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Abstract: Tremor is one of the main symptoms of Parkinson’s Disease (PD) that reduces the quality
of life. Tremor is measured as part of the Unified Parkinson Disease Rating Scale (UPDRS) part
III. However, the assessment is based on onsite physical examinations and does not fully represent
the patients’ tremor experience in their day-to-day life. Our objective in this paper was to develop
algorithms that, combined with wearable sensors, can estimate total Parkinsonian tremor as the
patients performed a variety of free body movements. We developed two methods: an ensemble
model based on gradient tree boosting and a deep learning model based on long short-term memory
(LSTM) networks. The developed methods were assessed on gyroscope sensor data from 24 PD
subjects. Our analysis demonstrated that the method based on gradient tree boosting provided
a high correlation (r = 0.96 using held-out testing and r = 0.93 using subject-based, leave-one-out
cross-validation) between the estimated and clinically assessed tremor subscores in comparison to
the LSTM-based method with a moderate correlation (r = 0.84 using held-out testing and r = 0.77
using subject-based, leave-one-out cross-validation). These results indicate that our approach holds
great promise in providing a full spectrum of the patients’ tremor from continuous monitoring of the
subjects’ movement in their natural environment.

Keywords: Parkinsonian tremor; continuous monitoring; wearable sensors; gradient tree boosting;
deep learning; LSTM

1. Introduction

Tremor is an involuntary movement disorder, common in many middle-aged and older adults.
It is characterized by approximately rhythmic shaking of hands, head, trunk, voice, or legs [1].
Tremor reduces the quality of life by interrupting the subjects’ activities such as reading, writing,
and eating. Tremor can be divided into “resting tremor”, which occurs as subjects relax their
muscles and “action tremor”, which happens while the subjects perform voluntary muscle movements.
There are two types of action tremors: postural and kinetic tremor. The postural tremor occurs when a
person holds his/her hand(s) or leg(s) still, against gravity. The kinetic tremor happens when a person
is engaged in different daily activities that involve voluntary movements of the muscles. There are
several causes for tremor. Idiopathic Parkinson’s disease (PD) is the most common cause of resting
tremor, although it may cause some action tremor as well [1].

A neurologist typically measures the severity degree of resting and action (postural and kinetic)
tremor of PD patients during routine clinical visits. The neurologist performs the Unified Parkinson
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Disease Rating Scale (UPDRS) Part III assessment during which the patients are asked to perform
three tasks: arm resting, arm extending, and touching the tip of their nose with their index finger
(finger-to-nose testing) [2]. However, a single clinical examination often fails to capture the complete
spectrum of tremor that a PD subject experiences in routine daily life [3]. Wearable sensors,
combined with machine learning algorithms, can be used in a patient’s natural living environment
to estimate the severity rating of tremor based on the way that it manifests itself in movement
patterns [4-12].

However, the majority of the existing approaches are task-dependent, meaning that they require
the subjects to perform the standardized tasks as in the UPDRS-III to elicit tremor [5-7,10-12]. Some of
these methods reported a high correlation with the gold-standard tremor subscore measured by
a neurologist [5,6]. The authors in Ref. [5] reported r* = 0.88 when estimating postural tremor,
and the work in Ref. [6] reported a correlation of 0.98 when estimating the total PD tremor.
However, these methods rely heavily on the patients’ active engagement in performing the UPDRS-III
tasks several times throughout a day. As a result, they can provide only a “snapshot” representation
of tremor versus its complete spectrum. There is a need for a “task-independent” approach that
can estimate tremor sub-score continuously without requiring the patients to perform any specific
tasks. However, the existing task-independent approaches have been able to provide moderate to
good performance (correlation of 0.81-0.87) because of the limitations of the underlying algorithms to
characterize patterns of tremor from patients’ free body movements [4,9].

Gradient tree boosting, an ensemble model of weak regression or decision trees, has been
successful in a broad range of applications, especially after the refinements that were introduced
by Chen and Guestrin to deal with its over-fitting problem and to make the model faster [13].
Recently, it has been successfully applied to predict PD motor impairments in a closed-loop control of
the deep brain stimulation [14], to discriminate between healthy and patients with essential tremor [15],
and to detect voice pathology in PD patients [16-18]. In addition to the traditional machine learning
approaches, deep learning has also been recently used to estimate different aspects of PD-related
motor function; for example, it was used for detection of response to medication in PD patients [19,20],
and estimation of bradykinesia [21] and PD severity [22,23]. In a recent work, we used long short-term
memory (LSTM) networks to estimate the total UPDRS-III score [23], which is different from the focus
of the present paper.

