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ABSTRACT

Recent advances in biomolecular sequencing have revealed the
important role that interspecific gene flow has played in genome
evolution throughout the Tree of Life. Current and future genomic
studies will bring large amounts of genomic sequence to bear upon
this topic, and scalable computational methodologies are needed to
detect and analyze genomic signatures of interspecific introgression
in large-scale datasets.

To address the methodological gap, we introduce a new compu-
tational framework known as PHiMM (or “fast PhyloNet + Hidden
Markov Model”). PHIMM combines inference and learning under
a combined model of genetic drift, substitutions, recombination,
and gene flow with a coalescent-based approximation technique.
We compare the performance of PHiMM against the state of the
art using synthetic and empirical genomic sequence data. We find
that PHiMM offers better computational runtime and main memory
usage by multiple orders of magnitude, while returning comparable
inference accuracy.

An open-source software implementation of the PHiMM frame-
work and open data are publicly available at
https://gitlab.msu.edu/liulab/phimm-dataset.
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« Applied computing — Computational genomics; Computational
biology; Molecular sequence analysis; Molecular evolution; Computa-
tional genomics; Bioinformatics; Population genetics.
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1 INTRODUCTION

Recent comparative genomic studies of interspecific gene flow in
eukaryotes have sought to detect introgressed genetic variation and
then understand the functional role of introgressed alleles. Exam-
ples include studies of house mice [23, 24, 33], butterflies [36], and
humans and ancient hominins [9, 29]. A key challenge is inherent
to the computational task of introgression mapping: eukaryotic
genomes have evolved under complex evolutionary processes, in-
cluding interspecific gene flow, genetic drift/incomplete lineage
sorting (or ILS), recombination, and point mutations [4]. For ex-
ample, one popular strategy for detecting introgression seeks to
reconstruct local evolutionary histories along genomes, and then
utilizes topological incongruence between gene trees as a pattern
indicative of gene flow. However, deep coalescence caused by ge-
netic drift/ILS can also result in local genealogical discordance.
Thus, introgression detection remains a challenging problem, since
developing a comprehensive approach for distinguishing genomic
patterns left by interspecific introgression versus genetic drift/ILS
(as well as other evolutionary processes) is sorely needed.

Recent methodological advances have sought to disentangle ge-
nomic signatures of gene flow from those left by the other evolution-
ary processes. A popular class of statistical introgression mapping
methods directly analyzes historical introgression patterns from
biomolecular sequence data using a combined model of population
genetics and sequence evolution. The population genetic model
component typically consists of an extended multi-species coales-
cent (MSC) model [20] which accounts for genetic drift, gene flow,
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and recombination,where temporal probabilistic graphical models
are used for a sequentially Markovian coalescent (SMC) approxima-
tion [26] to the full coalescent-with-recombination (CwR) model
[11, 19]. The sequence evolution model component typically con-
sists of a traditional Markovian model of point mutation processes
[6]. Methods in this class include CoalHMM [14, 25] — an early
method which was originally proposed for other population genetic
inference problems but which has since been extended to address re-
lated tasks such as statistical introgression mapping. More recently,
Liu et al. [23] introduced PhyloNet-HMM, an introgression map-
ping method that utilizes a statistical model which combines the
multi-species network coalescent (MSNC) model [40] (for capturing
genetic drift, incomplete lineage sorting, and gene flow), a finite site
substitution model such as the general time-reversible (GTR) model
[30], and a hidden Markov model (HMM) to capture intra-sequence
dependence due to recombination (based on an SMC approximation
to the full CwR model). Each MUL-tree encoded in a fixed species
network is represented using a "row" of HMM states, and distinct
gene tree topologies corresponding to local coalescent histories
evolving within the MUL-tree are represented using distinct states
within the row. HMM switching from one "row" of states to an-
other is indicative of gene flow within a reticulation in the species
network, depending on the MUL-trees involved; HMM switching
between states in the same "row" is indicative of ILS and/or recom-
bination. The combined model is coupled with a modified posterior
decoding algorithm for statistical inference. Model parameters are
learned using standard local optimization techniques. As far as
we're aware, statistical methods in this class have not been used
on datasets with more than a handful of genomic sequences. One
contributing factor is algorithmic scalability. Increasing dataset
size in terms of number of taxa and sampled genomes as well as
greater evolutionary divergence can negatively impact computa-
tional runtime, memory usage, and inference/learning accuracy.
Another popular class of introgression mapping methods applies
statistical testing within sliding windows [3, 36], thus avoiding
the computational burden of explicitly modeling coalescence, re-
combination, gene flow, and point mutation processes. Common
simplifying assumptions made by this class of methods include the
ad hoc nature of applying statistical tests within sliding windows
across an input sequence alignment, the infinite sites model and
its assumptions about sequence evolution, and others, which may
result in relatively low inference/learning accuracy.

2 RELATED WORK

This study builds upon previous work including the PhyloNet-HMM
and SERES frameworks. Here we review these related concepts and
approaches.

2.1 PhyloNet-HMM algorithm

The PhyloNet-HMM algorithm employs a hidden Markov model for
introgression detection. We utilize the model that is implemented
in the recently released PhyloNet version 3.6[35, 38], which is a
modification of the earlier model proposed by Liu et al. [23].

The HMM states include a trivial start state; every other HMM
state corresponds to a distinct pair consisting of a MUL-tree and a
gene tree. A MUL-tree is a type of multilabeled tree whose leaves
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can be labeled by the sampled alleles [15, 40]. The set of MUL-
trees encoded by a species network N can be calculated using
the NetworkToMulTree procedure described by [40]. Gene flow
directionality is reflected in reticulation edge directionality in an
explicit phylogenetic network. Let m and n be the number of MUL-
trees and gene trees, respectively. As shown in Figure 1, the states
can be represented by s;; = (T;, G;), where T; is the i-th MUL-tree
(1 £i < m)and Gj is the j-th gene tree (1 < j < n).

The stochastic behavior of the HMM is governed by transition
probabilities, initial state probabilities, and emission probabilities.
The transition from the start state to a state s;; = (T;, G;) can be
calculated as follows:

br o = z(sij)
TG =5 2sk1)
k.1

where z(s;;) is the probability of local gene tree G; under MUL-tree
T;, which can be calculated using the approach of Yu et al. [40].

Let Ag be the probability of switching from a local gene tree to
one having a different topology (i.e., switching between columns in
Figure 1), while A7 is the probability of switching from a MUL-tree
to one having a different topology (i.e., switching between rows in
Figure 1).

