithms for counting
triangles on unweighted graphs [48]. Furthermore, we show that
these sampling algorithms are easily parallelizable.

A carefully tuned parallel implementation of our deterministic
algorithm performs well across a broad range of large weighted
graphs, even outperforming the fast random sampling algorithms
that are not guaranteed to enumerate all of the top-weighted tri-
angles. A parallel implementation running on a commodity server
with 64 cores can find the top 1000 weighted triangles in under 10
seconds on several graphs with hundreds of millions of weighted
edges and in 30 seconds on a graph with nearly two billion weighted
edges. We compare this with the off-the-shelf alternative approach,
which would be an intelligent triangle enumeration algorithm that
maintains a heap of the top-weighted triangles. Our proposed algo-
rithms are orders of magnitude faster than this standard approach.

2 ADDITIONAL RELATEDWORK

Due to wide applicability, there is a plethora of research on un-

weighted triangle-related algorithms. In the context of enumeration

algorithms, recent attention has focused on the distributed and
parallel setting [3, 14, 41, 53]. These algorithms typically employ
an optimized brute force method on each machine [10, 30], with
the main algorithmic challenge in deciding how to partition the
data amongst the machines. Although each machine uses a brute
force algorithm, early research shows that these algorithms run in
time almost linear in the number of edges so long as the degeneracy
of the graph is small [13], which has led to efficient enumeration
algorithms [8, 53]. For comparison with our methods, we modify
such a fast enumeration method (specifically NodeIterator++ [53])
to retain the top-k weighted triangles. Although enumeration algo-
rithms are agnostic to edgeweights, the sheer number of triangles in
massive graphs renders such an approach prohibitively expensive.

When triangle enumeration is infeasible, algorithms focus instead
on triangle counts or graph statistics such as clustering coefficients.
Again, these statistics are in the unweighted regime, as only the
number of triangles are considered. There is a progression of sam-
plingmethods depending onwhat kind of structures one is sampling
from the graph. At a basic level, edge-based sampling methods sam-
ple an edge and counts all incident triangles on that edge. So-called
wedge-based methods sample length-2 paths [48], and this concept
has been generalized for counting 4-cliques [26]. Finally, tiered-
sampling combines sampling of arbitrary subgraphs to count larger
subgraphs (with a focus on 4-cliques and 5-cliques) [52]. Beyond
enumeration and sampling, there are several other triangle-based
algorithms, such as graph sparsification [19, 39, 56], spectral and
matrix methods [2, 55], and approaches for computing clustering
and closure coefficients [42, 47, 48, 63]. Hasan and Dave provide a
deeper review on triangle counting [22].

All of the above methods are for triangles. These ideas have
been extended in several ways. There are sampling methods for
estimating counts of more general motifs [1, 11, 25] and motifs
with temporal structure [32] as well as parallel clique enumeration
methods [16]. Still, these methods do not work for weighted graphs,
where subgraph patterns appear in generalizations of the clustering
coefficient [36] as well as in graph decompositions [50].

3 DETERMINISTIC ALGORITHMS

We begin by developing two types of deterministic algorithms for
finding the top-k weighted triangles in a graph, where the triangle
weight is a generalized p-mean of its edge weights as defined in
Eq. (1). A robust baseline is to use a fast triangle enumeration
algorithm for unweighted graphs, compute the weight on each
triangle, and pick out the top-k weighted triangles (or, to save
memory, maintain a heap of the top-weighted triangles). In our
tests, we use an optimized sequential version of NodeIterator++ [8],
which is the basis for many parallel enumeration algorithms. We
call this a “brute force” approach. Although faster, parallel versions
of the brute force approach exist, our results in Section 5 show that
brute force with perfect parallelism would require over 2000 cores
to beat our sequential deterministic algorithm in certain cases.

The brute force approach is agnostic to the distribution of edge
weights—it is the same regardless of the weights. However, we
expect that triangles of large weight are formed by edges of large
weight. We exploit this intuition below to develop faster algorithms.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

296

Algorithm 1: Static heavy-light algorithm for finding top-
weighted triangles.

Input: Weighted graph G = (V , E,w), scaling p, number of
triangles k

1 H ← {e ∈ E : we > τ }

2 T ← all triangles formed by edges in H

3 return k triangles in T with largest p-mean weight

At a high level, our main deterministic algorithm will try to dynam-
ically partition the edges into “heavy” and “light” classes based on
edge weight. Following this partition, we find triangles adjacent to
the heavy edges until the top-k heaviest are identified.

