RIGHTS

Clustering in graphs and hypergraphs
with categorical edge labels

Ilya Amburg Nate Veldt Austin R. Benson
Cornell University Cornell University Cornell University
ia244@cornell.edu nveldt@cornell.edu arb@cs.cornell.edu
ABSTRACT tasks [34]. In another direction, group, higher-order, or multi-way

Modern graph or network datasets often contain rich structure that
goes beyond simple pairwise connections between nodes. This calls
for complex representations that can capture, for instance, edges of
different types as well as so-called “higher-order interactions” that
involve more than two nodes at a time. However, we have fewer rig-
orous methods that can provide insight from such representations.
Here, we develop a computational framework for the problem of
clustering hypergraphs with categorical edge labels — or different
interaction types — where clusters corresponds to groups of nodes
that frequently participate in the same type of interaction.

Our methodology is based on a combinatorial objective func-
tion that is related to correlation clustering on graphs but enables
the design of much more efficient algorithms that also seamlessly
generalize to hypergraphs. When there are only two label types,
our objective can be optimized in polynomial time, using an algo-
rithm based on minimum cuts. Minimizing our objective becomes
NP-hard with more than two label types, but we develop fast ap-
proximation algorithms based on linear programming relaxations
that have theoretical cluster quality guarantees. We demonstrate
the efficacy of our algorithms and the scope of the model through
problems in edge-label community detection, clustering with tem-
poral data, and exploratory data analysis.

ACM Reference Format:

Ilya Amburg, Nate Veldt, and Austin R. Benson. 2020. Clustering in graphs
and hypergraphs with categorical edge labels. In Proceedings of The Web
Conference 2020 (WWW °20), April 20-24, 2020, Taipei, Taiwan. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3366423.3380152

1 INTRODUCTION

Representing data as a graph or network appears in numerous
application domains, including, for example, social network anal-
ysis, biological systems, the Web, and any discipline that focuses
on modeling interactions between entities [5, 25, 48]. The simple
model of nodes and edges provides a powerful and flexible abstrac-
tion, and over time, more expressive models have been developed
to incorporate richer structure in data. In one direction, models
now use more information about the nodes and edges: multilayer
networks capture nodes and edges of different types [35, 47], meta-
paths formalize heterogeneous relational structure [24, 59], and
graph convolutional networks use node features for prediction

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °20, April 20-24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380152

L)

706

interactions between several nodes — as opposed to pairwise inter-
actions — are paramount to the model. In this space, interaction
data is modeled with hypergraphs [9, 65, 66], tensors [1, 7, 52],
affiliation networks [39], simplicial complexes [10, 50, 53, 55], and
motif representations [11, 54]. Designing methods that effectively
analyze the richer structure encoded by these expressive models is
an ongoing challenge in graph mining and machine learning.

In this work, we focus on the fundamental problem of clus-
tering, where the general idea is to group nodes based on some
similarity score. While graph clustering methods have a long his-
tory [26, 42, 46, 56], existing approaches for rich graph data do not
naturally handle networks with categorical edge labels. In these
settings, a categorical edge label encodes a type of discrete similar-
ity score — two nodes connected by an edge with category label ¢
are similar with respect to c. This structure arises in a variety of set-
tings: brain regions are connected by different types of connectivity
patterns [20]; edges in coauthorship networks are categorized by
publication venues, and copurchasing data can contain information
about the type of shopping trip. In the examples of coauthorship
and copurchasing, the interactions are also higher-order — publi-
cations can involve multiple authors and purchases can be made
up of several items. Thus, we would like a scalable approach to
clustering nodes using a similarity score based on categorical edge
labels that work well for higher-order interactions.

Here, we solve this problem with a novel clustering framework
for edge-labeled graphs. Given a network with k edge labels (cate-
gories or colors), we create k clusters of nodes, each corresponding
to one of the labels. As an objective function for cluster quality,
we seek to simultaneously minimize two quantities: (i) the num-
ber of edges that cross cluster boundaries, and (ii) the number of
intra-cluster “mistakes”, where an edge of one category is placed
inside the cluster corresponding to another category. This approach
results in a clustering of nodes that respects both the coloring in-
duced by the edge labels and the topology of the original network.
We develop this computational framework in a way that seam-
lessly generalizes to the case of hypergraphs to model higher-order
interactions, where hyperedges have categorical labels.

The style of our objective function is related to correlation clus-
tering in signed networks [8], as well as its generalization for dis-
crete labels (colors), chromatic correlation clustering [12, 13], which
are based on similar notions of mistake minimization. However, a
key difference is that our objective function does not penalize plac-
ing nodes not connected by an edge in the same cluster. This mod-
eling difference provides serious advantages in terms of tractability,
scalability, and the ability to generalize to higher-order interactions.

We first study the case of edge-labeled (edge-colored) graphs
with only two categories. We develop an algorithm that optimizes

WWW 20, April 20-24, 2020, Taipei, Taiwan

our Categorical Edge Clustering objective function in polynomial
time by reducing the problem to a minimum s-¢ graph cut problem
on a related network. We then generalize this construction to facil-
itate quickly finding the optimal solution exactly for hypergraphs.
This is remarkable on two fronts. First, typical clustering objectives
such as minimum bisection, ratio cut, normalized cut, and modular-
ity are NP-hard to optimize even in the case of two clusters [17, 61].
And in correlation clustering, having two edge types is also NP-
hard [8]. In contrast, our setup admits a simple algorithm based on
minimum s-t cuts. Second, our approach seamlessly generalizes to
hypergraphs. Importantly, we do not approximate hyperedge cuts
with weighted graph cuts, which is a standard heuristic approach
in hypergraph clustering [2, 44, 66]. Instead, our objective exactly
models the number of hyperedges that cross cluster boundaries and
the number of intra-cluster “mistake” hyperedges.

With more than two categories, we show that minimizing our
objective is NP-hard, and we proceed to construct several approxi-
mation algorithms. The first set of algorithms are based on practical
linear programming relaxations, achieving an approximation ratio
of min {2 - %, 2 — % } where k is the number of categories and
r is the maximum hyperedge size (r = 2 for the graph case). The
second approach uses a reduction to multiway cut, where practi-
cal algorithms have a VT“ approximation ratio and algorithms of
theoretical interest have a 2(1 — %) approximation ratio.

We test our methods on synthetic benchmarks as well as a variety
of real-world datasets coming from neuroscience, biomedicine, and
social and information networks; our methods work far better than
baseline approaches at minimizing our objective function. Surpris-
ingly, our linear programming relaxation often produces a rounded
solution that matches the lower bound, i.e., it exactly minimizes
our objective function. Furthermore, our algorithms are also fast in
practice, often taking under 30 seconds on large hypergraphs.

We examine an application to a variant of the community de-
tection problem where edge labels indicate that two nodes are in
the same cluster and find that our approach accurately recovers
ground truth clusters. We also show how our formulation can be
used for temporal community detection, in which one clusters the
graph based on topology and temporal consistency. In this case,
we treat binned edge timestamps as categories, and our approach
finds good clusters in terms of topological metrics and temporal
aggregation metrics. Finally, we provide a case study in exploratory
data analysis with our methods using cooking data, where a recipe’s
ingredients form a hyperedge and its edge label the cuisine type.

2 PRELIMINARIES AND RELATED WORK

Let G = (V,E,C,¢{) be an edge-labeled (hyper)graph, where V is
a set of nodes, E is a set of (hyper)edges, C is a set of categories
(or colors), and ¢: E — C is a function which labels every edge
with a category. Often, we just use C = {1,2,...,k}, and we can
think of € as a coloring of the edges. We use “category”, “color”, and
“label” interchangeably, as these terms appear in different types of
literature (e.g., “color” is common for discrete labeling in graph
theory and combinatorics). We use k = |C| to denote the number of
categories, E. C E for the set of edges having label c, and r for the
maximum hyperedge size (i.e., order), where the size of a hyperedge
is the number of nodes it contains (in the case of graphs, r = 2).

707
RIGHTS LI s

Ilya Amburg, Nate Veldt, and Austin R. Benson

2.1 Categorical edge clustering objective

Given G, we consider the task of assigning a category (color) to
each node in such a way that nodes in category c tend to participate
in edges with label c; in this setup, we partition the nodes into k
clusters with one category per cluster. We encode the objective
function as minimizing the number of “mistakes” in a clustering,
where a mistake is an edge that either (i) contains nodes assigned
to different clusters or (ii) is placed in a cluster corresponding to
a category which is not the same as its label. In other words, the
objective is to minimize the number of edges that are not completely
contained in the cluster corresponding to the edge’s label.

Let Y be a categorical clustering, or equivalently, a coloring of the
nodes, where Y[i] denotes the color of node i. Let my: E — {0,1}
be the category-mistake function, defined for an edge e € E by

my(e) = {;

Then, the Categorical Edge Label Clustering objective score for the
clustering Y is simply the number of mistakes:

if Y[i] # {(e) for any node i € e,

otherwise.