A transition from s;; = (Tj, Gj) to sg; = (Ty, G;) where 1 <
i,k <mand1 < j,I <noccurs with the following probability:

Z(sk1)
AT, G)—(Ti.,Gp) = €(Ti, Tr)8(Gj, Gp) S 2(si)
i.j /
where
1-Ar ifi=k 1-Ag if j=1
e(Ti,Ty) =4 Ay .f 2 0(Gj.G) =9 ag .f T
- lf 1+ k -1 lf J * l

Given a hidden state s;; = (T;, Gj), the emission probability can
be calculated based on the observation sequence (i.e. the columns
of the input alignment A). The observation sequences A can be
defined as {A, C, T,G}KXL, where K is the number of taxa and
L is the length of genomic sequence alignment. Emissions occur
according to a substitution model ¢, which was the generalized
time-reversible (GTR) model [30] in our study. For each site of the
observation sequence A, which we define as a; (1 < i < L), the
emission probability is eg 4 = Plails, ¢] = Plailfr, G, §] where
{r are the branch lengths of the MUL-tree and £ are the branch
lengths of gene tree associated with state s = (T, G).

Given the observation sequences A, the model parameters 0 are
learned under the maximum likelihood criterion argmax P(A|6)

0

where the model parameters 0 consist of:

The set of MUL-trees (topologies and branch lengths);

The set of local genealogies (topologies and branch lengths);
DNA substitution model parameter ¢;

MUL-tree and gene tree switching probabilities AT and Ag

While the model likelihood for a fixed 6 can be calculated ef-
ficiently using dynamic programming [28], model likelihood op-
timization to learn 6 is computationally difficult. For this reason,
HMM learning is typically addressed using local search heuristics
such as the Baum-Welch algorithm and the expectation-maximization
algorithm [28]. The PhyloNet version 3.6 implementation of the
PhyloNet-HMM framework utilizes the BOBYQA algorithm [27]
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Figure 1: An illustration of the states in the PhyloNet-HMM
framework. Note that only transitions outgoing from s;;
(T1,G1) are shown to simplify the presentation.

to iteratively perform multi-variate optimization as part of a hill-
climbing search (whereas the initial version 0.1 implementation of
PhyloNet-HMM utilizes Brent’s method for univariate optimization
[1]).

Given an optimized model 6*, the forward and backward algo-
rithms are used to calculate the posterior decoding probability:

_ fe(, )b (i, )

~ P(AeY)

where A is the observed multiple sequence alignment with L columns,
and each aligned columns of Aisa; € A(1 <t < L); n; is

the t-th state of path m; (Tj, G;) represents all possible hidden

states (1 < i < m, 1 < j < n) as shown in Figure 1; the for-
ward probability f;(i,j) = P(ay, az, ..., ar, 71y = (T, Gj)|0%) is cal-
culated using the forward algorithm; the backward probability

bt (i,j) = P(at+1,ar+2, ..., aplme = (Ti, Gj), 0%) is calculated using

the backward algorithm; P(A|0%) is the probability of the align-
ment which can be computed by either the forward or backward

algorithms.

Consistent with the study of Liu et al. [23], we used a modified
posterior decoding approach for inference purposes. The modified
posterior decoding probability that a column ¢ (1 < ¢ < L) in the
alignment A has introgressed origin is computed as follows:

P(m = (T1. Gj)IA, 607)

pr= D Plm = (T;,G))IA 0%)
T; €Qr
1<j<n

where Qr represents the set of MUL-trees having introgressive
origins.

2.2 SERES resampling

Non-parametric resampling approaches allow researchers to use
empirical data to build a distribution from which they can obtain
critical values, calculate p-values, or construct confidence inter-
vals. For the problem of introgression mapping, non-parametric
resampling methods can be used to generate resampled replicates
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of a genome alignment. Inference/analysis can be performed and
compared across replicates.

The SERES framework [37] consists of non-parametric or semi-
parametric sequential resampling techniques that generalize the
standard bootstrap method for non-parametric resampling [5] and
the Heads-or-Tails method [21]. Critically, SERES resampling satis-
fies the “neighbor preservation property”, which means the resam-
pling preserves neighboring bases within the original sequences.
The generalized procedure takes the form of random walks along
either aligned or unaligned biomolecular sequences. In the former
case, the random walk is conducted using the following procedure.
A starting point and direction for the random walk are chosen uni-
formly at random across all sites. As the random walk proceeds,
reversals occur with certainty at the start or end of the MSA; rever-
sals can also occur during each step with probability y. The random
walk stops once the number of sampled characters is equal to the
fixed MSA length.

3 METHODS

In this study, we address the methodological limitations of state-
of-the-art approaches for statistical introgression mapping by aug-
menting the PhyloNet-HMM framework with two key algorithmic
approaches: an MSNC model approximation and SERES-based re-
sampling and re-estimation to "boost" statistical inference accuracy.
We refer to the resulting model and method as the PHIMM (or
“fast PhyloNet + Hidden Markov Model”) framework. The PHIMM
model is nested within the PhyloNet-HMM model, and the latter
typically has many more parameters compared to the former.

We first describe the computational problem addressed by the sta-
tistical introgression mapping methods under study. The problem
input consists of a multiple sequence alignment A with K aligned
sequences and L columns and a species phylogeny in the form of
a rooted phylogenetic network N. The problem output is an an-
notation of each aligned character a; € A with an introgression
probability p; for 1 <t < L.

3.1 PHiMM algorithm

The PHiMM algorithm for statistical introgression mapping con-
sists of a multi-stage pipeline. The pseudocode of our algorithm
is given in Algorithm 1. The first stage consists of the following
“truncation” algorithm: (a) Using A as a species network model,
conduct Monte Carlo sampling of z local gene tree topologies from
the gene tree topology distribution under the MSNC model [40]. We
used z = 1000 in our simulation study experiments and empirical
dataset analyses. The observed frequency distribution of local gene
tree topologies is normalized to obtain an estimated probability
distribution f}. (b) Rank each topology in the domain of f based
on its estimated probability, and let A be the top k, topologies
based on the topology ranking. The PHiMM analyses in our study
set kp, to 30. (¢) Truncate the distribution f;\/ such that the domain
consists only of topologies in A. Normalize the truncated fy to
obtain a truncated probability distribution g /. The second stage of
the PHiMM algorithm constructs a hidden Markov model (HMM)
in a manner similar to the PhyloNet-HMM algorithm, with a single
modification. The set of MUL-trees T; (1 < i < m, where m is the
number of MUL-trees) in the MUL-tree representation of N [40]
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is enumerated using the procedure NetworkToMulTree described
by Yu et al. [40]. HMM state construction utilizes the truncated
distribution g rather than the full theoretical distribution f, where
a row of HMM states is instantiated for each distinct MUL-tree T;
and each state in a row corresponds to a distinct local gene tree
topology Gj (1 < j < kn = |A]) in the domain of gp/. The final
stage of the PHIMM algorithm performs model fitting and statistical
inference under the fitted model using the same procedures as the
PhyloNet-HMM algorithm.

