

1 **Journal peer review information:** *Nature Communications* thanks Vincenzo De Luca, Thierry Delatte and
2 the other anonymous reviewers for their contribution to the peer review of this work. Peer reviewer
3 reports are available.

4 **Cytosolic lipid droplets as engineered organelles for production and accumulation of terpenoid
5 biomaterials in leaves**

6 Radin Sadre^{1,2,3*}, Peiyan Kuo², Jiaxing Chen², Yang Yang^{2,3,4}, Aparajita Banerjee^{2,3}, Christoph Benning^{2,3,4,5}
7 and Bjoern Hamberger^{2,3*}

8

9 ¹Department of Horticulture, Michigan State University, East Lansing, Michigan 48824

10 ²Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
11 48824

12 ³Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824

13 ⁴MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824

14 ⁵Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824

15

16 *Address correspondence to sadre@msu.edu, hamberge@msu.edu

17

18

19 **ABSTRACT**

20 Cytosolic lipid droplets are endoplasmic reticulum-derived organelles typically found in seeds as
21 reservoirs for physiological energy and carbon to fuel germination. Here, we report synthetic biology
22 approaches to co-produce high-value sesqui- or diterpenoids together with lipid droplets in plant leaves.
23 The formation of cytosolic lipid droplets is enhanced in the transient *Nicotiana benthamiana* system
24 through ectopic production of WRINKLED1, a key regulator of plastid fatty acid biosynthesis, and a
25 microalgal lipid droplet surface protein. Engineering of the pathways providing the universal C5-building
26 blocks for terpenoids and installation of terpenoid biosynthetic pathways through direction of the
27 enzymes to native and non-native compartments boost the production of target terpenoids. We show
28 that anchoring of distinct biosynthetic steps onto the surface of lipid droplets leads to efficient
29 production of terpenoid scaffolds and functionalized terpenoids. The co-produced lipid droplets “trap”
30 the terpenoids in the cells.

31

32 **INTRODUCTION**

33 Cytosolic lipid droplets are dynamic organelles typically found in seeds as reservoirs for
34 physiological energy and carbon in form of triacylglycerol (oil) to fuel germination. They are derived
35 from the endoplasmic reticulum (ER) where newly synthesized triacylglycerol accumulates in lens-like
36 structures between the leaflets of the membrane bilayer¹. After growing in size, the structures bud off
37 from the outer membrane of the ER. A mature lipid droplet is composed of a hydrophobic core of
38 triacylglycerol surrounded by a phospholipid monolayer and coated with lipid droplet associated
39 proteins involved in the biogenesis and function of the organelle. In seeds, oleosin proteins coat and
40 stabilize small lipid droplets preventing coalescence. These proteins contain surface-oriented

41 amphipathic N- and C-termini essential to efficiently emulsify lipids and a conserved hydrophobic central
42 domain anchoring the oleosins onto the surface of lipid droplets².

43 Due to the potential economical relevance of plant lipids as renewable resource for the production
44 of high-density biofuels, strategies have been established to enhance the accumulation of triacylglycerol
45 in vegetative tissues of high-biomass yielding crops³⁻⁵. A primary target for increasing lipid production
46 has been engineering the expression of *WRINKLED1*. The gene encodes a member of the AP2/EREBP
47 family of transcription factors and master regulator of fatty acid biosynthesis in seeds^{6,7}. Its ectopic
48 production in vegetative tissues promotes fatty acid synthesis in the plastids and, indirectly,
49 triacylglycerol accumulation in lipid droplets^{4,8-10}. Yields of triacylglycerol were further increased by
50 removal of an intrinsically disordered region of *Arabidopsis thaliana* *WRINKLED1* (*AtWR1*¹⁻³⁹⁷) increasing
51 the protein's stability¹¹ and through engineered co-production of *WRINKLED1* with ectopic lipid
52 biosynthesis enzymes and a plant lipid droplet associated protein^{3,9}.

53 Plant-derived terpenoids have a wide range of industrial uses such as specialty fuels,
54 agrochemicals, fragrances, nutraceuticals and pharmaceuticals. The limited economic sustainability of
55 formal (petro-) chemical synthesis, or extraction and purification from the native plant source has
56 motivated biotechnological approaches to produce industrially relevant terpenoids¹²⁻¹⁵. Plants
57 accumulating high levels of terpenoids have evolved specialized anatomical features for their
58 biosynthesis and storage including laticifer cells, resin ducts or cavities, and glandular trichomes¹⁶. The
59 recently reported accumulation of terpenoids together with neutral lipids in lipid droplets in the outer
60 root cork cells of *Plectranthus barbatus* (synonym *Coleus forskohlii*), was suggested as a mechanism to
61 enrich and sequester the bioactive defense compounds intracellularly¹⁷. The co-occurrence of lipids and
62 terpenoids invites opportunities for biotechnology to engineer the high-yield production and storage of
63 terpenoids in vegetative tissues of lipid droplet-accumulating biomass crops. In plants, the C5-building
64 blocks of terpenoids, dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP), are

65 synthesized by two compartmentalized pathways. Both precursor pathways represent interesting
66 targets for biological engineering^{13,18-20}. The mevalonate (MEV) pathway converts acetyl-CoA by enzyme
67 activities located in the cytosol, ER and peroxisomes, providing precursors for a wide range of
68 terpenoids with diverse functions such as in growth and development, defense and protein prenylation.
69 The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the rate-limiting step in the
70 MEV pathway and engineering and production of the catalytic domain of HMGR by N-terminal
71 truncation improved the flux of precursors into terpenoid biosynthesis^{15,16,21}. Only recently, it was shown
72 that flux through the MEV pathway is, in part, also limited by phosphomevalonate kinase (PMK) which
73 acts downstream of HMGR²². The same study provided evidence that isopentenyl diphosphate kinases
74 and hydrolases of the Nudix superfamily are involved in determining the ratio of IDP to isopentenyl
75 phosphate and possibly, the ratios of DMADP to dimethylallyl phosphate and farnesyl diphosphate (FDP)
76 to farnesyl phosphate²². Isopentenyl diphosphate kinases reactivate isopentenyl phosphate (IP) through
77 phosphorylation to IDP whereas hydrolases of the Nudix superfamily catalyze the dephosphorylation of
78 IDP.

79 In the plastid, the 2-C-methyl-*D*-erythritol 4-phosphate (MEP) pathway uses pyruvate and *D*-
80 glyceraldehyde 3-phosphate to provide precursors for the biosynthesis of terpenoids related to
81 development, photosynthesis and defense against biotic and abiotic stresses. The enzyme 1-deoxy-*D*-
82 xylulose 5-phosphate synthase (DXS) is rate-limiting in the MEP pathway and its constitutive
83 overproduction enhanced terpenoid production in some, but not all plant species tested^{14,23,24}. Head-to-
84 tail condensation of DMADP and IDP affords linear isoprenyl diphosphates, such as FDP (C15) or
85 geranylgeranyl diphosphate (GGDP, C20) catalyzed by farnesyl diphosphate synthase (FDPS) and
86 geranylgeranyl diphosphate synthase (GGDPS), respectively. In *Nicotiana benthamiana*, both DXS and
87 GGDPS were required to enhance terpenoid synthesis²⁴. Cytosolic sesquiterpene synthases and plastidial
88 diterpene synthases convert FDPS and GGDPS, respectively, into typically cyclic terpenoid scaffolds,

89 contributing to the enormous structural diversity among terpenoids in the plant kingdom. Such
90 terpenoid scaffolds often undergo further stereo- and regio-selective functionalization catalyzed by ER
91 membrane-bound mono-oxygenases, cytochromes P450 (CYPs), requiring electrons provided by co-
92 localized NADPH-dependent cytochrome P450 reductases (CPRs).

93 Despite inherent advantages, such as (native) compartments and availability of reduction
94 equivalents in form of NADPH, terpenoid biotechnology in photosynthetic tissues has remained
95 challenging, as the engineered pathways have to compete for precursors with highly networked native
96 pathways (and their associated regulatory mechanisms). In the present study, we establish methods
97 towards the high-yield production of target terpenoids in leaves co-engineered for triacylglycerol
98 accumulation in lipid droplets in the transient *N. benthamiana* system. Enhanced precursor flux and
99 targeting of terpenoid synthesis enzymes to native and non-native compartments increase terpenoid
100 production. We demonstrate that the lipid droplets sequester produced terpenoids and are suitable
101 organelles to anchor terpenoid biosynthesis steps. By fusing terpenoid enzymes to a microalgal lipid
102 droplet surface protein, terpenoid production is successfully re-targeted to lipid droplets. Our findings
103 will have implications for future generation of stably transformed biomass crops efficiently producing
104 industrially relevant terpenoids in photosynthetic tissues.

105

106 **RESULTS**

107 **Engineered triacylglycerol accumulation**

108 *NoLDSP*, a lipid droplet surface protein from the microalga *Nannochloropsis oceanica*, has functions
109 partially analogous to plant oleosins²⁵. Similar to oleosins, *NoLDSP* possesses a hydrophobic central
110 region that likely mediates the anchoring on lipid droplets. To assess the impact of *NoLDSP* on AtWRI1¹⁻
111 ³⁹⁷-initiated triacylglycerol accumulation, we infiltrated leaves of *N. benthamiana* with *Agrobacterium*
112 *tumefaciens* suspensions for transient production of AtWRI1¹⁻³⁹⁷ alone or in combination with *NoLDSP*

113 (AtWRI1¹⁻³⁹⁷+NoLDSP). In leaves producing AtWRI1¹⁻³⁹⁷ or AtWRI1¹⁻³⁹⁷+NoLDSP, the triacylglycerol level
114 was approximately 3-fold and 12-fold higher, respectively, than in control leaves without AtWRI1¹⁻³⁹⁷
115 (Figure 1a). The results clearly demonstrated that the microalgal NoLDSP had no negative impact on
116 triacylglycerol production and enhanced the accumulation of lipid droplets in infiltrated *N. benthamiana*
117 leaves.

118

119 **Sesquiterpenoid production in the cytosol and plastids**

120 We then tested different engineering strategies for the production of sesquiterpenoids using
121 patchoulol as a model compound. Like many other sesquiterpenoids, patchoulol is volatile and its
122 engineered production in transgenic lines of *N. tabacum* resulted in significant losses from volatile
123 emission¹⁵. In our study, losses by atmospheric terpenoid emission were not recorded as the
124 engineering strategies were designed to sequester target terpenoids in lipid droplets in the plant
125 biomass. Transient production of cytosolic *Pogostemon cablin* patchoulol synthase (cytosol:PcPAS) led to
126 formation of a single low-level product, patchoulol, which was not detected in wild-type control plants
127 (Figure 1b). To enhance the precursor availability for sesquiterpenoid synthesis, a feedback-insensitive
128 form of *Euphorbia lathyris* HMGR (E/HMGR¹⁵⁹⁻⁵⁸²) and *A. thaliana* FDPS (cytosol:AtFDPS) were included in
129 the transient assays. *E. lathyris* accumulates high levels of triterpenoids and their esters²⁶, suggesting
130 that its HMGR could be a robust enzyme for sesquiterpenoid production in *N. benthamiana*. The
131 selection of the *A. thaliana* FDPS was based on its relatively high thermal stability²⁷. The patchoulol
132 content in *N. benthamiana* leaves producing E/HMGR¹⁵⁹⁻⁵⁸²+cytosol:AtFDPS+cytosol:PcPAS was
133 approximately 5-fold higher than in leaves with cytosol:PcPAS which is consistent with enhanced
134 precursor flux. Co-engineering of patchoulol and triacylglycerol synthesis impaired cytosolic terpenoid
135 accumulation, independent of whether precursor availability was increased or not (Figure 1b).

