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Abstract

There is growing interest in strategies that can help us
understand or interpret neural networks — that is, not merely
provide a prediction, but also offer additional context ex-
plaining why and how. While many current methods of-
fer tools to perform this analysis for a given (trained) net-
work post-hoc, recent results (especially on capsule net-
works) suggest that when classes map to a few high level
“concepts” in the preceding layers of the network, the
behavior of the network is easier to interpret or explain.
Such training may be accomplished via dynamic/EM rout-
ing where the network “routes” for individual classes (or
subsets of images) are dynamic and involve few nodes even
if the full network may not be sparse. In this paper, we
show how a simple modification of the SGD scheme can
help provide dynamic/EM routing type behavior in convo-
lutional neural networks. Through extensive experiments,
we evaluate the effect of this idea for interpretability where
we obtain promising results, while also showing that no
compromise in attainable accuracy is involved. Further,
we show that the minor modification is seemingly ad-hoc,
the new algorithm can be analyzed by an approximate
method which provably matches known rates for SGD. Code
is available at: https://github.com/sunyiyou/
dynamic—-k—-activation.

1. Introduction

Machine learning and computer vision methods are now
becoming closely interwined with our lives. There is con-
sensus that this trend will clearly continue, but the need for
human comprehension (i.e., interpretability) of what/why
a model predicts will become a pressing issue — and po-
tentially a key constraint that may limit broader adoption
across in a number of different disciplines. Clearly, if a hu-
man can comprehend the model, then its utility increases
[12, 10, 29, 16, 34]. But perhaps in other settings, this
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need is also driven by regulatory requirements, robustness
or societal issues. Why did the system suggest that a person
be selected for secondary screening at the airport? Why is
a biopsy being requested based on a radiographic image?
Why is the autonomous vehicle inadvertently deciding to
change lanes when there is no apparent obstruction? Mod-
els that are easy to comprehend broadly fall under the um-
brella of interpretable models [8], and recent work shows
that apart from use in vision tasks such as visual question
answering [2], interpretability also facilitates the develop-
ment of fair/causal models [8].

At a high level, interpreting and understanding deep
models in vision can be roughly partitioned into one or more
of three broad categories. The first line of work seeks to
generate iconic examples of what the network has learned.
This idea relates to finding the pre-image of a trained model.
Deep image priors [31], an inverse network [17] and Plug
and play networks [21] are some examples of this line of
work. But instead of interpreting the network as a whole,
one may also seek attribution: in other words, what parts
of an image are salient for a network and/or for individual
examples. This can be approached by generating informa-
tive heatmaps such as CAM [36] and grad-CAM [27], or
through back-propagation conditioned on the final predic-
tion [29] and layer-wise relevance propagation [3]. Network
Dissection [4] and variants can be used to quantify the in-
terpretability of hidden units through segmentation, helping
us identify what may be thought of as causal features. This
work is also loosely related to the idea behind the third cat-
egory of methods based on semantic identification which
assumes that concepts (or neurons) activate only on a sub-
set of images. This behavior induces equivalence classes in
the image set. For example, the Net2Vec paper [9] seeks to
associate concepts between concepts and filters in a given
architecture.

Interpretability, explainability, post-hoc analysis:
Most techniques that focus on interpretability approach the
problem in a post hoc manner. This means that inter-
pretability analysis is carried out on an already trained net-
work. Recently, [24] investigated some of the pros/cons of
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Figure 1: A simple illustration of the mechanism of dynamic connection layer. The route between nodes are dynamically chosen based on
the input. Dynamic Connection Layer can be plugged into a fully connected layer or a convolution layer. Here we present a ResNet-liked
structure whose final fc layer is replaced by a the Dynamic Connection Layer.

such an approach and concluded that while such approaches
are very useful to better interpret or debug the model’s be-
havior, the explanation emerging from various techniques
may be incomplete and inaccurate. Instead, what is sug-
gested is to build a model that is, by design, interpretable.
Consistent with this sentiment, [40, 18] argues for using
additive models whereas [1] shows that it is possible to
compute a task embedding that is interpretable (also see
[30, 15]. The authors in [35] seek to increase the inter-
pretability of internal filters by incorporating the filter loss.
Prototype network [6] proposes training a layer with proto-
types for classification. Outside of vision, [7] suggests that
interpretable models can be used for credit risk assessment.