A simple heavy-light algorithm. As a precursor to our dynamic
algorithm, consider the following static threshold-based algorithm.
Given a threshold τ , partition the edges into a “heavy” set H = {e |
we > τ } and a “light” set L = E \ H . For a large threshold τ , we
expect most edges to be in L. Thus, the subgraph induced by H is
small, and we can use an enumeration algorithm to get a collection
of heavy triangles (Algorithm 1). This is not guaranteed to find the
heaviest triangles as edges in H might only be in triangles with
edges in L. However, in practice, the heaviest triangles often have
all edges in H . With no additional asymptotic cost, we can also use
existing enumeration algorithms to find triangles with just one or
two heavy edges. Unfortunately, the constant factor slow-down
substantially increases running time on real-world graphs.

In practice, we find that this simple algorithm vastly outperforms
brute force and can always find the top-weight triangle given a
proper threshold; thus, thismethod is a robust baseline. Nonetheless,
there are a couple of issues with this “static” heavy-light algorithm.
The first is that since the algorithm relies on a static threshold τ to
partition the edges into light and heavy sets, many more triangles
may be enumerated than is necessary. The second is the difficulty
in finding an appropriate threshold τ given no prior knowledge of
the input graph. In the next section, we develop a dynamic variant
of Algorithm 1 to deal with these issues.

3.1 Dynamic heavy-light algorithm

We now develop a dynamic algorithm that uses the concepts of Al-
gorithm 1 but is significantly more efficient. Suppose we preprocess
the edges E = {e0, e2, ..., em−1} so that they are sorted by decreasing
weight (wi ≥ wi+1 wherewi denotes the weight of the i-th edge).
Our dynamic heavy-light algorithm maintains a dynamic partition
of the edges into three sets based on weight:
• S = {e0, . . . , eh } are the “super-heavy” edges of the h largest
weights;
• H = {eh+1, . . . , el } are the “heavy” edges consisting of the
next l − h edges of largest weights; and
• L = {el+1, . . . , em−1} are the remaining “light” edges that
are neither heavy nor super-heavy.

As the algorithm evolves, we adjust the sets S ,H , and L by changing
the values of h and l . Any triangle can be broken down into a
combination of super-heavy, heavy, and light edges. As a first-order
approximation, we would expect the heaviest class of triangles
to have three super-heavy edges, the next heaviest to have two
super-heavy edges and one heavy edge, and so on down to the case
of three light edges. Furthermore, by considering the edges in a

Algorithm 2: Dynamic heavy-light algorithm for finding
the top-k weighted triangles.

Input: Weighted graph G = (V , E,w), scaling p, number of
triangles k , parameter αp .

1 Sort E in decreasing order of weight

2 Initialize threshold τ = ∞, triangle set T = ∅

3 Initialize partitions S = H = ∅, L = E

4 Initialize edge pointers h = l = −1

// We take the convention that e−1 = ∞.

5 while there are < k triangles above weight τ in T do

6 if wl+1 > w
αp
h+1

then

7 Move el+1 from L to H .

8 Y = triangles formed by el+1 and 2 edges from S ∪H

9 Z = triangles formed by el+1, 1 edge from L, and 1

edge from S ∪ H

10 T = T ∪ (Y ∪ Z), l = l + 1

11 else

12 Move eh+1 from H to S .

13 Y = triangles formed by eh and 2 edges from L

14 T = T ∪ Y , h = h + 1

15 end

16 Update threshold τ = w
p

h
+ 2w

p

l

17 end

18 return k triangles in T with largest p-mean weight

specific order, we can also obtain useful bounds on the weight of the
heaviest triangles we have not yet enumerated. Suppose we have
enumerated all triangles containing three super-heavy edges. Then
the heaviest triangle not yet enumerated must have at least one
edge from H or L. This upper bounds the p-th power of the weight
of that triangle to be 1

3 (2w
p
0 +w

p

h
). Our method tries to enumerate

triangles so that this bound decreases as quickly as possible.
Algorithm 2 outlines our procedure. Each step of the algorithm

consists of two steps: (i) update the partition by moving an edge to
a heavier class; and (ii) enumerate triangles whose edges come from
certain classes. At the end of each step, we maintain the invariant
that we have enumerated all triangles with at least one super-heavy
edge or at least two heavy edges. This invariant allows us to obtain
a bound τ on the heaviest triangle we have not yet enumerated. The
constant αp of Algorithm 2 determines how edges get promoted to
heavier classes; this parameter is used in our analysis to optimize the
expected decrease in the threshold τ . We will specify this constant
later in our analysis. When the algorithm begins, the partitions are
initialized with S = H = ∅, L = {e0, . . . , em−1}, and τ = ∞. The
algorithm runs until it enumerates k triangles above a dynamically
decreasing threshold τ = w

p

h
+ 2w

p

l
(Line 16 of Algorithm 2).