In this paper, we developed two new task-independent approaches based on gradient tree
boosting and LSTM networks to estimate tremor (resting and action) severity using wearable sensor
data collected while patients performed a variety of daily living activities (ADL). We investigated the
hypothesis that machine learning algorithms are able to utilize the resting intervals within ADL to
track and quantify resting tremor, and also separate rhythmic shaking from normal ADL to estimate
action tremor. Such methods do not require the patients to perform any standardized tasks so that
they could provide a continuous measure of tremor severity that PD patients experience over a typical
day and enable the treating neurologist to adjust the patients” medications effectively [24-26].

2. Dataset

2.1. Data Collection

Twenty four PD subjects (58.9 & 9.3 years old, 14 males) were recruited to record their motion
data in two study protocols [9,27,28] approved by the Institutional Review Board at Rochester Medical
Center and in accordance with the Helsinki Declaration. Prior to the experiments, the subjects provided
written informed consent. In both protocols, the subjects stopped their medication the night before the
experiment, and the experiment started in the morning. Yet, if the subjects were unable to withdraw
their medication overnight, they came to the laboratory near the time of a scheduled dose of their
PD medication. On the day of the experiment, one motion sensor (Great Lakes NeuroTechnologies
Inc., Cleveland, OH, USA) was mounted on the wrist, and one on the ankle of the PD most-affected
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side of each subject to record the subjects’ body movements while performing a variety of ADL.
The sensor placement is illustrated in Figure 1A. Each sensing unit consisted of triaxial gyroscope and
accelerometer with a sampling frequency of 64 Hz.

Fifteen of the subjects were instructed to perform a round of specific ADL, such as walking,
resting, eating, drinking, dressing, combing hair, putting groceries on a table, and cutting food [27,28].
The motion data was recorded only when they performed these activities. Next, these subjects took
their routine PD medications to coincide with their morning dose. Later, they repeated the ADL at the
beginning of every hour of the experiment up to four hours. Thus, up to four rounds of movement data
were collected. Comprehensive UPDRS-III assessments were performed every hour of the experiment
before each round of the ADL.

For the remaining nine subjects, the recording was performed continuously for the entire
experiment, which lasted for approximately two hours [9]. At the beginning of the experiment,
a comprehensive UPDRS-III assessment was performed. Next, the subjects were instructed to cycle
through six stations in a home-like setting to perform different ADL, such as hygiene, dressing,
eating, desk work, entertainment, and laundry. After cycling through all the stations at least once,
these subjects took their routine PD medications. Later when the neurologist confirmed that the
medications kicked in, they were asked to cycle through the stations again at least once. At the end of
the experiment, another comprehensive UPDRS-III assessment was performed.

At least two comprehensive UPDRS-III assessments were performed for every subject during the
experiment. The PD medication took between 33 to 104 min to kick in. Ten of the subjects were due for
another scheduled dose of PD medication during the experiment. Nine of them took the medication
before the third hour of the experiment, and one took it before the second hour of the experiment.
Also, no booster dose was added to the first dose. The average duration of the disease for all the
subjects was 9.9 & 3.7 years, and the average Levodopa Equivalent Daily Dose (LEDD) was 1251 =+ 468.
The average UPDRS-III score and tremor subscore was 21.8 £ 12.1 and 1.6 &£ 3, respectively.

2.2. Data Preprocessing

We used the total tremor subscore from the UPDRS-III assessment, which consists of five
resting-tremor subscores of the head, left and right hand, and left and right leg as well as two
action-tremor subscores from the left and right hand. The range of total tremor subscore is between
0 (no tremor) and 28 (severe tremor in all extremities). The tremor subscore may vary during a
one-hour interval, so we only used the movement data that is closest to an UPDRS-III assessment.
There were 2—4 UPDRS-III examinations per subject. We selected one round of activities after each
UPDRS-III examinations for the 15 subjects for whom the data was recorded intermittently for the
ADL. The maximum duration of each round for these subjects was 5 min. For the other nine subjects
for whom the data was recorded continuously, we selected two consecutive rounds after the first
UPDRS procedure and two consecutive rounds before the second UPDRS procedure if the duration of
the recorded data was 20 min before and after the medications kicked in. The maximum duration of
each round for these these subjects was 10 min. Note that the movement data recorded during the
UPDRS-III assessment was excluded in order to eliminate the effect of the UPDRS-III specific tasks in
our analysis. This process resulted in a total of 91 rounds of movement data. Table 1 shows the number
of rounds and their total duration for each subject. Please note that the first 15 subjects in Table 1
performed the round of ADL and the last nine performed the continuous ADL. Each round was used
as the input of our machine learning models. The associated tremor severity rating, as determined
by the closest UPDRS-III assessment, was used as the predicted output of the models. The results
reported by [4,6,12] showed that tremor predictive models performed better when gyroscopes data
were used (vs. accelerometer data). Thus, only gyroscope signals were used in this work. A bandpass
FIR filter with a 3 dB cutoff frequency between (0.5-15 Hz) was used to filter the movement data of
each round to eliminate low and high-frequency noises.
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Table 1. Number of rounds and total duration of the movement data used for each subject.