EM routing: The general idea of semantic identifica-
tion described above is also loosely related to the use of
EM routing presented in a set of papers introducing capsule
networks [25, 13]. Capsules can be thought of as richer (or
more powerful) nodes within the network, and EM routing
seeks to statistically associate classes with a small number
of capsules. 1Tt is able to do so by utilizing only a small
support of capsules using dynamic routing. In other words,
the route can be considered “dynamic” — at the level of
classes or even individual examples. While different, it is
intuitively related to how, in an ideal setting, concepts cre-
ate (non-exclusive) equivalence classes in the image cor-
pus. However, rather than post-hoc analysis of a trained
network, EM routing seeks to perform this at training time.
It makes sense because in this case, hypothetically, the net-
works learns in a way that is more consistent with how one
may understand images. A potential limitation of EM rout-

ing is that it is computationally demanding.

Intuition behind this work: EM routing with capsule
networks performs well — capsules are rich representations
and EM routing is an effective training scheme. In some
cases, such a setup may even be more interpretable. This
raises the following question: are there some simple modi-
fications that can encourage EM routing type behavior in
convolutional neural networks? If we could achieve this
goal for standard CNN architectures, it is reasonable to ex-
pect that they may extend to capsule networks as well (al-
though we do not study this extension here). Some recent
work provides evidence [39] that evaluating units based on
an ablation-based measure is related to the network’s classi-
fication at the individual class level — in fact, there are 5-10
units which dominate the classification score. If a small
set of individual units are relevant for classes, perhaps “dy-
namic” or EM style routing imposed at training time, will
help. What is not known is whether, such a scheme if avail-
able, (1) will hurt accuracy (2) will be practical (3) and have
any positive impact on interpretability. We provide promis-
ing answers to all three questions in this paper.

Contributions: This paper provides a simple modifi-
cation to the SGD algorithm, motivated by numerous em-
pirical observations reported in the literature already, which
when adopted yields an EM routing type behavior in CNNs.
Interestingly, the modification leads to no significant re-
duction in accuracy and more interpretable results. Fur-
ther, we find that the modification (5-6 lines of code) gives
slightly faster runtime (convergence). Interestingly, we can
also theoretically analyze the convergence and other math-
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Figure 2: Comparison of weights estimated by standard connec-
tions versus dynamic connections. A toy network shows the dif-
ferent connections. A wider connection line represents a larger
weight value. Dotted line represents a negative weight. We also
visualize the weight for each class in function representation and
find that the weight vector trained by standard NN can be hard
to understand while the weight trained by dynamic connection is
closer to the actual semantic representation.

ematical properties of this procedure.

Nomenclature: The reader will shortly see that our
modification will involve adaptively thresholding the activa-
tions or the gradients based on certain criteria. But to make
it easier to refer to and because of the dynamic routing type
behavior it encourages, we will simply call our adaptive ac-
tivation thresholding scheme as Dynamic-K activation,
where K represents a vital thresholding parameter in the
algorithm. The use of this algorithm will consequently lead
to what we call a Dynamic Connection or Dynamic Layer.
Analogously, a “Dynamic NN” is the network obtained us-
ing this adaptive activation thresholding or Dynamic-K ac-
tivation scheme.

2. Preliminaries of EM/Dynamic Routing

First, we briefly review the high-level idea behind EM
Routing [13] and discuss the relationship with our proposal.
While the overall procedure is involved, we will present a
simplified version of EM routing here, see Alg. 1.

Basic idea: Assume that the feature inputs are X =
{X;}M, the parameters are W C RO*M and the feature
outputs are Y = {Y.}¢_ ;. Either X; or Y, can be thought
of as a single scalar value (e.g., unit in a Fc layer) or a vector
(e.g., in capsule networks) or a matrix (e.g., feature map in
Conv layer). For simplicity, X; or Y, will be a scalar here.
Basically, we can assume that the activation from an upper-
layer’s unit is calculated by estimating by the “mean” or av-
erage of the units’ clusters in a lower-layer (Fig. 3 (a)). In
EM routing, the upper-level units’ activation only depends
on (or driven by) a few lower-level units which are inside
the range or support of the estimated covariance matrix. It
may be argued that this has implications for interpretability
due to sparsity. Let us briefly see why this is the case.