Let τ ∗ be the weight of the k-th heaviest triangle. As soon as
τ ≤ τ ∗, we will have enumerated all of the top-k triangles. This al-
gorithm solves both issues of our static heavy-light algorithm. If the
threshold τ hits τ ∗ exactly, we only enumerate around k triangles.
As τ is computed on the fly, there is no need to choose the threshold
at which we partition the edges. In the following sections, we show
the algorithm’s correctness and derive the optimal parameter value
of αp , or show how an optimal αp can be implicitly computed.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

297

that greedily choosing the pointer to increment is optimal. The

threshold decrease rate is dτ/dt = pw
p−1
h

dwh/dt + 2pw
p−1
l

dwl /dt .
Since at each iteration of the algorithm we can only choose to
change one of eh or el , we should greedily change the pointer that
gives the most “bang per buck”, i.e., choose eh and el such that

w
p−1
h

dwh/dt = 2w
p−1
l

dwl /dt =⇒ wh ∼ O

(

w
2− p

p−1+β

l

)

. (4)

In other words, we should maintain the edge pointers eh and el such
that the weights are separated geometrically by αp = 2 −

p
p−1+β .

Distribution-oblivious dynamic heavy-light algorithm. The
analysis in the previous section yields a fast algorithm given a
known prior on the power law parameter of the weight distribution.
In many applications, this can be easily and robustly estimated. In
this section, we present a method for which the parameter αp can be
implicitly estimated on the fly. This does not change the correctness
of the algorithm but can change the running time in practice.

Although we assumed a power-law distribution on the edge
weights, our analysis is actually much more general than that. As
long as the derivatives dwh/dt and dwl /dt are monotonic, our
greedy method of incrementing the pointers will be optimal. For the
derivatives to be monotonically decreasing, the only requirement is
that the PDF of the weight distribution is monotonically increasing
as the weight decreases. This includes a wide family of distributions
such as power laws and uniform distributions.

Furthermore, the analysis we used to deriveαp can also be used to
computeαp implicitly. Bymaintaining an estimate of the derivatives
dweh /dt and dwel /dt as the algorithm runs, we can compute all
the derivatives used in the analysis on the fly and greedily change
the pointer with higher value ofwp−1dw/dt (Eq. (4)).

Following the analysis in the previous section, the change in
weight for eh is estimated by the ratio ofwh −w<h and the number
of edges that have weight wh , and similarly for el . The compu-
tational cost of changing el can be estimated by the sum of the
degrees of the endpoints of el in GH , and similarly for eh with GL .
Consequently, we can obtain a “distribution-oblivious” algorithm
that works on a family of monotone distributions.

In our experiments, we find that this automatic way of implicitly
computing αp is successful, although in practice noise in the deriv-
ative estimates may cause this algorithm to be slower than using a
fixed value of αp . We find that setting αp = 1.25 works well.

4 RANDOM SAMPLING ALGORITHMS

In this section, we develop random sampling algorithms designed
to sample a large collection of triangles with large weight. More
formally, given a generalized p-mean as a weight function, these
algorithms all sample triangles exactly proportional to their weight.
The main difference between the algorithms is how efficiently they
can generate samples.

We specifically generalize two types of sampling schemes that
have been used to estimate triangle counts in unweighted graphs.
The first scheme is based on edge sampling [28, 39, 57], where
we first sample one edge and then enumerate triangles adjacent
to the sampled edge. The second method uses ideas from wedge

sampling [48], where we sample two adjacent edges and check
whether these two edges induce a triangle. Although these ideas

Algorithm 3: Weighted edge sampling (ES) algorithm

Input: Weighted graph G = (V , E,w), scaling p, number of
iterations t , number of triangles k

1 Initialize triangle set T ← ∅

2 for iteration 1, . . . , t do

3 Sample edge (a,b) ∝ w
p

ab

4 for each neighbor c ∈ N (a) ∩ N (b) do

5 T ← T ∪ {(a,b, c)}

6 end

7 end

8 return k triangles in T with largest p-mean weight

were designed for triangle counting in unweighted graphs, we
show how they can be adapted and extended to design algorithms
that sample highly weighted triangles. The major benefits of these
algorithms are that they are simple to implement and also easy
parallelize, since samples can be trivially generated in parallel.

Throughout this section, we assume that our weighting function
for a triangle is any generalized p-mean as given in Eq. (1). Since the
weight ordering of triangles is independent of the scaling by 1/3
and the exponent 1/p, we can consider the more simple function:

wp (a,b, c) = w
p

ab
+w

p

bc
+w

p
ac . (5)

For a given vertex a ∈ V , we will use N (a) to denote the set of
neighbors of a: N (a) = {b ∈ V | (a,b) ∈ E}, and da to be the
(unweighted) degree of node a (i.e., da = |N (a)|).

