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Abstract—Statistical resampling methods are widely used
for confidence interval placement and as a data perturbation
technique for statistical inference and learning. An important
assumption of popular resampling methods such as the stan-
dard bootstrap is that input observations are identically and
independently distributed (i.i.d.). However, within the area of
computational biology and bioinformatics, many different factors
can contribute to intra-sequence dependence, such as recom-
bination and other evolutionary processes governing sequence
evolution. The SEquential RESampling ("SERES”) framework
was previously proposed to relax the simplifying assumption
of i.i.d. input observations. SERES resampling takes the form
of random walks on an input of either aligned or unaligned
biomolecular sequences.

This study introduces the first application of SERES random
walks on aligned sequence inputs and is also the first to demon-
strate the utility of SERES as a data perturbation technique
to yield improved statistical estimates. We focus on the classical
problem of recombination-aware local genealogical inference. We
show in a simulation study that coupling SERES resampling
and re-estimation with recHMM, a hidden Markov model-based
method, produces local genealogical inferences with consistent
and often large improvements in terms of topological accuracy.
We further evaluate method performance using an empirical HIV
genome sequence dataset.

Index Terms—phylogenetic, hidden Markov model, SERES,
random walk, biomolecular sequence, recombination, gene tree,
genealogy, statistical inference and learning, HIV

I. BACKGROUND

Statistical resampling methods are widely used in science
and engineering. Among the many applications of resampling
methods is calculating confidence intervals for statistical infer-
ence and learning [Efron, 1979, Efron and Tibshirani, 1986].
Another important application arises in the context of sta-
tistical inference and learning. Alongside model perturbation
approaches such as dropout [Srivastava et al., 2014], statistical
resampling can be seen as a form of data perturbation that can
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help to improve inference and learning accuracy [Breiman,
1996].

Two classes of resampling methods are used. The first class
is non-parametric; of these, the bootstrap method is among
the most widely used [Efron, 1979, Efron and Tibshirani,
1986]. Given an input set of observations, the bootstrap
method resamples observations uniformly at random with
replacement. Re-estimation is then performed on resampled
replicates, and repeatability is quantified by comparing re-
estimates. Other related non-parametric methods include the
jackknife, weighted bootstrap, and others. In contrast, para-
metric methods resample directly from an explicit statistical
model. Ideally, the model that generated the original inputs is
available, but in practice a hypothesis model must typically be
assumed. Non-parametric methods are a popular choice since
they avoid the need to assume that observations were generated
under a specific model.

But the bootstrap method and other popular non-parametric
resampling methods bring their own important limitation: the
simplifying assumption that input observations are indepen-
dent and identically distributed (i.i.d.). The i.i.d. assumption
is invalid in the case where inputs consist of sequences of
observations, as is common throughout genomics and many
other topics in computational biology and bioinformatics.

To relax this simplifying assumption, we developed the
SERES (or ”SEquential RESampling”) method for non-
parametric/semi-parametric resampling from an input of either
aligned or unaligned sequences [Wang et al., 2018]. SERES
synthesizes and extends the bootstrap method with a simple but
powerful insight due to Landan and Graur [2007]: inferences
should be repeatable whether an input of unaligned sequences
is read left-to-right or right-to-left. In lieu of using “mirrored”
inputs, SERES performs random walks on input sequences.
In this study, we focus on the SERES algorithm for aligned
sequence inputs. A start point (i.e., an initial site) and direction
for the SERES walk are chosen uniformly at random. The walk
then proceeds, where aligned sites are sampled during each
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step of the walk; walk reversals occur with probability v during
each step (where ~y is typically smaller than 0.5) and with
certainty at the start and end of the alignment. The random
walk concludes once the resampled replicate has length equal
to the input alignment. For each resampled replicate, re-
estimation is performed. Repeatability is then measured by
quantifying disagreement among re-estimations.

Our initial study of SERES focused on the SERES algorithm
for unaligned sequence inputs [Wang et al., 2018], rather than
aligned inputs. Briefly, the SERES algorithm for unaligned
sequence inputs also takes the form of a random walk, with
one main difference: resampling “reads” along unaligned se-
quences occur in an asynchronous fashion, and a set of anchors
serve as synchronization “barriers” in much the same sense as
in parallel computing. We previously applied the SERES algo-
rithm to perform confidence interval placement for a classical
problem in computational biology and bioinformatics: multiple
sequence alignment (MSA) estimation. Using synthetic and
empirical data, we showed that the use of SERES random
walks within a resampling/re-estimation pipeline resulted in
comparable or often better type I and type II error rates relative
to state-of-the-art methods.