Subject # Number of Total Duration Subject # Number of Total Duration

Rounds (min) Rounds (min)
1 4 12.20 13 4 14.28
2 4 13.42 14 4 15.97
3 4 14.38 15 4 10.61
4 4 13.86 16 4 40.00
5 4 14.95 17 4 37.92
6 4 13.26 18 4 40.00
7 3 10.33 19 3 26.60
8 3 10.69 20 4 40.00
9 4 14.30 21 4 40.00
10 4 13.68 22 4 40.00
11 4 15.62 23 2 20.00
12 4 13.86 24 4 40.00

3. Method

This section starts by describing our feature extraction technique followed by a description of the
developed tremor severity estimation methods based on gradient tree boosting and LSTM.

3.1. Segmentation and Feature Extraction

In a recent study [29], we investigated how different signal features were associated with PD
symptoms. Given that the focus of the present study is tremor estimation, we used the outcome of
that study and extracted seventy eight features that were representative of tremor. To extract the
features, the sensor data was segmented into non-overlapping five-second windows to represent the
tremor patterns with oscillations of 4-6 Hz frequency [30,31]. The segmentation process is shown
in Figure 1B. Next, we extracted the features listed in Table 2 from each segment. The details of the
extracted features are provided in Ref. [29]. The extracted feature vectors ( f v € RNT), where N, = 78
is the number of features per segment, were organized for all the rounds as Dryepor = {(F (), y(d>)}£\] R

(d) Y o
with (F@ ¢ RNw XN () ¢ R), F(d) = [for 05O fO 0], N&?) is the number of 5-s windows in
W

round d, and N = 91 is the total number of rounds.

Table 2. The extracted features in this work.

Feature Name Used Signals # of Features
1—4-6 Hz signal power X, Y, Z—wrist and ankle 6
2—0.5-15 Hz signal power X, Y, Z—wrist and ankle 6
3—Percentage power of frequencies >4 Hz X, Y, Z—wrist and ankle 6
4—Number of autocorrelation peaks X, Y, Z—wrist and ankle 6
5—Sum of autocorrelation peaks X, Y, Z—wrist and ankle 6
6—Amplitude of the first autocorrelation peak X, Y, Z—wrist and ankle 6
7—Lag of the first autocorrelation peak X, Y, Z—wrist and ankle 6
8—Spectral entropy X, Y, Z—wrist and ankle 6
9—TFirst dominant frequency X, Y, Z—wrist and ankle 6
10—Power of first dominant frequency X, Y, Z—wrist and ankle 6
11—Second dominant frequency X, Y, Z—wrist and ankle 6
12—Power of second dominant frequency X, Y, Z—wrist and ankle 6
13—Cross-correlation X and Y—wrist and ankle 2
14—Cross-correlation X and Z—wrist and ankle 2
15—Cross-correlation Y and Z—wrist and ankle 2

Total Number of Features 78
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3.2. Tremor Estimation Methods

3.2.1. Gradient Tree Boosting

The gradient tree boosting algorithm [13] was used to assign a tremor subscore y(@) to its

L
corresponding extracted feature vectors F(@). First, each f v§ ) in round d was mapped to the tremor
subscore y@). Using an ensemble of N; weak regression trees ({ fl}f\i 1), the method estimates the
output § according to the function in Equation (1).

N
g = gfvaid)) (1)

where f;( f v;) = We(For) is the space of regression tree i with L leaves, g( f v,) is the structure of the tree
t

that maps f v, to an index and represents the corresponding tree leaf, and w € Rl is the leaf weights.
Learning the regression trees is performed using the additive training strategy. In this strategy, one
tree is learned at each iteration by minimizing an objective function. This function includes the first
and second gradient statistics of a loss function based on the difference between the estimated tremor
subscore yAEd) and the tremor subscore y(?) of round d. The trained model was used to estimate the
tremor subscore of all the feature vectors in one round. Then, the average of the estimated tremor

subscores in one round was calculated and used as the estimated tremor subscore of each round §(%).