The PHiMM framework can be augmented with SERES-based
resampling and re-estimation to enhance inference and learning
(Algorithm 1). First, the PHiMM algorithm is run with default set-
tings to perform optimization-based learning on the original input
MSA. SERES random walks are conducted to perform resampling;
the number of SERES replicates was 10 and the reversal probability
y was set to 0.0003. The optimized model is then used to perform
fixed-parameter-value inference on resampled SERES replicates. Fi-
nally, re-estimated posterior probability distributions are averaged
across SERES replicate analyses to obtain a final inferred distribu-
tion.

3.2 Simulation study

We conducted a simulation study to evaluate the performance of
PHiMM relative to the state of the art. Our simulation procedure
generally followed that of Liu et al. [23], with one major change.
We utilized msmove [8], a newer coalescent model simulation tool
which annotates loci that evolved under gene flow, as opposed to
ms [16], which does not provide such annotation. The two simula-
tion studies also utilized comparable model conditions. The model
conditions were originally chosen to reflect evolutionary scenar-
ios involving adaptive interspecific introgression that have been
recently described in eukaryotes [9, 24, 29]. Additionally, we also
conducted additional experiments using the original ms-based sim-
ulation protocol from [23]. Our experiments indicated that there
was not a large difference between the two simulation protocols,
and we therefore focus on the msmove-based simulation protocol.
(Detailed descriptions and results for the ms-based protocol are
listed in the Appendix.)

The model phylogenies used in our simulation study were gen-
erated using the procedure of Hejase et al. [13], which consisted
of the following steps. First, we used r8s [31] to generate a ran-
dom rooted tree under a birth-death process, where the number of
taxa n € [5,10] and each tree had a total height of 1.0 coalescent
unit. Next, a time-consistent level-r rooted tree-based phylogenetic
networks was obtained in a manner similar to Leaché et al. [22].
Reticulations were topologically constrained to the class corre-
sponding to paraphyletic gene flow based on Leaché et al. [22]’s
classification scheme. A total of r reticulations were added by iter-
ating the following steps: a time ¢y between 0 and the tree height
was selected uniformly at random, two tree edges for which cor-
responding ancestral populations existed during a time interval
[ta,tp] such that ty; € [t4, tg] were randomly selected, and a retic-
ulation at time tj; was added to connect the pair of tree edges. An
outgroup taxon was then added to the resulting network with diver-
gence time at 10.0 coalescent units. Similar to Leaché et al. [22], we
further classified model phylogenies based on whether gene flow
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was “deep” or “non-deep” based on topological placement of retic-
ulations. A reticulation is non-deep when its placement involved
two leaf edges, and all other reticulations are considered deep; non-
deep model phylogenies include only non-deep reticulations, and
all other model phylogenies are considered to be deep.

Given a model species network, local coalescent histories and
gene trees were simulated under a multispecies network coalescent
with recombination (MNSCwR) model. The MNSCwR simulations
were performed using [8] since it can annotate a simulated dataset
to indicate whether or not local coalescent histories involved his-
torical instantaneous unidirectional admixture (IUA). Following the
study of [3], reticulations were modeled as IUA events. Experiments
examining impact of differing levels of admixture used model con-
ditions with y fixed to either 0.1 or 0.5; all other model conditions
assigned y to 0.5. Recombination was modeled using Hudson’s
finite-sites recombination model [16]. The crossover probability
and simulated sequence lengths in our study reflect inferred re-
combination rates from the study of Jensen-Seaman et al. [17]. The
simulation procedure incorporates multi-locus genomic sequence
evolution, where k independent and identically distributed (i.i.d.)
“query” loci are sampled from the same MNSCwR model and then
embedded within a genome sequence. The choice of simulation
protocol was practical, since msmove only provides gene flow an-
notation at the granularity of a whole locus. To implement this
protocol, we simulated two different classes of loci: shorter “query”
loci had sequence length of 100 bp, and longer “inter-locus regions”
had sequence length of 1 kb. For each of the two classes of loci (i.e.,
query loci and inter-locus regions), the population recombination
rate under the finite-sites recombination model was set to a value
consistent with the overall recombination rate p: 1 and 10, respec-
tively. Loci from the two classes were interleaved, with ten query
loci and nine non-query loci sampled per dataset. The sampling
design ensures that query loci are separated by sufficient sequence
length for the purpose of assuming free recombination between
query loci, based on linkage disequilibrium decay observed in previ-
ous empirical studies [34]. The sampling scheme also has an effect
equivalent to introducing a recombination breakpoint between two
adjoining loci. The total sequence length for each simulated dataset
was 10 kb. The MNSCwR simulation outputs consist of a sequence
of local coalescent histories and embedded gene trees — one for
each recombination-free tract. Finally, DNA sequence evolution on
each gene tree was simulated under the Jukes-Cantor model [18]
with mutation rate § = 2. For each model condition, we repeated
the simulation procedure 20 times to obtain 20 replicate datasets.

Our simulation study compared the performance of the PHIMM
algorithm against the PhyloNet-HMM algorithm. PhyloNet-HMM
analyses were run using default settings, i.e., the number of iter-
ations for model parameter learning was 300, and the number of
runs was set to 10. (Detailed commands are listed in the Appendix.)