136 A previous study demonstrated that re-direction of *PcPAS* and avian FDPS to the plastid increased
137 the (retained) patchoulol level in leaves of stable transgenic *N. tabacum* lines up to approximately 30 µg
138 patchoulol g⁻¹ fresh weight¹⁵. We modified this approach to further examine engineering strategies for
139 the co-production of patchoulol and lipid droplets in *N. benthamiana* leaves. Targeting of patchoulol
140 synthase to the plastids (plastid:*PcPAS*) led to accumulation of approximately 0.5 µg patchoulol g⁻¹ fresh
141 weight (Figure 1c). To increase the precursor flux in the plastids, *P. barbatus* DXS (*PbDXS*) and plastid-
142 targeted AtFDPS (plastid:AtFDPS) were combined with plastid:*PcPAS* in the assays. This strategy resulted
143 in a 60-fold increase in the level of patchoulol (Figure 1c). Synthetic lipid droplet accumulation impaired
144 patchoulol production in leaves in the absence of *PbDXS* and plastid:AtFDPS, when precursor synthesis
145 was not co-engineered (Figure 1c). The negative impact of lipid droplet production on patchoulol
146 synthesis was rescued when plastid:AtFDPS or *PbDXS*+plastid:AtFDPS were included in the assay. Leaves
147 transiently producing *PbDXS*+plastid:AtFDPS+plastid:*PcPAS*+*AtWRI1*¹⁻³⁹⁷+*NoLDSP* yielded the highest
148 patchoulol level retained in leaves (up to approximately 45 µg patchoulol g⁻¹ fresh weight), an average
149 90-fold and 1.5-fold higher compared to leaves producing plastid:*PcPAS* and
150 *PbDXS*+plastid:AtFDPS+plastid:*PcPAS*, respectively.

151

152 **Diterpenoid scaffold production in plastids and cytosol**

153 Strategies for diterpenoid production in the *N. benthamiana* system were examined using the *Abies*
154 *grandis* abietadiene synthase (AgABS) as diterpene synthase^{28,29}. The bifunctional enzyme has class II
155 and class I terpene synthase activity and catalyzes both the bicyclization of GGDP to a (+)-copalyl
156 diphosphate intermediate and the subsequent secondary cyclization and further rearrangement.
157 Transient production of the native plastidial *A. grandis* abietadiene synthase (plastid:AgABS) resulted in
158 the accumulation of abietadiene (abieta-7,13-diene), levopimaradiene (abieta-8(14),12-diene),
159 neoabietadiene (abieta-8(14),13(15)-diene) and, as minor product, palustradiene (abieta-8,13-diene)

160 consistent with the previous findings³⁰. These diterpenoids were not detected in wild-type control
161 leaves of *N. benthamiana*. Sole production of plastid:AgABS yielded approximately 40 µg diterpenoids g⁻¹
162 ¹fresh weight (Figure 2a). To enhance the production of diterpenoids, plastid:AgABS was co-produced in
163 different combinations with *PbDXS* and a plastid GGDPS. GGDPSs are differentiated into three types
164 (type I-III) according to their amino acid sequences around the first aspartate-rich motif. These three
165 types differ in their mechanism of determining product chain-length^{31,32}. Plant GGDPSs are type II
166 enzymes that are regulated on gene expression, transcript and protein level³³⁻³⁵. We hypothesized that
167 inclusion of distantly related type I and type III GGDPSs or a cyanobacterial type II GGDPS may allow us
168 to bypass potential regulatory steps limiting diterpenoid production in *N. benthamiana*. Six GGDPSs
169 were selected: an archaeal GGDPS from *Sulfolobus acidocaldarius* (*SaGGDPS*, type I), a predicted
170 archaeal GGDPS from *Methanothermobacter thermautotrophicus* (*MtGGDPS*, type I), a predicted
171 cyanobacterial GGDPS from *Tolypothrix* sp. PCC 7601 (*TsGGDPS*, type II), two predicted plant GGDPSs
172 from *Euphorbia peplus* (*EpGGDPS1* and *EpGGDPS2*, type II), and one predicted GGDPS from the fungus
173 *Mortierella elongata* AG77 (*MeGGDPS*, type III). *SaGGDPS*, *MtGGDPS*, and *MeGGDPS* share only 24%,
174 25% and 17% amino acid identities with *EpGGDPS1*, respectively, whereas *TsGGDPS* and *EpGGDPS2*
175 share 48% and 58% identities with *EpGGDPS1*, respectively. For transient assays in *N. benthamiana*, the
176 coding sequences for the bacterial and fungal GGDPSs were codon-optimized (except for *TsGGDPS*) and
177 modified to target the enzymes to the plastids, referred to as plastid:*SaGGDPS*, plastid:*MtGGDPS*,
178 plastid:*TsGGDPS* and plastid:*MeGGDPS*. Co-production of *PbDXS*+plastid:AgABS or
179 plastid:GGDPS+plastid:AgABS was insufficient to increase the diterpenoid content in *N. benthamiana*
180 leaves more than 2-fold compared to the diterpenoid level in plastid:AgABS-producing leaves (Figure
181 2a). In contrast, co-production of *PbDXS*+GGDPS+plastid:AgABS enhanced diterpenoid production up to
182 6.5-fold compared to leaves producing plastid:AgABS). Significant differences in diterpenoid yields were
183 obtained depending on which GGDPS was included, apparently unrelated to a specific type of GGDPS

184 (Figure 2a). The highest diterpenoid levels were determined in *N. benthamiana* leaves co-producing
185 *PbDXS*+plastid:*AgABS* with plastid:*MtGGDPS* (type I), plastid:*TsGGDPS* (type II), or *EpGGDPS2* (type II),
186 with similar yield between these combinations (Figure 2a).

187 We further evaluated diterpenoid accumulation in the presence of lipid droplets. Co-production of
188 plastid:*AgABS*+*AtWRI1*¹⁻³⁹⁷ had no significant impact on the diterpenoid level compared to control leaves
189 producing plastid:*AgABS*, whereas in leaves producing plastid:*AgABS*+*AtWRI1*¹⁻³⁹⁷+*NoLDSP*, the
190 diterpenoid content was increased 2-fold (Figure 2b). Similarly, co-production of plastid:*MtGGDPS*+
191 plastid:*AgABS*+*AtWRI1*¹⁻³⁹⁷+*NoLDSP* increased the diterpenoid level 2.5-fold compared to
192 plastid:*MtGGDPS*+plastid:*AgABS* producing leaves. The results indicated that the increased abundance
193 of lipid droplets was beneficial for the accumulation of diterpenoid products. Sequestration of the
194 lipophilic diterpenoids into lipid droplets may have helped to circumvent negative feedback regulatory
195 mechanisms and served as “pull force” in diterpenoid production. In fact, isolated lipid droplet fractions
196 from leaves producing plastid:*AgABS*+*AtWRI1*¹⁻³⁹⁷ and plastid:*AgABS*+*AtWRI1*¹⁻³⁹⁷+*NoLDSP* contained
197 approximately 35-fold and 460-fold more diterpenoids, respectively, than control fractions from leaves
198 with plastid:*AgABS*, consistent with the sequestration of diterpenoids in lipid droplets (Supplementary
199 Figure 1). Co-production of *PbDXS* and plastid:*MtGGDPS* together with plastid:*AgABS* yielded the highest
200 diterpenoid level (Figure 2b) independent of whether *AtWRI1*¹⁻³⁹⁷ was included for lipid droplet
201 synthesis. In contrast, co-production of *PbDXS*+plastid:*MtGGDPS*+plastid:*AgABS* together with *AtWRI1*¹⁻
202 ³⁹⁷+*NoLDSP* resulted in a significant reduction of the diterpenoid level (compared to leaves producing
203 *PbDXS*+plastid:*MtGGDPS*+plastid:*AgABS*).

204 When *A. grandis* abietadiene synthase was targeted to the cytosol (cytosol:*AgABS*⁸⁵⁻⁸⁶⁸), leaves
205 accumulated approximately 0.2 µg diterpenoids g⁻¹ fresh weight and addition of precursor pathway
206 genes enhanced diterpenoid synthesis (Figure 2c). Co-production of cytosol:*AgABS*⁸⁵⁻⁸⁶⁸ together with
207 *E/HMGR*¹⁵⁹⁻⁵⁸² and cytosolic *M. thermautotrophicus* GGDPS (cytosol:*MtGGDPS*) increased the diterpenoid

208 yield more than 400-fold (relative to cytosol:AgABS⁸⁵⁻⁸⁶⁸ containing leaves) and, thus, close to the
209 highest diterpenoid yield achieved with plastid engineering approaches (Figures 2c and 2b). Moreover,
210 our data indicated an enhancing effect of lipid droplet accumulation on terpenoid production when
211 cytosol:AgABS⁸⁵⁻⁸⁶⁸ was co-produced with AtWRI1¹⁻³⁹⁷ or AtWRI1¹⁻³⁹⁷+NoLDSP (Figure 2c). Under these
212 conditions, terpenoid production was increased up to approximately 3-fold which is consistent with
213 diterpenoids being sequestered in lipid droplets. When E/HMGR¹⁵⁹⁻
214 ⁵⁸²+cytosol:MtGGDPS+cytosol:AgABS⁸⁵⁻⁸⁶⁸+AtWRI1¹⁻³⁹⁷+NoLDSP were co-produced, no additive effects of
215 lipid droplet engineering on terpenoid yield were detected (relative to E/HMGR¹⁵⁹⁻⁵⁸²+cytosol:MtGGDPS+
216 cytosol:AgABS⁸⁵⁻⁸⁶⁸) (Figure 2c).

