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ABSTRACT: With the view of developing electrophilic late-transition-
metal catalysts, we have now synthesized [(o-(Ph2P)C6H4)2Sb(OTf)2]-
Pt(OTf) (2) and [(o-(iPr2P)C6H4)2Sb(OTf)2]Pt(OTf) (4) by treatment
of the corresponding trichlorides ([(o-(R2P)C6H4)2SbCl2]PtCl (R = Ph,
iPr)) with 3 equiv of AgOTf. The crystal structures of 2 and 4 confirmed
that the chloride ligands have been fully substituted by more labile
triflate ligands. Despite structural similarities in the dinuclear cores of 2
and 4, only 2 acts as a potent carbophilic catalyst in enyne cyclization
reactions. The high activity of 2 is also reflected by its ability to promote the addition of pyrrole and thiophene derivatives to alkynes.
Structural and computational analyses suggest that the superior reactivity of 2 results from both favorable steric and electronic
effects. Finally, a comparison of 2 with the previously reported self-activating catalyst [(o-(Ph2P)C6H4)2Sb(OTf)2]PtCl underscores
the benefits of triflate for chloride substitution.

Antimony(V) derivatives are powerful Lewis acids which
have been used for the generation of superacids1,2 or as

catalysts for transformations that necessitate strong electro-
philic activation.3,4 While antimony(V) halides have been at
the forefront of this chemistry for much of the past half
century, recent efforts have shown that organoantimony
compounds, which are more convenient to handle than their
halide counterparts, also display appealing Lewis acidic
properties.5−11 These advantageous properties have come to
light in the development of applications in organic reaction
catalysis12−16 and anion sensing.17−20 With the view of
interfacing Lewis acidic antimony moieties with transition
metals, several groups have recently investigated the synthesis
of complexes in which the main-group element and the metal
either are directly connected21−24 or held in close proximity by
auxiliary ligands.25−28 Examples of such complexes include A
and B, two compounds in which the high Lewis acidity of the
antimony center defines the catalytic properties of the late-
transition-metal center (Chart 1).26,29 In these complexes, we
proposed that the σ-accepting properties of the antimony
moiety serves to activate the late-transition-metal center via
formation of a M→Sb interaction, leading to an enhancement
in the carbophilic reactivity of the metal center. In a separate
investigation, we reported an antimony platinum complex (C)
in which the presence of two triflate anions accentuated the
Lewis acidity of the stiboranyl moiety.30 Despite the apparent
coordinative saturation of the platinum center, we observed
that this compound was a self-activating catalyst for enyne
cyclization and hydroarylation reactions (Chart 1). We
speculated that this complex owes its catalytic activity to the
presence of a Lewis acidic antimony center which helps
activate the Pt−Cl bond intramolecularly, allowing for
substrate activation. Intending to further enhance the unique

properties of such platforms, we have now targeted an
analogue of C in which the chloride ligand bound to platinum
is also replaced by a more weakly coordinating triflate anion.
Given the lability of the triflate anions, we speculated that such
a complex might generate an exposed platinum species, the
reactivity of which would be further enhanced by the presence
of an adjacent electrophilic antimony triflate unit.
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Chart 1. Examples of Gold−Antimony and Platinum−
Antimony Complexes Previously Used as Electrophilic
Catalystsa

aThe inset shows the type of structure targeted in this study.
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While we anticipated that exchange of the platinum-bound
chloride anion of C might be difficult, we observed that the
reaction of the known complex [(o-(Ph2P)C6H4)2SbCl2]PtCl
(1)31 with 3 equivalents of AgOTf proceeded smoothly to
afford the target complex [(o-(Ph2P)C6H4)2SbOTf2]PtOTf
(2) (Scheme 1). The same reaction was also carried out with

[(o-(iPr2P)C6H4)2SbCl2]PtCl (3), the isopropyl analogue of 1
which was newly synthesized for this study. Again, we observed
facile substitution of the three chloride anions when 3 equiv of
AgOTf were employed, leading to the formation of [(o-
(iPr2P)C6H4)2SbOTf2]PtOTf (4). The triflate derivatives 2
and 4 have been isolated as moisture-sensitive solids. Their 31P
NMR spectra feature single resonances at 49.4 ppm for 2 and
73.9 ppm for 4 that are respectively coupled to the 195Pt nuclei
by 1JPt−P = 2450 and 2383. These values are close to those
measured for 1 (1JPt−P = 2566 Hz) and 3 (1JPt−P = 2473 Hz).
Single crystals of the tris(triflate) complexes could be easily