In this study, we address several corollary questions which
constitute the three primary contributions of our study. (1)
We propose the first application of SERES random walks
on aligned sequences, whereas our earlier study focused on
SERES random walks on unaligned sequences. (2) Our study
utilizes SERES random walks as a means to “boost” HMM
inference/learning performance. Like other non-parametric re-
sampling methods, we show that SERES has utility as a data
perturbation technique in addition to its use in confidence
interval placement, as considered by our earlier work. (3)
We introduce a SERES-based approach for another classi-
cal problem in computational biology and bioinformatics:
recombination-aware local genealogical inference.

II. METHODS
Standalone recHMM analysis

The coalescent-with-recombination (CwR) model [Hudson,
1983] is a classical population genetic model involving recom-
bination. However, phylogenetic inference under the multi-
species CwR model is computationally prohibitive, and alter-
natives such as the sequentially Markovian coalescent (SMC)
model [McVean and Cardin, 2005] are used as an approxima-
tion to the full CwR model. First-order hidden Markov models
(HMMs) are a widely used choice for tractable SMC-based
inference.

Phylogenetic HMMs (or “phylo-HMMs”) are the class of
HMMs with hidden states that correspond to phylogenies.
Markovian dependence between phylo-HMM states are meant
to capture intra-sequence dependence among local phylo-
genies, which can be caused by recombination and other
evolutionary processes. There are a variety of phylo-HMM-
based methods for local genealogical inference, depending on
modeling assumptions [Husmeier and Wright, 2001, Liu et al.,
2014, Mailund et al., 2011, Westesson and Holmes, 2009].
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We focus on recHMM [Westesson and Holmes, 2009] as an
exemplar method in this class.

The recHMM framework utilizes a statistical model that
combines a finite-sites substitution model and a phylo-HMM
to capture intra-sequence dependence due to recombination.
The combined model parameters 6 consist of local gene tree
branch lengths, substitution model rates and base frequen-
cies, and state transition probabilities. Emissions occur at a
state with likelihood under a finite-sites substitution model,
which can be efficiently calculated using Felsenstein’s peeling
algorithm [Felsenstein, 2004]. Combined model likelihood
is calculated using dynamic programming in the form of
either the forward or backward algorithm [Rabiner, 1989].
Typically, model parameters in a traditional HMM are learned
by addressing computationally difficult optimization prob-
lems; for this reason, heuristics such as the expectation-
maximization (EM) algorithm and the related Baum-Welch
algorithm are used. An EM-based approach is used to learn
recHMM model parameters 6. Westesson and Holmes [2009]
also applied a structural EM heuristic [Friedman et al., 2002]
to automatically learn the set of local gene trees represented
by recHMM’s states — one distinct gene tree per state. The
recHMM framework allows the user to specify the HMM
state space size ¢. In our simulation study, recHMM was
run with a default setting of ¢ = 3; we also included model
reduction experiments with alternative settings ¢ € {10, 15}.
We note that, in the structural EM used by Westesson and
Holmes [2009], HMM states are distinguished by both gene
tree topologies and branch lengths.

As is common practice for local search heuristics in the
context of statistical learning, Westesson and Holmes [2009]
utilized v independent optimization trials and then selected the
best trial under the maximum likelihood criterion as a means to
avoid getting stuck in local optima (cf. Figure 1 in [Westesson
and Holmes, 2009]). We followed their practice in our study:
when run as a standalone method, recHMM utilized ¢ = 100
independent optimization trials.

Consistent with the study of Westesson and Holmes [2009],
we used the posterior decoding algorithm to perform statistical
inference of local phylogenies [Rabiner, 1989]. The posterior
decoding algorithm addresses the following problem. Let GG
be the set of all possible unrooted tree topologies on n taxa.
The input consists of a multiple sequence alignment A on n
sequences — one for each of n taxa — with length & (i.e., k sites
in A). A is assumed to contain recombinant sequences, and
historical recombination can cause local genealogies to vary
across the sites in A [Hein et al., 2004]. The output consists
of the following: for each aligned site a; where 1 < i < k, we
seek the conditional probability that the HMM is in a hidden
state corresponding to a particular gene tree g € G conditional
on all sites in A and the fitted HMM model. For a particular
HMM instance, the posterior decoding effectively estimates
which gene tree is the most likely evolutionary history that
explains the observed character at a given site conditional
on the sequence of all observed sites in A. Analogous to
the distinction between filtering and smoothing [Russell and
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Norvig, 2016], the posterior decoding weighs any particular
inference at a given site against the total evidence across all
sites.