The methods under study were evaluated based on several differ-
ent performance measures. First, we assessed inference accuracy for
each method, where the inference annotates each input alignment
column with an introgression probability based on the modified
posterior decoding calculation in [23]. For each query locus in a sim-
ulation replicate, each method’s inference accuracy was assessed
based on whether or not any sites were flagged as introgressed
under a given posterior decoding probability threshold. Varying
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Algorithm 1 PHIMM

1: procedure PHIMM(N, A)

2 N « GetSpeciesNetworkModel(N)

3 A, <0

4 inti«1

5 while i < z do

6 Az < Az + GeneTreeMonteCarloSampling(N, N')
7 i—i+1

8 A4 < GetDistinctGeneTrees(Az)

9 f;\/ « EstimateProbability(A ;)

10: f;\/ — RankTopology(f;\/)

1 A« Truncate(f;v, Ag. kn)

12: gn < EstimateTruncatedProbability(A)

13:

14: 0 « InitializeModelParameters(N, A, gn)

15: while Not reaching the convergence criteria do

16: 0 « HeuristicLearning(0, A)

17: {prhi<t<L < ModifiedPosteriorDecoding(6, N, A)
18: Return {p; }1<; <1

19:
20:

21: procedure SERES-BasED PHIMM(N, A, r)

> N: Phylogenetic network; N: Species network model
> Az: Sampled gene tree topologies

> z: Sampling size
s Ag: Distinct gene tree topologies in A,
> fn: Estimated probability distribution of Ay

> kp: Truncation size; A: Selected gene tree topologies
> gj: Estimated probability distribution of A

> 0: Model parameters

> A: Input multiple sequence alignment with K aligned sequences and L columns

> ps: Introgression probability for each aligned site t (1 <t < L)

> r: Number of SERES resampling
> AlD), mapping(i): Resampled alignment and mapping

> y: Reversal rate
> Run PHiMM with fixed model parameters

222 ({pth<e<r,0) < PHIMM(N, A)

23: inti«1

24: while i <r do

25: startsite) direction) « SelectStartSite(A) » startsite), direction?): Starting point and direction for SERES random walk
26: AD mapping® — 0,0

27: while Length of A < Ldo

28: AD mapping® — AD mapping) + RandomW alk (A, startsiteD), direction'D), y)
25: (0 h<r<r — PHIMM(N, A®), 9)

30: ie—i+1

31: {p:} <« AverageProbability({p;}, {pgl) } mapping(l)..., {pgr) } mapping(r))

32: Return {p;}1<r <L

threshold values trades off between type I and type II errors. The
tradeoff is commonly visualized using receiver operating character-
istic (ROC) curves, which plot true positive rate (%) vs. false
positive rate (%), or precision-recall (PR) curves, which plot
precision (- PT JE: p) vs. recall (7 PTJf; ~) (Where we abbreviate “FP”
for false positive, “FN” for false negative, “TP” for true positive,
and “TN” for true negative). We report area under curve (AUC)
for both (AUROC and PR-AUC, respectively). Second, we assessed
computational runtime and main memory usage for the methods
under study.

3.3 Empirical study

Our performance study included empirical genomic sequence datasets
with positive and negative control loci. The datasets were sampled
from wild-derived and wild mouse samples from Mus musculus
domesticus and M. spretus. For comparison purposes, we repro-
duced a subset of the PhyloNet-HMM analyses from [24], which
utilized genomic sequence data from [2]. We briefly review relevant
methodological details here (see [24] for more details). The data
were sequenced using a SNP array designed by [39]; raw reads
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from the array were genotyped using MouseDivGeno software [2].
The genotypic sequence data was phased into haploid genomic
sequences using fastPHASE [32]. Each dataset consisted of phased
genomic sequences for three M. m. domesticus samples — one from
the region of sympatry between M. m. domesticus and M. spretus,
and two from far outside the region of sympatry, one M. spretus sam-
ple from the region of sympatry, and one outgroup sequence (Rattus
norvegicus genome (RGSC Rnor_5.0/rn5)). Each dataset included 4
in-group taxa and 1 out-group taxon.

Our study also included larger “extended” datasets with taxon
sampling that was a strict superset of the datasets from the Liu et al.
[24] study. The larger size of the extended datasets necessitated
the use of PHIMM for introgression mapping purposes. Other than
larger set of taxa in new datasets, all other aspects of empirical
data were the same (i.e., genotyping, phasing, etc.). The extended
datasets included one additional M. m. domesticus sample from
outside the region of sympatry between M. m. domesticus and M.
spretus. PHIMM was run on the extended datasets with settings
identical to the simulation study, with two exceptions. First, PHIMM
analyses set the number of iterations for model parameter learning
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to 1000 (rather than 300). Second, substitution model and MUL-
tree branch lengths were optimized using chromosome 7 from the
extended Spain-Arenal dataset.

We also re-analyzed the Limenitis dataset from Gallant et al. [7]
and part of the reference genome assembly that is in preparation.
We ran PhyloNet-HMM and PHiMM on the dataset of Limenitis
AC scaffold containing the WntA gene. The dataset includes 4
in-group taxa, Limenitis arthemis arizonensis, Limenitis arthemis
arthemis, Limenitis arthemis astyanax and Limenitis archippus flori-
denesis, where we assume that the Limenitis arthemis arthemis and
Limenitis arthemis astyanax were first coalesced, and then their
ancestors were coalesced with Limenitis arthemis arizonensis and
finally with Limenitis archippus floridenesis. A reticulation from
Limenitis arthemis arizonensis to Limenitis arthemis astyanax was
postulated for the 4-taxa network. Due to the scalability limitation
of PhyloNet-HMM, it was run on the 4-taxon dataset, while PHIMM
utilized the extended dataset with an additional Limenitis arthemis
arthemis sample.

3.4 Software and data

Our software implementation of the PHiMM algorithm includes a
custom implementation of the MSNC-based Monte Carlo algorithm
as well as custom modifications of the PhyloNet software package
[35]. Open-source software and open data for all study datasets are
publicly accessible at https://gitlab.msu.edu/liulab/phimm-dataset.

4 RESULTS

4.1 Simulation study

We begin by describing the performance comparison of PHIMM
versus PhyloNet-HMM. Area under receiver operating character-
istic curve (AUROC), computational runtime, and memory usage
comparisons are shown in Table 1.

Given up to a week of runtime and at most a TiB of main memory,
PhyloNet-HMM was only able to complete analyses of 16 out of 20
of the smallest datasets in our study - those involving the 5-taxon
model condition with a single non-deep reticulation; PhyloNet-
HMM failed to complete analysis of the other 4 replicates due to
excessive main memory requirements. On datasets with 6 or more
taxa and model conditions involving deep reticulations or multiple
non-deep reticulations, PhyloNet-HMM failed to complete analysis
for the same reason. In contrast, PHIMM completed analyses of
all of the simulated datasets in at most several hours — even the
10-taxon datasets — and main memory usage was also at most a few
GiB (Figure 2).