217

218 **Triacylglycerol analysis of *N. benthamiana* leaves**

219 To examine a potential impact of terpenoid engineering on triacylglycerol yield, the established
220 approaches for low- or high-yield terpenoid synthesis combined with lipid droplet production were
221 further tested. Four days after infiltration, the leaves were subjected to triacylglycerol analysis. Leaves
222 co-engineered for lipid droplet and patchoulol production in the cytosol contained approximately 50%
223 less triacylglycerol than leaves producing AtWRI1¹⁻³⁹⁷+NoLDSP (Figure 3a). A significant decrease in the
224 triacylglycerol level was also detected when leaves were engineered for cytosol-targeted high-yield
225 production of diterpenoids (compared to leaves producing AtWRI1¹⁻³⁹⁷+NoLDSP) (Figure 3b). When lipid
226 droplet production was combined with a plastid-targeted approach for high-yield terpenoid synthesis,
227 no negative impact on triacylglycerol accumulation was observed compared to control plants (Figures 3a
228 and 3b).

229

230 **Targeting diterpenoid production to lipid droplets**

231 We next investigated whether lipid droplets in the cytosol can be used as platform to anchor
232 biosynthetic pathways for the production of functionalized diterpenoids. The proof-of-concept
233 experiments included modified *A. grandis* abietadiene synthase and *Picea sitchensis* cytochrome P450
234 (*PsCYP720B4*), previously reported to convert abietadiene and several isomers to the corresponding
235 diterpene resin acids³⁶. To target terpenoid synthesis to the lipid droplets, *A. grandis* abietadiene
236 synthase lacking the N-terminal plastid targeting sequence (cytosol:*AgABS*⁸⁵⁻⁸⁶⁸) and truncated
237 *PsCYP720B4* lacking the N-terminal membrane-binding domain (cytosol:*PsCYP720B4*³⁰⁻⁴⁸³) were
238 produced as C-terminal and N-terminal *NoLDSP*-fusion protein, respectively. The *NoLDSP*-fusion proteins
239 are here referred to as LD:*AgABS*⁸⁵⁻⁸⁶⁸ and LD:*PsCYP720B4*³⁰⁻⁴⁸³. The construction of LD:*AgABS*⁸⁵⁻⁸⁶⁸ as C-
240 terminal *NoLDSP*-fusion protein was inspired by studies reporting on functional, C-terminal tagged
241 diterpene synthases^{37,38}. To re-target *PsCYP720B4* to lipid droplets (LD:*PsCYP720B4*³⁰⁻⁴⁸³), the predicted
242 N-terminal hydrophobic domain of native *PsCYP720B4* was replaced by *NoLDSP* as a recent publication
243 described that modifications or deletion of the membrane anchoring domain of CYP720B4 did not
244 impair the enzyme's activity³⁸. Inclusion of CPRs has been shown to be crucial to drive metabolic fluxes
245 in CYP-mediated production of high-value target compounds in non-native hosts and synthetic
246 compartments^{39,40}. In our experiments, *Camptotheca acuminata* CPR (cytosol:*CaCPR*⁷⁰⁻⁷⁰⁸) was included
247 as *NoLDSP*-fusion protein to co-localize the *CaCPR* and *PsCYP720B4* activities on lipid droplets and
248 facilitate the CYP-catalyzed production of functionalized terpenoids. As the C-terminus of CPRs is pivotal
249 for catalytic activity and not suitable for modifications^{41,42}, the predicted N-terminal hydrophobic
250 domain of native *CaCPR* was replaced by *NoLDSP* to produce the fusion protein LD:*CaCPR*⁷⁰⁻⁷⁰⁸.

251 To determine the localization *in planta*, the *NoLDSP*-fusion proteins were each produced as yellow
252 fluorescent protein (YFP)-tagged proteins together with *AtWRI1*¹⁻³⁹⁷ for lipid droplet production. The
253 YFP-signals in infiltrated leaves were subsequently compared to the signals obtained for YFP-tagged
254 *NoLDSP* which indicated that all three YFP-tagged *NoLDSP*-fusion proteins were targeted to the surface

255 of the lipid droplets (Figure 4). It is noteworthy that production of the YFP-tagged *NoLDSP* and *NoLDSP*-
256 fusion proteins promoted clustering of small lipid droplets *in planta* and in isolated lipid droplet
257 fractions, consistent with a previous report on ectopic production of *A. thaliana* OLEOSIN1 fused to
258 green fluorescent protein⁴³ (Figure 4, Supplementary Figure 1). As confirmed for *NoLDSP*, the clustering
259 of small lipid droplets was independent of the presence or absence of the YFP-tag (Supplementary
260 Figure 2).

261 To compare different engineering approaches, the *A. grandis* abietadiene synthase was produced
262 as plastid:AgABS (native), cytosol:AgABS⁸⁵⁻⁸⁶⁸ or LD:AgABS⁸⁵⁻⁸⁶⁸, each alone and combined with
263 ER:PsCYP720B4 (native), cytosol:PsCYP720B4³⁰⁻⁴⁸³ or LD:PsCYP720B4³⁰⁻⁴⁸³+LD:CaCPR⁷⁰⁻⁷⁰⁸ (Figure 5). Note
264 that these assays also included either *PbDXS*+plastid:*MtGGDPS* or *E/HMGR*¹⁵⁹⁻⁵⁸²+cytosol:*MtGGDPS* to
265 increase the precursor flux, and *AtWRI1*¹⁻³⁹⁷ to initiate lipid droplet accumulation. *NoLDSP* was included
266 in those assays that lacked any *NoLDSP*-fusion proteins. Compared to the assays with plastid:AgABS,
267 production of cytosol:AgABS⁸⁵⁻⁸⁶⁸ and LD:AgABS⁸⁵⁻⁸⁶⁸ resulted in similar diterpenoid yield. When native
268 or modified *A. grandis* abietadiene synthase was co-produced with native or modified *P. sitchensis*
269 *PsCYP720B4*, the leaves accumulated diterpene resin acids in free and glycosylated forms
270 (Supplementary Figures 3-5). The glycosyl modifications of the diterpenoid acids were consistent with
271 those previously reported for engineered terpenoid products and are likely the result of intrinsic
272 defense/detoxification mechanisms in *N. benthamiana*^{24,44,45}. Incubation of such leaf extracts with
273 Viscozyme® L resulted in the hydrolysis of the glycosylated diterpenoid acids to free diterpenoid resin
274 acids which allowed determining the level of total diterpenoid acids produced in infiltrated leaves. To
275 compare the different engineering strategies, the levels of both diterpenoids and total diterpenoid acids
276 were quantified for each infiltrated leaf (Figure 5). Co-production of plastid:AgABS with ER:PsCYP720B4,
277 cytosol:PsCYP720B4³⁰⁻⁴⁸³ or LD:PsCYP720B4³⁰⁻⁴⁸³ decreased the diterpenoid level (compared to controls
278 with plastid:AgABS) and resulted in the accumulation of diterpenoid acids, consistent with diterpenoids

279 being converted to diterpenoid acids. The level of diterpenoid acids was approximately 4-fold and 3-fold
280 higher in transient assays with plastid:AgABS including ER:PsCYP720B4 and
281 plastid:AgABS+LD:PsCYP720B4³⁰⁻⁴⁸³+LD:CaCPR⁷⁰⁻⁷⁰⁸ compared to assays including cytosol:PsCYP720B4³⁰⁻
282⁴⁸³. The highest diterpenoid acid yield in transient assays with cytosol:AgABS⁸⁵⁻⁸⁶⁸ was achieved in
283 combination with ER:PsCYP720B4 which was approximately 2- and 3-fold higher than with
284 cytosol:AgABS⁸⁵⁻⁸⁶⁸ and LD:PsCYP720B4³⁰⁻⁴⁸³+LD:CaCPR⁷⁰⁻⁷⁰⁸, respectively (Figure 5). In transient assays
285 with LD:AgABS⁸⁵⁻⁸⁶⁸, the diterpenoid acid level was 2-fold higher in assays with ER:PsCYP720B4 than in
286 assays with either cytosol:PsCYP720B4³⁰⁻⁴⁸³ or LD:PsCYP720B4³⁰⁻⁴⁸³+LD:CaCPR⁷⁰⁻⁷⁰⁸ (Figure 5).

287

288 **DISCUSSION**

289 Our results demonstrate high-yield synthesis of target di- and sesquiterpenoids in engineered lipid
290 droplet-accumulating leaves of *N. benthamiana* when precursor availability is enhanced. The flux of
291 precursors into terpenoid synthesis was increased through co-production of de-regulated, robust
292 enzymes from the MEP or MEV pathway (*PbDXS* or *E/HMGR*¹⁵⁹⁻⁵⁸²) and GGDPS or FDPS in the same
293 compartment. The data are consistent with previous studies in *N. benthamiana* reporting on the
294 engineered production of diterpenoids (plastid-targeted) and a sesquiterpenoid (cytosol-targeted)^{15,24,38}.
295 Our comparative study with distinct GGDPSs indicates that a type I enzyme such as *MtGGDPS* can be a
296 robust alternative to type II GGDPS to increase precursor availability for diterpenoid synthesis and
297 circumvent potential negative feedback (Figure 2a and 2b). In principle, this approach can also be
298 applied to optimize FDPS-dependent sesqui- or triterpenoid pathways.

299 Highest accumulation of the target sesquiterpenoid was achieved in this study through
300 compartmentation of the biosynthetic pathway in the plastid instead of the cytosol (Figure 1c).
301 Diterpenoid production was targeted to the plastid (*PbDXS*+plastid:*MtGGDPS*+plastid:AgABS), cytosol or

302 lipid droplets (*E*/HMGR¹⁵⁹⁻⁵⁸²+cytosol:*MtGGDPS*+ cytosol: AgABS⁸⁵⁻⁸⁶⁸/LD:AgABS⁸⁵⁻⁸⁶⁸) with similar
303 success, yielding a high content of target diterpenoids in vegetative tissue. The anchoring of terpenoid
304 biosynthesis enzymes on cytosolic lipid droplets in this study represents a promising approach in
305 terpenoid biotechnology. It bears the potential to spatially re-arrange enzymes, bringing them into
306 closer proximity and create multi-enzyme assemblies. The technology benefits from *NoLDSP*'s ability to
307 a) anchor fusion proteins on the lipid droplet surface, b) stabilize small lipid droplets with relatively large
308 surface-to-volume ratio and c) promote the clustering of small lipid droplets, thereby creating a large
309 compartment-like structure (Figure 4). Our results demonstrate that both diterpene synthase and CYP
310 were catalytically active at lipid droplets (Figure 5). Notably, the co-production of plastid:AgABS with
311 either native *PsCYP720B4* (ER:*PsCYP720B4*) or LD:*PsCYP720B4*³⁰⁻⁴⁸³ resulted in similar diterpenoid acid
312 yields. Targeting of the diterpene synthase to the cytosol or lipid-droplets impaired the production of
313 diterpenoid acids at lipid droplets catalyzed by LD:*PsCYP720B4*³⁰⁻⁴⁸³ (compared to ER:*PsCYP720B4*). At
314 this point, it remains unclear if the high-yield production of diterpenoids in the cytosol and their
315 sequestration in the lipid droplets may have interfered with the functionality of the lipid-droplet
316 targeted enzymes whereas plastid-targeting of the diterpene synthase may have resulted in a more
317 favorable distribution of the diterpenoids between plastid, ER and lipid droplets under the selected
318 experimental conditions. Overall, the top terpenoid yields in this study consolidate the versatility of the
319 transient *N. benthamiana* system as a platform to produce terpenoids and test drive terpenoid
320 biotechnology for later production at industrial scales in economically relevant biomass crops. In this
321 context, it must be noted that stable transgenic *N. benthamiana* engineered for plastid-targeted
322 sesquiterpenoid production (plastid:FDPS+plastid:sesquiterpene synthase) exhibited shorter stature,
323 chlorosis of the lower leaves and vein clearing, probably as a result of carbon competition between the
324 engineered and essential native terpenoid pathways¹⁵. In high biomass crops, the use of inducible or

325 weaker promoters (instead of strong constitutive promoters) in terpenoid engineering approaches may,
326 therefore, help to prevent or reduce any interference with plant growth and development.