The SERES+recHMM pipeline

The key algorithmic contribution of this study takes the form
of a methodological pipeline for local phylogenetic inference
which augments recHMM with SERES random walks. First,
we ran SERES resampling on the input alignment A. The
Appendix includes detailed pseudocode for this procedure
(see Algorithm 1 in Appendix, which is reproduced from
[Wang et al., 2018]) as well as an illustrated example of
a SERES random walk on an input MSA (Supplementary
Figure S1 in Appendix). The SERES resampling procedure
in our simulation study utilized a default reversal probability
v = 0.005. We also conducted additional experiments with
alternative reversal probability values v € {0,0.01,0.1}.
The resampling procedure generated 10 SERES replicates per
dataset in our study.

Next, we ran recHMM on each SERES replicate. Consistent
with the study of Westesson and Holmes [2009], we observed
that the quality of recHMM’s inference depends upon suf-
ficiently intensive learning optimization. We adopted a con-
servative approach and restricted the number of independent
learning trials ¢ used in the SERES-based pipeline, where
recHMM was run on each SERES replicate with ¢y = 10
independent trials. For each dataset, the total number of inde-
pendent learning trials used in the SERES-based pipeline was
therefore equal to the number of independent learning trials
used by the standalone recHMM method. Otherwise, recHMM
re-estimation of a SERES replicate was run in an identical
manner compared to the standalone recHMM method.

Given optimized model parameter values, inference pro-
ceeded via the posterior decoding algorithm. The resulting
output annotation consists of a per-site probability distribution
over ¢ gene tree topologies.

For each site, inferred posterior decoding probability distri-
butions were aggregated across all SERES replicates in which
the site appeared (with per-replicate multiplicity based on the
number of times that the site was sampled within the replicate).
The aggregated distribution was then normalized to obtain a
valid probability distribution.

Simulated datasets

Gene trees were simulated under the CwR model using ms
[Hudson, 2002]. Each CwR simulation sampled either 4, 5,
or 6 alleles with scaled recombination rate p € {0.5,1.0,2.0}
and total sequence length of 1 kb per replicate. For each gene
tree, finite-length sequence evolution was simulated under
the Jukes-Cantor model of nucleotide substitution [Jukes and
Cantor, 1969] using Seq-Gen [Rambaut and Grassly, 1997].
We used a substitution rate ¢ € {0.5,1.0,2.0}. A model
condition consisted of fixed values for all model parameters,
and simulation procedures were repeated so that 30 replicate
datasets were generated per model condition. Summary statis-
tics for the simulated datasets are shown in Supplementary
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Table S1 in the Appendix. We assessed topological accuracy of
inferred gene trees relative to ground truth using the Robinson-
Foulds measure [Robinson and Foulds, 1981], which is the
proportion of bipartitions that occur in an inferred gene tree
but not the true gene tree or vice versa.

The coalescent simulations were performed using the fol-
lowing ms [Hudson, 2002] command:

<number of taxa>

1

-r <rho>

<number of sites> -T

ms

where the number of taxa is 4, 5, or 6, the scaled recombi-
nation rate p is 0.5, 1, or 2, the number of sites is 1000, and
the -T parameter outputs true local gene trees. The Seq-Gen
simulations made use of the following command:

-mHKY -1 <number of sites>
-p <number of partitions>
-s <mutation rate>

-z <PRNG seed>

<gene trees> > <segfile>

seg-gen

where the -mHKY parameter specifies the Jukes-Cantor muta-
tion model, the -1 parameter specifies sequence length of 1000
bp, the -p parameter is the number of local gene trees, the
-s parameter specifies the mutation rate 6 € {0.5,1,2}, the
-z option specifies the pseudo-random number generator seed,
and the <gene trees> argument is the list of true gene trees
that were output by ms.

Empirical datasets

We also re-analyzed an HIV dataset from the study of
Westesson and Holmes [2009]. The dataset consisted of Indian
samples that were originally studied by Lole et al. [1999]. The
dataset was subsampled to include four sequences, including
the putatively recombinant sequence that was the original foci
of the two studies.

Software and data availability

Open-source software and open data can be found
at  https://gitlab.msu.edu/liulab/seres-based-recombination-
breakpoint-inference-data-and-scripts.