1)

CatEdgeClus(Y) = Y, .cg my(e). 2

This form applies equally to hypergraphs; a mistake is a hyperedge
with a node placed in a category different from the edge’s label.
Our objective can easily be modified for weighted (hyper)graphs.
If a hyperedge e has weight w,, then the category mistake function
simply becomes my(e) = we if Y[i] # €(e) for any node i in e and
is 0 otherwise. Our results easily generalize to this setting, but we
present results in the unweighted case for ease of notation.

2.2 Relation to Correlation Clustering

Our objective function is related to chromatic correlation cluster-
ing [12], in which one clusters an edge-colored graph into any
number of clusters, and a penalty is incurred for any one of three
types of mistakes: (i) an edge of color ¢ is placed in a cluster of a
different color; (ii) an edge of any color has nodes of two different
colors; or (iii) a pair of nodes not connected by an edge is placed in-
side a cluster. This objective is a strict generalization of the classical
correlation clustering objective [8].

Our Categorical Edge Clustering objective is similar, except we
remove the penalty for placing non-adjacent nodes in the same
cluster (mistakes of type (iii)). The chromatic correlation clustering
objective treats the absence of an edge between nodes i and j as a
strong indication that these nodes should not share the same label.
We instead interpret a non-edge simply as missing information:
the absence of an edge may be an indication that i and j do not
belong together, but it may also be the case that they have a re-
lationship that simply has not been measured. This is a natural
assumption with large, sparse real-world graphs, where we rarely
have information on all pairs of entities. Another key difference
between chromatic correlation clustering and our objective is that
in the former, one may form several clusters for the same color. For
our objective, merging two separate clusters for the same color can
only improve the objective.

Our formulation also leads to several differences in computa-
tional tractability. Chromatic correlation clustering is NP-hard in
general, and there are several approximation algorithms [6, 12, 13].

Clustering in graphs and hypergraphs
with categorical edge labels

The tightest of these is a 4-approximation, though the algorithm is
mostly of theoretical interest, as it involves solving an incredibly
large linear program. Moreover, the higher-order generalization
of simple correlation clustering (without colors) to hypergraphs is
more complicated to solve and approximate than standard corre-
lation clustering [27, 31, 43, 45]. We will show that our Categor-
ical Edge Clustering objective can be solved in polynomial time
for graphs and hypergraphs with two categories. The problem be-
comes NP-hard for more than two categories, but we are able to
obtain practical 2-approximation algorithms for both graphs and
hypergraphs. Our approaches are based on linear programming
relaxations that are small enough to be solved quickly in practice.

2.3 Additional related work

There are several methods for clustering general data points that
have categorical features [14, 28, 30], but these methods are not
designed for clustering graph data. There are also methods for clus-
tering in graphs with attributes [4, 15, 62, 67]; these focus on vertex
features and do not connect categorical features to cluster indica-
tors. Finally, there are several clustering approaches for multilayer
networks modeling edge types [23, 38, 47], but the edge types are
not meant to be indicative of a cluster type.

3 THE CASE OF TWO CATEGORIES

In this section we design algorithms to solve the Categorical Edge
Clustering problem when there are only two categories. In this
case, both the graph and hypergraph problem can be reduced to a
minimum s-¢ cut problem, which can be efficiently solved.

3.1 An algorithm for graphs

To solve the two-category problem on graphs, we first convert it
to an instance of a weighted minimum s-¢ cut problem on a graph
with no edge labels. Recall that E, is the set of edges with category
label c. Given the edge-labeled graph G = (V, E, C,), we construct
anew graph G’ = (V’, E’) as follows:
e Introduce a terminal node v, for each of the two labels ¢ € L,
so that V/ = V UV, where V; = {v; | ¢ € L}.
e For each label ¢ and each (i, j) € E., introduce edges (i, j),
(ve, 1) and (ve, j), all of which have weight %
Since there are only two categories ¢1 and cz, let s = v¢, be treated
as asource node and t = v, be treated as a sink node. The minimum
s-t cut problem in G’ is defined by

minimize cut(SUs), 3)
ScvV

where cut(T) is the weight of edges crossing from nodesin T c V’
to its complement set T = V’\T. This classical problem that can be
efficiently solved in polynomial time, and we have an equivalence
with the original two-category edge clustering objective.

PROPOSITION 3.1. For any S C V, the value of cut(S U s) in G’
is equal to the value of CatEdgeClus({S, S}), where S and S are the
clusters for categories ¢ and ca.

Proor. Letedge e = (i, j) be a “mistake” in the clustering (my(e) =
1) and without loss of generality have color ¢;. If i and j are as-
signed to ¢z, then the half-weight edges (i, v,) and (j, v,) are cut.

708
RIGHTS LI s

WWW °20, April 20-24, 2020, Taipei, Taiwan

U1 2 Ur-1 Ur

Figure 1: Subgraphs used for the s-t cut reduction of two-
color Categorical Edge Clustering in hypergraphs. Here, o
and f are hyperedges in the original hypergraph with col-
ors cj (orange, left) and c; (blue, right).

Otherwise, exactly one of i and j is assigned to cz. Without loss of
generality, let it be i. Then (i, v,) and (i, j) are cut. O

Thus, a minimizer for the s-t cut in G’ directly gives us a mini-
mizer for our Categorical Edge Clustering objective. We next pro-
vide a similar reduction for the case of hypergraphs.

3.2 An algorithm for hypergraphs

We now develop a method to exactly solve our objective in the
two-color case with arbitrary order-r hypergraphs, and we again
proceed by reducing to an s-t cut problem. Our approach is to
construct a subgraph for every hyperedge and paste these subgraphs
together to create a new graph G’ = (V’,E’), where minimum
s-t cuts produce partitions that minimize the Categorical Edge
Clustering objective. A similar construction has been used for a "
Potts model in computer vision [36], and our reduction is the first
direct application of this approach to network analysis.

We start by adding terminal nodes s = v, and t = v, (corre-
sponding to categories ¢ and ¢3) as well as all nodes in V to V’.
For each hyperedge e = (v, . ..,vr) of G, we add a node u, to V’
and add the following directed edges to E’ (see also Figure 1):

o If e has label c1, add (s, ue), (ue,v1), . . ., (te, vr) to E’.
e If e has label cp, add (ue, t), (v1, ue), .. ., (Vr,ue) to E’.

Again, the minimum s-t cut on G’ produces a partition that also
minimizes the categorical edge clustering objective, as shown below.

THEOREM 3.2. Let S* be the solution to the minimum cut problem.
Then the label assignment Y defined by Y[i] = ¢1 ifi € S* and Y[i] =
¢z ifi € S* minimizes the Categorical Edge Clustering objective.

Proor. Consider a hyperedge e = (vy, . .., v,) with label c;. We
show that my(e) precisely corresponds to an s-t cut on the subgraph
of G’ induced by e (Figure 1, right). If Y[v1] = ... = Y[v,] = ¢,
then vy, ...,v, € §* and the cost of the minimum s-¢-cut is 0 (via
placing s by itself). Now suppose at least one of Y[v1],..., Y[v,]
equals ¢1. Without loss of generality, say that Y[v1] = ¢1,s0 01 € §*.
If ue € S*, we cut (ue, t) and none of the edges (v;, u.) contribute
to the cut. If u, € S*, we cut (v1, ue); and it cannot be the case that
(vi, ue) is cut for i # 1 (otherwise, we could have reduced the cost
of the minimum cut by placing u, € S*).

To summarize, if edge e with label ¢z induces a mistake in the
clustering, then the cut contribution is 1; otherwise, it is 0. A sym-
metric argument holds if e has label ¢y, using the graph in Figure 1
(left). By additivity, minimizing the s-t cut in G’ minimizes the num-
ber of mistakes in the Categorical Edge Clustering objective. O

WWW °20, April 20-24, 2020, Taipei, Taiwan

Edge 3—color gadget
Figure 2: Gadget used for reducing maxcut to 3-color Cat-
egorical Edge Clustering. Each gadget has new auxiliary
nodes, but u and v may be a part of many 3-color gadgets.

This procedure also works for the special case of graphs. How-
ever, G’ has more nodes and directed edges in the more general
reduction, which can increase running time in practice.
Computational considerations. Both algorithms solve a single
minimum cut problem on a graph with O(T) vertices and O(T)
edges, where T = },cgle| is the sum of hyperedge degrees (this
is bounded above by r|E|, where r is the order of the hypergraph).
In theory, this can be solved in O(T?) time in the worst case [49].
However, practical performance is often much different than this
worst-case running time. That being said, we do find the maximum
flow formulations to often be slower than the linear programming
relaxations we develop in Section 4. We emphasize that being able to
solve the Categorical Edge Clustering objective in polynomial time
for two colors is itself interesting, and that the algorithms we use
for experiments in Section 5 are able to scale to large hypergraphs.
Considerations for unlabeled edges. Our formulation assumed
that all of the (hyper)edges carry a unique label. However, in some
datasets, there may be edges with no label or both labels. In these
cases, the edge’s existence still signals that its constituent nodes
should be colored the same — just not with a particular color. A nat-
ural augmentation to our objective is then to penalize this edge only
when it is not entirely contained in some cluster. Our reductions
above handle this case by simply connecting the corresponding
nodes in V’ to both terminals instead of just one.