3.2.2. Deep Learning Model

A deep learning model based on LSTM was developed to associate the feature vectors of each
round F(@) to the round’s tremor score y(?). LSTM is a recurrent neural network that we use to learn
the temporal dependencies in time series of the motion signals. LSTM cell consists of four gates:
input (i), input modulation (g), forget (f) and output (0), and a memory cell (c; at time step f). Each of
the gates has specific functionality by processing a feature vector ¥; at time ¢ using Ny hidden states
(h;—1 € RNH) and Ny internal states (c;_; € RNH) from the time step t — 1. Mathematically, the gates’
functionality is described below:

ip = o(Wy Xt + Wyihy 1 + b;) &)
gt = P(WagXt + Wighs—1 + by) @)
ft = o(WysXe + Wirhi 1 + by) )
= 0(WxoXt + Wyohi—1 + bo) ®)

ct = fic1 + gt ©®)

ht = o¢(ct) @)

where ¢ is the logistic sigmoid activation function, ¢ represents the tanh activation function and W,
is the weight matrix of an LSTM gate with the input or hidden states (2 = {x,h} and b = {i, g, f,0}).
In this work, we used the LSTM design in Ref. [32], which has been commonly used in signal
processing applications.

Depending on the LSTM design, the number of extracted feature attributes N7, and the number
of the LSTM’s hidden states Ny could be different. So, the first step is to transform each feature vector
( f vfd)) linearly to a new feature vector X’Ed) with the same length as the number of the LSTM’s hidden
states Ny using Equation (8).

. . (d
20 = Wi fo” 4 by, ®)

where Wy, and Efx are a weight matrix and bias vector, respectively. Next, the transformed feature
(d) ;

vector ¥, is passed to a many-to-one LSTM network to estimate a tremor subscore (#@). This network
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processes a single feature vector representing one segment at a time and continues to the last feature
vector J?gjv)v in a given round. The hidden states hg\?v)v from processing J?gjv)v was passed through a
fully connected layer to estimate the tremor subscore of round r #?) as shown in Equation (9).
The overall algorithm is shown in Figure 1. The optimization of the LSTM hyperparameters, including
the number of layers and hidden states as well as the learning and dropout rates, are provided in the
Results Section.

7D = Wiyhll) +b, )

where W, and Ey are a weight matrix and bias vector, respectively.
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Figure 1. (A) Placement of the wearable sensors on wrist and ankle; (B) A total of 78 features are
extracted from every 5-s segment of the data; (C) Estimation of the Parkinsonian tremor subscore

based on the LSTM method. NIECI) is the number of 5-s windows in round d and H represents the
hidden states.

4. Results

The extracted features were used to train and test the two developed models on the data of 24 PD
subjects described in Section 2. We used a held-out testing approach to investigate the models” efficacy in
estimating tremor subscores. The data from the 15 subjects who performed rounds of specific ADL was
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used to train the models, and the data from the remaining nine subjects who performed continuous
ADL were held out for testing the models. This data split resulted in using approximately 64% of the
data for training and 36% for held-out testing. A leave-one-subject-out cross-validation method was
used on the training data to optimize the model’s hyper-parameters. The mean and standard deviation
of the training data were calculated and used to normalize the entire data. Pearson Correlation (r)
and mean absolute error (MAE) were used to evaluate the developed methods by comparing the
algorithm-predicted tremor subscore i and the one from the clinical examinations y. The testing r and
MAE were reported for the estimated tremor subscores of the held-out data. Two experiments were
performed. The first experiment compared the two models for estimating the total tremor subscore.
The method with the highest performance was used in the second experiment to estimate the resting
and action tremor subscores separately.

We repeated the above training—testing approach using a leave-one-subject-out cross-validation
testing to investigate whether the models can be generalized to new subjects. There are 24 subjects in
the dataset, so we performed 24 cross-validation iterations. At each cross-validation iteration, the data
of one subject (one fold) was held-out and used for testing of the developed method. The data of the
remaining 23 subjects (23 folds) were divided into 80% for training and 20% for validation purposes
to optimize the model’s hyper-parameters. Please see Supplement Figure S1 of the Supplementary
Materials for a visual description of the performed cross-validation. Using this method, the average
duration of the test data is 22 min for all the cross-validation iterations.

4.1. Total Tremor Subscore Estimation

We used the the gradient tree boosting and LSTM algorithms to estimate the total tremor subscore
(ranged between 0-28). The gradient tree boosting algorithm was implemented using XGboost
library [13]. The learning rate was 0.1. A grid search was applied to find the optimal number of
regression trees in the range of 10-200 with a step of 20. The tree depth was in the range of 3-10 with
a step of 2. The percentage of used-features per tree was in the range of 10% to 50% with a step of
10%. For the held-out testing, an ensemble of 30 regression trees resulted in the highest validation
correlation (r =0.98 (p <1 x 1074)). Evaluating this model on the held-out set resulted in 1.56 MAE
and r=0.96 (p < 1 x 10~%). We repeated this process for the leave-one-subject-out testing. The best
validation results were 1.02 MAE and r = 0.96 (p < 1 x 10~*) when ensemble of 170 regression trees
was used. The testing correlation was (r = 0.93 (p < 1 x 107%)), and the testing MAE was 1.18.