4.1 Weighted edge sampling

We first discuss an edge sampling (ES) algorithm (Algorithm 3).
The algorithm is based on a simple two-step procedure. First, we
sample a single edge according to the following distribution:

Pr(sample edge (a,b)) := w
p

ab
/Z , Z =

∑

(u ,v)∈E w
p
uv .

Second, after we sample an edge (a,b), we enumerate all triangles
(a,b, c) incident to (a,b). These two steps are repeated several times.

The above procedure has a few issues. First, it takes O(da + db)
time to find triangles adjacent to an edge (a,b), which can be ex-
pensive in graphs where high-degree nodes are connected; we
get around this in our next sampling scheme. Second, there is no
guarantee that the above procedure will generate at least k unique
triangles. Moreover, even if the algorithm samples a sufficient num-
ber of triangles, it is not necessarily the case that these are the
top-weighted triangles. The latter issue is an inherent limitation of
random sampling schemes in general. All that being said, the pro-
cedure has the nice property of being biased in terms of sampling
triangles with high weight, formalized as follows.

Proposition 4.1. The probability that a triangle (a,b, c) is enu-

merated in a given iteration of Algorithm 3 is wp (a,b, c)/Z , where

Z =
∑

e ∈E w
p
e .

Proof. The probability that any edge (u,v) is sampled initially
is w

p
u ,v/Z . Triangle (a,b, c) is enumerated if any one of if edge

(a,b), (b, c), or (a, c) is this sampled edge. �

While ES is simple to describe, making the algorithm fast in
practice requires careful implementation. First, a natural way of

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

299

Algorithm 4: Weighted wedge sampling (WS) algorithm

Input: Weighted graph G = (V , E,w), scaling p, number of
iterations t , number of triangles k

1 Initialize triangle set T ← ∅

2 for iteration 1, . . . , t do

3 Sample node a with probability as in Eq. (6)

4 Sample b ∈ N (a) with probability as in Eq. (7)

5 Sample c ∈ N (a) with probability as in Eq. (8)

6 if nodes a,b, c form a triangle then

7 T ← T ∪ {(a,b, c)}

8 end

9 return k triangles in T with largest p-mean weight

sampling an edge is to simply pick one at random with probabil-
ity proportional to its weight, but this is slow because there are a
large number of edges. However, there is typically a much smaller
number of unique edge weights. Thus, we first first sample an edge
weight and then sample an edge with this weight. Pre-processing
of sampling probabilities for this approach involves iterating over
the edges and computing two quantities—a cumulative edge weight
(in order to sample an edge weight) and a map of edge weight
to edges (in order to sample an edge given an edge weight). This
pre-processing step can take much longer than the sampling loop if
implemented naively. In a sorted list of edges, all edges that share
the same edge weight lie in a contiguous chunk, and this signifi-
cantly speeds up the process of computing the above quantities.

4.2 Weighted wedge sampling

One of the issues with the simple edge sampling scheme described
above is that we have to look over the neighbors of the end points
of the sampled edge in order to find triangles. This can be expensive
if the degrees of these nodes are large. An alternative approach is
to sample adjacent edges, called wedges, with large weight and then
check if each wedge induces a triangle. This scheme is called wedge
sampling (WS) and has been used as a mechanism for estimating
the total number of triangles in an unweighted graph [48, 58].

Algorithm 4 outlines the overall sampling scheme. Each iteration
of the algorithm has three steps. First, we sample a node with a bias
towards nodes participating in heavily weighted edges. Specifically,
let D(a) =

∑

b ∈N (a)w
p

ab
denote the sum of edge weights incident

to a. We sample node a according to the following distribution:

Pr(sample a) = W̃1(a)/Z1 := 2 · da · D(a)/Z1, (6)

where Z1 is a normalizing constant. Next, we sample a neighbor of
node a, again with a bias towards nodes that participate in heavily
weighted edges. The specific distribution is

Pr(sample b ∈ N (a) | a) = W̃2(b | a)/Z2

:= (da ·w
p

ab
+ D(a))/Z2,

(7)

where Z2 is a normalizing constant. We have now produced a single
edge and want to produce an adjacent edge. We do this by sampling
another neighbor of a, this time with probability

Pr(sample c ∈ N (a) | a,b) = W̃3(c | a,b)/Z3

:= (w
p
ac +w

p

ab
)/Z3,

(8)

where Z3 is again a normalizing constant. If the sampled wedge
{(a,b), (a, c)} induces a triangle, then we add it to our collection.

Similar to the unweighted scheme of Seshadhri et al. [48], we
have the following result.

Proposition 4.2. A given iteration of Algorithm 4 samples trian-

gle (a,b, c)with probabilitywp (a,b, c)/Z̃ , where Z̃ =
∑

v ∈V dv ·D(v).