327 Co-engineering of lipid droplet synthesis in leaves influenced the target terpenoid yield to different
328 extents depending on the applied engineering approach. Production of the diterpene synthase alone or
329 together with GGDPS in the plastid or cytosol combined with high-yield lipid droplet synthesis (*AtWRI1*¹⁻
330 ³⁹⁷+*NoLDSP*) enhanced the target diterpenoid yield up to 2.5-fold (Figures 2b and 2c). Under these
331 conditions, diterpenoids were sequestered in synthetic lipid droplets (Supplementary Figure 1), which
332 may have limited negative feedback and enhanced flux towards diterpenoid production. The abundance
333 of engineered lipid droplets may potentially facilitate downstream processes to extract terpenoids from
334 plant material through “trapping” of the target compounds in the oil fraction. The findings are
335 consistent with a recent publication reporting that co-engineering of sesquiterpenoid and lipid droplet
336 production increased the yields of cytosol-derived volatile sesquiterpenoids by 2- to 4-fold⁴⁶. In our
337 study, production of the sesquiterpene synthase alone or together with FDPS combined with high-yield
338 lipid droplet production did, however, not increase the sesquiterpenoid yield (Figures 1b and 1c)
339 suggesting that a certain ratio of sesquiterpenoids to lipid droplets may be critical to retain highly
340 volatile sesquiterpenoids in the cytosol. Recently, an oleosin-based strategy in the plastid was successful
341 to synthesize squalene, a triterpenoid, in plastids and to trap it in plastid lipid droplets⁴⁷. The latter
342 approach may be also suitable to trap plastid-derived volatile terpenoids in vegetative tissues.

343 When the plastid-targeted high-yield diterpenoid approach was combined with high-yield lipid
344 droplet production, the diterpenoid yield significantly decreased and a trend towards a lower
345 triacylglycerol level was determined (Figures 2b and 3b). Co-engineering of the cytosol-targeted high-
346 yield diterpenoid approach together with high-yield lipid droplet production did not affect the
347 diterpenoid yield but resulted in a significantly lower triacylglycerol yield. The combination of the set of
348 genes for high-yield sesquiterpenoid production with high-yield lipid droplet production negatively

349 impacted the cytosol-derived sesquiterpenoid yield and resulted in an approximately 50% lower
350 triacylglycerol yield (Figures 1b and 3a) whereas the plastid-derived sesquiterpenoid yield was enhanced
351 without triacylglycerol production being affected. In the plastids of engineered leaves, fatty acid
352 synthesis (initiated by *AtWRI1*¹⁻³⁹⁷) and terpenoid synthesis likely competed directly for carbon (probably
353 in form of pyruvate), resulting in an increase in the product yield from one pathway at the expense of
354 the other pathway. Although both MEV pathway in the cytosol and fatty acid biosynthesis in the plastid
355 require acetyl-CoA as precursor, a direct competition between these two pathways for acetyl-CoA
356 appears implausible since acetyl-CoA is impermeable to membranes and independently produced and
357 consumed in the different subcellular compartments and organelles of plant cells⁴⁸. As metabolic
358 interactions between the cytosol and plastid are not well understood, it remains unclear whether shifts
359 in cytosolic metabolite pools may have influenced carbon partitioning between the cytosol and plastid.
360

361 **METHODS**

362 **Constructs for transient expression studies**

363 The open reading frames encoding truncated *A. thaliana* WRINKLED1 (*AtWRI1*¹⁻³⁹⁷, AY254038.2
364 [<https://www.ncbi.nlm.nih.gov/nuccore/AY254038.2/>]) and full-length *N. oceanica* lipid droplet surface
365 protein (*NoLDSP*, JQ268559.1 [<https://www.ncbi.nlm.nih.gov/nuccore/JQ268559.1>]) were amplified from
366 existing cDNAs^{11,25}. The coding sequences for truncated cytosolic *E. lathyris* HMGR (*E/HMGR*¹⁵⁹⁻⁵⁸²,
367 JQ694150.1 [<https://www.ncbi.nlm.nih.gov/nuccore/JQ694150.1>]), cytosolic *A. thaliana* FDPS
368 (cytosol:*AtFDPS*, NM_117823.4 [https://www.ncbi.nlm.nih.gov/nuccore/NM_117823.4]), cytosolic *P.*
369 *cablin* patchoulol synthase (cytosol:*PcPAS*, AY508730
370 [<https://www.ncbi.nlm.nih.gov/nuccore/AY508730>]), plastidic *A. grandis* abietadiene synthase
371 (plastid:*AgABS*, U50768.1 [<https://www.ncbi.nlm.nih.gov/nuccore/U50768.1>]), and plastidic *P. barbatus*
372 (*PbDXS*) were amplified from cDNAs derived from total RNA of the host organisms. The cDNA sequence

373 for *PbDxs* used in this study significantly differed from the previously published sequence³⁸ and was
374 deposited in GenBank. The endoplasmic *P. sitchensis* CYP720B4 (ER:*PsCYP720B4*,
375 HM245403.1 [<https://www.ncbi.nlm.nih.gov/nuccore/HM245403.1>]) was amplified from a cDNA clone.
376 The open reading frame encoding a truncated *C. acuminata* CPR (*CaCPR*⁷⁰⁻⁷⁰⁸,
377 KP162177 [<https://www.ncbi.nlm.nih.gov/nuccore/KP162177>]) lacking the N-terminal membrane anchor
378 domain was synthesized. Codon optimized open reading frames were synthesized for the type I GGDPSs
379 from *S. acidocaldarius* (*SaGGDPS*, D28748.1 [<https://www.ncbi.nlm.nih.gov/nuccore/D28748.1>]) and *M.*
380 *thermautotrophicus* (*MtGGDPS*, AE000666.1 [<https://www.ncbi.nlm.nih.gov/nuccore/AE000666.1>])
381 (Supplementary Data 1). A putative *M. elongata* AG77 MeGGDPS (type III) was identified through mining
382 of transcriptome data⁴⁹ and a codon optimized open reading frame was synthesized (Supplementary
383 Data 1). Two putative type II GGDPSs, *EpGGDPS1* and *EpGGDPS2*, were identified through mining of *E.*
384 *peplus* transcriptome data⁵⁰ and amplified from leaf cDNA. A putative type II GGDPS was identified in
385 the genome of *Tolypothrix* sp. PCC 7601 (*TsGGDPS*)⁵¹ and the coding sequence was amplified from
386 genomic DNA. To target *SaGGDPS*, *MtGGDPS*, *TsGGDPS*, *MeGGDPS*, *AtFDPS* and *PcPAS* to the plastid, the
387 sequences were fused at their N-terminus to the plastid targeting sequence of the *A. thaliana* ribulose
388 bisphosphate carboxylase small chain 1A
389 (NM_105379.4 [https://www.ncbi.nlm.nih.gov/nuccore/NM_105379.4]). The encoded plastid-targeted
390 proteins are referred to as plastid:*SaGGDPS*, plastid:*MtGGDPS*, plastid:*TsGGDPS* plastid:*MeGGDPS*,
391 plastid:*AtFDPS* and plastid:*PcPAS*. The coding sequences of *A. grandis* abietadiene synthase and *P.*
392 *sitchensis* CYP720B4 (ER:*PsCYP720B4*) were truncated to target the enzymes to the cytosol, in this study
393 referred to as cytosol:*AgABS*⁸⁵⁻⁸⁶⁸ and cytosol:*PsCYP720B4*³⁰⁻⁴⁸³, respectively. For lipid droplet targeting,
394 truncated *A. grandis* abietadiene synthase, *P. sitchensis* CYP720B4 and *C. acuminata* CPR were either
395 fused to the N-terminus or C-terminus of *N. oceanica* lipid droplet surface protein resulting in
396 LD:*AgABS*⁸⁵⁻⁸⁶⁸, LD:*PsCYP720B4*³⁰⁻⁴⁸³ and LD:*CaCPR*⁷⁰⁻⁷⁰⁸, respectively (Figure 4). All primers used in this

397 study are described in Supplementary Table 1. The full-length and modified coding sequences were
398 verified by sequencing, inserted into pENTR4 (Invitrogen), and subsequently transferred into the
399 Gateway vectors pEarleygate 100 and pEarleygate 104 (N-terminal YFP-tag), each under control of a 35S
400 promoter for strong constitutive expression⁵². These constructs were introduced into *A. tumefaciens*
401 LBA4404 for transient expression studies in *N. benthamiana*. Primers and constructs used in the study
402 were designed with SnapGene 3.3.4.

403

404 **Transient expression in *N. benthamiana* leaves**

405 Transformants of *A. tumefaciens* LBA4404 carrying selected binary vectors were grown overnight at
406 28°C in Luria-Bertani medium containing 50 µg/mL rifampicin and 50 µg/mL kanamycin. Prior to
407 infiltration into *N. benthamiana* leaves, the *A. tumefaciens* cells were sedimented by centrifugation at
408 3800 x g for 10 min, washed, resuspended in infiltration buffer (10 mM MES-KOH pH 5.7, 10 mM MgCl₂,
409 200 µM acetosyringone) to an optical density at 600 nm (OD600) 0.8 and incubated for approximately
410 30 min at 30°C. To test various gene combinations, equal volumes of the selected bacterial suspensions
411 were mixed and infiltrated into *N. benthamiana* leaves using a syringe without a needle. *A. tumefaciens*
412 LBA4404 carrying the tomato bushy stunt virus gene P19^{53,54} was included in all infiltrations to suppress
413 RNA silencing in *N. benthamiana*. The *N. benthamiana* plants used for infiltration were grown for 3.5 to
414 4 weeks in soil at 25°C under a 12-h photoperiod at 150 µmol m⁻² s⁻¹. To compare different engineering
415 strategies, only plants of the same batch were used in transient assays. Typically, three to five plants
416 were used for each gene combination. To avoid developmental differences, the same two leaves were
417 infiltrated on each plant. After infiltration, the plants were grown for 4 additional days in the growth
418 chamber. Samples from the infiltrated leaves were subsequently analyzed for terpenoid or

419 triacylglycerol content. All experiments were conducted at least two times and the results are shown
420 from representative experiments.