The LSTM network was implemented in Python using TensorFlow library [33]. The network
weighs were initialized using random values from a normal distribution and trained for 200 epochs
using Adam optimizer [34]. To prevent the LSTM network from memorizing the training sequences,
the data was augmented. The augmentation was performed by clipping each round of feature vectors
with a random start point. In addition, a dropout of 0.3 after each LSTM layer with a mini-batch
of size 4 and norm-2 regularization were applied in order to reduce overfitting. In each mini-batch,
the feature vectors of the selected rounds were repeated so that all the rounds have the same length as
the longest round. We used an LSTM network with 3 layers as shown to be suitable for movement
data representations of PD subjects [23]. A grid search was performed on a 3-layer LSTM network
to find the optimal number of hidden states (16-224). Learning rate of 1 x 10~> was used during
the training. After each epoch, the model was evaluated on the validation data, and the model with
the maximum value of correlation r was used on the testing data. For the held-out testing, a 3-layer
LSTM with 160 hidden states resulted in the highest validation correlation (r = 0.94 (p < 1 x 107%)),
and evaluating this model on the held-out set resulted in 1.33 MAE and r = 0.84 (p < 1 x 10~%). For the
leave-one-subject-out testing, the maximum validation correlation was 0.89 (p = 0.019) when a 3-layer
LSTM with 224 hidden states was used. The testing correlation and MAE of this network were r = 0.77
(p <1 x 10™*) and 1.32, respectively.

A list of the results of the held-out and leave-one-subject-out testing is provided in Table 3.
Two main observations can be made from this table. The first observation is that the gradient tree



Sensors 2019, 19, 4215 8of 17

boosting method outperforms the LSTM-based approach. The reason for such a behavior could be
that the deep learning models typically perform better for larger datasets. The second observation is
that the leave-one-subject-out testing performs a more rigorous evaluation of the methods compared
to the held-out testing approach. Hence, we continued our analysis using the gradient tree boosting
method and leave-one-subject-out testing. Figure 2A shows the estimated tremor subscores against
the subscores from the UPDRS-III assessments.

Table 3. Validation and testing results using data from 24 PD subjects.

Tremor Type Sensor Used Metl}o' d I.fse d Held-Out Testing Leave-One-Out Testing
(Specifications) MAE r (p) MAE r (p)

Total rest and action tremor ~ Wrist and ankle LSTM 133 0.84(<1x107%) 132 077(<1x107%)
Total rest and action tremor ~ Wrist and ankle ~ Gradient tree boosting 1.56 096 (<1x107%) 118 093 (<1 x 107%)
Total rest tremor Wrist and ankle ~ Gradient tree boosting 1.20 094 (<1 x107%) 058 090 (<1 x 107%)
Hand rest tremor Wrist Gradient tree boosting ~ 0.76 091 (<1 x 107%) 041 0.87 (<1 x 107%)
Foot rest tremor Ankle Gradient tree boosting ~ 0.46 092(<1x107%) 027 0.89 (<1 x107%)
Action tremor Wrist Gradient tree boosting 041  0.75(<1x107%) 033  0.66 (<1 x 107%)

An experiment was performed to investigate whether enforcing an overlap between the
segmentation windows will improve the performance of the gradient tree boosting method. The same
procedure was repeated except for using a 50% overlap between the sliding 5-s windows. The best
validation performance was r = 0.96 (p < 1 x 10~%) when an ensemble of 90 regression trees was
used. The testing correlation was (r = 0.93 (p < 1 x 10~%)), which was the same correlation as with
no overlapping. This behavior was expected as the method reports the average of the estimated
tremor subscores of all the windows within every round, which could be up to 10-mins long, as the
estimated tremor subscore of each round. So, there is no need for any overlapping to make sure that
the method picks up the tremor in the windows within each round. Given that the 50% overlapping is
computationally more expensive by doubling the number of extracted feature vectors and does not
provide any improvement, we continued the remaining analysis with no overlapping.