Consider a toy example shown in Fig. 2. The weight

representation of a sparse connection (‘dynamic’ or vari-
able w.r.t. samples or classes) on the right is easy to under-
stand. On the contrary, by the nature of cross-entropy loss
in the standard setting, the weight for the laptop and TV
are encouraged to repel each other, which may lead to some
confusion as to why the screen is negatively associated with
a laptop. While a dynamic or EM routing scheme may not
guarantee immunity to this behavior, one will empirically
see a behavior more consistent with Fig. 2 (right).

Algorithm 1: A simplified EM/Dynamic routing
scheme with routing variables R C ROXM

1 fort=1,2,3do

2 forc=1,2,...,0do

3 Y, = Z?ilzzj% W?L .

4 Update RS by a complicated distance
function with modified kernel.

5 end

¢ end

Limitations of EM/Dynamic routing: A limitation of
the original EM/dynamic routing algorithm is its sizable
computational footprint, which becomes challenging on
large-scale datasets. We will shortly see a minor modifi-
cation that can provide significant benefits.

3. Separating Sparsity from Interpretability

Sparsity vis-a-vis Interpretability. Consider a classifi-
cation task in vision. Here, there is agreement that mod-
els which use fewer (high level) features for predictions
are naturally, more interpretable. So, if we assume that
we have a good representation learner or feature extractor
— let us say, provided by an oracle, then, models that are
sparse may be more interpretable. It is important to note
that in general, feature extractors cannot be assumed to be
given. On the other hand, if we wanted to train the entire
network together with the sparsity constraint, there are two
known drawbacks. First, optimizing such models turns out
to be much more demanding than a version without such
constraints, especially in the large scale settings due to the
optimization landscape [23]. 1And second, when one per-
forms end-to-end training (feature extraction with sparsity
constraint), we often see a quantifiable loss in predictive
accuracy[28], which is unacceptable in various scenarios.

Motivating a simpler alternative: Encouraging spar-
sity in a direct manner as described above is difficult. To
see this conceptually, let W : F' — S be an operator where
F C RP and S C RY are the features and label (or output)
spaces respectively. Then we may define,

W is a-sparse := Ja,Vx € F, |lw; © zllo < a. (1)
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Figure 3: The difference between EM-Routing and Dynamic-K activation Algorithm. In (a), the blue shaded region corresponds to points
that are within unit radius distance from a Guassian Distribution centered at y as suggested by the EM-routing method. The red shaded
region is the selection ball for the units selected by the Dynamic- K activation Method. The top left image shows the distribution of input
units from the lower-layer(X could be a scalar value, in the plot, we show a single feature point X as a 7x7 feature map). The depth of the
color represents the activation intensity of unit (X;). Given an upper layer class unit ¢ € {cat, dog, pig}, the deeper color in other three
images represents a larger value of X; - W, where W ¢ is the weight vector of class n. In (b), we visualize how the units from lower layer
are selected by Dynamic-K activation algorithm and sent to the next layer.

We can interpret F' as the space of equivalence class of im-
ages that is often used in the context of semantic identifi-
cation. Choosing F' = RP in (1) is equivalent to imposing
hard sparsity constraints, which has been extensively used
in practice [14]. In general, to preserve the accuracy of a
model, F' needs to be the support of the joint distribution
of high level features and output classes. Fortunately, re-
sults in [24] show that it is possible to train interpretable
models that are also very accurate. Hence, it is safe to hy-
pothesize that although it may be intractable to characterize
the optimal F, the size of the optimal F' may be small. For
example, for a particular class, say dog, only few high level
concepts/features in F' (tail, nose etc.) are relevant [25].

Main idea: Our key idea is that since deep networks
are trained using a first order method in most cases, inter-
pretability may be ensured directly by a very simple modi-
fication to the training algorithm, that satisfies the following
condition,

Requirement. An update is interpretable if only the subset
of parameters that are responsible for the prediction of the
class for a given example are updated.

The above requirement can be imposed by changing only
a few lines of code in the optimization routine, and sum-

marized in Alg. 2. It encourages interpretability simply by
using activations to choose the parameters to update. Mech-
anistically, what the algorithm does and how it relates to EM
routing is shown in Figure 3.