Proof. The normalizing constants in Eqs. (6) to (8) are Z1 =
2
∑

v ∈V dv · D(v), Z2 = W̃1(a), and Z3 = W̃2(b | a) Thus, the
probability of sampling wedge (a,b, c) centered on a is equal to

W̃1(a)

Z1
·
W̃2(b | a)

Z2
·
W̃3

Z3
=

W̃3

Z1
=

w
p

ab
+w

p
ac

Z1
.

Thus, the probability of sampling any of the three wedges consisting
of nodes a,b and c is equal to

(w
p

ab
+w

p
ac)/Z1 + (w

p
ac +w

p

bc
)/Z1 + (w

p

bc
+w

p

ab
)/Z1.

Plugging in the expression for Z1 shows that this probability is
equal towp (a,b, c)/Z̃ . Since triangle (a,b, c) is sampled if any of its
three wedges is sampled, this yields the desired result. �

4.3 Number of samples

Propositions 4.1 and 4.2 says that Algorithms 3 and 4 tend to sample
edges with large weight, but this does not guarantee that the top
weighted triangles are enumerated. Standard probabilistic analysis
can give us some sense on how many iterations we need for a
given triangle. Specifically, if q = wp (a,b, c)/Z is the probability of
sampling a triangle (a,b, c), then for any δ ∈ (0, 1), s ≥ log(1/δ)/q
samples guarantees that (a,b, c) is enumerated with probability at
least 1 − δ . To see this, let r = 1 − (1 − q)s denote the probability
that triangle (a,b, c) is sampled at least once in s samples. Using
the fact that 1− x ≤ exp(−x), we get that r ≥ 1− exp(−sq) ≥ 1− δ .

This analysis says that the normalizing constant for wedge sam-
pling drives up the number of samples required to see top weighted
triangles with high probability, as compared to edge sampling. How-
ever, obtaining samples in Algorithm 3 can be more costly as we
might have to find common neighbors of large-degree nodes. It is
not immediately clear which algorithm is better, but our results in
the next section show that edge sampling is superior in practice.

5 NUMERICAL EXPERIMENTS

We now report the results of several experiments measuring the
performance of our deterministic and random sampling algorithms
compared to competitive baselines such as the static heavy-light
thresholding method from Algorithm 1.1 We find that edge sam-
pling (ES) works much better than wedge sampling (WS), but our
deterministic heavy light algorithm is even faster across a wide
range of datasets, outperforming the baselines by orders of magni-
tude in terms of running time.

5.1 Data

We used a number of datasets in order to test the performance of
our algorithms.2 Table 1 lists summary statistics of the datasets and
we describe them briefly below.

1Implementations of our algorithms and code to reproduce results are available at
https://github.com/raunakkmr/Retrieving-top-weighted-triangles-in-graphs.
2Data available at http://www.cs.cornell.edu/~arb/data/index.html.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

300

Table 2: Running times of all of our algorithms in seconds averaged over 10 runs. BF is brute force enumeration of trian-

gles, which is the out-of-the-box baseline; ES is the parallel edge sampling algorithm (Algorithm 3); WS is the parallel wedge

sampling algorithm (Algorithm 4); DHL is the dynamic heavy-light deterministic algorithm (Algorithm 2); Auto-HL is the

distribution oblivious modification of the dynamic heavy-light discussed in Section 3.3; and SHL is the static heavy-light

threshold deterministic algorithm (Algorithm 1). ES was run to achieve 94% (k = 1,000) or 50% (k = 100,000) accuracy, while

WS was run to achieve just 50% accuracy and was stopped early if taking longer than BF (or longer than SHL on the Spotify

dataset). SHL is an approximation, and we report its accuracy in the final column. Overall, our deterministic algorithms (DHL

or Auto-HL) are fast and achieve 100% accuracy. ES is slightly faster in some cases, but it is approximate.

k dataset BF ES WS DHL Auto-HL SHL Accuracy (SHL)

1000
tags-stack-overflow 12.71 0.57 11.28 .08 0.09 0.54 0.99

threads-stack-overflow 34.92 1.31 >34.92 0.53 0.38 1.55 0.55
Wikipedia-clickstream 16.32 14.31 >16.32 5.44 7.26 2.02 0.87

Ethereum 52.91 9.03 >52.91 8.12 6.94 11.90 0.28
Aminer 243.75 3.72 >243.75 13.35 12.36 43.47 0.32

reddit-reply 4047.62 5.19 341.17 5.02 4.74 102.65 0.51
MAG 512.24 4.92 48.58 29.19 20.89 72.49 0.91

Spotify >86400 60.33 >5300 31.82 30.79 5388.45 1.00

100000
tags-stack-overflow 13.06 0.58 >13.06 0.23 0.23 0.62 0.28

threads-stack-overflow 33.99 1.19 >33.99 1.82 1.73 1.63 0.32
Wikipedia-clickstream 17.34 13.64 >17.34 5.49 7.24 2.15 0.13