We also investigated if the method performs differently for different genders. The gradient tree
boosting method performed approximately the same for both genders with r = 0.94 (p < 1 x 107%)
and MAE = 1.23 for male subjects and r = 0.91 (p < 1 x 10~%) and MAE = 0.9 for female subjects.
The estimated total tremor subscore using the gradient tree boosting method for six of the subjects are
shown in Figure 3. In this figure, panel A and B are from the tremor-dominant subjects who had a tremor
subscore >= 1, and panel C is from the non-tremor-dominant subjects who had a tremor subscore of 0
during all the UPDRS-III assessments. Panel A shows two cases where the method provides a good
match with the UPDRS-III total tremor subscore, while Panel B shows two cases that the predicted
values did not match the exact values from the UPDRS-III report.

Next, we investigated the method’s ability to estimate the change in the presence of tremor
before and after taking the medication. The box plots in Figure 4 show the model-estimated total
tremor before and approximately one hour after taking the medication for the tremor-dominant and
non-tremor-dominant subjects. As can be seen, the method shows a statistically significant reduction
(p < 0.02) in tremor severity with taking the medication for both groups of subjects.

Lastly, we investigated whether the activities that resemble the tasks in the UPDRS-III assessment
affect the ability of the algorithm in detecting the tremor subscore. For this purpose, we identified
the data intervals where the subjects were resting. An example of such intervals was resting while
watching TV. Then, we repeated the experiment after removing these resting intervals from the testing
phase. This analysis resulted in a correlation of » = 0.91 (p < 1 x 10~%) and the testing MAE of 1.15,
which do not show a significant decrease in performance, indicating that the algorithm can reliability
estimate tremor from free-body movements and not just the activities that resemble the tasks in the
UPDRS IIL
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Figure 2. The estimated tremor subscores versus the values estimated from the UPDRS-III assessment.
(A) The total tremor subscores using the LSTM method; (B) The total tremor subscores using the
gradient tree boosting method; The estimations using the gradient tree boosting for (C) total resting

tremor; (D) hand resting tremor; (E) foot resting tremor; and (F) action tremor. The blue dashed line

indicates the fitted line to the data.
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Figure 3. Examples of total tremor estimation over time using the gradient tree boosting model
in comparison with the estimation from the UPDRS-III assessment. (A) Two examples with
high correlation; (B) Two examples with moderate to low correlation; (C) Two examples from
non-tremor-dominant subjects. The PD medication intake time is denoted as an orange arrow. Note that
in cases of the subjects in the right-hand side of A-B, only two UPDRS-III assessments were performed
while four tremor estimations were performed using our developed model.
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Figure 4. Total tremor subscore estimated using the gradient tree boosting method for (A) tremor-
dominant and (B) non-tremor-dominant subjects before and about one hour after taking the first
scheduled dose of PD medication.

4.2. Resting and Action Tremor Subscore Estimation

The ensemble model based on gradient tree boosting was trained and tested to estimate resting
and action tremor separately. For the resting tremor, three models were trained to estimate the total
resting tremor on both hand and foot, only hand resting tremor, and only foot resting tremor. The same
datasets with all the ADL were used. However, we used only the wrist sensor to estimate the hand
resting and action tremor and only ankle sensor to estimate the foot resting tremor. Also, instead of
using the total resting and action tremor on all the extremities as in the previous experiment, we used
different combinations of the tremor subscores. Training the model for the resting tremor of both hand
and foot was performed using the summation of the hand and foot resting tremor (range 0-8) from the
UPDRS-III assessments. Only hand resting tremor (range 0—4) and only foot resting tremor (range 0—4)
were also used to train and test the models for the only hand resting tremor and only foot resting
tremor, respectively. For the action tremor, only one model was trained and evaluated using the action
tremor item in the UPDRS-III assessment.

The same procedure as in the previous experiment was repeated to select the hyperparameters
of the gradient tree boosting and train three resting tremor models and one action tremor model.
The results are reported in Table 3. As shown, the method provided a correlation of r > 0.87
(p<1x107%) on the testing data for all the models except the one that was used to estimate the
action tremor. The action tremor model resulted in r = 0.66 (p < 1 x 10~%). Figure 2C-F show the
estimated tremor using these four models against the tremor values from the UPDRS-III assessments.
Lastly, we investigated whether the LSTM method could provide better performance for the action
tremor. So, we trained an LSTM-based model to estimate action tremor. The LSTM network yielded
lower testing results with 7 = 0.43 (p < 1 x 10~%) and MAE = 0.4.
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4.3. Feature Analysis

We investigated the feature importance to the total tremor estimation. For this purpose, the gain
of each feature for estimating the tremor subscore in the gradient tree boosting model was found.
To visualize the features’ importance, we created a radar plot as shown in Figure 5. Each feature of
Table 2 is shown on one spoke. We created six radar plots representing the features extracted from the
X, 'Y, and Z axes of the wrist and ankle sensor. Please note that the features are placed counterclockwise,
and the cross-correlation features of 13, 14, and 15 are shown on the Z-axis plots.