4 MORE THAN TWO CATEGORIES

We now move to the general formulation of Categorical Edge Clus-
tering when there can be more than two categories or labels. We
first show that optimizing the objective in this setting is NP-hard.
After, we develop approximation algorithms based on linear pro-
gramming relaxations and multiway cut problems with theoretical
guarantees on solution quality. Many of these algorithms are prac-
tical, and we use them in numerical experiments in Section 5.

4.1 NP-hardness of Categorical Edge Clustering

We now prove that the Categorical Edge Clustering objective is NP-
hard for the case of three categories. Our proof follows the structure
of the NP-hardness reduction for 3-terminal multiway cut [21], and
the reduction is from the NP-hard maximum cut (maxcut) problem.
Written as a decision problem, this problem seeks to answer if there
exists a partition of the nodes of a graph into two sets such that the
number of edges cut by the partition is at least K.

Consider an unweighted instance of maxcut on a graph G =
(V,E). To convert this into an instance of 3-color Categorical Edge
Clustering, we replace each edge (u, v) € E with the 3-color gadget
in Figure 2. We will use the following lemma in our reduction.

709
RIGHTS LI s

Ilya Amburg, Nate Veldt, and Austin R. Benson

LEMMA 4.1. In any node coloring of the 3-color gadget (Figure 2),
the minimum number of edges whose color does not match both of its
nodes (i.e., number of mistakes in categorical edge clustering) is three.
This only occurs when one of {u, v} is red and the other is blue.

Proor. If v is blue and u is red, then we can achieve the min-
imum three mistakes by clustering each node in the gadget with
its horizontal neighbor in Figure 2 or alternatively by placing each
node with its vertical neighbor. If u and v are constrained to be in
the same cluster, then the optimal solution is to place all nodes in
the gadget together, which makes 4 mistakes. It is not hard to check
that all other color assignments yield a penalty of 4 or more. O

Now let G’ be the instance of 3-color Categorical Edge Clustering
obtained by replacing each edge (u, v) € E with a 3-color gadget.

THEOREM 4.2. There exists a partition of the nodes in G into two
sets with K or more cut edges if and only if there is a 3-coloring of the
nodes in G’ that makes 4|E| — K or fewer mistakes.

Proor. Consider first a cut in G = (V, E) of size K’ > K. Let S
and S denote the two clusters in the corresponding bipartition
of G, mapping to red and blue clusters. Consider each (u,v) € E
in turn along with its 3-color gadget. If (u,v) € E is cut, cluster
all nodes in its gadget with their vertical neighbor if u € Sj, and
v € Sy, and cluster them with their horizontal neighbor if u € S,
and v € Sp,. Either way, this makes exactly 3 mistakes. If (u, v) is
not cut, then label all nodes in the gadget red if u,v € S, or blue
if u,v € Sp, which makes exactly 4 mistakes. The total number of
mistakes in G’ is then 3K’ + 4(|E| — K’) = 4|E| - K’ < 4|E| - K.

Now start with G’ and consider a node coloring that makes
B’ < B = 4|E| — K mistakes. There are |E| total 3-color gadgets in
G’. We claim that there must be at least K of these gadgets at which
only three mistakes are made. If this were not the case, then assume
exactly H < K gadgets where 3 mistakes are made. By Lemma 4.1,
there are |E| — H gadgets where at least 4 mistakes are made, so
the total number of mistakes is B’ > 3H + 4(|E| — H) = 4|E| - H >
4|E| - K, contradicting our initial assumption. Thus, by Lemma 4.1,
there are at least K edges (u,v) € E where one of {u, v} is red and
the other is blue, and the maximum cut in G is at least K. O

Consequently, if we can minimize Categorical Edge Clustering in
polynomial time, we can solve the maximum cut decision problem
in polynomial time, and Categorical Edge Clustering is thus NP-
hard. As a natural next step, we turn to approximation algorithms.

4.2 Algorithms based on LP relaxations

We now develop approximation algorithms by relaxing an integer
linear programming (ILP) formulation of our problem. We design
the algorithms for hypergraphs, with graphs as a special case. Sup-
pose we have an edge-labeled hypergraph G = (V,E,C, {) with
C ={1,...,k}, where E. = {e € E | {[e] = c}. The Categorical
Edge Clustering objective can be written as the following ILP:

min Y.cc ZeEEc Xe

st. forallveV: Z];:l x5 =k-1
forallce C,e € E;: x5 <x.forallvee
x5, xe € {0,1} forallce C,veV,e€E.

4)

RIGHTS LI

Clustering in graphs and hypergraphs
with categorical edge labels

WWW °20, April 20-24, 2020, Taipei, Taiwan

Algorithm 1: A simple 2-approximation for Categorical
Edge Clustering based on an LP relaxation. Algorithm 2
details a more sophisticated rounding scheme.

Algorithm 2: LP relaxation for Categorical Edge Cluster-
ing with a randomized rounding scheme. Theorem 4.4 gives
approximation guarantees based on t.

1 Input: Labeled hypergraph G = (V,E, C, {).

2 Output: Label Y[i] for each node i € V.

3 Solve the LP-relaxation of ILP (4).

4 forc e Cdo

5 Se —{veV|xf<1/2}

6 for i€ S; do assign Y[i] « c.

7 end

8 Assign unlabeled nodes to an arbitrary ¢ € C.

In this ILP, x{ = 1 if node v is not assigned to category c, and
is zero otherwise. The first constraint in (4) ensures that x§ =

for exactly one category. The second constraint says that in any
minimizer, x, = 0 if and only if all nodes in e are colored the same

as e; otherwise, x = 1. If we relax the binary constraints in (4):

0<x5<1, 0<xe<1,

then the ILP is just a linear program (LP) that can be solved in
polynomial time.

When k = 2, the constraint matrix of the LP relaxation is totally
unimodular as it corresponds to the incidence matrix of a balanced
signed graph [64]. Thus, all basic feasible solutions for the LP satisfy
the binary constraints of the original ILP (4), which is another proof
that the two-category problem can be solved in polynomial time.

With more than two categories, the LP solution can be fractional,
and we cannot directly determine a node assignment from the LP
solution. Nevertheless, solving the LP provides a lower bound on the
optimal solution, and we show how to round the result to produce
a clustering within a bounded factor of the lower bound. Algorithm
1 contains our rounding scheme, and the following theorem shows
that it provides a clustering within a factor of 2 from optimal.

THEOREM 4.3. Algorithm 1 returns at worst a 2-approximation to
the Categorical Edge Clustering objective.

Proor. First, for any v € V, x§, < 1/2 for at most one category
¢ € C in the solution. If this were not the case, there would exist
two colors a and b such that x% < 1/2 and xz < 1/2 and

Z];:lxg =x$+x£+2crec\{a’b}x5 <l+k-2=k-1,

which violates the first constraint of the LP relaxation. Therefore,
each node will be assigned to at most one category. Consider any
e € E. for which all nodes are not assigned to c¢. This means that
there exists at least one node v € e such that x{, > 1/2. Thus,
the Algorithm incurs a penalty of one for this edge, but the LP
relaxation pays a penalty of x, > x7, > 1/2. Therefore, every edge

mistake will be accounted for within a factor of 2. |

We can get better approximations in expectation with a more
sophisticated randomized rounding algorithm (Algorithm 2). In this
approach, we form sets S’ based on a threshold parameter t so that
each node may be included in more than one set. To produce a
valid clustering, we first generate a random permutation of colors
to indicate an (arbitrary) priority of one color over another. For
any v € V contained in more than one set S, we assign v to the

L)

710

1 Input: Labeled hypergraph G = (V,E,C = {1,2,...,k},{);
rounding parameter t € [1/2,2/3].

2 Output: Label Y[i] for eachnode i € V.

3 Solve the LP-relaxation of ILP (4).

4 1 « uniform random permutation of {1, 2, ..., k}.

5 forc =m,..., 1 do

6 Se —{veV|xf <t}

7 for i € S¢ do Y[i] « x(c).

s end

9 Assign unlabeled nodes to an arbitrary ¢ € C.

cluster with highest priority. By carefully setting the parameter ¢,
this approach has better guarantees than Algorithm 1.

THEOREM 4.4. Ift = k/(2k — 1), Algorithm 2 returns an at worst
(2 — 1/k)-approximation for Categorical Edge Clustering in expec-
tation. And ift = (r + 1)/(2r + 1), Algorithm 2 returns an at worst
(2 = 1/(1 + r))-approximation in expectation.