Ethereum 57.35 10.03 >57.35 18.11 19.87 11.70 0.11
Aminer 245.28 3.45 >245.28 15.38 13.91 43.28 0.24

reddit-reply 3857.57 6.52 >3857.57 6.87 7.49 98.34 0.34
MAG 524.80 4.25 >524.80 29.52 21.37 75.97 0.10

Spotify >86400 47.27 >5300 30.57 29.89 5384.17 0.92

at retrieving the top-k triangles. They achieve perfect accuracy and
are orders of magnitude faster than BF. For instance, these algo-
rithms get a 1000x speedup on reddit-reply (k = 1,000) and more
than a 2000x speedup on Spotify (k = 100,000). These algorithms
also outperform SHL by a significant margin in both running time
and accuracy. For example, despite being 30x slower on reddit-reply,
SHL only achieves 50% accuracy (k = 1,000). Again, our determinis-
tic algorithms always achieve 100% accuracy, and do so in a fraction
of the time taken by the baseline methods BF and SHL.

ES performs much better than WS. WS struggles to achieve high
accuracy and is not competitive with the BF baseline or SHL. On
the other hand, ES is quite competitive with even DHL and Auto-
HL. ES retrieves the top 1,000 triangles on the AMiner and MAG
datasets with 99% accuracy at speedups of 2x or 4x over DHL and
Auto-HL. A similar speedup is observed for k = 100,000, but ES only
achieves 50% accuracy in these cases. Even though ES works well in
these cases, our deterministic algorithms are still competitive. We
conclude that intelligent deterministic approaches work extremely
well for finding top weighted triangles in large weighted graphs.

All of our algorithms except BF and WS sort edges by weight in
a pre-procesing step. Surprisingly, this pre-processing step is a com-
putational bottleneck, and parallel sorting is crucial to achieving
high performance. In turn, this negates the possible benefit of paral-
lel sampling for the randomized algorithms over our deterministic
methods, whose main routines are inherently sequential.

6 DISCUSSION

Subgraph patterns, and triangles in particular, are used extensively
in graph mining applications. However, most of the existing lit-
erature focuses on counting or enumeration tasks in unweighted
graphs. In this paper, we developed deterministic and random sam-
pling algorithms for finding the heaviest triangles in large weighted
graphs. With some tuning, our main deterministic algorithm can
find these triangles in a few seconds on graphs with hundreds of
millions of edges or in 30 seconds on a graph with billions of edges.
This is orders of magnitude faster than what one could achieve
with existing fast enumeration schemes and is usually much faster
than even our randomized sampling algorithms.

We anticipate that our work will enable scientists to better ex-
plore large-scaleweighted graphs and can also spur new algorithmic
developments on subgraph listing and counting in weighted graphs.
For example, an interesting avenue for future research would be the
development of random sampling algorithms that sample triangles
with probability proportional to some arbitrary function of their
weight, chosen to converge to the top weighted triangles faster.
This could make random sampling approaches competitive with
our fast deterministic methods. The edge sampling method can also
be generalized to k-clique sampling by sampling an edge and then
enumerating adjacent k-cliques, and we provide the details in an
extended version of this paper [29]. How to extend the determinis-
tic algorithms to top k-clique enumeration is less clear, so sampling
may be more appropriate for larger clique patterns.

Acknowledgements. This researchwas supported byNSFAwards
DMS-1830274 and CCF-1617577; ARO Award W911NF19-1-0057;

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

302

ARO MURI; Simons Investigator Award, Google Faculty Research
Award; Amazon Research Award; and Google Cloud resources.

REFERENCES
[1] Nesreen K. Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. 2014.

Graph sample and hold: a framework for big-graph analytics. In KDD.
[2] Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and Counting Given

Length Cycles. Algorithmica 17, 3 (1997), 209–223.
[3] Shaikh Arifuzzaman, Maleq Khan, and Madhav V. Marathe. 2013. PATRIC: a

parallel algorithm for counting triangles in massive networks. In ICDM. 529–538.
[4] Haim Avron. 2010. Counting triangles in large graphs using randomized matrix

trace estimation. InWorkshop on Large-scale Data Mining: Theory and Applica-
tions.

[5] Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, and Alessandro
Vespignani. 2004. The architecture of complex weighted networks. Proceed-
ings of the national academy of sciences 101, 11 (2004), 3747–3752.

[6] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Klein-
berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of
the National Academy of Sciences 115, 48 (2018), E11221–E11230.

[7] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order organi-
zation of complex networks. Science 353, 6295 (2016), 163–166.

[8] Jonathan W. Berry, Luke A. Fostvedt, Daniel J. Nordman, Cynthia A. Phillips, C.
Seshadhri, and Alyson G. Wilson. 2015. Why Do Simple Algorithms for Triangle
EnumerationWork in the RealWorld? Internet Mathematics 11, 6 (2015), 555–571.