Ankle Sensor
4

z 1 1
Axis
9 9
13 13

Figure 5. Feature importance based on the ensemble model gain. Each radar plot represents the gain
using the features extracted from specific axis and specific sensor. The numbers correspond to each of
the features (refer to Table 2).
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Several observations can be made from these plots. First, the features extracted from the Y signal
of the wrist sensor resulted in a higher estimation gain. This means that the hand tremor occurred
mainly around the Y axis. Second, the important features of the ankle sensor were not specific to
an axis. As can be seen form Figure 5, the important features were spread on all the axes indicating
that foot tremor was not manifested over a specific axis. Another interesting observation was that
the feature of 4-6 Hz signal power was not selected as an important feature from the wrist, while the
percentage power of frequencies >4 Hz was selected. This indicates that the tremor frequency was
greater than 6 Hz. Finally, we identified the important features with a gain of more than 0.5% and
listed them for the wrist and ankle sensors in Table 4.

Table 4. Important features with a gain of greater than 0.5% in estimating the total tremor subscore.

Wrist Sensor Ankle Sensor

Important Features Axis Important Features Axis
Feature #5: sum of autocorrelation peaks Y Feature #6: amplitude of the first autocorrelation peak X, Y and Z
Feature #7: lag of the first autocorrelation peak Y Feature #3: percentage power of frequencies >4 Hz Xand Z
Feature #11: second dominant frequency Y Feature #11: second dominant frequency Xand Z
Feature #3: percentage power of frequencies >4 Hz Y Feature #5: sum of autocorrelation peaks XandY
Feature #12: power of second dominant frequency Y Feature #7: lag of the first autocorrelation peak Y

Feature #4: number of autocorrelation peaks Y Feature #1: 4-6 Hz signal power Y

Feature #10: Power of first dominant frequency Y

5. Discussion

Wearable sensors can be used to provide an objective estimation of Parkinsonian tremor from
continuous movements of patients in their natural living environment. In this paper, we investigated
the application of two machine learning algorithms based on gradient tree boosting and LSTM-based
deep learning to make the estimation using data from two gyroscope sensors placed on the upper
and lower extremity of the patients with PD. Our analysis indicated that the gradient tree boosting
method was able to estimate the total tremor as well as the resting tremor subscore with high accuracy
(see Table 3). The LSTM-based method provided lower performance. The method’s validation loss
saturated at 1.5, whereas the training loss was close to zero. This indicates the LSTM method overfitted
the training data even with the precautions that were taken in the training phase (i.e., 0.3 dropout
layers, mini-batch of size 4 and norm-2 regularization).

The gradient tree boosting method was able to estimate the same tremor subscore values as
estimated from the UPDRS-III assessments in most cases. The left plot of Figure 3A illustrates a case
that the method provides a close match. In the right plot of Figure 3A, although there were only one
UPDRS-III assessment at the beginning and one at the end, our method showed the decline in tremor
severity with a high temporal resolution throughout the experiment.

Another interesting observation is that our method was able to show the decline in tremor after
taking the medication even in cases where our results did not match the total tremor subscores from
the UPDRS-III assessments. For example, in the left plot of Figure 3B, the method shows a decline
from 1.4 before medication to 0.5 after taking the medication although the UPDRS-III estimation of
total tremor was 0 tremor for both cases. This discrepancy could be because we used the data after
the assessment was performed and the tremor could have appeared later; or it could be because of
the subjectivity of the tremor assessment during the UPDRS-III assessments [35,36]. In the right plot
of Figure 3B, the UPDRS-III estimation of tremor indicates an increase in tremor while our method
shows a decline after taking medication. Such a behavior is also evidenced in Figure 4, where there
is a statistically significant reduction (p < 0.02) in the estimated tremor from before to after taking
the medication.

We observed that the model results in a lower specificity for cases with non-tremor-dominant
subjects. For example in Figure 3C, no tremor was reported throughout the experiment based on
the UPDRS-III examinations, but our method detected some level of tremor. This is consistent with
previous work for automated tremor estimation [5]. However, it is interesting that our method still



Sensors 2019, 19, 4215 14 of 17

shows a decline in tremor with taking the medication. In Figure 3C of the left plot, the method also
shows a slight increase in the estimated tremor as time passes from the medication.

Although the method provides high performance for the total tremor estimation, its performance
is not evenly distributed for all the tremor subscores. Our investigations indicates that the performance
is better for cases with a lower tremor subscore than the ones with a higher tremor subscore. As it can
be seen in Figure 2, there were only seven cases with a total tremor subscore >6. This could be the
reason for the model not being effectively trained to estimate those cases. Increasing the number of
subjects with a higher tremor subscore is expected to improve the method’s performance.