III. RESULTS AND DISCUSSION
Simulation study

The performance measures evaluated the extent to which
each method’s inferred per-site posterior probability distribu-
tion reflected topological accuracy. We initially examined the
correlation between each method’s inferred per-site posterior
probability for a gene tree topology g and the topological
accuracy of g. Equivalently, we quantified the anticorrelation
between the former and the topological error of g, as measured
by the Robinson-Foulds distance between g and the true
gene tree topology for a site. We focus on correlation rather
than anticorrelation to simplify discussion. Table I shows
correlation results for the 4-taxon model conditions. Across
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all 4-taxon model conditions, SERES+recHMM inference
was consistently better correlated with topological accuracy
compared to standalone recHMM. Performance improvement
obtained by coupling recHMM analysis with SERES resam-
pling and re-estimation was robust to varying mutation rates
and recombination rates. Absolute correlation improvements
were large in magnitude — amounting to at least 0.203 for any
model condition and as much as 0.305.

We next compared the two methods’ inferred posterior
probability distributions on the 4-taxon model conditions.
Figure 1 shows a histogram of recHMM-inferred per-site
posterior probabilities for gene tree topologies falling into two
classes: either the true gene tree topology for a site (“true
class”) or all other topologies (“false class”); Figure 2 shows
the equivalent histogram for SERES+recHMM. Focusing on
the true class of per-site inferences, inferences with less than
10% posterior probability were consistently reduced across
all model conditions when comparing standalone recHMM
versus SERES+recHMM; the reduction amounted to more
than half in all cases. The latter method’s posterior probability
distribution was shifted rightward compared to the former
method (i.e., the SERES+recHMM-inferred posterior probabil-
ity mass was instead distributed among per-site inferences with
higher posterior probability, relative to standalone recHMM).
The effect was most pronounced for per-site inferences in
the highest decile range of posterior probability (i.e., 90%
posterior probability or greater). An opposite trend was ob-
served for the false class of per-site inferences. Standalone
recHMM’s per-site inferences in the highest decile range of
posterior probability (i.e., 90% posterior probability or greater)
were typically the second highest in frequency compared to
all other deciles; in contrast, SERES+recHMM consistently
returned fewer per-site inferences in the top decile of pos-
terior probability range — at most a few percentage points
and nearing zero frequency for some model conditions. The
SERES+recHMM-inferred posterior distribution for the false
class of per-site inferences was consistently shifted leftward
compared to standalone reccHMM. We attribute these findings
to two factors. First, the use of non-parametric resampling and
re-estimation appears to be conducive to improved inference of
true gene tree topologies. Second, incorrect inferences for all
other gene tree topologies (in terms of relatively high inferred
posterior probability) were less repeatable.

A similar performance outcome was observed on the
larger 5-taxon model conditions. Across all model conditions,
SERES+recHMM inference was more strongly correlated with
topological accuracy compared to recHMM (Table II). We
observed absolute improvements in correlation coefficients
amounting to between 0.217 and 0.345. Taken together,
SERES+recHMM'’s performance advantage relative to stan-
dalone recHMM was larger on the 5-taxon model conditions,
relative to the smaller 4-taxon model conditions.

As in the 4-taxon and 5-taxon dataset comparisons,
SERES+recHMM’s per-site inference was more strongly cor-
related with topological accuracy across all 6-taxon model
conditions, when compared to standalone recHMM (Table
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TABLE 1
On 4-taxon model conditions, posterior probabilities inferred using
SERES+recHMM were more highly correlated with topological
accuracy compared to standalone recHMM. FOR EACH METHOD’S
INFERENCE, WE CALCULATED THE PEARSON CORRELATION BETWEEN
THE INFERRED POSTERIOR PROBABILITY FOR A GENE TREE g AND THE
TOPOLOGICAL DISTANCE BETWEEN g AND THE TRUE EVOLUTIONARY
HISTORY OF A SITE (I.E., THE TRUE LOCAL GENE TREE). AVERAGE
CORRELATION FOR A METHOD IS REPORTED ACROSS ALL REPLICATES IN
A MODEL CONDITION (n = 30).

Number  Recomb-
of ination Mutation recHMM SERES+recHMM
taxa rate p rate 0 correlation correlation
4 0.5 0.5 -0.547 -0.830
4 0.5 1 -0.622 -0.866
4 0.5 2 -0.554 -0.799
4 1 0.5 -0.470 -0.775
4 1 1 -0.460 -0.742
4 1 2 -0.427 -0.677
4 2 0.5 -0.560 -0.855
4 2 1 -0.664 -0.867
4 2 -0.609 -0.837
TABLE I

On 5-taxon model conditions, posterior probabilities inferred using
SERES+recHMM were more highly correlated with topological
accuracy compared to standalone recHMM. OTHERWISE, TABLE

LAYOUT AND DESCRIPTION ARE IDENTICAL TO TABLE I.