PhyloNet-HMM’s scalability constraints limited comparison of
the two methods to the smallest 5-taxon datasets involving a single
non-deep reticulation which PhyloNet-HMM successfully analyzed.
On the 5-taxon model condition, PHIMM returned runtime and
memory usage improvements that amounted to around two orders
of magnitude compared to PhyloNet-HMM. On average, PhyloNet-
HMM required around 41 hours and 319 GiB of main memory to
complete analysis; in contrast, PHIMM required around 8 minutes
and 2 GiB of main memory. As measured by AUROC and PR-AUC,
PHiMM'’s inference was comparable to PhyloNet-HMM.

The remainder of the simulation study experiments focus on
PHiMM due to PhyloNet-HMM’s scalability limitations. On model
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Table 1: A performance comparison of PHiMM and
PhyloNet-HMM on the 5-taxon model condition with a
single non-deep reticulation. Performance was evaluated
based on area under receiver operating characteristic curve
(“AUROC?”), area under precision-recall curve (“PR-AUC”),
computational runtime, and main memory usage. Given a
week of computational runtime and 1 TiB of main memory,
PhyloNet-HMM successfully completed analysis of 16 out
of 20 experimental replicates, but failed on the remaining 4
replicates due to excessive main memory requirements. In
contrast, PHiIMM completed analysis of all replicates. We
report results on replicates on which PhyloNet-HMM ran
to completion. Averages and standard errors are reported
(n = 16).

Methods
PhyloNet-HMM PHiMM
AUROC Average 0.7806 0.7653
Standard Error 0.0534 0.0523
PR-AUC Average 0.7197 0.7305
Standard Error  0.0871 0.0726
Run time (h)  Average 40.8968 0.1291
Standard Error  0.5607 0.0035
Memory (GiB) Average 318.6493 2.3527
Standard Error  4.3099 0.2271

conditions involving a single non-deep reticulation, PHIMM’s run-
time and memory requirements increased as the number of taxa
increased from 5 to 10 (Figure 2 (a)). However, PHIMM’s runtime
and memory requirements on the largest datasets were still orders
of magnitude smaller than PhyloNet-HMM on the smallest datasets
in our study. On model conditions with between 5 and 10 taxa,
average AUROC remained between 0.75 and 0.85.

Similar trends were seen on model conditions involving two non-
deep reticulations (Figure 2 (b)). Compared to model conditions
with a single non-deep reticulation, runtime and memory usage
tended to be slightly larger on the two non-deep reticulation model
conditions, but remained on the order of a few hours and GiB,
respectively. AUROC on the latter model conditions was between
0.85and 0.9.

On model conditions involving a single deep reticulation, run-
time and memory usage were similar to other model conditions in
our study (Figure 2 (c)). Unlike model conditions involving non-
deep reticulations, PHiMM’s AUROC on model conditions involving
deep reticulations was impacted by increasing dataset size in terms
of number of taxa: on single-deep-reticulation model conditions
involving 5 or 6 taxa, AUROC was around 0.8 — comparable to its
performance on equivalent single-non-deep-reticulation model con-
ditions — but AUROC dropped as the number of taxa increased to 10.
Experimental variability (as measured by standard error across ex-
perimental replicates) also tended to be larger on model conditions
involving deep reticulations relative to those involving non-deep
reticulations.

Furthermore, we compare the performance of SERES-based PHIMM
and PHiMM based on the model condition with a single non-deep
reticulation. As shown in Figure 3, the former method returned a
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relatively small AUROC improvement relative to the latter on the
larger model conditions with 9 and 10 taxa.

4.2 Empirical study

We also compared the performance of PHiMM and PhyloNet-HMM
on mouse genomic sequence datasets that were originally analyzed
in [24] and [2]. Due to PhyloNet-HMM’s scalability limitations,
we ran PhyloNet-HMM on a smaller 5-genome dataset that was
a proper subset of the larger dataset used for PHIMM’s analysis.
The latter dataset includes more Mus musculus domesticus samples
compared to the former, but are otherwise identical. (See Methods
for details.)

Previous studies [24, 33] have reported adaptive interspecific
introgression involving the chromosome 7 region surrounding the
Vkorc1 gene (i.e., the chromosome 7 region between coordinates
123 Mb and 134 Mb). As shown in Figure 4, both methods infer
multi-megabase-long introgressed tracts that appear in all eight
samples from Spain and Germany, except the sample from Are-
nal, Spain. Thus, both methods detect interspecific introgression
for this positive control. The VkorcI-containing genomic region
contains the longest introgressed tracts that were detected in the
mouse genome. Within this genomic region, we note that the total
sequence length of introgressed tracts inferred by PHIMM is greater
than that inferred by PhyloNet-HMM.

A similar situation was observed in other genomic regions where
Liu et al. [24] detected introgressed tracts with hundreds of kilo-
bases of sequence length or more. PHIMM and PhyloNet-HMM
inferences were qualitatively similar in that they both detected
introgression in these regions. When examining local inference
patterns, two types of differences were noted: local differences in
the pattern of introgressed and non-introgressed tracts (e.g., the
chromosome 7 region between coordinates 102 Mb and 108 Mb
and the chromosome 17 region between coordinates 4 Mb and 54
Mb), and longer and more numerous introgressed tracts inferred
by PHiMM as compared to PhyloNet-HMM (e.g., chromosome 10,
12, and 15).

We further analyzed the performance of PHiMM and PhyloNet-
HMM on the Limenitis sequence datasets, where PHIMM was run
on the 5-genome dataset and PhyloNet-HMM was run on the 4-
genome dataset (see Methods for details). As shown in Figure 5, the
longest introgression tract detected by PHiMM for larger dataset
was approximately similar to those inferred by PhyloNet-HMM.
Furthermore, both methods detected introgression within the WntA
gene region (from coordinates 27Kb to 101Kb), especially for 60Kb
to 100Kb. The results were generally consistent with the Figure 4b
of Gallant et al. [7].