Proor. For the choices of t listed in the statement of the theorem,
t € [1/2,2/3] as long as r > 2 and k > 2, which is always true.
We say that color ¢ wants node v if v € S¢, but this does not
automatically mean that v will be colored as c. For any v € V, there
exist at most two colors that want v. If v were wanted by more
than two colors, this would mean v € S; NSy NS, for three distinct
colors a, b, c. This leads to a violation of the first constraint in (4):

b

x%+xP+x+ Z xh<3t+(k=-3)<2+(k-3)=(k-1).

i:i¢g{a,b,c}

Consider an arbitrary ¢ € (1/2,2/3). We can bound the expected
number of mistakes made by Algorithm 2 and pay for them indi-
vidually in terms of the LP lower bound. To do this, we consider a
single hyperedge e € E. with color ¢ and bound the probability of
making a mistake and the LP cost of this hyperedge.

Case 1: x, > t.In this case, we are guaranteed to make a mistake
at edge e, since x, > t implies there is some node v € e such that
x§ > t,and so v ¢ S¢. However, because the LP value at this edge
is xe¢ > t, we pay for our mistake within a factor 1/¢.

Case 2: x, < t. Now, color ¢ wants every node in the hyperedge
e € E.. If no other colors want any node v € e, then Algorithm 2
will not make a mistake at e, and we have no mistake to account for.
Assume then that there is some node v € e and a color ¢’ # ¢ such
that ¢/ wants v. This implies that x& < ¢, from which we have that
x& > 1-x% > 1—t(to satisfy the first inequality in (4)). Thus,

Xe = xS >1—t.

®)

This gives a lower bound of 1 — ¢ on the contribution of the LP
objective at edge e.

In the worst case, each v € e may be wanted by a different ¢’ # c,
and the number of colors other than ¢ that want some node in e is
bounded above by By = k — 1 and By = r. We avoid a mistake at e
if and only if ¢ has higher priority than all of the alternative colors,

WWW °20, April 20-24, 2020, Taipei, Taiwan

where priority is established by the random permutation 7. Thus,
Pr[mistake at e | x¢ < t] < r‘f‘l = min {%, %} . (6)

Recall from (5) that the LP pays x, > 1—t. Therefore, the expected
cost at a hyperedge e € E. satisfying x, < t is at most % in
expectation. Taking the worst approximation factor from Case 1 and
Case 2, Algorithm 2 will in expectation provide an approximation
factor of max {%, %}. This will be minimized when the

approximation bounds from Cases 1 and 2 are equal, which occurs

when t = 2%:1. IfB; = k—1,thent = % and the expected
approximation factor is 2 — 1/k. And if B; = r, then ¢t = 5" and
the expected approximation factor is 2 — 1/(r + 1). O

For the graph case (r = 2), this theorem implies a %-approximation

for Categorical Edge Clustering with any number of categories.

Computational considerations. The linear program has O(|E|)
variables and sparse constraints, which written as a matrix in-
equality would have O(T) non-zeros, where T is again the sum of
hyperedge degrees. Improving the best theoretical running times
for solving linear programs is an active area of research [19, 40],
but practical performance of solving linear programs is often much
different than worst-case guarantees. In Section 5, we show that a
high-performance LP solver from Gurobi is extremely efficient in
practice, finding solutions in seconds on hypergraphs with several
categories and tens of thousands of hyperedges in tens of seconds.

4.3 Algorithms based on multiway cut

We now provide alternative approximations based on multiway cut,
similar to the reductions from Section 3. Again, we develop this
technique for general hypergraphs and graphs are a special case.

Suppose we have an edge-labeled hypergraph G = (V, E,C, {).
We construct a new graph G = (V’, E’) as follows. First, introduce a
terminal node v, for each category ¢ € C, sothat V' = VU{v. | c €
C}. Second, for each hyperedge e = {v1,...,v,} € E, add a clique
on nodes vy, . .., Uy, Ug[¢] to E’, where each edge in the clique has
weight 1/r. (Overlapping cliques are just additive on the weights.)

The multiway cut objective is the number of cut edges in any
partition of the nodes into k clusters such that each cluster con-
tains exactly one of the terminal nodes. We can associate each
cluster with a category, and any clustering Y of nodes in Categori-
cal Edge Clustering for G can be mapped to a candidate partition
for multiway cut in G’. Let MultiwayCut(Y) denote the value of
the multiway cut objective for the clustering Y. The next result
relates multiway cut to Categorical Edge Clustering.

THEOREM 4.5. For any clustering Y,
+1
CatEdgeClus(Y) < MultiwayCut(Y) < rTCatEdgeClus(Y).

Proor. Let e = {vy,...,v,} with label ¢ = £[e] be a hyperedge
in G. We can show that the bounds hold when considering the
associated clique in G’ and then apply additivity. First, if e is not a
mistake in the Categorical Edge Clustering, then no edges are cut
in the clique. If e is a mistake in the Categorical Edge Clustering,
then there are some edges cut in the associated clique. The smallest
possible contribution to the multiway cut objective occurs when all
but one node is assigned to c. Without loss of generality, consider

711
RIGHTS LI s

Ilya Amburg, Nate Veldt, and Austin R. Benson

this to be v1, which is in r cut edges: (r — 1) corresponding to the
edges from v; to other nodes in the hyperedge, plus one for the
edge from v; to the terminal v,. Each of the r cut edges has weight
1/r, so the multiway cut contribution is 1.

The largest possible cut occurs when all nodes in e are colored
differently from e. In this case, the edges incident to each node in
the clique are all cut. For any one of these nodes, the sum of edge
weights incident to that node equals 1 by the same arguments as
above. This cost is incurred for each of the r nodes in the hyperedge
plus the terminal node v, for a total weight of r + 1. Since each
edge is counted twice, the actual penalty is (r + 1)/2. O

Computational considerations. Minimizing the multiway cut
objective is NP-hard [21], but there are many approximation algo-
rithms. Theorem 4.5 implies that any p-approximation for multiway
cut provides a p(r + 1)/2-approximation for Categorical Edge Clus-
tering. For example, the simple isolating cuts heuristic yields a
rTH(Z - %)-approximation, and more sophisticated algorithms pro-
vide a rT“ % - %)—approximation [18]. For our experiments, we
use the isolating cut approach, which solves O(k) maximum flow
problems on a graph with O(r|E|) vertices and O(r?|E|) edges. This
can be expensive in practice. We will find that the LP relaxation
performs better in terms of solution quality and running time.
A node-weighted multiway cut reduction. We also provide an
approximation based on a direct reduction to a node-weighted mul-
tiway cut (NWMC) problem that is of theoretical interest. As above,
suppose we have an edge-labeled hypergraph G = (V, E, C, {). We
construct a new graph G’ = (V’, E’) as follows. First, introduce a ter-
minal node v, for each category ¢ € C,sothat V' = VU{v. | ¢ € C}.
Assign infinite weights to all nodes in V’. Next, for each hyperedge
e ={vy,...,0,} € E, add an auxiliary node v, with weight 1. Next,
append edges (ve, v1), . . ., (Ve, vr) as well as (ve, ve) for £(e) = ¢
to E’. It straightforward to check that deleting v, corresponds to
making a mistake at hyperedge e. Thus an optimizer of NWMC on
G’ is also an optimizer of Categorical Edge Clustering on G.
Solving NWMC is also NP-hard [29], and there are again well-
known approximation algorithms. The above discussion implies
any p-approximation to NWMC also provides a p-approximation for
Categorical Edge Clustering. For example, an LP-based algorithm
has a 2(1 — 1/k)-approximation [29]. This approximation is better
but the LPs are too large to be practical; however, the improvement
of a direct algorithm suggests room for better theoretical results.

4.4 Approximation through a linear objective

The Categorical Edge Clustering objective assigns a penalty of 1
regardless of the proportion of the nodes in a hyperedge which are
clustered away from hyperedge’s color. Although useful, we might
consider alternative penalties that value the extent to which each
hyperedge is satisfied in the final clustering. One natural penalty for
ahyperedge of color c is the number of nodes within that hyperedge
that are not clustered into that color. With such a “linear” mistake
function, we define the Categorical Node Clustering Objective as

CatNodeClus(Y) = Yocp my(e), where mi(e) = Xice Iy[ijz(e)-

It turns out that this objective is optimized with a simple majority
vote algorithm that assigns a node to the majority color of all
hyperedges that conatin it.

Clustering in graphs and hypergraphs
with categorical edge labels

THEOREM 4.6. The majority vote algorithm yields an optimizer of
the Categorical Node Clustering (linear) objective.

PRroOF. Suppose node u is contained in J; hyperedges of color
i. Without loss of generality, assume J; > ... > Ji. The cost of
assigning u to ¢ is Cc = 34 Jj, which is minimized for¢c = 1. O

In Section 5, we will see that the majority vote solution provides
a good approximation to the optimizer of the Categorical Edge
Clustering objective. The reason is that the cost of a hyperedge
under the linear objective is at most r while that cost under the Cat-
egorical Edge Clustering objective is just 1, which makes majority
vote an r-approximation algorithm.

THEOREM 4.7. The majority vote algorithm provides an
r-approximation for Categorical Edge Clustering.