421

422 **Lipid Analysis**

423 Triacylglycerol analyses were performed essentially as previously described with minor
424 modifications⁴. For each sample, one infiltrated *N. benthamiana* leaf was freshly harvested and total
425 lipids were extracted with 4 mL chloroform/methanol/formic acid (10:20:1, by volume). Ten microgram
426 tri-17:0 triacylglycerol (Sigma) was added as internal standard to each sample. The total lipids were
427 separated by thin layer chromatography on silica plates (Si250PA, Mallinckrodt Baker) developed with
428 ether:ethyl ether:acetic acid (80:20:1, v/v/v). Triacylglycerol bands were visualized with a spraying dye
429 (0.01% Primuline in 80% (v/v) acetone) under UV light. The TAG bands were scraped from the TLC plates
430 and used to prepare fatty acid methyl esters by acid-catalyzed trans-methylation in 1 mL 1 M
431 hydrochloric acid in anhydrous methanol at 80°C for 25 min. The samples were extracted with 1 mL
432 0.9% sodium chloride and 1 mL hexane. After centrifugation at 1,000 x g for 3 min, the hexane extract
433 was collected, the volume was reduced under a stream of nitrogen and the extract was subjected to gas-
434 liquid chromatography. Chromatography was performed with an Agilent DB-23 column at 48.6 mL min⁻¹
435 helium flow, 21.93 psi pressure and 250°C inlet temperature. The following oven program was used: 2
436 min isothermal at 140°C, 25°C min⁻¹ to 160°C, 8°C min⁻¹ to 250°C, 4 min isothermal at 250°C followed by
437 38°C min⁻¹ to 140°C. The temperature of the flame ionization detector was 270°C with 30.0 mL min⁻¹
438 hydrogen flow, 400 mL min⁻¹ air flow and 30.0 mL min⁻¹ helium flow. All triacylglycerol analysis was
439 performed in Excel 2010.

440 **Statistical Analyses**

441 Statistical analyses were conducted using Graphpad Prism 8 and included normality (Shapiro-Wilk),
442 one-way ANOVA (Welch and Brown-Forsythe) and *t*-tests (unpaired, two-tailed, Welch correction). A *P*-
443 value of <0.05 was considered statistically significant.

444

445 **Terpenoid analyses in *N. benthamiana* leaves**

446 For each sample, 50 mg or 100 mg leaf tissue was incubated with 1 mL hexane containing 2 mg mL⁻¹
447 1-eicosene (internal standard, TCI America) on a shaker for 15 min at room temperature prior to
448 incubation in the dark for 16 h at room temperature. Sesquiterpenoids and diterpenoids were separated
449 and analyzed by GC-MS using an Agilent 7890A GC system coupled to an Agilent 5975C MS detector.
450 Chromatography was performed with an Agilent VF-5ms column (40 m × 0.25 mm × 0.25 µm) at 1.2 mL
451 min⁻¹ helium flow. The injection volume was 1 µL in splitless mode at an injector temperature of 250°C.
452 The following oven program was used (run time 18.74 min): 1 min isothermal at 40°C, 40°C min⁻¹ to
453 180°C, 2 min isothermal at 180°C, 15°C min⁻¹ to 300°C, 1 min isothermal at 300°C, 100°C min⁻¹ to 325°C
454 and 3 min isothermal at 325°C. The mass spectrometer was operated at 70 eV electron ionization mode,
455 a solvent delay of 3 min, ion source temperature at 230°C, and quadrupole temperature at 150°C. Mass
456 spectra were recorded from m/z 30 to 600. Terpenoid products were identified based on retention
457 times, mass spectra published in relevant literature and through comparison with the NIST Mass
458 Spectral Library v17 (National Institute of Standards and Technology, USA). Quantitation of diterpenoid
459 products and patchoulol was based on 1-eicosene standard curves. The extracted ion chromatograms
460 for each target compound were integrated, and compounds were quantified using QuanLynx tool
461 (Waters) with a mass window allowance of 0.2 and a signal-to-noise ratio ≥10. All calculated peak areas
462 were normalized to the peak area for the internal standard 1-eicosene and tissue fresh weight.

463 Diterpenoid resin acids and glycosylated derivatives were analyzed by UHPLC/MS/MS to confirm
464 accurate masses and fragments. For each sample, 100 mg leaf tissue and 1 mL methanol containing
465 1.25 μ M telmisartan (internal standard, Toronto Research Chemicals) were added, mixed and incubated
466 in the dark at room temperature for 16 h. A 10- μ L volume of each extract was subsequently analyzed
467 using a 31-min gradient elution method on an Acquity BEH C18 UHPLC column (2.1 \times 100 mm, 1.7 μ m,
468 Waters) with mobile phases consisting of 0.15% formic acid in water (solvent A) and acetonitrile (solvent
469 B). The 31-min method gradient employed 1% B at 0.00 to 1 min, linear gradient to 99% B at 28.00 min,
470 held until 30 min, followed by a return to 1% B and held from 30.10 to 31 min. The flow rate was 0.3
471 mL/min and the column temperature was 40°C. The mass spectrometer (Xevo G2-XS QTOF, Waters) was
472 equipped with an electrospray ionization source and operated in negative-ion mode. Source parameters
473 were as follows: capillary voltage 2500 V, cone voltage 40 V, desolvation temperature 300°C, source
474 temperature 100°C, cone gas flow 50 L/h, and desolvation gas flow 600 L/h. Mass spectrum acquisition
475 was performed in negative ion mode over m/z 50 to 1500 with scan time of 0.2 s using a collision energy
476 ramp 20 to 80 V. For quantitative analyses of the total diterpenoid resin acid level, 50 mg leaf tissue was
477 incubated with 1 mL methanol/water (8/2, v/v) containing 2 μ M telmisartan (internal standard, Toronto
478 Research Chemicals) in the dark at room temperature. Note that a second sample was taken from each
479 infiltrated leaf and subjected to diterpenoid analysis as described above. After 16 h, 200- μ L aliquots of
480 the methanol/water extracts were dried down under vacuum, reconstituted in 500 μ L McIlvaine buffer
481 (citrate phosphate buffer) pH 4.0 and incubated with 100 μ L Viscozyme® L (Sigma Aldrich) at 37°C for
482 16 h. Viscozyme® L is a multi-enzyme complex with a wide range of carboxylase activities. After
483 overnight incubation, samples were extracted with 500 μ L dichloromethane, centrifuged for 10 min at
484 4,000 g, 250- μ L aliquots were then transferred to fresh glass vials, dried down under vacuum and
485 resuspended in 50 μ L 80% (v/v) methanol. A 10- μ L volume of each extract was subsequently analyzed by

486 UHPLC/MS/MS using a 16-min gradient elution method with mobile phases consisting of 10 mM
487 ammonium formate in water (solvent A) and methanol (solvent B). The 16-min method gradient
488 employed 20% B at 0.00 to 2 min, linear gradient to 99% B at 14.00 min, held until 15 min, followed by a
489 return to 20% B and held from 15.10 to 16 min. The mass spectrometer was operated in negative-ion
490 mode. MassLynx v4.1 was used for acquisition and processing of GC-MS and UHPLC/MS/MS data.

491

492 **Isolation of lipid droplets**

493 Lipid droplets were isolated as previously described with minor adjustments⁵⁵. For each sample, 1 g
494 infiltrated *N. benthamiana* leaf tissue was ground with mortar and pestle in 20 mL ice-cold buffer A (20
495 mM tricine, 250 mM sucrose, 0.2 mM phenylmethylsulfonyl fluoride pH 7.8). The homogenate was
496 filtered through Miracloth (Calbiochem) and centrifuged in a 50-mL tube at 3,400 g for 10 min at 4°C to
497 remove cell debris. From each tube, 10 mL supernatant was collected and transferred to a 15-mL tube.
498 The supernatant fraction was then overlaid with 3 mL buffer B (20 mM HEPES, 100 mM KCl, 2 mM
499 MgCl₂, pH 7.4) and centrifuged for 1 h at 5,000 g. After centrifugation, 2 mL from the top of each
500 gradient containing floating lipid droplets were collected. For terpenoid analysis, each lipid droplet
501 fraction was extracted with 5 mL hexane containing 2 µg mL⁻¹ 1-eicosene (internal standard, TCI
502 America) prior to GC-MS analysis. To avoid developmental differences, the same leaf from three
503 different plants (biological replicates) were analyzed for each gene combination.

504

505 **Confocal imaging**

506 For lipid droplet visualization, sections of freshly harvested leaf samples were stained on
507 microscope slides with Nile red solution (10 µg mL⁻¹ in phosphate buffered saline) in the dark. After one
508 hour, the sections were briefly rinsed with phosphate buffered saline prior to microscopy. Imaging of
509 Nile red, chlorophyll and enhanced yellow fluorescent protein (EYFP) fluorescence was conducted with a

510 confocal laser scanning microscope FluoView VF1000 (Olympus) at excitation 559 nm/emission 570-630
511 nm, excitation 559 nm/emission 655-755 nm and excitation 515 nm/emission 527 nm, respectively.
512 Images were processed using the FV10-ASW 4.2 microscopy software (Olympus).

513

514 **DATA AVAILABILITY**

515 Sequence data from this article were newly deposited in the GenBank/EMBL data libraries under
516 the following accession numbers: MH363711 [<https://www.ncbi.nlm.nih.gov/nuccore/MH363711>]
517 (*EpGGDPS1*), MH363712 [<https://www.ncbi.nlm.nih.gov/nuccore/MH363712>] (*EpGGDPS2*),
518 MH363713 [<https://www.ncbi.nlm.nih.gov/nuccore/MH363713>] (*PbDXS*) and
519 MH363714 [<https://www.ncbi.nlm.nih.gov/nuccore/MH363714>] (*TsGGDPS*). The codon optimized
520 sequences for *SaGGDPS*, *MtGGDPS* and *MeGGDPS* are given in Supplementary Data 1. The source data
521 underlying Figs. 1, 2, 3 and 5 and Supplementary Figure 1b are provided as a Source Data file.

522

523 **COMPETING INTERESTS**

524 RS, CB and BH are inventors on a provisional patent application at Michigan State University
525 covering the findings discussed. PK, JC, YY and AB declare no competing interests.