Algorithm 2: Dynamic-K activation with dy-
namic parameter K and routing variables, R C
{07 1}0 X IM'

1 forc=1,2,...,0do

2 | Y. =maxpe 20, REWEXG, st ||RY|y < K.
3 end

Fig. 3 (b) shows how easy it is to assess what the pro-
cedure does. It offers dynamic routing type behavior but
does not need the two-phase EM scheme, which is known
to be the primary runtime bottleneck. Interestingly, the ben-
efits can be leveraged even with standard CNNs, without the
full-blown capsule formulation.

Remark 1: Notice that the major difference with EM
Routing is that we enforce that the column sum Zf\il R
adds up to no more than K instead of 1. We assume that
each neuron can be more interpretable if responsible for
multiple related predictions. As an illustration, for the ex-
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ample in Fig. 2, ‘Laptop’ = ‘Keyboard’ + ‘screen’ and “TV’
= “Telecontrol’ + ‘screen’, where a ‘screen’ neuron may be
responsible for both “TV’ and ‘Laptop’. There are more ex-
amples available in [38] that suggest that allowing a neuron
to map to more than one prediction is not a bad idea. Even
in capsule networks, single routing (route to only one higher
unit) is not always preferred in large-scale classification.

Remark 2: We should also observe that even though we
combine units into groups as described above, it is different
from the Group-/; regularization method [26]. While [26]
binds units to some specific groups (“concepts”), in con-
trast, we encourage one-to-one correspondences between
units and concepts so that any number of units can be com-
bined to form a new concept, as needed.

Intuition: The procedure described above, despite its
simplicity, is more than just a implementation trick. From
the theoretical standpoint, it turns out that our adaptive acti-
vation thresholding or Dynamic-K activation algorithm is
(approximately) equivalent to a variant of SGD with in-
teresting optimization and statistical guarantees. While it
is not essential for implementation purposes, the update
scheme can be interpreted in a rigorous manner, summa-
rized in Algorithm 3. Essentially, as seen from Step 5 of Al-
gorithm 3, the coordinates are first ranked or chosen based
on the (local) curvature of the loss function measured using
the Lipschitz constant along that coordinate. The parameter
s € (0,1] controls the sparsity of the updates: a large value
of s encourages interpretable updates. In fact, Dynamic-
K activation algorithm is exactly equivalent to Algorithm 3
for sufficiently large s. To avoid confusion, we remind the
reader that this algorithm is explicitly written down only to
facilitate mathematical analysis. In other words, Alg. 2 is
“reinterpreted” as Alg. 3 so that it can be analyzed in terms
of its local optimality and convergence rate.

The following theorem shows that Algorithm 3 and SGD
provably converge at the same rate.

Theorem 1. Let the loss function f be a smooth function
with respect to W. Then, the iterates Wy generated by Al-
gorithm 3 converges to a local minimizer at O(1/t).

Proof. (Sketch.) The proof follows the standard techniques
involved in analysis of first order methods [22, 32, 5]. That
is, we bound the expectation of the norm of the gradient
W using the smoothness of the function and per iteration
decrease of the loss. See appendix for full proof. O

Implementation: The only expensive step in Alg. 3 is to
estimate L;;’s, which can be intractable in the worst case.
Luckily, the following Lemma shows that when we use a
feed forward network with the cross entropy loss function,
L;;’s turn out to be bounded by activations.

Lemma 2. For a feed forward network with cross entropy
loss function and any parameter j on the final classification

layer, an estimate of L;; can be locally obtained from the
activations, during back propagation.

Proof. (Sketch.) Our proof proceeds in two steps. In the
first step, we show a key technical lemma in which we
bound the change in prediction for a small perturbation of
parameters in the final layer. This step crucially relies on
the structure of gradients obtained in the final layer which
turns out to be satisfied by standard classification loss func-
tions. The second step is essentially an inductive step over
the hidden layers, and a standard calculation via arguments
based on Section 2 in [20]. O

Practicality: Although Lemma 2 indicates that it is easy
to estimate the Lipschitz constants, it is not clear if such an
upper bound is always useful in practice. But it is satisfy-
ing that our minor adjustment can be nicely analyzed, and
we can derive insights about its behavior. We will now pro-
vide extensive set of experimental results that show that we
can obtain interpretable models using our algorithm, with
minimal/no compromise in accuracy.