5 EXPERIMENTS

We now run four types of numerical experiments to demonstrate
our methodology. First, we show that our algorithms indeed work
well on a broad range of datasets at optimizing our objective func-
tion and discover that our LP relaxation tends be extremely effective
in practice, often finding an optimal solution (i.e., matching the
lower bound). After, we show that our approach is superior to com-
peting baselines in categorical community detection experiments
where edges are colored to signal same-community membership.
Next, we show how to use timestamped edge information as a
categorical edge label, and demonstrate that our method can find
clusters that preserve temporal information better than methods
that only look at graph topology, without sacrificing performance
on topological metrics. Finally, we present a case study on a network
of cooking ingredients and recipes to show that our methods can
also be used for exploratory data analysis. Our code and datasets are
available at https://github.com/nveldt/CategoricalEdgeClustering.

5.1 Analysis on Real Graphs and Hypergraphs

We first evaluate our methods on several real-world edge-labeled
graphs and hypergraphs in terms of Categorical Edge Clustering.
The purpose of these experiments is to show that our methods can
optimize the objective quickly and accurately and to demonstrate
that our methods find global categorical clustering structure better
than natural baseline algorithms. All experiments ran on a laptop
with a 2.2 GHz Intel Core i7 processor and 8 GB of RAM. We
implemented our algorithms in Julia, using Gurobi software to
solve the linear programs.

Datasets. Table 1 provides summary statistics of the datasets we
use, and we briefly describe them. Brain [20] is a graph where
nodes represent brain regions from an MRL There are two edge
categories: one for connecting regions with high fMRI correlation
and one for connecting regions with similar activation patterns. In
the Drug Abuse Warning Network (DAWN) [58], nodes are drugs,
hyperedges are combinations of drugs taken by a patient prior to
an emergency room visit, and edge categories indicate the patient
disposition (e.g., “sent home” or “surgery”). The MAG-10 network
is a subset of the Microsoft Academic Graph [57] where nodes are
authors, hyperedges correspond to a publication from those authors,
and there are 10 edge categories which denote the computer science

712
RIGHTS LI s

WWW °20, April 20-24, 2020, Taipei, Taiwan

conference publication venue (e.g., “WWW?” or “KDD”). If the same
set of authors published at more than one conference, we used the
most common venue as the category, discarding cases where there
is a tie. In the Cooking dataset [33], nodes are food ingredients,
hyperedges are recipes made from combining multiple ingredients,
and categories indicate cuisine (e.g., “Southern-US” or “Indian”).
Finally, the Walmart-Trips dataset is made up of products (nodes),
groups of products purchased in a single shopping trip (hyperedges),
and categories are 44 unique “trip types” classified by Walmart [32].
Algorithms. We use two algorithms that we developed in Section
4. The first is the simple 2-approximation rounding scheme outlined
in Algorithm 1, which we refer to as LP-round (LP) (in practice, this
performs as well as the more sophisticated algorithm in Algorithm
2 and has the added benefit of being deterministic). The second is
Cat-IsoCut (IC), which runs the standard isolating cut heuristic [21]
on an instance of multiway cut derived from the Categorical Edge
Clustering problem, as outlined in Section 4.3.

The first baseline we compare against is Majority Vote (MV)
discussed in Section 4.4: node i is assigned to category c if ¢ is the
most common edge type in which i participates. The MV result
is also the default cluster assignment for IC, since in practice this
method leaves some nodes unattached from all terminal nodes.

The other baselines are Chromatic Balls (CB) and Lazy Chromatic
Balls (LCB) — two algorithms for chromatic correlation cluster-
ing [12]. These methods repeatedly select an unclustered edge and
greedily grow a cluster around it by adding nodes that share edges
with the same label. Unlike our methods, CB and LCB distinguish
between category (color) assignment and cluster assignment: two
nodes may be colored the same but placed in different clusters. To
provide a uniform comparison among methods, we merge distinct
clusters of the same category into one larger cluster. These methods
are not designed for hypergraph clustering, but we still use them
for comparison by reducing a hypergraph to an edge-labeled graph,
where nodes i and j share an edge in category c if they appear
together in more hyperedges of category c¢ than any other.
Results. Table 1 reports how well each algorithm solves the Cat-
egorical Edge Clustering objective. We report the approximation
guarantee (the ratio between each algorithm’s output and the LP
lower bound), as well as the edge satisfaction, which is the fraction
of hyperedges that end up inside a cluster with the correct label.
Maximizing edge satisfaction is equivalent to minimizing the num-
ber of edge label mistakes but provides an intuitive way to interpret
and analyze our results. High edge satisfaction scores imply that a
dataset is indeed characterized by large groups of objects that tend
to interact in a certain way with other members of the same group.
A low satisfaction score indicates that a single label for each node
may be insufficient to capture the intricacies of the data.

In all cases, the LP solution is integral or nearly integral, indicat-
ing that LP does an extremely good job solving the original NP-hard
objective, often finding an exactly-optimal solution. As a result, it
outperforms all other methods on all datasets. Furthermore, on
nearly all datasets, we can solve the LP within a few seconds or a
few minutes. Walmart is the exception-given the large number of
categories, the LP contains nearly 4 million variables, and far more
constraints. Other baseline algorithms can be faster, but they do
not perform as well in solving the objective.

RIGHTS

WWW °20, April 20-24, 2020, Taipei, Taiwan

Ilya Amburg, Nate Veldt, and Austin R. Benson

Table 1: Summary statistics of datasets — number of nodes |V|, number of (hyper)edges |E|, maximum hyperedge size r, and
number of categories k — along with Categorical Edge Clustering performance for the algorithms LP-round (LP), Majority Vote
(MV), Cat-IsoCut (IC), ChromaticBalls (CB) and LazyChromaticBalls (LCB). Performance is listed in terms of the approxima-
tion guarantee given by the LP lower bound (lower is better) and in terms of the edge satisfaction, which is the fraction of
edges that are not mistakes (higher is better; see Eq. (2)). Our LP method performs the best overall and can even find exactly (or
nearly) optimal solutions to the NP-hard objective by matching the lower bound. We also report the running times for rough
comparison, though our implementations are not optimized for efficiency. Due to its simplicity, MV is extremely fast.

Approx. Guarantee

Edge Satisfaction Runtime (in seconds)

Dataset V| |E| r k LP MV IC CB LCB LP MV IC CB LCB LP MV IC CB LCB
Brain 638 21180 2 2 1.0 1.01 127 156 141 0.64 064 055 044 0.5 1.8 00 1.9 04 038
MAG-10 80198 51889 25 10 1.0 1.18 137 144 135 062 055 048 045 049 51 0.1 203 333 699
Cooking 6714 39774 65 20 1.0 121 121 123 124 02 0.03 003 0.01 001 72 00 1223 46 6.7
DAWN 2109 87104 22 10 1.0 1.09 1.0 131 1.15 053 048 053 038 046 13 0.0 190 03 04
Walmart-Trips 88837 65898 25 44 1.0 1.2 1.19 126 126 024 0.09 0.09 0.04 0.05 7686 0.2 683801 493 1503

The high edge satisfaction scores indicate that our method does
the best job identifying sets of nodes which as a group tend to
participate in one specific type of interaction. In contrast, the MV
algorithm identifies nodes that individually exhibit a certain be-
havior, but the method does not necessarily form clusters of nodes
that as a group interact in a similar way. Because our LP method
outperforms our IC approach on all datasets in terms of both speed
and accuracy, in the remaining experiments we focus only on com-
paring LP against other competing algorithms.

5.2 Categorical Edge Community Detection

Next we demonstrate the superiority of LP in detecting communi-
ties of nodes with the same node labels (i.e., categorical communi-
ties), based on labeled edges between nodes. We perform experi-
ments on synthetic edge-labeled graphs, as well as two real-world
datasets, where we reveal edge labels indicative of the ground truth
node labels and see how well we can recover the node labels.
Synthetic Model. We use the synthetic random graph model of
Bonchi et al. for chromatic correlation clustering [12]. A user speci-
fies the number of nodes n, colors L, and clusters K, as well as edge
parameters p, g, and w. The model first assigns nodes to clusters
uniformly at random, and then assigns clusters to colors uniformly
at random. (Due to the random assignment, some clusters and col-
ors may not be sampled. Thus, K and L are upper bounds on the
number of distinct clusters and unique colors.) For nodes i and j
in the same cluster, the model connects them with an edge with
probability p. With probability 1 — w, the edge is the same color
as i and j. Otherwise, it is a uniform random color. If i and j are in
different clusters, an edge is drawn with probability q and given
a uniform random color. We will also use a generalization of this
model to synthetic r-uniform hypergraphs. The difference is that
we assign colored hyperedges to r-tuples of the n nodes, rather
than just pairs, and we assign each cluster to a unique color.
Synthetic Graph Results. We set up two experiments, where
performance is measured by the fraction of nodes placed in the
correct cluster (node label accuracy). In the first, we form graphs
with n = 1000, p = 0.05, and g = 0.01, fixing L = K = 15 (which
in practice leads to graphs with 15 clusters and typically between
8 and 12 distinct edge and cluster colors). We then vary the noise
parameter w from 0 to 0.75 in increments of 0.05. Figure 3a reports

713

17

the median accuracy over 5 trials of each method for each value of
w. In the second, we fix w = 0.2, and vary the number of clusters
K from 5 to 50 in increments of 5 with L = K. Figure 3b reports the
median accuracy over 5 trials for each value of K.