526

527 **ACKNOWLEDGMENTS**

528 We thank Beronda Montgomery (Michigan State University) for the *Tolypothrix* sp. PCC 7601
529 cells, Jörg Bohlmann (University of British Columbia, Canada) for the *PsCYP720B4* cDNA, and Afton M.
530 Dewyse, Robert Nolan, Jonathan A. Arnesen, Britta Hamberger and Emily Lockwood at Michigan State
531 University for technical assistance. We extend our thanks to Melinda Frame at the Center for Advanced
532 Microscopy (Michigan State University) and A. Dan Jones and Tony Schilmiller at Michigan State
533 University for assistance in the identification of the glycosylated diterpenoid acids. Mass spectra were

534 collected using instruments at the Michigan State University Mass Spectrometry and Metabolomics
535 core. This work was primarily supported by the U.S. Department of Energy-Great Lakes Bioenergy
536 Research Center Cooperative Agreement DE-FC02-07ER64494 (BH, CB) and partially by the Division of
537 Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department
538 of Energy Grant DE- DE-FG02-91ER20021 (CB) and by AgBioResearch MICL02357 (CB), Michigan State
539 University. BH gratefully acknowledges startup funding from the Department of Molecular Biology and
540 Biochemistry, AgBioResearch (MICL02454) and the U.S. Department of Energy Grant (DE-SC0018409),
541 Michigan State University.

542

543 **AUTHOR CONTRIBUTIONS**

544 R.S. designed the study and performed the experiments, analyzed the data and wrote the article; R.S.,
545 P.K., J.C. and A.B. generated expression constructs, and Y.Y. performed triacylglycerol analysis. C.B. and
546 B.H. conceived the study and edited the drafts of the article.

547

548

549 **REFERENCES**

- 550 1 Chapman, K. D. & Ohlrogge, J. B. Compartmentation of triacylglycerol accumulation in plants. *J. Biol. Chem.* **287**, 2288-2294 (2012).
- 552 2 Li, M. *et al.* Purification and structural characterization of the central hydrophobic domain of oleosin. *J. Biol. Chem.* **277**, 37888-37895 (2002).
- 554 3 Zale, J. *et al.* Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. *Plant Biotechnol. J.* **14**, 661-669 (2016).
- 556 4 Yang, Y. *et al.* Ectopic expression of *WRI1* affects fatty acid homeostasis in *Brachypodium distachyon* vegetative tissues. *Plant Physiol.* **169**, 1836-1847 (2015).

558 5 Du, Z. Y. & Benning, C. Triacylglycerol accumulation in photosynthetic cells in plants and algae.
559 *Subcell. Biochem.* **86**, 179-205 (2016).

560 6 Cernac, A. & Benning, C. *WRINKLED1* encodes an AP2/EREB domain protein involved in the
561 control of storage compound biosynthesis in *Arabidopsis*. *Plant J.* **40**, 575-585 (2004).

562 7 Maeo, K. *et al.* An AP2-type transcription factor, WRINKLED1, of *Arabidopsis thaliana* binds to
563 the AW-box sequence conserved among proximal upstream regions of genes involved in fatty
564 acid synthesis. *Plant J.* **60**, 476-487 (2009).

565 8 Sanjaya, Durrett, T. P., Weise, S. E. & Benning, C. Increasing the energy density of vegetative
566 tissues by diverting carbon from starch to oil biosynthesis in transgenic *Arabidopsis*. *Plant*
567 *Biotechnol. J.* **9**, 874-883 (2011).

568 9 Vanhercke, T. *et al.* Metabolic engineering of biomass for high energy density: oilseed-like
569 triacylglycerol yields from plant leaves. *Plant Biotechnol. J.* **12**, 231-239 (2014).

570 10 Grimberg, A., Carlsson, A. S., Marttila, S., Bhalerao, R. & Hofvander, P. Transcriptional transitions
571 in *Nicotiana benthamiana* leaves upon induction of oil synthesis by WRINKLED1 homologs from
572 diverse species and tissues. *BMC Plant Biol.* **15**, 192 (2015).

573 11 Ma, W. *et al.* Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its
574 stability and enhances oil accumulation in *Arabidopsis*. *Plant J.* **83**, 864-874 (2015).

575 12 Lange, B. M. & Ahkami, A. Metabolic engineering of plant monoterpenes, sesquiterpenes and
576 diterpenes-current status and future opportunities. *Plant Biotechnol. J.* **11**, 169-196 (2013).

577 13 Augustin, J. M., Higashi, Y., Feng, X. & Kutchan, T. M. Production of mono- and sesquiterpenes in
578 *Camelina sativa* oilseed. *Planta* **242**, 693-708 (2015).

579 14 Reed, J. *et al.* A translational synthetic biology platform for rapid access to gram-scale quantities
580 of novel drug-like molecules. *Metab. Eng.* **42**, 185-193 (2017).

581 15 Wu, S. *et al.* Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene
582 production in plants. *Nat. Biotechnol.* **24**, 1441-1447 (2006).

583 16 Lange, B.M. The evolution of plant secretory structures and emergence of terpenoid chemical
584 diversity. *Annu. Rev. Plant Biol.* **66**, 139-159 (2015).

585 17 Pateraki, I. *et al.* Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in
586 specialized root cork cells in *Coleus forskohlii*. *Plant Physiol.* **164**, 1222-1236 (2014).

587 18 Liao, P., Hemmerlin, A., Bach, T. J. & Chye, M. L. The potential of the mevalonate pathway for
588 enhanced isoprenoid production. *Biotechnol. Adv.* **34**, 697-713 (2016).

589 19 Frank, A. & Groll, M. The Methylerythritol Phosphate Pathway to Isoprenoids. *Chem. Rev.* **117**,
590 5675-5703 (2017).

591 20 Banerjee, A. & Sharkey, T. D. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation.
592 *Nat. Prod. Rep.* **31**, 1043-1055 (2014).

593 21 Chappell, J., Wolf, F., Proulx, J., Cuellar, R. & Saunders, C. Is the reaction catalyzed by 3-hydroxy-
594 3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in
595 plants? *Plant Physiol.* **109**, 1337-1343 (1995).

596 22 Henry, L.K., Thomas, S.T., Widhalm, J.R., Lynch, J.H., Davis, T.C., Kessler, S.A., Bohlmann, J., Noel,
597 J.P., Dudareva, N. Contribution of isopentenyl phosphate to plant terpenoid metabolism. *Nat.*
598 *Plants* **4**, 721-729 (2018).

599 23 Estevez, J. M., Cantero, A., Reindl, A., Reichler, S. & Leon, P. 1-Deoxy-D-xylulose-5-phosphate
600 synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. *J. Biol. Chem.* **276**,
601 22901-22909 (2001).

602 24 Bruckner, K. & Tissier, A. High-level diterpene production by transient expression in *Nicotiana*
603 *benthamiana*. *Plant Methods* **9**, 46 (2013).

604 25 Vieler, A., Brubaker, S. B., Vick, B. & Benning, C. A lipid droplet protein of *Nannochloropsis* with
605 functions partially analogous to plant oleosins. *Plant Physiol.* **158**, 1562-1569 (2012).

606 26 Skrukrud, C. L., Taylor, S. E., Hawkins, D. R. & Calvin, M. in *The Metabolism, Structure, and*
607 *Function of Plant Lipids* (eds. Paul K. Stumpf, J. Brian Mudd, & W. David Nes) 115-118 (Springer
608 New York, 1987).

609 27 Keim, V. *et al.* Characterization of *Arabidopsis* FPS isozymes and FPS gene expression analysis
610 provide insight into the biosynthesis of isoprenoid precursors in seeds. *PLoS One* **7**, e49109
611 (2012).

612 28 Vogel, B. S., Wildung, M. R., Vogel, G. & Croteau, R. Abietadiene synthase from grand fir (*Abies*
613 *grandis*): cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene
614 cyclase involved in resin acid biosynthesis. *J. Biol. Chem.* **271**, 23262-23268 (1996).

615 29 Peters, R. J. *et al.* Abietadiene synthase from grand fir (*Abies grandis*): characterization and
616 mechanism of action of the "pseudomature" recombinant enzyme. *Biochem.* **39**, 15592-15602
617 (2000).

618 30 Keeling, C. I., Madilao, L. L., Zerbe, P., Dullat, H. K. & Bohlmann, J. The primary diterpene
619 synthase products of *Picea abies* levopimaradiene/abietadiene synthase (PaLAS) are epimers of
620 a thermally unstable diterpenol. *J. Biol. Chem.* **286**, 21145-21153 (2011).

621 31 Noike, M., Katagiri, T., Nakayama, T., Nishino, T. & Hemmi, H. Effect of mutagenesis at the
622 region upstream from the G(Q/E) motif of three types of geranylgeranyl diphosphate synthase
623 on product chain-length. *J. Biosci. Bioeng.* **107**, 235-239 (2009).

624 32 Chang, T. H., Guo, R. T., Ko, T. P., Wang, A. H. & Liang, P. H. Crystal structure of type-III
625 geranylgeranyl pyrophosphate synthase from *Saccharomyces cerevisiae* and the mechanism of
626 product chain length determination. *J. Biol. Chem.* **281**, 14991-15000 (2006).

627 33 Xu, Q. *et al.* Discovery and comparative profiling of microRNAs in a sweet orange red-flesh
628 mutant and its wild type. *BMC Genomics* **11**, 246-246 (2010).

629 34 Zhou, F. *et al.* A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic
630 flux toward chlorophyll biosynthesis in rice. *Proc. Natl. Acad. Sci.* **114**, 6866-6871 (2017).

631 35 Ruiz-Sola, M. A. *et al.* Arabidopsis GERANYLGERANYL DIPHOSPHATE SYNTHASE 11 is a hub
632 isozyme required for the production of most photosynthesis-related isoprenoids. *New Phytol.*
633 **209**, 252-264 (2016).

634 36 Hamberger, B., Ohnishi, T., Hamberger, B., Seguin, A. & Bohlmann, J. Evolution of diterpene
635 metabolism: Sitka spruce CYP720B4 catalyzes multiple oxidations in resin acid biosynthesis of
636 conifer defense against insects. *Plant Physiol.* **157**, 1677-1695 (2011).

637 37 Yahyaa, M., Matsuba, Y., Brandt, W., Doron-Faigenboim, A., Bar, E., McClain, A., Davidovich-
638 Rikanati, R., Lewinsohn, E., Pichersky, E., Ibdah, M. Identification, Functional Characterization,
639 and Evolution of Terpene Synthases from a Basal Dicot. *Plant Physiol.* **169**, 1683-1697 (2015).

640 38 Gnanasekaran, T. *et al.* Heterologous expression of the isopimaric acid pathway in *Nicotiana*
641 *benthamiana* and the effect of N-terminal modifications of the involved cytochrome P450
642 enzyme. *J. Biol. Eng.* **9**, 24 (2015).

643 39 Renault, H., Bassard, J.E., Hamberger, B., Werck-Reichhart, D. Cytochrome P450-mediated
644 metabolic engineering: current progress and future challenges. *Curr. Opin. Plant Biol.* **19**, 27-34
645 (2014).

646 40 Bavishi, K., Laursen, T., Martinez, K.L., Møller, B.L., Della Pia, E.A. Application of nanodisc
647 technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH
648 P450 oxidoreductase. *Sci. Rep.* **6**, 29459 (2016).