4. Experiments

SGD remains the defacto optimization method to train
machine learning models in computer vision. Our theoreti-
cal analysis, in essence, suggests that only a simple modifi-
cation to SGD is needed. At a high level, the goal of our ex-
periments is to evaluate whether dynamic connection based
routing such as ours can, in fact, make the model more in-
terpretable while preserving the overall accuracy. We per-
formed two sets of experiments to test the performance of

Algorithm 3: Interpretable SGD: Block Coordi-
nate SGD with Lipschitz Sampling

1 INPUT: Dataset Z = {(x;, y;)}"_;, loss function f,
trainable parameters W;,j =1,...,0 x M;
minibatch size B, sparsity level s, learning rate 7,
and block size 3.

2 fort=1,2,...,T do

3 Estimate the Lipschitz constant L;; of the

gradient along the j-th coordinate of W using

(i Yi)-
4 Set L; = EJO:XlM Li]‘.
5 Interpretable Gradient from each sample

Gi € RO*M: §,i = p;q;9;; where

gij = Vf(xi,yi), pi. and g; are Bernoulli
random variables with biases B/n and

B (Lij/Li)" ™), respectively.

6 | Interpretable Update: W <+ W —n% > | G;
7 end

8 OUTPUT: Parameters .
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our Dynamic-K activation algorithm. The first set of ex-
periments intend to analyze the accuracy loss while using
our algorithm for training. The second set of experiments
are intended to analyze the interpretability of the models
obtained using our algorithm. To measure the interpretabil-
ity quantitively, we utilize proxies for the interpretablity of
a network given in [19]: (A) Sparsity. In Fig. 4 and 5, we
evaluate this property directly; (B) Simulatability. A hu-
man is able to simulate or work through its decision-making
process. We show these results in Fig. 6-7 where dynamic
routing plays a role. (C) Modularity. The meaningful
portion (units) of its prediction making process can be in-
terpreted independently. The 1-1 correspondence between
units and independent concepts can be measured using [4],
and we will show quantitative results in Fig. 5(c,d).

Experimental Setup. We used a variant of ResNet ar-
chitecture in all our experiments. Since deeper convolution
layers represent more explainable information [4], we only
replaced the final fully-Connected layer with a dynamic
connection layer to keep the presentation of our experimen-
tal results succinct. But our algorithm is applicable to the
internal layers as well. These extended experimental results
are in the appendix, and consistent with our main message.

We adopt the following naming convention throughout
this section: (i) “Res18-d[K|a” denotes the ResNet18 [11]
structure where the last layer uses Dynamic-K activation
routing method; (ii) “Res18” denotes the original ResNet18
[11]; and (iii) “Res18-L1” denotes the original ResNet18
trained with ¢; regularization on the last layer.

4.1. Performance on CIFAR10

Here, we evaluate if dynamic connections can lead to
sparsity while ensuring high accuracy, simultaneously. We
set the weight decay parameter to 0.0005 and the momen-
tum parameter to 0.9. We trained our models on a single
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Figure 4: In (a), we compare the train and test accuracy curve
over 200 epochs of dynamic CNN (Res18-dla, Res18-d5a) and
standard CNN (Res18, Res18-L1) trained on Cifarl0. In (b), for
all models, we visualize the final fully connected layer’s weight
(512 x 10) to compare the sparsity.

Places365

Model Topl Tops Cifar
Res18(baseline) 53.69 83.78 95.10
Resl8-dla 27.83 57.56 95.02
Res18-d5a 53.60 84.15 95.12
Res18-d10a 53.64 84.06 95.22
Res18-d25a 53.87 84.25 95.04
Res18-d50a 53.58 84.91 95.06
Res18-d100a 53.81 83.92 95.12
Res50(baseline) 54.74 85.08 95.62
Res50-d25a 55.00 85.07 95.58

Table 1: Accuracy for different ResNets on Places365 and Cifar10.

GPU with a mini-batch size of 256 to compute gradients
and trained for 200 epochs. We employ the standard learn-
ing rate practice using 0.1 at the beginning, and reducing
it by a factor every 70 epochs. We use data augmentation
transformations in [11].