5 DISCUSSION

Our simulation study revealed that PHIMM’s runtime and mem-
ory usage improved upon PhyloNet-HMM by multiple orders of
magnitude. The scalability enhancements were primarily due to
model approximation enabled by PHiMM’s truncation algorithm.
Model approximations can impose a penalty in terms of inference
accuracy, but that was not the case in our study: in fact, PHIMM’s
AUROC and PR-AUC were similar to PhyloNet-HMM’s. One ex-
planation may be that PHIMM’s truncation approach may curb
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model complexity without imposing much of a penalty in terms of
model fit to observed data. Furthermore, a statistical model with
fewer parameters may be better suited to the local optimization
techniques that are traditionally used for computationally difficult
statistical learning problems - as is the case for the methods under
study.

PHIiMM’s AUROC performance was largely robust to increas-
ing dataset sizes and the number and placement of reticulations
in the model network, although some AUROC impact was seen
on larger datasets involving deep reticulations. Previous studies
suggest that deep gene flow (and ancient evolutionary events in
general) may present a greater challenge to phylogenetic inference
as compared to more recent evolutionary events [12, 13, 22]. While
largely unaffected by the number and placement of reticulations,
PHiMM'’s computational requirements increased as dataset sizes
increased, but remained well within the capabilities of modern
high-performance computing hardware.

SERES-based PHiMM returned comparable performance com-
pared to standalone PHiMM on the smaller model conditions in
our study. As the dataset size increased, the former began to return
performance improvements relative to the latter, which suggests
that the SERES resampling and re-estimation has the potential to
“boost” PHIMM’s inference accuracy.

On the empirical datasets, PHIMM and PhyloNet-HMM returned
qualitatively similar inferences in terms of introgressed genomic
regions. The findings are generally consistent with the molecu-
lar hypotheses proposed by [24], which identified candidate "dri-
ver" genes in these genomic regions that may play a causative
role similar to Vkorcl. The pattern of local inferences were differ-
ent between the two methods. In some genomic regions (e.g., the
Vkorc1-containing genomic region in chromosome 7), PHIMM re-
turned longer and more numerous introgressed tracts as compared
to PhyloNet-HMM. Furthermore, the distribution of introgressed
tract lengths tended to differ between the two methods. There
were more introgressed tracts detected by PHIMM compared to
PhyloNet-HMM, and PHiMM’s histogram revealed clearer “separa-
tion” between two classes of tracts: megabases-long tracts — a few
dozen in all - and shorter tracts which were more numerous. The
former “long” class of tracts would be consistent with a hypothesis
of adaptive introgression, where neutral recurrent back-crossing
tends to shorten introgressed tracts over time but positive selection
and genetic hitchhiking provides an opposite and countervailing
effect [24]. The latter “short” class of tracts would be consistent
with Liu et al. [24]’s hypothesis about more ancient bouts of adap-
tive interspecific introgression; sympatry between M. musculus and
M. spretus is understood to have predated the recent introduction
of pesticides [10, 24]. Consistent with the simulation study’s per-
formance comparison, we ascribe the observed differences in our
empirical study to two factors: PHIMM’s competitive statistical
power and type I error control relative to PhyloNet-HMM, and
denser allele sampling enabled by PHIMM’s improved scalability
relative to PhyloNet-HMM.

On the Limenitis empirical datasets, PhyloNet-HMM and PHIMM
detected the similar introgression tracts that overlapped throughout
much of the WntA-containing genomic region. The findings are
generally consistent with the experiments given by Gallant et al.

[7].
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Figure 3: The accuracy comparison between PHiMM and
SERES-based PHiMM on 5 to 10 taxa. The results are based
on newly simulated dataset under the model condition with
a single non-deep reticulation. Performance was evaluated
based on area under receiver operating characteristic curve
(“AUC”). Averages and standard error bars are shown (n =
20).

6 CONCLUSIONS

We have introduced PHIiMM, a new computational framework
for coalescent-based introgression mapping of genomic sequence
datasets. Relative to the state of the art, PHIMM offers improved
scalability that is better suited to the size and evolutionary scope
of current phylogenomic studies. We evaluated the performance
of PHiMM and another state-of-the-art method using simulations
and empirical genomic sequence datasets.

511

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the National Science
Foundation (grants no. 1565719, 1714417, and 1737898), the BEA-
CON Center for the Study of Evolution in Action (NSF STC Co-
operative Agreement 093954), and the MSU High Performance
Computing Center (HPCC).

REFERENCES

[1] R.P.Brent. 1973. Algorithms for Minimization without Derivatives. Dover Publi-
cations, Mineola, New York. 1-208 pages.

John Didion, Hyuna Yang, Keith Sheppard, Chen-Ping Fu, Leonard McMillan,
Fernando de Villena, and Gary Churchill. 2012. Discovery of novel variants in
genotyping arrays improves genotype retention and reduces ascertainment bias.
BMC Genomics 13, 1 (2012), 34.

Eric Y. Durand, Nick Patterson, David Reich, and Montgomery Slatkin. 2011.
Testing for Ancient Admixture between Closely Related Populations. Molecular
Biology and Evolution 28, 8 (2011), 2239-2252.

Scott V Edwards. 2009. Is a new and general theory of molecular systematics
emerging? Evolution 63, 1 (2009), 1-19.

B. Efron. 1979. Bootstrap Methods: Another Look at the Jackknife. Ann. Statist.
7,1 (01 1979), 1-26.

Joseph Felsenstein. 2004. Inferring Phylogenies. Sinauer Assoc., Sunderland, MA.
Jason R Gallant, Vance E Imhoff, Arnaud Martin, Wesley K Savage, Nicola L
Chamberlain, Ben L Pote, Chelsea Peterson, Gabriella E Smith, Benjamin Evans,
Robert D Reed, et al. 2014. Ancient homology underlies adaptive mimetic diversity
across butterflies. Nature communications 5 (2014), 4817.

D Garrigan and AJ Geneva. 2014. msmove: A modified version of Hudson’s
coalescent simulator ms allowing for finer control and tracking of migrant ge-
nealogies.