649 41 Qu, X., Pu, X., Chen, F., Yang, Y., Yang, L., Zhang, G., Luo, Y. Molecular Cloning, Heterologous
650 Expression, and Functional Characterization of an NADPH-Cytochrome P450 Reductase Gene
651 from *Camptotheca acuminata*, a Camptothecin-Producing Plant. *PLoS One* **10**, e0135397 (2015).

652 42 Qu, X., Pu, X., Chen, F., Yang, Y., Yang, L., Zhang, G., Luo, Y. Correction: Molecular Cloning,
653 Heterologous Expression, and Functional Characterization of an NADPH-Cytochrome P450
654 Reductase Gene from *Camptotheca acuminata*, a Camptothecin-Producing Plant. *PLoS One* **10**,
655 e0139647 (2015).

656 43 Fan, J., Yan, C., Zhang, X. & Xu, C. Dual role for phospholipid:diacylglycerol acyltransferase:
657 enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol
658 in *Arabidopsis* leaves. *Plant Cell* **25**, 3506-3518 (2013).

659 44 Dong, L., Jongedijk, E., Bouwmeester, H. & Van Der Krol, A. Monoterpene biosynthesis potential
660 of plant subcellular compartments. *New Phytol.* **209**, 679-690 (2016).

661 45 van Herpen, T. W. *et al.* *Nicotiana benthamiana* as a production platform for artemisinin
662 precursors. *PLoS One* **5**, e14222 (2010).

663 46 Delatte, T. L. *et al.* Engineering storage capacity for volatile sesquiterpenes in *Nicotiana*
664 *benthamiana* leaves. *Plant Biotechnol. J.* **16**, 1997-2006 (2018).

665 47 Zhao, C. *et al.* Co-Compartmentation of terpene biosynthesis and storage via synthetic droplet.
666 *ACS Synth. Biol.* **7**, 774-781 (2018).

667 48 Oliver, D.J., Nikolau, B.J. & Wurtele, E.S. Acetyl-CoA - Life at the metabolic nexus. *Plant Sci.* **176**,
668 597-601 (2009).

669 49 Uehling, J. *et al.* Comparative genomics of *Mortierella elongata* and its bacterial endosymbiont
670 *Mycoavidus cysteinexigens*. *Environ. Microbiol.* **19**, 2964-2983 (2017).

671 50 Xiao, M. *et al.* Transcriptome analysis based on next-generation sequencing of non-model plants
672 producing specialized metabolites of biotechnological interest. *J. Biotechnol.* **166**, 122-134
673 (2013).

674 51 Yerrapragada, S. *et al.* Extreme sensory complexity encoded in the 10-megabase draft genome
675 sequence of the chromatically acclimating cyanobacterium *Tolyphothrix* sp. PCC 7601. *Genome*
676 *Announc.* **3**, e00355-15 (2015).

677 52 Earley, K. W. *et al.* Gateway-compatible vectors for plant functional genomics and proteomics.
678 *Plant J.* **45**, 616-629 (2006).

679 53 Voinnet, O., Pinto, Y. M. & Baulcombe, D. C. Suppression of gene silencing: a general strategy
680 used by diverse DNA and RNA viruses of plants. *Proc. Natl. Acad. Sci.* **96**, 14147-14152 (1999).

681 54 Voinnet, O., Pinto, Y. M. & Baulcombe, D. C. Correction for Voinnet *et al.*, Suppression of gene
682 silencing: A general strategy used by diverse DNA and RNA viruses of plants. *Proc. Natl. Acad.*
683 *Sci.* **112**, E4812 (2015).

684 55 Ding, Y. *et al.* Isolating lipid droplets from multiple species. *Nat. Protoc.* **8**, 43 (2012).

685

686 **FIGURE LEGENDS**

687

688 **Figure 1. Engineered patchoulol production in *N. benthamiana* leaves.** Triacylglycerol (TAG)
689 accumulation was initiated through expression of *WRINKLED1* (*AtWRI1*¹⁻³⁹⁷) and further enhanced
690 through co-expression of *NoLDSP* (a). Patchoulol production was engineered in the cytosol (b) and in the
691 plastid (c) in the absence and presence of *AtWRI1*¹⁻³⁹⁷ and *NoLDSP*. To enhance FDP availability for
692 patchoulol production, *E1HMGR*¹⁵⁹⁻⁵⁸² (cytosol), *PbDXS* (plastid) and *AtFDPS* (cytosol, plastid) were
693 included in transient assays. The different construct combinations are indicated below each bar (black

694 circle, was included; minus, was not included) and in the scheme next to each graph. Data were
695 analyzed by Shapiro-Wilk, Welch-ANOVA (**a**, P 0.0006; **b**, P <0.0001; **c**, P <0.0001) and Brown-Forsythe
696 ANOVA (**a**, P 0.0004; **b**, P <0.0001; **c**, P <0.0001) followed by *t*-tests (unpaired, two-tailed, Welch
697 correction). Data are presented as individual biological replicates and bars representing average levels
698 with SD (**a**, N =4; **b**, N indicated below each bar; **c**, N =8). This experiment was replicated twice.
699 Statistically significant differences are indicated by **a-e** based on *t*-tests (P <0.05). Source Data are
700 provided as a Source Data file. LD, lipid droplet

701

702 **Figure 2. Engineered diterpenoid production in *N. benthamiana* leaves.** Production of AgABS led to
703 accumulation of diterpenoids (abietadiene and its isomers). To enhance GGDP availability for
704 diterpenoid production, *E/HMGR*¹⁵⁹⁻⁵⁸² (cytosol), *PbDXS* (plastid) and distinct GGDPSs (cytosol or plastid)
705 were included in transient assays. The protein combinations are indicated below each bar (black circle,
706 was included; minus, was not included) and in the scheme next to each graph. The production of
707 diterpenoids was engineered in the plastid (**a**, **b**) and in the cytosol (**c**) in the absence and presence of
708 *AtWRI1*¹⁻³⁹⁷ and *NoLDSP*. Data were analyzed by Shapiro-Wilk, Welch-ANOVA (**a**, P <0.0001; **b**, P <0.0001;
709 **c**, P <0.0001) and Brown-Forsythe ANOVA (**a**, P <0.0001; **b**, P <0.0001; **c**, P <0.0001) followed by *t*-tests
710 (unpaired, two-tailed, Welch correction). Data are presented as individual biological replicates and bars
711 representing average levels with SD (N indicated below each bar). This experiment was replicated twice.
712 Statistically significant differences are indicated by **a-e** based on *t*-tests (P <0.05). Source Data are
713 provided as a Source Data file. LD, lipid droplet

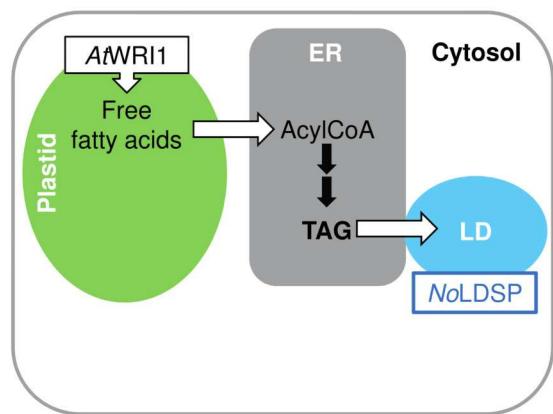
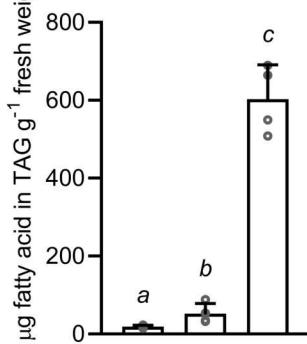
714

715 **Figure 3. Triacylglycerol yield in engineered *N. benthamiana* leaves.** TAG accumulation was initiated
716 through ectopic expression of *WRINKLED1* (*AtWRI1*¹⁻³⁹⁷) and further enhanced through co-expression of

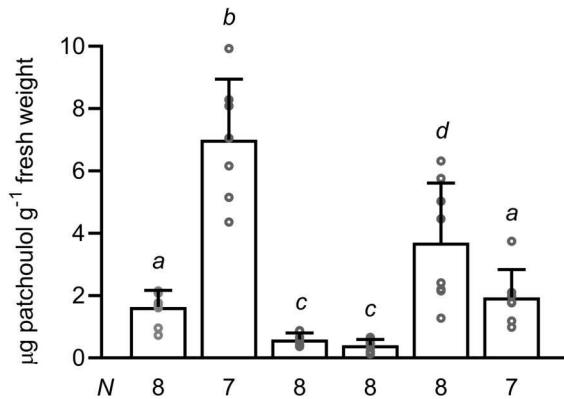
717 *NoLDSP*. The impact of engineered patchoulol (**a**) and diterpenoid production (**b**) on TAG yield is
718 depicted. The different construct combinations are indicated below each bar (black circle, was included;
719 minus, was not included). Data were analyzed by Shapiro-Wilk, Welch-ANOVA (**a**, $P<0.0001$; **b**,
720 $P<0.0001$) and Brown-Forsythe ANOVA (**a**, $P<0.0001$; **b**, $P<0.0001$) followed by *t*-tests (unpaired, two-
721 tailed, Welch correction). Data are presented as individual biological replicates and bars representing
722 average levels with SD (N indicated below each bar). This experiment was replicated twice. Statistically
723 significant differences are indicated by *a-e* based on *t*-tests ($P<0.05$). Source Data are provided as a
724 Source Data file.