Baseline. We use Res18-L1 as our baseline: this is
the standard residual network with sparsity regularization.
Fig. 4(a) shows our experimental results. We can clearly
see that models trained by dynamic connections (Resl18-
dla, Res18-d5a) converge at a similar speed as the stan-
dard network (Res18). Note that the accuracy of the mod-
els obtained using our algorithm and the baseline are nearly
the same. Interestingly, the final layer obtained using our
Dynamic-K activation algorithm is much sparser than the
baseline, as in Fig. 4(b): (Resl8-dla > Res18-d5a >
Res18-L1 > Resl8). Sparsity is, of course, a coarse way
to estimate interpretability, in a small dataset like Cifar10.
Still, we can conclude that Dynamic- K activation algorithm
can be used to obtain models that are more interpretable
than when using explicit sparsity terms in these settings.

Takeaway. Dynamic-K activation algorithm can boost
interpretability without sacrificing the accuracy of the
model obtained and training time.

4.2. Performance on Places365

Now we test our algorithm on the much larger dataset—
Places365 [37]. The authors in [37] note that it is much
easier to interpret units in models trained on Places365
dataset, as well as to evaluate interpretability schemes in
general. On this dataset, we may simply use the NetDis-
section method [4]. The dataset contains 365 classes and
each class includes ~5k training images and 1k testing im-
ages. For this experiment, we used a weight decay of 0.0001
keeping all the other hyperparameters the same as before.

From the accuracy perspective, we compare the follow-
ing models: Res18-d[K]a with K in {1, 5,10, 25,50,100}
and standard Res18, Res50-d25a and Res50. Table 1 shows
the results of our experiment. We find that the valida-
tion accuracy on Places365 is even better than the original
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Figure 5: In (a), we compare the top1 accuracy curves of dynamic models(Res18-d[K]a) with K in {5, 10, 25, 50, 100} trained on Places365
over 70 epochs. The baseline topl accuracy of the standard ResNet18 is shown by red line in graph. In (b), we show how the percentage
of sparse connection in five dynamic models with different K parameters changes over training. (the absolute value of weight smaller than
1072 is considered as sparse connection.) The sparsity of connection in standard ResNet18 is also shown by red line in graph. In (c), we
present the change of average NetDissect Scores over 512 units in layer4 of all test models during training. The standard Res18’s score is
also reported (red line). To see the distribution of NetDissect Scores of layer4’s units in all dynamic models include Res18, we sort the unit

by scores and choose top 100 units as shown in (d).

ResNet18 when K is 25 and 50, similar to the accuracy
curve shown in Fig. 5(a). Clearly, the accuracy loss is neg-
ligible compared to the original model.

Now, let us focus on the sparsity levels of the models
as training proceeds with different settings for the hyper-
parameter K. We see in Figure 5(b), that if K > 100, the
connection in the dynamic layer starts becoming denser, al-
though still much sparser than Res18. Specifically, Res18-
d5a can achieve within 0.1% best Top1 accuracy with 99%
sparsity accuracy (within 0.4% of the best Top5 accuracy).

Interpreting results. We analyzed single units’ inter-
pretability using the NetDissection method as mentioned
earlier [4]. In Fig. 5(c) and (d), we see that smaller val-
ues for K give larger IoU scores, which means that units
are more interpretable. In essence, our algorithm encour-
ages the preceding layers to be more “concept-specific”.

Takeaways. There are two important takeaways from
our large scale experiment: (i) Dynamic-K activation al-
gorithm increases the interpretability of units; and (ii) the
accuracy can be preserved at no additional cost.

4.3. Interpretabiliity

In the second set of experiments, we used two ways
to analyze interpretability of models obtained using the
Dynamic-K activation algorithm. First, we use concept
composability where concept patterns that are important for
predictions are analyzed. Secondly, we use the technique of
instance explanation which allows us to visualize parts of
the network that are important for a prediction.

Concept Composability. Here, our goal is to gain in-
sight about what is learned by a model trained for each
class. This is done by a direct examination of the hidden
units and their corresponding concepts. We show illustra-
tive examples in Figure 6. In these examples, every unit

in the final convolutional layer is analyzed by NetDissect
algorithm and labeled by the closest concept. Then, by sim-
ply inspecting the weights, we can characterize the deci-
sion boundaries of each class. For example, we can see that
class “canal/nature” can be interpreted as a composition of
only 4 concepts viz., “water”, “dam”, “castle” and “sea”.
Hence, the magnitude of the weights in the final layer indi-
cate the importance of the concepts for predicting the class
of canal/nature. Quantitatively, our experiments show that
models obtained using our Dynamic-5 activation algorithm
are easily interpretable: more than 95% classes can be rep-
resented with at most 5 concepts.