Number  Recomb-
of ination Mutation recHMM SERES+recHMM
taxa rate p rate 0 correlation correlation
5 0.5 0.5 -0.571 -0.692
5 0.5 1 -0.526 -0.676
5 0.5 2 -0.525 -0.651
5 1 0.5 -0.597 -0.675
5 1 1 -0.569 -0.678
5 1 2 -0.618 -0.684
5 2 0.5 -0.506 -0.661
5 2 1 -0.543 -0.665
5 2 2 -0.56 -0.648

IIT). However, the observed correlation coefficients for both
methods were generally weaker when comparing the 6-taxon
dataset analyses versus analyses of smaller datasets; further-
more, the observed improvement in correlation returned by
SERES+recHMM versus standalone recHMM was smaller as
well — ranging from nearly comparable (an absolute improve-
ment of 0.004) to at most 0.206. The histogram comparison
of each method’s per-site inferences was also different for
the true class of per-site inferences, but not for the false
class (Supplementary Figures S2 and S3). The latter was
in fact consistent: for the false class of per-site inferences,
SERES+recHMM'’s inferred posterior probability distributions
were more strongly shifted leftward compared to recHMM.
The effect was preserved even though posterior probabilities
of the false class of inferences was more than double that
seen on the 4-taxon and 5-taxon experiments. However, a
different outcome was observed for the true class of per-site
inferences: rather than a rightward shift, SERES+recHMM re-
turned posterior probability distributions which were generally
more diffuse compared to recHMM alone. We attribute these
findings to the increased computational complexity of HMM
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Fig. 1. Histogram of posterior probabilities inferred by standalone recHMM method on 4-taxon model conditions. Local gene tree topologies at a site
were split into two classes: the “true class” consists of the true gene tree topology for the site, and the “false class” contains all other gene tree topologies.
For each class and each replicate dataset in a model condition, the inferred posterior probabilities for gene trees at any site were binned into deciles; the
resulting histogram was then normalized (n = 30). The normalized histograms for the true and false classes are shown in blue and orange, respectively.

learning optimization as the number of taxa increases. It is
likely that conservatively limiting SERES-based re-estimation
to 10 learning iterations is insufficient for the larger model
conditions in our study. More intensive learning optimization
may yield improved re-estimation and a greater performance
benefit from augmenting recHMM with SERES.

The Appendix includes additional experiments that eval-
vate the impact of key method parameters. Supplementary
Table S3 compares inference accuracy for recHMM versus
SERES+recHMM as different choices are used for the SERES
reversal probability v. We found that the performance advan-
tage returned by SERES+recHMM over standalone recHMM
was robust to the choice of reversal probability v so long as
the chosen value was not too high; reasonable choices are
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equivalent to reversal breakpoints separated by at least 100
bp of sequence length on average. The results are consistent
with the original motivation for sequence-aware resampling
and re-estimation. [Wang et al., 2018] noted the correspon-
dence between an rth order Markov process and a SERES
random walk with reversal probability v. For v = 0.5, a
first-order Markov process suffices; for v < 0.5, higher-
order Markovian processes are needed to capture sequential
dependence. Essentially, smaller v values mean that longer-
distance sequential dependence is retained. Our results suggest
that there is a critical point: past a certain threshold, longer-
distance sequential dependence is critical to the performance
of resampling and re-estimation for sequence-based inference
problems. Supplementary Table S4 shows results for recHMM
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Fig. 2. Histogram of posterior probabilities inferred by SERES+recHMM method on 4-taxon model conditions. Figure layout and description are
otherwise identical to Figure 1.

TABLE III

On 6-taxon model conditions, posterior probabilities inferred using
SERES+recHMM were more highly correlated with topological
accuracy compared to standalone recHMM. OTHERWISE, TABLE

LAYOUT AND DESCRIPTION ARE IDENTICAL TO TABLE 1.