In both experiments, our LP method substantially outperforms
the others, although the methods perform more similarly for high
noise levels or large numbers of clusters. In both experiments, we
found that LP similarly outperformed other methods in terms of
Adjusted Rand Index and F1-score, followed in performance by MV.
Cluster identification scores for LCB and CB were particularly low
(ARI scores always below 0.02), as these methods formed far too
many clusters. Given that LCB and CB are specifically designed for
settings where K > L, we ran another experiment with L = 20 and
K ranging from 50 to 200. Even in this setting, LP achieved higher
accuracy, as well as better ARI scores when K < 100. LCB and CB
only obtained better ARI scores in parameter regimes where all
algorithms had ARI scores below 0.1. We include more details in
an extended online version of our paper.

Synthetic Hypergraph Results. We ran similar experiments on
synthetic 3-uniform hypergraphs. We again set n = 1000 and used
p =0.005 and g = 0.0001 for intra-cluster and inter-cluster hyper-
edge probabilities. In one experiment, we fixed L = 15 and varied w,
and in another we fixed w = 0.2 and varied the number of clusters
L. Figures 3c and 3d shows the accuracies. Again, LP tends to have
the best performance. When L = 15, our method achieves nearly
perfect accuracy for w < 0.6. However, we observe performance
sensitivity when the noise is too large: when w increases from 0.6
to 0.65, the output of LP no longer tracks the ground truth cluster
assignment. This occurs despite the fact that the LP solution is
integral, and we are in fact optimally solving the Categorical Edge
Clustering objective. We conjecture this sharp change in accuracy
is due to an information theoretic detectability threshold, which
depends on parameters of the synthetic model.

Academic Department Labels in an Email Network. To test
the algorithms on real-world data, we use the Email-Eu-core net-
work [41, 63]. Nodes in the graph represent researchers at a Euro-
pean institution, edges indicate email correspondence (we consider
the edges as undirected), and nodes are labeled by the departmental
affiliation of each researcher. We wish to test how well each method
can identify node labels, if we assume we have access to a (perhaps

RIGHTS LI

Clustering in graphs and hypergraphs
with categorical edge labels

=}
S

2 oL 3 -eLP
3 -& My 3 &MV
5075 -oLCB So. -o-LCB
3 -CB 8 -e-CB
< <
© " 0.50
T 050 3
S S

(0]
3 0.25 8 0.25
S [teteeteescseee,e >
z z

0.00)
000 -0 0.2 0.4 06 10 20 30 40 50

w = Pr(in- cluster edge is wrong) K'= Number of Clusters

(a) Graphs: Varying Noise w (b) Graphs: Varying # Clusters

Node Label Accuracy
&
Node Label Accuracy

0.00!

40
K = Number of Clusters

0.0 50

02
w = Pr(in- cluster edge is wrong)

0.4 0.6 10 20 30

(c) Hypergraphs: Varying Noise w (d) Hypergraphs: Varying # Clusters

Figure 3: (a)-(b): Performance of algorithms on a syn-
thetic graph model for chromatic correlation clustering [12].
Across a range of parameters, our LP method outperforms
competing methods in predicting the ground truth label of
the nodes. (c)—(d): In experiments on synthetic 3-uniform
hypergraphs, LP performs well for most parameter regimes
but there is some sensitivity to the very noisy setting.

o
S

> >

[} Q

© ©

I o

30. 3

3 8

< MV <

“© 0.50) " 0.30) MV
G] LcB
i —10.25

2025 cB)

S So020 cB

0.0

0.15
00 0.1 02 03 04 05

w = Pr(edge label is wrong)

00.0 0.2 0.4 0.6
w = Pr(edge label is wrong)
(a) Email-Eu-core (b) Walmart-Products

Figure 4: Accuracy in clustering nodes in real-world datasets
when edge labels are a noisy signal for ground truth node
cluster membership. For both an email graph (a) and a prod-
uct co-purchasing hypergraph (b), our LP-Round method
consistently outperforms other methods.

noisy and imperfect) mechanism for associating emails with la-
bels for inter-department and intra-department communication. To
model such a mechanism, we generate edge categories in a manner
similar to the synthetic above. An edge inside of a cluster (i.e., an
email within the same department) is given the correct department
label with probability 1 — w, and a random label with probability w.
An edge between two members of different departments is given
a uniform random label. Figure 4a reports each algorithm’s abil-
ity to detect department labels when w varies from 0 to 0.75. Our
LP method returns the best results in all cases, and is robust in
detecting department labels even in the high-noise regime.

L)

714

WWW °20, April 20-24, 2020, Taipei, Taiwan

"o 500
0.90 = -@ LP- round|
- -@ Graclus
=085 & 400
© 0.80] 5
I & 300
5 £
> 0.75| o
P @ 200
070 £
= -@ LP- round =
0.65] -@ Graclus 2100
<<

10 20 30
k = number of clusters

0 10 20 30 40

k = number of clusters

20
(a) Normalized Cut (b) Inner edge time difference
Figure 5: Results for LP and Graclus in clustering a tempo-
ral network. Our LP method is competitive for Graclus’s ob-
jective (normalized cut; left), while preserving the temporal
structure of network much better (right).

Product Categories. The Walmart-Trips dataset from Section 5.1
also has product information. We assigned products to one of ten
broad departments in which they appear on walmart.com (e.g.,
“Clothing, Shoes, and Accessories”) to construct a Walmart-Products
hypergraph with ground truth node labels. Recall that hyperedges
are sets of co-purchased products. We generate noisy hyperedge
labels as before, with 1 —w as the probability that a hyperedge with
nodes from a single department will have the correct label. Results
are reported in Figure 4b, and our LP-round method can detect true
departments at a much higher rate than the other methods.

5.3 Temporal Community Detection

In the next experiment, we show how our framework can be used
to identify communities of nodes in a temporal network, where
we use timestamps on edges as a type of categorical label that two
nodes should be clustered together. For data, we use the CollegeMsg
network [51], which records private messages (time-stamped edges)
between 1899 users (nodes) of a social media platform at UC-Irvine.

Removing timestamps and applying a standard graph clustering
algorithm would be a standard approach to identify communities
of users. However, this loses the explicit relationship with time. As
an alternative, we convert timestamps into discrete edge labels by
ordering edges with respect to time and separating them into k
equal-sized bins representing time windows. Optimizing Categori-
cal Edge Clustering then corresponds to clustering users into time
windows, in order to maximize the number of private messages
that occur between users in the same time window. In this way, our
framework can identify temporal communities in a social network,
i.e., groups of users that are highly active in sending each other
messages within a short period of time.

We construct edge-labeled graphs for different values of k, and
compare LP against clusterings obtained by discarding time stamps
and running Graclus [22], a standard graph clustering algorithm.
Graclus seeks to cluster the nodes into k disjoint clusters Sy, .. ., Sg
to minimize the normalized cut objective:

_ ok t(Si)
Sk = Xisy f’gl(si)’

Ncut(Sl, So, ..

where cut(S) is the number of edges leaving S, and vol(S) is the
volume of S, i.e., the number of edge end points in S. Figure 5a shows
that LP is in fact competitive with Graclus in finding clusterings
with small normalized cut scores, even though LP is designed for a

WWW °20, April 20-24, 2020, Taipei, Taiwan

%)
0.6 -@ LP- round 'c 3000

c -@ M.Vote 2

K} °

2 ® 2500

8 0.5 87

2 5 2000

0.4 8

[S1

i < 500 -@ LP- round|

10 0.3 =) -@ M. Vote
#1000

50 100 150 200 50 100 150 200
B = Ingredient Degree Threshold B = Ingredient Degree Threshold
(a) Edge Satisfaction (b) Unused ingredients
Figure 6: As f increases, we discard fewer high-degree in-
gredients before clustering the rest. Our method always
“makes” more recipes (higher edge satisfaction) and “wastes”
fewer ingredients (smaller number of unused ingredients).

different objective. However, LP still avoids cutting edges, and it
finds clusterings that also have small normalized cut values. The
other goal of LP is to place few edges in a cluster with the wrong
label, which in this scenario corresponds to clustering messages
together if they were sent close in time. We therefore also measure
the average difference between timestamps of interior edges and
the average time stamp in each clustering, i.e.,

AvgTimeDiff(Sy,...,S) = ﬁ Zle Yk, [timestamp(e) — |,

where Ej; is the set of interior edges completely contained in some
cluster, E; is the set of interior edges of cluster S;, and y; is the
average time stamp in E;. Not surprisingly, this value tends to be
large for Graclus, since this method ignores timestamps. However,
Figure 5b shows that this value tends to be small for LP, indicting
that it is indeed detecting clusters of users that are highly interactive
within a specific short period of time.