Takeaway. Our Dynamic-K algorithm can be used to
obtain transparency of information flow in deep network
that is consistent with human level understanding.

Instance Explanation. Here, we analyze the explana-
tions provided for predictions at an instance level. To that
end, we compare the explanations for predictions provided
by models trained using Dynamic-K activation algorithm
and a baseline SGD.

We show in Fig. 7 that the explanations obtained from
the baseline model are spread across a wide range of unclear
concepts. The difficulty of interpreting such a model may be
mitigated by an external framework like [38], where we find
that the residual drops to 45%. We can obtain even better
models directly using dynamic connections where very few
concepts of units (fewer than 5) can explain about 98% of
the image with 2% inexplicable residual remaining.

Observe that the explanation by units in our Dynamic-
K activation algorithm is significantly more consistent and
accurate compared to the baseline approaches. For exam-
ple, a model obtained from Dynamic-K algorithm explains
a “stadium” using “stadium baseball” and “football field”
concepts whereas the baseline model uses concepts such as
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Figure 6: Visualize the connection from layer4 nodes to the final
class in Res18-dSa trained on Places365. The width of line rep-
resents the strength of connection (weight value). For example,
the top-3 units contributes to the Airplain Cabin class are unit237
(main concept “airplain cabin” with IoU score 0.22), unit483
(main concept “cockpit” with IoU score 0.19) and unit388 (main
concept “laundromat” with IoU score 0.19). The connection of
other units to this class is too weak to notice, thus not included.
The visualization of each unit shown below the text is the top ac-
tivated images and the corresponding regions[33].

“toilet”, “bakery shop” that are obviously irrelevant for pre-
dicting the class.

Takeaway. Models that provide high quality instance
level explanations can be obtained using Dynamic- K algo-
rithm with no additional cost.

5. Conclusion

This paper proposes a simple adaptive activation thresh-
olding or dynamic K routing rule based on choosing several
top activated lower-level units for a higher-level unit. The
idea is simple and inspired by the dynamic/EM routing al-
gorithm introduced in [25, 13]. But our simplified version
can be plugged into any current CNN network structures
and involves minimal changes to the optimization code. The
idea is easy to understand, works well, and we can rigor-
ously analyze its convergence properties. Our experiments

Dynamic CNN

(64.44%) (30.88%)

Prediction: Unit 349 Unit 102
rock arch coast stratified

Standard CNN (g 569, (8.09%) (7.36%) (8.52%) (6.70%)
Prediction: Unit 61 Unit 302 Unit 475 Unit 233 Unit 22
rock arch train mosque hot spring  supermarket balcony

Dynamic CNN
Prediction:

(40.85%) (31.30%)  (27.85%)
Unit 43 Unit 347 Unit 152
computer room screen office office

Standard CNN (14.00%) (6.50%) (5.72%) (5.50%) (5.17%)
Prediction: Unit 476 Unit 234 Unit 508 Unit 317 Unit 430
computer room  bird reception street bakery shop  studded

Dynamic CNN (75 700)  (27. 14%)
Prediction: Unit 0 Unit 395
stadium stadium baseballfootball field

Sta“dafd CNN (13.82%) (12.21%)  (10.41%) (8.52%) (6.70%)
Prediction: Unit 284 Unlt 160 Unit 230 Unit228  Unit132

conference room classroom

.

Figure 7: Visualize the decision explanation in Res18-d5a trained
on Places365. The heatmap indicates the region correspond-
ing to the units. Above each image, we show the contribution
score, unit ID, concept name on the 1%,2" 3" lines respec-
tively. We see fewer than 5 concepts that are important for pre-
dictions while using Dynamic-K algorithm. To compute the con-
tribution score, first we compute the output score for class ¢ as
Yo = >0 WiX,, (where n is the #-units in layer4, X; is the
activation of unit 4, Wy is the weight value on the edge between
unit ¢ and class ¢). Then, the contribution score of unit 7 to class ¢
is computed as W7 X; /Y.

stadium/football auditorium bakery shop toilet

show that this scheme can help speed up convergence, en-
courage sparsity of the network and increase interpretabil-
ity, without sacrificing the overall accuracy.
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