[9] Jonathan W Berry, Bruce Hendrickson, Randall A LaViolette, and Cynthia A
Phillips. 2011. Tolerating the community detection resolution limit with edge
weighting. Physical Review E 83, 5 (2011), 056119.

[10] Jonathan W Berry, Daniel J Nordman, Cynthia A Phillips, and Alyson G Wilson.
2010. Listing triangles in expected linear time on a class of power law graphs.
Technical Report. Technical report, Sandia National Laboratories.

[11] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro
Panconesi. 2017. Counting Graphlets: Space vs Time. InWSDM.

[12] Ronald S Burt. 2007. Secondhand brokerage: Evidence on the importance of local
structure for managers, bankers, and analysts. AMJ (2007).

[13] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing
Algorithms. SIAM J. Comput. 14, 1 (1985), 210–223.

[14] Shumo Chu and James Cheng. 2011. Triangle listing in massive networks and its
applications. In KDD. 672–680.

[15] Noshir S Contractor, Stanley Wasserman, and Katherine Faust. 2006. Testing mul-
titheoretical, multilevel hypotheses about organizational networks: An analytic
framework and empirical example. Academy of Management Review (2006).

[16] Maximilien Danisch, Oana Denisa Balalau, and Mauro Sozio. 2018. Listing k-
cliques in Sparse Real-World Graphs. InWWW. 589–598.

[17] Nurcan Durak, Ali Pinar, Tamara G Kolda, and C Seshadhri. 2012. Degree relations
of triangles in real-world networks and graph models. In CIKM. 1712–1716.

[18] Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. 2017. Approximately Count-
ing Triangles in Sublinear Time. SIAM J. Comput. 46, 5 (jan 2017), 1603–1646.

[19] Roohollah Etemadi, Jianguo Lu, and Yung H. Tsin. 2016. Efficient Estimation of
Triangles in Very Large Graphs. In CIKM. 1251–1260.

[20] Bailey K. Fosdick, Daniel B. Larremore, Joel Nishimura, and Johan Ugander. 2018.
Configuring Random Graph Models with Fixed Degree Sequences. SIAM Rev.
(2018).

[21] David F Gleich and C Seshadhri. 2012. Vertex neighborhoods, low conductance
cuts, and good seeds for local community methods. In KDD. 597–605.

[22] Mohammad Al Hasan and Vachik S. Dave. 2018. Triangle counting in large
networks: a review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8, 2 (2018).

[23] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato
Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. 2012. RolX:
structural role extraction & mining in large graphs. In KDD.

[24] Jack Hessel, Chenhao Tan, and Lillian Lee. 2016. Science, AskScience, and Bad-
Science: On the Coexistence of Highly Related Communities. In ICWSM. 171–180.

[25] Shweta Jain and C. Seshadhri. 2017. A Fast and Provable Method for Estimating
Clique Counts Using Turán’s Theorem. InWWW. 441–449.

[26] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path Sampling: A Fast and Provable
Method for Estimating 4-Vertex Subgraph Counts. InWWW. 495–505.

[27] Junteng Jia, Michael T. Schaub, Santiago Segarra, and Austin R. Benson. 2019.
Graph-based Semi-Supervised & Active Learning for Edge Flows. In KDD.

[28] Mihail N Kolountzakis, Gary L Miller, Richard Peng, and Charalampos E
Tsourakakis. 2012. Efficient triangle counting in large graphs via degree-based
vertex partitioning. Internet Mathematics 8, 1-2 (2012), 161–185.

[29] Raunak Kumar, Paul Liu, Moses Charikar, and Austin R Benson. 2019. Retrieving
Top Weighted Triangles in Graphs. arXiv:1910.00692 (2019).

[30] Matthieu Latapy. 2008. Main-memory triangle computations for very large
(sparse (power-law)) graphs. Theor. Comput. Sci. 407, 1-3 (2008), 458–473.

[31] Barbara S Lawrence. 2006. Organizational reference groups: A missing perspec-
tive on social context. Organization Science 17, 1 (2006), 80–100.

[32] Paul Liu, Austin R. Benson, and Moses Charikar. 2019. Sampling Methods for
Counting Temporal Motifs. InWSDM. 294–302.

[33] Priya Mahadevan, Calvin Hubble, Dmitri Krioukov, Bradley Huffaker, and Amin
Vahdat. 2007. Orbis: rescaling degree correlations to generate annotated internet
topologies. In ACM SIGCOMM Computer Communication Review.

[34] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal
Ayzenshtat, Michal Sheffer, and Uri Alon. 2004. Superfamilies of Evolved and
Designed Networks. Science (2004).