Another observation is that as shown in the plots C-D of Figure 2, estimation of the resting
tremor subscores was highly correlated with the UPDRS-III estimations on both hand and leg, whereas
the estimation of action tremor subscores had a moderate correlation. Giuffrida and colleagues
also reported a moderate correlation for the action tremor estimation even though they used only
standardized tasks [5]. Please note that our method was able to successfully detect hand and leg tremor
using only one sensor on the wrist and ankle, respectively.

Our analyses supported our hypothesis that machine learning methods could accurately estimate
tremor from ADL. To make sure of this, we only included the data from free body movements during
ADL and excluded any data during the UPDRS-III assessments from our analysis. In addition, in one
experiment, we excluded any resting intervals with a duration of longer than 15 s from our analysis to
exclude any data that resembles the UPDRS-III tasks. This analysis resulted in high testing correlation
r=091 (p <1 x 107%) and MAE = 1.15, which are slightly lower than when resting intervals were
included. This performance indicates the competency of our method to estimate tremor from free
body movements.

5.1. Comparison to Other Studies

Our method provided the highest performance among some of the UPDRS-III task-dependent
methods and all the task-independent tremor estimation methods reported in the literature.
For example, the task-dependent method in Ref. [7] resulted in r = 0.74 for hand resting tremor.
The work in [10] provided r = 0.65 for resting and posture tremor, and the method in [12] provided
r = 0.81 for resting tremor. Regarding the task-independent methods, Salarian and colleagues used
the data from two sensors on each forearms to estimate total tremor subsocre [4]. In this method,
the authors used an autoregressive-based model and estimated a tremor subscore for every 45-min
interval of the data. They reported a Pearson correlation of = 0.87 (p < 0.001) between the estimated
and total tremor subscores. In comparison to this method, ours provided higher performance
(r=093(p<1x 10~%)) over a shorter duration of data (every 10 min). Using a held-out testing
approach, our method achieved even higher performance (r = 0.96 (p < 1 x 10~%)). This is important
as our method is able to provide a better temporal resolution for the tremor estimation to provide
a measure of the full spectrum of tremor as changes over time. In addition, their work used two
sensors on the upper extremities, while we used only one sensor on wrist and were able to provide a
high correction (r = 0.90 (p < 1 x 10~%)). The other task-independent work was reported by Pulliam
and colleagues [9]. They used data from two gyroscope sensors mounted on the wrist and ankle [9]
to quantify tremor, bradykinesia and dyskinesia in 12-s windows. However, they reported only the
correlation between their models and the total UPDRS-III score, which was r = 0.81 over 10-min
data intervals.

5.2. Study Limitations and Future Work

We used the data recorded from 24 subjects with PD as they performed ADL at a clinical setting
to train and assess our approach. Our results indicated the potential of the developed algorithm for
providing an estimate of tremor severity as the PD subjects experience over a typical day. Validation of
our method for longer duration of test data and large cohort of subjects and in a home setting scenario
with more complex activities requires further investigations. In this study, we estimated the resting
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and action tremor separately as provided in the UPDRS-III assessment. Estimation of the postural and
kinetic tremor as provided in the Movement Disorders Society UPDRS Part III (MDS-UPDRS III) [2]
assessment constitutes our future work.

6. Conclusions

We developed a machine learning algorithm to automatically estimate tremor severity from
subjects’ free body movements. Our method consisted of a feature extraction and regression model.
The former extracted 78 features from every 5-s segment of data while the latter estimated a tremor
subscore for every 10-min duration of the data. Two regression models were considered in this study.
One model used gradient tree boosting and the other was based on LSTM deep learning. The developed
models were assessed using data from 24 PD subjects who had one wearable sensor on their most
affected wrist and one on the most affected ankle as performed a variety of free body movements.
Our evaluations demonstrated that gradient tree boosting resulted in the highest correlation (r = 0.96
with held-out testing and r = 0.93 using leave-one-out cross-validation) reported in the literature when
using unconstrained body movements’ data. In addition, we investigated the potential of the gradient
tree boosting model in estimating resting and action tremor. The model estimated resting tremor with
a high correlation to the UPDRS-III assessment while action tremor was estimated with a moderate
correlation. These results support that the developed tremor estimation method, combined with
wearable sensors, provide a reliable approach for estimating tremor severity as PD subjects experience
in a typical day, thereby providing necessary information for effective therapeutic management of
patients suffering from Parkinsonian tremor.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/19/4215/
s1, Figure S1: A. Schematic of the leave-one-subject-out cross-validation. B. Data split for training a model and
hyperparameters’ adjustments at every iteration.
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