obtained upon diffusion of pentane into a o-C6H4F2 or CH2Cl2
solution of the complex for 2 and 4, respectively. Compound 2,
which crystallizes with interstitial o-C6H4F2 molecules, features
two molecules of the complex in the asymmetric unit. These
two molecules, arbitrarily referred to as molecule a and molecule
b, feature very similar structures. The geometry about the
dinuclear core of these two independent molecules is also very
similar to that of 4, as illustrated hereafter. In both 2 and 4,
two triflate anions are bound to the antimony center. The
resulting Sb−Otriflate distances in 2 (2.201(6)−2.246(6) Å) and
4 (2.199(2)−2.211(2) Å) fall within a rather narrow range and
are comparable to those measured in complex C (2.189(3)−
2.219(3) Å), indicating that the triflate anions are tightly
coordinated to the antimony atom. As in complex C, the
antimony atoms of 2 and 4 adopt a distorted-trigonal-
bipyramidal geometry in which the two triflate anions occupy
axial positions, as indicated by the Otriflate−Sb−Otriflate angles of
177.0(2)° for molecule a of complex 2, 178.4(2)° for molecule b
of complex 2, and 176.41(6)° for complex 4. The largest
distortion occurs in the equatorial plane as indicated by the
C−Sb−C angles of 145.5(3)° for molecule a of complex 2,
144.8(3)° for molecule b of complex 2, and 143.52(10)° for 4
which are notably larger than the ideal value of 120°. The Sb−
Pt distances in 2 (2.4118(6) Å for molecule a and 2.4106(6) Å
for molecule b) and 4 (2.4237(12) Å) are shorter than those in
complex 1 (2.4407(5) Å) and 3 (2.4467(10) Å), indicating a
contraction of the Sb−Pt core triggered by electron depletion.
This notion is supported by a search of the Cambridge
Structural Database, which indicates that these Sb−Pt bond
distances are among the shortest for complexes featuring this
linkage.28,32−34 The platinum-bound triflate anions form Pt−
Otriflate bonds of 2.130(5) and 2.122(6) Å for molecules a and b
of complex 2, respectively. These Pt−Otriflate bond distances are
slightly shorter than that in 4 (2.168(2) Å), which may
indicate that the electrophilicity of the platinum center in 4 is

reduced by the more electron-releasing diisopropylphosphino
groups. Finally, we will note that platinum triflate complexes
have been previously structurally characterized, as in the case
of D and E, which possess Pt−Otriflate bonds of 2.097(2) and
2.102(9) Å, respectively (Chart 2).35,36

The structures of 2 and 4 have been studied computation-
ally, and some of their bonding features were examined using
the natural bond orbital (NBO) method. Examination of the
NBO output indicates that the Sb−Pt bonds in 2 and 4 are
covalent (Figure 1 and Figure S18). Indeed, the corresponding

natural localized molecular orbitals (NLMOs) show that the
antimony and platinum atoms both contribute to the Sb−Pt
bond (Sb 56.97% and Pt 38.20% for 2; Sb 56.45% and Pt
38.77% for 4). The lack of strong polarization in the Sb−Pt
bond is a feature that these new complexes share with their
trichloride precursors 1 and 3 as well as complex C.30 The
natural population analysis (NPA) charge reveals that the
platinum atoms in 2 (0.278) and 4 (0.266) are more positive
than those in 1 (0.167) and 3 (0.163). The higher NPA charge
observed for the tris(triflate) complex is ascribed to the weak
coordination of nature of the triflate anions, making the core of
the complexes more exposed and electron deficient.

Scheme 1. Synthesis of 2 and 4
Chart 2. Examples of Platinum Triflate Complexes

Figure 1. (top) Solid-state structures of 2 (a) and 4 (b). Thermal
ellipsoids are drawn at the 50% probability level. Phenyl and isopropyl
groups are drawn in wireframe. Hydrogen atoms are omitted for
clarity. For 2, only one of the two independent molecules is shown
and the interstitial solvent molecules are omitted. (bottom) NLMO
plot (isosurface value 0.04) of the major Sb−Pt bonding interactions
in 2 (c) and 4 (d).
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Given the known lability of the triflate ligand, we speculated
that 2 and 4 might behave as electrophilic platinum
catalysts.37−42 To test this possibility, we became eager to
investigate the use of these two complexes in the cyclo-
isomerization of 2-allyl-2-(2-propynyl)malonate (Table 1), a

reaction often used to benchmark the activity of late-transition-
metal catalysts. Complex 2 proved to be remarkably active.
Indeed, when 2 was used at a 5 mol % loading, the
cycloisomerization reached completion within 10 min when
it was carried out at room temperature (Table 1, entry 2). The
same reaction took 3.5 h to complete when C was employed as
a catalyst (Table 1, entry 1). The contrasting activity of these
two catalysts underscores the benefit of substituting the
platinum-bound chloride ligand of 1 with the more weakly
coordinating triflate anion in 2. We propose that the increased
lability of the triflate anion increases accessibility of the
platinum center by the reaction substrate, leading to a more
efficient catalyst.
To our surprise, we found that 4 was inactive as a catalyst for