Richard E. Green, Johannes Krause, Adrian W. Briggs, Tomislav Maricic, Udo
Stenzel, Martin Kircher, Nick Patterson, Heng Li, Weiwei Zhai, Markus Hsi-
Yang Fritz, Nancy F. Hansen, Eric Y. Durand, Anna-Sapfo Malaspinas, Jeffrey D.
Jensen, Tomas Marques-Bonet, Can Alkan, Kay Priifer, Matthias Meyer, Hernan A.
Burbano, Jeffrey M. Good, Rigo Schultz, Ayinuer Aximu-Petri, Anne Butthof,
Barbara Héber, Barbara Hoffner, Madlen Siegemund, Antje Weihmann, Chad
Nusbaum, Eric S. Lander, Carsten Russ, Nathaniel Novod, Jason Affourtit, Michael
Egholm, Christine Verna, Pavao Rudan, Dejana Brajkovic, Zeljko Kucan, Ivan
Gusic, Vladimir B. Doronichev, Liubov V. Golovanova, Carles Lalueza-Fox, Marco
de la Rasilla, Javier Fortea, Antonio Rosas, Ralf W. Schmitz, Philip L. F. Johnson,
Evan E. Eichler, Daniel Falush, Ewan Birney, James C. Mullikin, Montgomery
Slatkin, Rasmus Nielsen, Janet Kelso, Michael Lachmann, David Reich, and Svante

[2

—

[3

flar}

4

o’

[5

[}

[6]
[7]

[8

=

[

—

(g9) Aows|\/(sinoH) awn uny



Session 17: Comparative Genomics & Cancer Phylogenetics ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

Spain-Arenal

Spain-RocadelValles
Germany-Hamm-A .

Germany-Hamm-B

Germany-Hamm-C

Germany-Hamm-D

Germany-Hamm-E

Germany-Hamm-F

T

>
b
®
o]
Iy

102 108 1 20 33 88 94 105 123

ch7 Vkorc1 ch1o

Spain-Arenal

Spain-RocadelValles

Germany-Hamm-A

Germany-Hamm-B

Germany-Hamm-C

Germany-Hamm-D

Germany-Hamm-E

Germany-Hamm-F

61 72 79102 104 4 54

3
.
1Ny
=
&
=3
&

Ch12 Ch1s Ch17

(a) PhyloNet-HMM

Spain-Arenal '

Spain-RocadelValles

Germany-Hamm-A

Germany-Hamm-B

Germany-Hamm-C

Germany-Hamm-D |

——
Germany-Hamm-E | - ——r—
.
1
Germany-Hamm-F 1
\
1

102 108 123 ' 134 6 12 20 33 88 94 105 123

chz  Vkorel ch1o

Spain-Arenal —

Spain-RocadelValles

Germany-Hamm-A

Germany-Hamm-B

Germany-Hamm-C

Germany-Hamm-D

Germany-Hamm-E

Germany-Hamm-F

17 22 103 118 58 61 72 79 162 104 4 54

Ch12 Ch1s Ch17

Position of Genome (Mb)

(b) PHIMM

Figure 4: A comparison of genomic patterns of interspecific introgression based on (a) PhyloNet-HMM and (b) PHiMM anal-
yses. Results are reported for Mus musculus domesticus samples from the region of sympatry between M. m. domesticus and M.
spretus (two Spanish mice and six German mice). Genomic regions involving megabases of introgressed tract length are shown.
Due to PhyloNet-HMM'’s scalability limitations, each PhyloNet-HMM analysis examined a subset of the sequence data for a
corresponding PHiMM analysis. Panel layout is adapted from Figure 4a in [24].

512



Session 17:

Comparative Genomics & Cancer Phylogenetics

PhyloNet-HMM |

\
n
=

PHIMM =] | | 1 . - I m

0 10 20 30 40 5 60 70 8 90 100 110 120 130 140 150 160
Position of Scaffold (Kb)

Figure 5: A comparison of genomic patterns of interspecific
introgression based on (a) PhyloNet-HMM and (b) PHIiMM
analyses. Results are reported for Limenitis arthemis arizonen-
sis samples from the region of sympatry between Limeni-
tis arthemis arthemis and Limenitis arthemis astyanax. Inferred
introgressed regions are shown in blue. Due to PhyloNet-
HMM’s scalability limitations, each PhyloNet-HMM analy-
sis examined a subset of the sequence data for a correspond-
ing PHiMM analysis.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]
[19]
[20]

[21]

[22]

Padbo. 2010. A Draft Sequence of the Neandertal Genome. Science 328, 5979
(2010), 710-722.

Bettina Harr, Emre Karakoc, Rafik Neme, Meike Teschke, Christine Pfeifle, Zeljka
Pezer, Hiba Babiker, Miriam Linnenbrink, Inka Montero, Rick Scavetta, Moham-
mad Reza Abai, Marta Puente Molins, Mathias Schlegel, Rainer G. Ulrich, Janine
Altmiiller, Marek Franitza, Anna Biintge, Sven Kiinzel, and Diethard Tautz. 2016.
Genomic resources for wild populations of the house mouse, Mus musculus and
its close relative Mus spretus. Scientific Data 3 (2016), 160075 EP —.

Jotun Hein, Mikkel Schierup, and Carsten Wiuf. 2004. Gene Genealogies, Variation
and Evolution: a Primer in Coalescent Theory. Oxford University Press, Oxford.
Hussein A Hejase and Kevin J Liu. 2016. A scalability study of phylogenetic
network inference methods using empirical datasets and simulations involving a
single reticulation. BMC Bioinformatics 17, 1 (2016), 422.

Hussein A. Hejase, Natalie VandePol, Gregory M. Bonito, and Kevin J. Liu. 2018.
FastNet: Fast and Accurate Statistical Inference of Phylogenetic Networks Us-
ing Large-Scale Genomic Sequence Data. In Comparative Genomics, Mathieu
Blanchette and Aida Ouangraoua (Eds.). Springer International Publishing, Cham,
242-259.

Asger Hobolth, Ole F Christensen, Thomas Mailund, and Mikkel H Schierup.
2007. Genomic relationships and speciation times of human, chimpanzee, and
gorilla inferred from a coalescent hidden Markov model. PLoS Genetics 3, 2 (2007),
e7.

Katharina T Huber, Bengt Oxelman, Martin Lott, and Vincent Moulton. 2006.
Reconstructing the evolutionary history of polyploids from multilabeled trees.
Molecular Biology and Evolution 23, 9 (2006), 1784-1791.

Richard R. Hudson. 2002. Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics 18, 2 (2002), 337-338.

Michael I Jensen-Seaman, Terrence S Furey, Bret A Payseur, Yontao Lu, Krishna M
Roskin, Chin-Fu Chen, Michael A Thomas, David Haussler, and Howard J Jacob.
2004. Comparative recombination rates in the rat, mouse, and human genomes.
Genome research 14, 4 (2004), 528—-538.

T.H. Jukes and C.R. Cantor. 1969. Evolution of Protein Molecules. Academic Press,
New York, NY, USA, 21-132.