[35] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,
and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.
Science 298, 5594 (2002), 824–827.

[36] Jukka-Pekka Onnela, Jari Saramäki, János Kertész, and Kimmo Kaski. 2005. Char-
acterizing Motifs in Weighted Complex Networks. In AIP.

[37] Jukka-Pekka Onnela, Jari Saramäki, János Kertész, and Kimmo Kaski. 2005. In-
tensity and coherence of motifs in weighted complex networks. PRE (2005).

[38] Tore Opsahl and Pietro Panzarasa. 2009. Clustering in weighted networks. Social
networks 31, 2 (2009), 155–163.

[39] Rasmus Pagh and Charalampos E Tsourakakis. 2012. Colorful triangle counting
and a mapreduce implementation. Inform. Process. Lett. 112, 7 (2012), 277–281.

[40] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distri-
bution. Bioinformatics 23, 2 (2007), e177–e183.

[41] Mahmudur Rahman and Mohammad Al Hasan. 2013. Approximate triangle
counting algorithms on multi-cores. In IEEE Big Data. 127–133.

[42] Mahmudur Rahman and Mohammad Al Hasan. 2014. Sampling Triples from
Restricted Networks using MCMC Strategy. In CIKM. 1519–1528.

[43] Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. 2007. An introduction
to exponential random graph p∗ models for social networks. Social Networks 29,
2 (May 2007), 173–191.

[44] Pablo Robles, SebastianMoreno, and Jennifer Neville. 2016. Sampling of attributed
networks from hierarchical generative models. In KDD. 1155–1164.

[45] Karl Rohe and Tai Qin. 2013. The blessing of transitivity in sparse and stochastic
networks. arXiv (2013).

[46] Ryan A. Rossi and Nesreen K. Ahmed. 2015. Role Discovery in Networks. IEEE
Transactions on Knowledge and Data Engineering 27, 4 (2015), 1112–1131.

[47] Thomas Schank and Dorothea Wagner. 2005. Approximating Clustering Coeffi-
cient and Transitivity. J. Graph Algorithms Appl. 9, 2 (2005), 265–275.

[48] C. Seshadhri, Ali Pinar, and Tamara G. Kolda. 2014. Wedge sampling for com-
puting clustering coefficients and triangle counts on large graphs. Statistical
Analysis and Data Mining 7, 4 (2014), 294–307.

[49] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul)
Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service
(MAS) and Applications. InWWW '15 Companion.

[50] Hossein Azari Soufiani and Edo Airoldi. 2012. Graphlet decomposition of a
weighted network. In AISTATS. 54–63.

[51] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. 2017.
TRIÈST: Counting Local and Global Triangles in Fully Dynamic Streams with
Fixed Memory Size. TKDD 11, 4 (jun 2017), 1–50.

[52] Lorenzo De Stefani, Erisa Terolli, and Eli Upfal. 2017. Tiered sampling: An efficient
method for approximate counting sparse motifs in massive graph streams. In
IEEE BigData 2017. 776–786.

[53] Siddharth Suri and Sergei Vassilvitskii. 2011. Counting triangles and the curse of
the last reducer. InWWW. 607–614.

[54] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
Miner. In KDD.

[55] Charalampos E. Tsourakakis. 2008. Fast Counting of Triangles in Large Real
Networks without Counting: Algorithms and Laws. In ICDM. 608–617.

[56] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. 2009.
Doulion: counting triangles in massive graphs with a coin. In KDD.

[57] Charalampos E Tsourakakis, Mihail N Kolountzakis, and Gary L Miller. 2011.
Triangle Sparsifiers. J. Graph Algorithms Appl. 15, 6 (2011), 703–726.

[58] Duru Türkoglu and Ata Turk. 2017. Edge-Based Wedge Sampling to Estimate
Triangle Counts in Very Large Graphs. In ICDM. IEEE, 455–464.

[59] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods
and applications. Vol. 8. Cambridge university press.

[60] Brooke Foucault Welles, Anne Van Devender, and Noshir Contractor. 2010. Is a
“friend” a friend? Investigating the structure of friendship networks in virtual
worlds. In CHI. 4027–4032.

[61] Ellery Wulczyn and Dario Taraborelli. 2017. Wikipedia Clickstream.
[62] Kuai Xu, Feng Wang, and Lin Gu. 2014. Behavior Analysis of Internet Traffic

via Bipartite Graphs and One-Mode Projections. IEEE/ACM Transactions on
Networking 22, 3 (June 2014), 931–942.

[63] Hao Yin, Austin R. Benson, and Jure Leskovec. 2019. The Local Closure Coefficient:
A New Perspective On Network Clustering. InWSDM. 303–311.

Technical Presentation WSDM ’20, February 3–7, 2020, Houston, TX, USA

303