this reaction. An initial factor that may contribute to this lack
of activity is the lower NPA charge of the platinum atom of 4
(0.266 vs 0.278 in 2), which suggests that the catalytic activity
of 4 may be negatively affected by the more donating
isopropyl-substituted phosphino groups. The lack of catalytic
activity of this complex may also originate from steric effects
imposed by the bulkier isopropyl groups, which lead to a less
accessible platinum center. To support this argument, we
inspected the steric maps of the ligands in both complexes, as
shown in Figure 2.43 Comparison of the topographic steric

maps identifies some important differences in the shapes of the
catalytic pockets of the two complexes. The %VBur (percent
buried volume) at platinum in 4 (72.2%) is clearly larger than
that in 2 (69.1%), suggesting greater accessibility in the latter.
Such steric effects have been previously discussed in the case of
the related gold antimony complexes [(o-(iPr2P)C6H4)2(o-
C6Cl4O2)SbPh)Au]

+ and [(o-(Ph2P)C6H4)2(o-C6Cl4O2)-

SbPh)Au]+.44 Indeed, while the former displayed no
carbophilic reactivity, the latter readily promoted the cyclo-
isomerization of N-(prop-2-yn-1-yl)benzamide or the addition
reaction of p-toluidine to phenylacetylene. No further attempts
to use 4 as a catalyst were considered.
We have also probed the use of 2 as a catalyst for the

addition of heteroaryls to alkynes. The reaction of pyrrole with
phenylacetylene was investigated first, using CDCl3 as a solvent
and a 5 mol % catalyst loading. The progress of the reaction
was monitored by 1H NMR spectroscopy, and the results are
summarized in Table 2. As anticipated from the reactivity

pattern observed in the cycloisomerization of 2-allyl-2-(2-
propynyl)malonate, complex 2 is a very active catalyst which
promotes the formation of the double-addition product 6
within minutes. Integration of the 1H NMR spectrum indicates
a 89% conversion, after just 10 min (Table 2, entry 2). Catalyst
C is also able to promote this reaction, albeit at a much slower
rate. While no measurable production formation was observed
within the first few minutes of the reaction 1H NMR
monitoring indicated a 68% conversion after 12 h (Table 2,
entry 1).45 The higher reactivity of 2 again illustrates the
benefits that result from replacing the platinum-bound chloride
ligand of C by a triflate ligand as in 2.
Finally, in order to benchmark the activity of 2 against more

challenging substrates, we have also tested reactions involving
thiophenes as the heteroaryl. Thiophenes are among one of the
most difficult classes of substrates to activate, as the free
electron pair at sulfur can coordinate to the platinum
center.46,47 Because no reaction was observed with phenyl-
acetylene, we decided to use ethyl propiolate, which owing to
its greater electron deficiency shows a higher reactivity. In line
with the activity observed in the aforementioned reactions,

Table 1. 1,6-Enyne Cyclization Catalysis

entry cat. time conversiona (%)

1 C 3.5 h 96
2 2 10 min 96
3 4 3 h 0

aConversion determined by 1H NMR.

Figure 2. Topographic steric maps of the phosphino-antimony ligands
in 2 (left) and 4 (right). The red and blue zones indicate the more
and less hindered zones in the catalytic pocket, respectively.

Table 2. Addition of Pyrrole and Thiophenes to Alkynes
Catalyzed by 2 and C

entry cat. reacn time temp (°C) product yield (%)

1 C (a) 12 h 25 6 68a

2 2 (a) 10 min 25 6 89a

3 C (b) 19 h 60 7 <10a

4 2 (b) 16 h 60 7 87b

5 C (c) 7 h 60 8 19a

6 2 (c) 7 h 60 8 76a

aConversion determined by 1H NMR spectroscopy. bIsolated yield.
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complex 2 displayed a much higher activity in comparison to
C. Both catalysts afforded the monoaddition product 7, which
was isolated in 87% yield after 16 h when 2 was employed
(Table 2, entry 4). The same reaction with C afforded less than
a 10% conversion after 19 h (Table 2, entry 3). Interestingly,
when the more electron rich 2-methylthiophene was used as
the heteroaryl, the double-addition product48 was formed
(Table 2, entries 5 and 6). This difference highlights the
greater electron richness and reactivity of 2-methylthiophene
as a nucleophile.
In summary, we describe 2, a new highly electrophilic

antimony−platinum complex featuring three triflate ligands to
the dinuclear core. This complex, which can be isolated and
stored, behaves as an active catalyst for reactions involving
alkynes. On the basis of a comparison with other catalysts, we
assign the unusual catalytic activity of 2 to the weakly
coordinating nature of the triflate ligand which, we propose,
facilitates access to a reactive platinum center. The reactivity of
such complexes may benefit from the perhalogenation of the
phenylene backbone, a direction we plan to investigate in
future studies.
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