John Frank Charles Kingman. 1982. The coalescent. Stochastic Processes and their
Applications 13, 3 (1982), 235-248.

J. F. C. Kingman. 1982. On the Genealogy of Large Populations. Journal of Applied
Probability 19 (1982), pp. 27-43.

Giddy Landan and Dan Graur. 2007. Heads or tails: a simple reliability check
for multiple sequence alignments. Molecular biology and evolution 24, 6 (2007),
1380-1383.

Adam D Leaché, Rebecca B Harris, Bruce Rannala, and Ziheng Yang. 2014. The
influence of gene flow on species tree estimation: a simulation study. Systematic
Biology 63, 1 (2014), 17-30.

513

[23

[24

[25

[28

[29

[33

[34

@
2

[36]

[37

[38

@
20,

[40]

ACM-BCB ’19, September 7-10, 2019, Niagara Falls, NY, USA.

Kevin J. Liu, Jingxuan Dai, Kathy Truong, Ying Song, Michael H. Kohn, and
Luay Nakhleh. 2014. An HMM-Based Comparative Genomic Framework for
Detecting Introgression in Eukaryotes. PLoS Computational Biology 10, 6 (06
2014), €1003649.

K. ]. Liu, E. Steinberg, A. Yozzo, Y. Song, M. H. Kohn, and L. Nakhleh. 2015. Inter-
specific introgressive origin of genomic diversity in the house mouse. Proceedings
of the National Academy of Sciences 112, 1 (2015), 196-201.

Thomas Mailund, Anders E. Halager, Michael Westergaard, Julien Y. Dutheil,

Kasper Munch, Lars N. Andersen, Gerton Lunter, Ka}/ Priifer, Aylwyn Scally,
Asger Hobolth, and Mikkel H. Schierup. 2012. A New Isolation with Migration

Model along Complete Genomes Infers Very Different Divergence Processes
among Closely Related Great Ape Species. PLoS Genet 8, 12 (12 2012), e1003125.
Gilean AT McVean and Niall J Cardin. 2005. Approximating the coalescent
with recombination. Philosophical Transactions of the Royal Society B: Biological
Sciences 360, 1459 (2005), 1387-1393.

Michael JD Powell. 2009. The BOBYQA algorithm for bound constrained opti-
mization without derivatives. Cambridge NA Report NA2009/06, University of
Cambridge, Cambridge (2009), 26-46.

Lawrence R Rabiner. 1989. A tutorial on hidden Markov models and selected
applications in speech recognition. Proc. IEEE 77, 2 (1989), 257-286.

David Reich, Richard E. Green, Martin Kircher, Johannes Krause, Nick Patterson,
Eric Y. Durand, Bence Viola, Adrian W. Briggs, Udo Stenzel, Philip L. F. Johnson,
Tomislav Maricic, Jeffrey M. Good, Tomas Marques-Bonet, Can Alkan, Qiaomei
Fu, Swapan Mallick, Heng Li, Matthias Meyer, Evan E. Eichler, Mark Stoneking,
Michael Richards, Sahra Talamo, Michael V. Shunkov, Anatoli P. Derevianko,
Jean-Jacques Hublin, Janet Kelso, Montgomery Slatkin, and Svante Paabo. 2010.
Genetic history of an archaic hominin group from Denisova Cave in Siberia.
Nature 468, 7327 (2010), 1053-1060.

F. Rodriguez, J.L. Oliver, A. Marin, and J.R. Medina. 1990. The general stochastic
model of nucleotide substitution. J. Theoretical Biology 142 (1990), 485-501.

M. J. Sanderson. 2003. r8s: inferring absolute rates of molecular evolution and
divergence times in the absence of a molecular clock. Bioinformatics 19, 2 (2003),
301-302.

Paul Scheet and Matthew Stephens. 2006. A Fast and Flexible Statistical Model
for Large-Scale Population Genotype Data: Applications to Inferring Missing
Genotypes and Haplotypic Phase. The American Journal of Human Genetics 78, 4
(2006), 629 — 644.

Ying Song, Stefan Endepols, Nicole Klemann, Dania Richter, Franz-Rainer Ma-
tuschka, Ching-Hua Shih, Michael W. Nachman, and Michael H. Kohn. 2011.
Adaptive Introgression of Anticoagulant Rodent Poison Resistance by Hybridiza-
tion between Old World Mice. Current Biology 21, 15 (2011), 1296 — 1301.
Fabian Staubach, Anna Lorenc, Philipp W. Messer, Kun Tang, Dmitri A. Petrov,
and Diethard Tautz. 2012. Genome Patterns of Selection and Introgression of
Haplotypes in Natural Populations of the House Mouse (Mus musculus). PLoS
Genetics 8, 8 (2012), €1002891.

Cuong Than, Derek Ruths, and Luay Nakhleh. 2008. PhyloNet: a software package
for analyzing and reconstructing reticulate evolutionary relationships. BMC
Bioinformatics 9, 1 (2008), 322.

The Heliconious Genome Consortium. 2012. Butterfly genome reveals promiscu-
ous exchange of mimicry adaptations among species. Nature 487, 7405 (2012),
94-98.

Wei Wang, Jack Smith, Hussein A Hejase, and Kevin J Liu. 2018. Non-parametric
and semi-parametric support estimation using SEquential RESampling random
walks on biomolecular sequences. In RECOMB International conference on Com-
parative Genomics. Springer, 294-308.

Dingqiao Wen, Yun Yu, Jiafan Zhu, and Luay Nakhleh. 2018. Inferring phyloge-
netic networks using PhyloNet. Systematic biology 67, 4 (2018), 735-740.
Hyuna Yang, Jeremy R. Wang, John P. Didion, Ryan J. Buus, Timothy A. Bell,
Catherine E. Welsh, Francois Bonhomme, Alex Hon-Tsen Yu, Michael W. Nach-
man, Jaroslav Pialek, Priscilla Tucker, Pierre Boursot, Leonard McMillan, Gary A.
Churchill, and Fernando Pardo-Manuel de Villena. 2011. Subspecific origin and
haplotype diversity in the laboratory mouse. Nature Genetics 43, 7 (Jul 2011),
648-655.

Yun Yu, James H. Degnan, and Luay Nakhleh. 2012. The Probability of a Gene Tree
Topology within a Phylogenetic Network with Applications to Hybridization
Detection. PLoS Genetics 8, 4 (04 2012), €1002660.