5.4 Analysis of the Cooking Hypergraph

Finally, we apply our framework and LP-round algorithm to gain
insights into the Cooking hypergraph dataset from Section 5.1,
demonstrating our methodology for exploratory data analysis. An
edge in this hypergraph is a set of ingredients for a recipe, and each
recipe is categorized according to cuisine. Categorical Edge Clus-
tering thus corresponds to separating ingredients among cuisines,
in a way that maximizes the number of recipes whose ingredients
are all in the same cluster (see Ahn et al. [3] for related analyses).
Table 1 shows that only 20% of the recipes can be made (i.e., a
0.2 edge satisfaction) after partitioning ingredients among cuisine
types. This is due to the large number of common ingredients such
as salt and olive oil that are shared across many cuisines (a problem
in other recipe network analyses [60]). We negate the negative
effect of high-degree nodes as follows. For an ingredient , let df be
the number of recipes of cuisine ¢ containing i. Let M; = max, df
measure majority degree and T; = 3, df the total degree. Note that
B; = T; —M; is alower bound on the number of hyperedge mistakes
we will make at edges incident to node i. We can refine the original
dataset by removing all nodes with B; greater than some .
Making recipes or wasting ingredients. Figure 6a shows edge
satisfaction scores for LP and MV when we cluster for different f.
When f§ = 10, edge satisfaction is above 0.64 with LP. As f increases,
edge satisfaction decreases, but LP outperforms MV in all cases. We

715
RIGHTS LI s

Ilya Amburg, Nate Veldt, and Austin R. Benson

Table 2: Examples of ingredients and recipes from special
clusters identified by LP, but not Majority Vote.

French Fruit-Based Desserts (f = 70)

Ingredients: ruby red grapefruit, strawberry ice cream, dry hard
cider, icing, prunes, tangerine juice, sour cherries.

Recipes: 1. {almond extract, bittersweet chocolate, sugar, sour cher-
ries, brioche, heavy cream, unsalted butter, kirsch}, 2. {large egg
yolks, ruby red grapefruit, dessert wine, sugar}

Brazilian Caipirinha Recipes (f = 170)

Ingredients: simple syrup, light rum, ice, superfine sugar, key lime,
coco, kumquats, liquor, mango nectar, vanilla essence

Recipes: {cachaca, ice} + 1. { lime juice, kumquats, sugar}, 2. {lime,
fruit puree, simple syrup}, 3. { superfine sugar, lime juice, passion
fruit juice}, 4. { sugar, liquor, mango nectar, lime, mango}

also consider a measure of “ingredient waste” for each method. An
ingredient is unused if we cannot make any recipes by combining
the ingredient with other ingredients in its cluster. A low number
of unused ingredients indicates that a method forms clusters where
ingredients combine together well. Figure 6b shows the number of
unused ingredients as f varies. Again, LP outperforms MV.
Specific ingredient and recipe clusters. We finally highlight
specific ingredient clusters that LP identifies but MV does not.
When § = 170, LP places 10 ingredients with the Brazilian cuisine
which MV does not, leading to 23 extra recipes that are unique to
LP. Of these, 21 correspond to variants of the Caipirinha, a popular
Brazilian cocktail. When f = 70, 24 ingredients and 24 recipes are
unique to the French cuisine cluster of LP. Of these, 18 correspond
to desserts, and 14 have a significant fruit component. Table 2 has
examples of ingredients and recipes from both these clusters.

6 DISCUSSION

We have developed a computational framework for clustering nodes
of hypergraphs when edges have categorical labels that signal node
similarity. With two categories, our clustering objective can be
solved in polynomial time. For general problems, our linear pro-
gramming relaxations provide 2-approximation or even better guar-
antees, which are far tighter than what is seen in the related lit-
erature on correlation clustering. This method is also extremely
effective in practice. Amazingly, our LP-round algorithm often ac-
tually minimizes our NP-hard objective (certified through integral
solutions) on hypergraphs with tens of thousands of edges in just
tens of seconds. The approach also works well in problems when
performance is measured in terms of some sort of ground truth
labeling, outperforming baselines by a substantial margin.

For the special cases of two-category graphs and rank-3 hy-
pergraphs, the Categorical Edge Clustering objective is a “regular
energy function” within the energy minimization framework of
computer vision [37]. This provides alternative polynomial time al-
gorithms in these cases. However, energy minimization approaches
do not work for two important regimes: more than two categories,
or in general hypergraphs (in the latter, the penalties are no longer
a semi-metric, which is needed for approximation algorithms [16]).
Acknowledgments. This research was supported by NSF Award
DMS-1830274, ARO Award W911NF19-1-0057, and ARO MURI.

Clustering in graphs and hypergraphs

with

categorical edge labels

REFERENCES

(1]

[14]

[15

[16]

[7

[18

[19

[20

[21]

[22

[23

[24

RIGHTS

Evrim Acar, Daniel M. Dunlavy, and Tamara G. Kolda. 2009. Link prediction on
evolving data using matrix and tensor factorizations. In 2009 IEEE International
Conference on Data Mining Workshops. IEEE, 262-269.

Sameer Agarwal, Kristin Branson, and Serge Belongie. 2006. Higher order learn-
ing with graphs. In Proceedings of the 23rd International Conference on Machine
Learning - ICML '06. ACM Press. https://doi.org/10.1145/1143844.1143847
Yong-Yeol Ahn, Sebastian E. Ahnert, James P. Bagrow, and Albert-Laszl6 Barabasi.
2011. Flavor network and the principles of food pairing. Scientific Reports 1, 1
(Dec. 2011). https://doi.org/10.1038/srep00196

Leman Akoglu, Hanghang Tong, Brendan Meeder, and Christos Faloutsos. 2012.
PICS: Parameter-free Identification of Cohesive Subgroups in Large Attributed
Graphs. In Proceedings of the 2012 SIAM International Conference on Data Min-
ing. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.
9781611972825.38

Réka Albert and Albert-Laszlo Barabasi. 2002. Statistical mechanics of complex
networks. Reviews of Modern physics 74, 1 (2002), 47.

Yael Anava, Noa Avigdor-Elgrabli, and Iftah Gamzu. 2015. Improved Theoretical
and Practical Guarantees for Chromatic Correlation Clustering. In Proceedings of
the 24th International Conference on World Wide Web (WWW ’15). International
World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 55-65. https://doi.org/10.1145/2736277.2741629
Francesca Arrigo, Desmond J Higham, and Francesco Tudisco. 2019. A frame-
work for second order eigenvector centralities and clustering coefficients.
arXiv:1910.12711 (2019).

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation Clustering.
Machine Learning 56 (2004), 89-113.

Austin R Benson. 2019. Three hypergraph eigenvector centralities. SIAM Journal
on Mathematics of Data Science 1, 2 (2019), 293-312.

Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon Klein-
berg. 2018. Simplicial closure and higher-order link prediction. Proceedings of
the National Academy of Sciences 115, 48 (2018), E11221-E11230.

Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order organi-
zation of complex networks. Science 353, 6295 (2016), 163-166.

Francesco Bonchi, Aristides Gionis, Francesco Gullo, Charalampos E. Tsourakakis,
and Antti Ukkonen. 2015. Chromatic Correlation Clustering. ACM Trans. Knowl.
Discov. Data 9, 4, Article 34 (June 2015), 24 pages. https://doi.org/10.1145/2728170
Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Antti Ukkonen. 2012.
Chromatic Correlation Clustering. In Proceedings of the 18th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD ’12). ACM,
New York, NY, USA, 1321-1329. https://doi.org/10.1145/2339530.2339735
Shyam Boriah, Varun Chandola, and Vipin Kumar. 2008. Similarity measures
for categorical data: A comparative evaluation. In Proceedings of the 2008 SIAM
International Conference on Data Mining. SIAM, 243-254.

Cecile Bothorel, Juan David Cruz, Mateo Magnani, and Barbora Micenkova. 2015.
Clustering attributed graphs: Models, measures and methods. Network Science 3,
3 (March 2015), 408-444. https://doi.org/10.1017/nws.2015.9

Y. Boykov, O. Veksler, and R. Zabih. 2001. Fast approximate energy minimization
via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23,
11 (Nov 2001), 1222-1239. https://doi.org/10.1109/34.969114

Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner. 2007. On modularity clustering. IEEE
Transactions on Knowledge and Data Engineering 20, 2 (2007), 172-188.

Gruia Calinescu, Howard Karloff, and Yuval Rabani. 2000. An Improved Approx-
imation Algorithm for MULTIWAY CUT. J. Comput. System Sci. 60, 3 (2000), 564
- 574. https://doi.org/10.1006/jcss.1999.1687

Michael B Cohen, Yin Tat Lee, and Zhao Song. 2019. Solving linear programs in
the current matrix multiplication time. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing. ACM, 938-942.