Number  Recomb-
of ination Mutation recHMM SERES+recHMM
taxa rate p rate 6 correlation correlation
6 0.5 0.5 -0.3312 -0.494
6 0.5 1 -0.251 -0.457
6 0.5 2 -0.360 -0.472
6 1 0.5 -0.376 -0.486
6 1 1 -0.469 -0.473
6 1 2 -0.507 -0.535
6 2 0.5 -0.382 -0.506
6 2 1 -0.504 -0.515
6 2 -0.455 -0.554
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and SERES+recHMM analyses using alternative settings for
the HMM state space size ¢. We note that the simulated
datasets in our study included between approximately 3 and
6 recombination-free intervals with distinct true gene trees,
on average. Consistent with [Westesson and Holmes, 2009],
we found that using a more complex recHMM model than
necessary (i.e., more HMM states than the number of local
gene trees encoded within a simulation replicate’s ancestral
recombination graph) resulted in overfitting. Interestingly,
SERES+recHMM’s performance was relatively robust to over-
fitting. A similar phenomenon is observed when using related
data perturbation techniques to control overfitting (e.g., cross-
validation). Finally, runtime and memory usage results are
reported in Supplementary Table S2. Average runtime for
the two methods were roughly comparable: average runtime
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differences between the two methods were less than an hour on
the 4-taxon and 5-taxon model conditions and less than two
hours on the 6-taxon model conditions, and neither method
consistently returned faster average runtime. Throughout our
study, we observed low memory usage for both methods that
amounted to less than 100 MiB.

Empirical study

As in the earlier studies of Lole et al. [1999] and Westesson
and Holmes [2009], our SERES-based re-analysis clearly
detected local topology switching that is consistent with his-
torical recombination. The finding supports the hypothesis that
the sequence 95IN21301 is recombinant.

As shown in Figure 3, the SERES+recHMM method recov-
ered the five breakpoints described by both Lole et al. [1999]
and Westesson and Holmes [2009]; the specific coordinates
described in the latter study were 6402 bp, 6969 bp, 7073
bp, 9431 bp, and 9585 bp. In our re-analysis, the breakpoints
correspond to switching between the blue topology and orange
topology. SERES+recHMM posterior decoding also clearly
showed inference uncertainty in the first few hundred bp of
the input alignment.

Furthermore, Westesson and Holmes [2009] reported two
additional breakpoints at 4328 bp and 4401 bp that were not
described in the study of Lole et al. [1999]. Neither the stan-
dalone recHMM method nor the SERES+recHMM method re-
covered local topological incongruence in this specific region,
although standalone recHMM posterior decoding recovered
nearby local topology switching in the region from 4000 bp
to 4200 bp. However, the SERES-based method indicated
more uncertainty regarding gene tree inference within this
region, relative to the five breakpoints described by both of
the previous studies.

Re-analysis using SERES+recHMM also clarified patterns
of local topology switching in other genomic regions. We
detected local topological incongruence within the region from
3000 bp to 3500 bp. Some genomic regions exhibited local
topology switching in standalone recHMM posterior decoding
analysis that were not supported by the SERES+recHMM
analysis (e.g., the region from 6000 to 6500 bp). Finally,
throughout much of the genome alignment, SERES+recHMM
inferred lower poster probability for the gene tree topology
shown in green, relative to standalone recHMM. The region
located between 5000 and 8000 bp was particularly striking:
within this region, SERES+recHMM inferred basically zero
probability for the topology shown in green, whereas recHMM
inferred highly variable probability that was often far from
Zero.

IV. CONCLUSIONS

This study introduced the first application of SERES random
walks on aligned sequences. The application is also the first
to utilize SERES as a data perturbation technique to improve
statistical inference and learning. Our performance validation
experiments showed that coupling SERES with recHMM,
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an HMM-based method for recombination-aware local ge-
nealogical inference, yielded improved local inferences and
potentially reduced type I and/or type II error. A re-analysis
of an HIV genome sequence dataset clarifies the findings in
the earlier study of Westesson and Holmes [2009].

We conclude with thoughts on future research. First, we
note that statistical learning was a major bottleneck for the
methods under study, particular for the SERES-based pipeline
since optimization-based learning must be addressed for all
SERES replicates. This scalability challenge is well suited
to “pleasantly” parallel computation as well as more so-
phisticated parallelization techniques. Second, other studies
have investigated ancestral recombination inference problems
other than local genealogical inference (e.g., recombination
rate estimation [Stumpf and McVean, 2003], recombination
hotspot/coldspot detection [Auton and McVean, 2007, Myers
et al., 2005], etc.). SERES resampling and re-estimation may
prove to be similarly beneficial in these other contexts. Finally,
we believe that we have only begun to realize the full potential
of SERES random walks. As with other non-parametric and
semi-parametric resampling techniques, SERES promises to
find wide utility in computational biology/bioinformatics and
beyond.
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