Nicolas A. Crossley, Andrea Mechelli, Petra E. Vértes, Toby T. Winton-Brown,
Ameera X. Patel, Cedric E. Ginestet, Philip McGuire, and Edward T. Bullmore.
2013. Cognitive relevance of the community structure of the human brain
functional coactivation network. Proceedings of the National Academy of Sciences
110, 28 (2013), 11583-11588.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
1994. The Complexity of Multiterminal Cuts. SIAM J. Comput. 23 (1994), 864-894.
Inderjit S. Dhillon, Yugiang Guan, and Brian Kulis. 2007. Weighted Graph Cuts
without Eigenvectors A Multilevel Approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence 29, 11 (2007), 1944-1957. https://doi.org/10.
1109/tpami.2007.1115

Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora.
2015. Structural reducibility of multilayer networks. Nature Communications 6, 1
(2015). https://doi.org/10.1038/ncomms7864

Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM Press. https://doi.org/10.1145/3097983.3098036

716

[25

[26

[27

[28

[29

[30

[31

(32

[33

(34]

[35]

[36]

(37]

[38]

[39

[40]

[41]

[42]

[43]

[44

[45]

[46

[47

[48]

[49

[50]

[51]

(52

WWW °20, April 20-24, 2020, Taipei, Taiwan

David Easley, Jon Kleinberg, et al. 2012. Networks, Crowds, and Markets. Cam-
bridge Books.

Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3-5
(2010), 75-174.

Takuro Fukunaga. 2018. LP-Based Pivoting Algorithm for Higher-Order Correla-
tion Clustering. In Computing and Combinatorics, Lusheng Wang and Daming
Zhu (Eds.). Springer International Publishing, Cham, 51-62.

Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. 1999. CACTUS-
clustering categorical data using summaries. In KDD, Vol. 99. 73-83.

Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. 2004. Multiway cuts in
node weighted graphs. Journal of Algorithms 50, 1 (2004), 49-61.

David Gibson, Jon Kleinberg, and Prabhakar Raghavan. 2000. Clustering cate-
gorical data: An approach based on dynamical systems. The VLDB Journal—The
International Journal on Very Large Data Bases 8, 3-4 (2000), 222-236.

David F. Gleich, Nate Veldt, and Anthony Wirth. 2018. Correlation Clustering Gen-
eralized. In 29th International Symposium on Algorithms and Computation (ISAAC
2018), Vol. 123. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 44:1-44:13. https://doi.org/10.4230/LIPIcs.ISAAC.2018.44
Kaggle. 2015. Walmart Recruiting: Trip Type Classification. (2015).
//www.kaggle.com/c/walmart-recruiting- trip-type-classification.
Kaggle. 2015. What’s Cooking? (2015). https://www.kaggle.com/c/whats-
cooking.

Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. In Proceedings of the International Conference on
Learning Representations.

Mikko Kiveld, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir Moreno,
and Mason A. Porter. 2014. Multilayer networks. Journal of Complex Networks 2,
3(2014), 203-271.

Pushmeet Kohli. 2007. Minimizing Dynamic and Higher Order Energy Functions
using Graph Cuts. Ph.D. Dissertation. Oxford Brookes University.

V. Kolmogorov and R. Zabin. 2004. What energy functions can be minimized via
graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 2
(Feb 2004), 147-159. https://doi.org/10.1109/TPAMI.2004.1262177

Andrea Lancichinetti and Santo Fortunato. 2012. Consensus clustering in complex
networks. Scientific Reports 2, 1 (March 2012). https://doi.org/10.1038/srep00336
Silvio Lattanzi and D Sivakumar. 2009. Affiliation networks. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing. Citeseer, 427-434.

Yin Tat Lee and Aaron Sidford. 2015. Efficient inverse maintenance and faster
algorithms for linear programming. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science. IEEE, 230-249.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2.

Jure Leskovec, Kevin J. Lang, and Michael Mahoney. 2010. Empirical compar-
ison of algorithms for network community detection. In Proceedings of the
19th International Conference on World Wide Web - WWW '10. ACM Press.
https://doi.org/10.1145/1772690.1772755

P.Li, H. Dau, G. Puleo, and O. Milenkovic. 2017. Motif clustering and overlapping
clustering for social network analysis. In IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications. 1-9. https://doi.org/10.1109/INFOCOM.2017.8056956
Pan Li and Olgica Milenkovic. 2017. Inhomogeneous Hypergraph Clustering with
Applications. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 2308-2318. http://papers.nips.cc/paper/6825-
inhomogeneous-hypergraph- clustering- with-applications.pdf

Pan Li, Gregory J. Puleo, and Olgica Milenkovic. 2018. Motif and Hypergraph
Correlation Clustering. CoRR abs/1811.02089 (2018). arXiv:1811.02089 http:
//arxiv.org/abs/1811.02089

Cristopher Moore. 2017. The Computer Science and Physics of Community
Detection: Landscapes, Phase Transitions, and Hardness. Bulletin of the EATCS
121 (2017).

Peter J. Mucha, Thomas Richardson, Kevin Macon, Mason A. Porter, and Jukka-
Pekka Onnela. 2010. Community structure in time-dependent, multiscale, and
multiplex networks. Science 328, 5980 (2010), 876-878.

Mark EJ Newman. 2003. The structure and function of complex networks. SIAM
Rev. 45, 2 (2003), 167-256.

James B Orlin. 2013. Max flows in O(nm) time, or better. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing. ACM, 765-774.
Braxton Osting, Sourabh Palande, and Bei Wang. 2017. Spectral Sparsification
of Simplicial Complexes for Clustering and Label Propagation. arXiv:1708.08436
(2017).

Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. 2009. Patterns and
dynamics of users’ behavior and interaction: Network analysis of an online
community. Journal of the American Society for Information Science and Technology
60, 5 (2009), 911-932.

Evangelos Papalexakis, Konstantinos Pelechrinis, and Christos Faloutsos. 2014.
Spotting misbehaviors in location-based social networks using tensors. In Pro-
ceedings of the 23rd International Conference on World Wide Web. ACM, 551-552.

https:

WWW °20, April 20-24, 2020, Taipei, Taiwan

[53] Mason A Porter. 2019. Nonlinearity+ Networks: A 2020 Vision. arXiv:1911.03805
(2019).

[54] Ryan A Rossi, Nesreen K Ahmed, and Eunyee Koh. 2018. Higher-order network
representation learning. In Companion Proceedings of the The Web Conference
2018. 3—4.

[55] Vsevolod Salnikov, Daniele Cassese, and Renaud Lambiotte. 2018. Simplicial
complexes and complex systems. European Journal of Physics 40, 1(2018), 014001.

[56] Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review 1, 1 (2007),
27-64.

[57] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul)
Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service
(MAS) and Applications. In WWW '15 Companion. ACM.

[58] Substance Abuse and Mental Health Services Administration. Drug Abuse Warn-
ing Network (DAWN). 2011. (2011). https://www.samhsa.gov/data/data-we-
collect/dawn-drug-abuse-warning-network.

[59] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
Proceedings of the VLDB Endowment 4, 11 (2011), 992-1003.

[60] Chun-Yuen Teng, Yu-Ru Lin, and Lada A. Adamic. 2012. Recipe recommendation
using ingredient networks. In Proceedings of the 3rd Annual ACM Web Science
Conference on - WebSci '12. ACM Press. https://doi.org/10.1145/2380718.2380757

717

[61]

[62]

[63]

[64]

Ilya Amburg, Nate Veldt, and Austin R. Benson

Dorothea Wagner and Frank Wagner. 1993. Between min cut and graph bisection.
In International Symposium on Mathematical Foundations of Computer Science.
Springer, 744-750.

Zhigiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. 2012. A
model-based approach to attributed graph clustering. In Proceedings of the 2012
International Conference on Management of Data. ACM Press. https://doi.org/10.
1145/2213836.2213894

Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local higher-
order graph clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 555-564.

Thomas Zaslavsky. 1982. Signed graphs. Discrete Applied Mathematics 4, 1 (1982),
47 - 74. https://doi.org/10.1016/0166- 218X(82)90033-6

[65] Justine Zhang, Cristian Danescu-Niculescu-Mizil, Christina Sauper, and Sean J.

[66]

[67]

Taylor. 2018. Characterizing Online Public Discussions through Patterns of
Participant Interactions. Proceedings of the ACM on Human-Computer Interaction
2, CSCW (2018), 1-27. https://doi.org/10.1145/3274467

Dengyong Zhou, Jiayuan Huang, and Bernhard Schélkopf. 2007. Learning with
hypergraphs: Clustering, classification, and embedding. In Advances in Neural
Information Processing Systems. 1601-1608.

Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009. Graph clustering based on
structural/attribute similarities. Proceedings of the VLDB Endowment 2, 1 (2009),
718-729. https://doi.org/10.14778/1687627.1687709