725

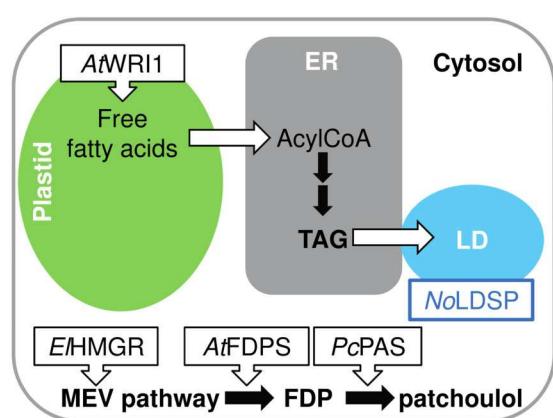
726 **Figure 4. Localization of heterologously expressed fluorescent-reporter tagged fusion proteins.** *N.*
727 *benthamiana* leaves producing *yellow fluorescent protein* (YFP)-tagged *NoLDSP*, LD:AgABS⁸⁵⁻⁸⁶⁸,
728 LD:PsCYP720B4³⁰⁻⁴⁸³ or LD:CaCPR⁷⁰⁻⁷⁰⁸ were subjected to confocal laser scanning microscopy.
729 Representative images are shown. The produced YFP-proteins are indicated in each line. Note that
730 AtWRI1¹⁻³⁹⁷ was co-produced and leaf samples were stained with Nile red to visualize neutral lipids in
731 lipid droplets. This experiment was replicated twice. Channels: **YFP**, *yellow fluorescent protein* (scale bar
732 20 μ m); **NR**, Nile red (scale bar 20 μ m); **YFP, NR**, enlarged merge YFP and NR (scale bar 5 μ m)

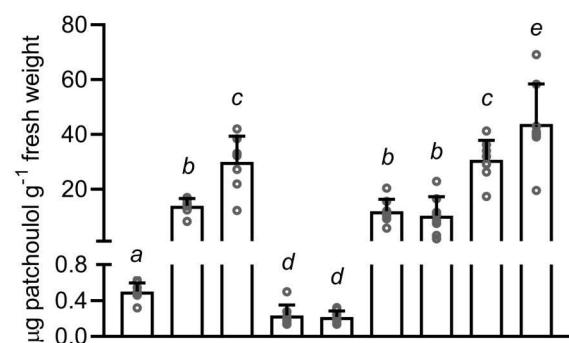


733

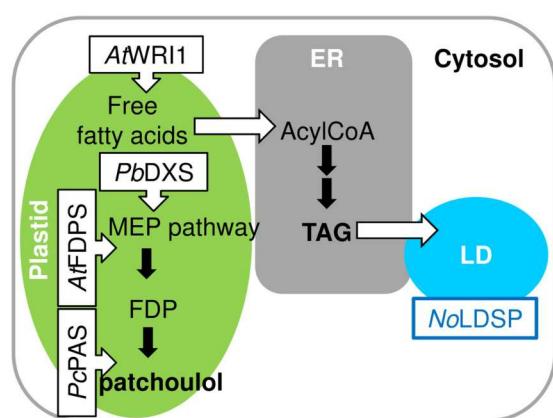
734 **Figure 5. Lipid droplets as engineering platform for the production of functionalized diterpenoids.**
735 Terpenoid biosynthesis enzymes were produced as *NoLDSP*-fusion proteins to target them to the lipid
736 droplets (LD:AgABS⁸⁵⁻⁸⁶⁸, LD:PsCYP720B4⁴³⁰⁻⁴⁸³ and LD:CaCPR⁷⁰⁻⁷⁰⁸) and tested in different combinations
737 as indicated below each bar (black circle, was included; minus, was not included) (a). Production of
738 native or modified AgABS led to accumulation of diterpenoids and when native or modified PsCYP720B4
739 was co-produced, to conversion of diterpenoids to diterpenoid acids. Data were analyzed by Shapiro-

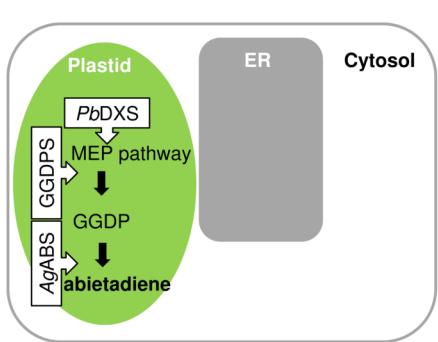
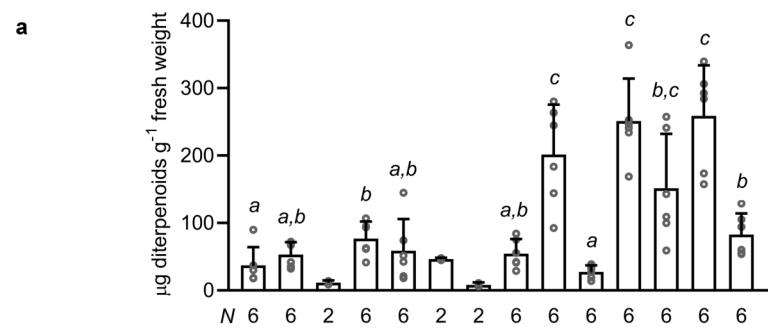

740 Wilk, Brown-Forsythe ANOVA (diterpenoids P 0.0184, $P<0.0001$, $P<0.0001$; diterpenoid acids $P<0.0001$,
741 $P<0.0001$, $P<0.0001$) and Welch ANOVA (diterpenoids P 0.0509, P 0.0002, $P<0.0001$; diterpenoid acids
742 $P<0.0001$, $P<0.0001$, P 0.0002) followed by t -tests (unpaired, two-tailed, Welch correction). Results are
743 presented as individual biological replicates and bars representing average levels with SD (N indicated
744 below each bar). Statistically significant differences are indicated by *a-d* based on t -tests ($P<0.05$). This
745 experiment was replicated twice. The scheme (**b**) depicts the conversion of abietadiene to abietic acid
746 when LD:AgABS⁸⁵⁻⁸⁶⁸ (NoLDSP-AgABS), LD:PsCYP720B4⁴³⁰⁻⁴⁸³ (NoLDSP-PsCYP) and LD:CaCPR⁷⁰⁻⁷⁰⁸
747 (NoLDSP-CaCPR) were produced. Source Data are provided as a Source Data file. LD, lipid droplet; e⁻,
748 electron from NADPH

749

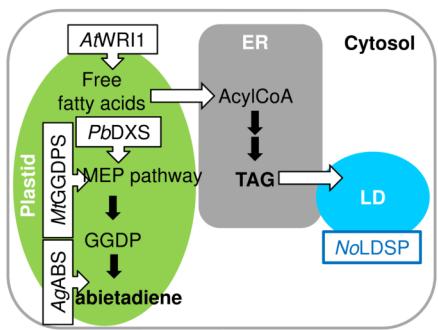
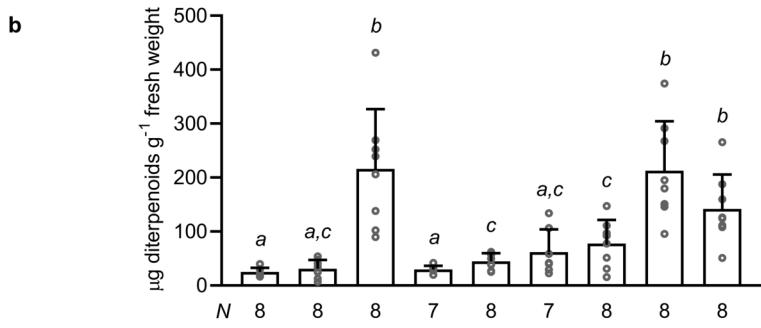

a


b

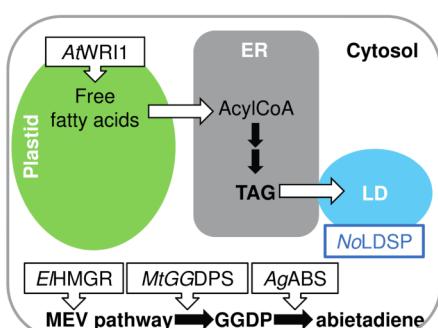
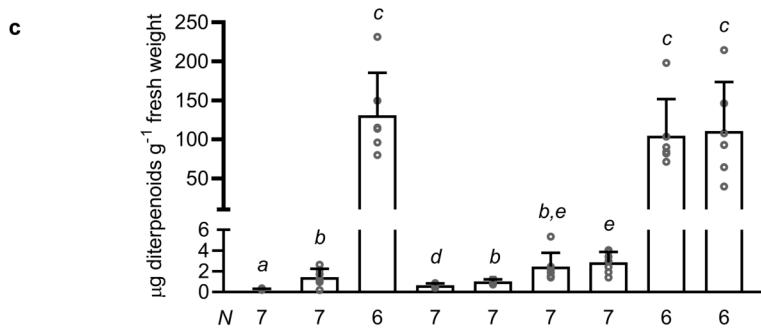

<i>E/HMGR</i> ¹⁵⁹⁻⁵⁸²	-	●	-	-	●	●
cytosol: <i>AtFDPS</i>	-	●	-	-	●	●
cytosol: <i>PcPAS</i>	●	●	●	●	●	●
<i>AtWRI1</i> ¹⁻³⁹⁷	-	-	●	●	●	●
NoLDSP	-	-	-	●	-	●

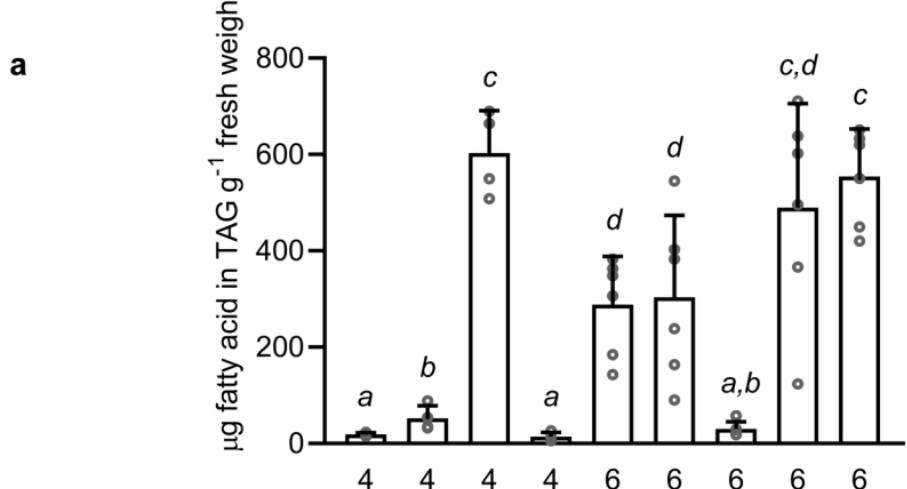



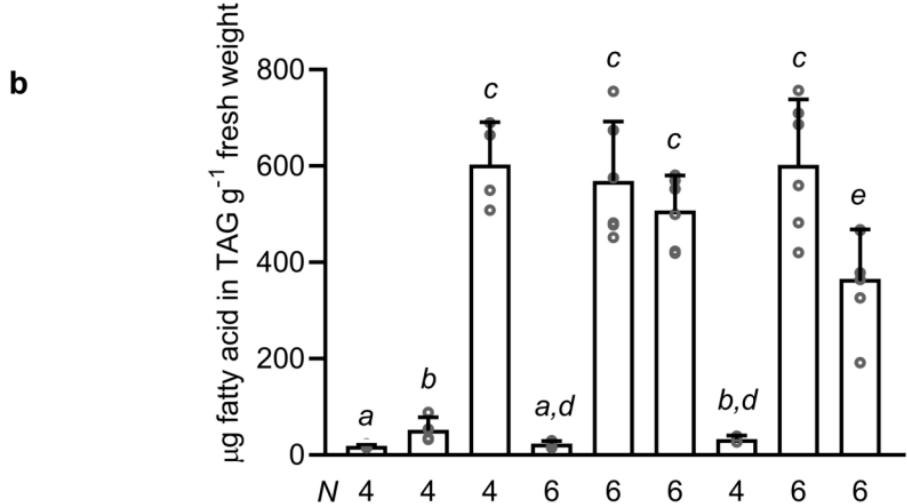
c

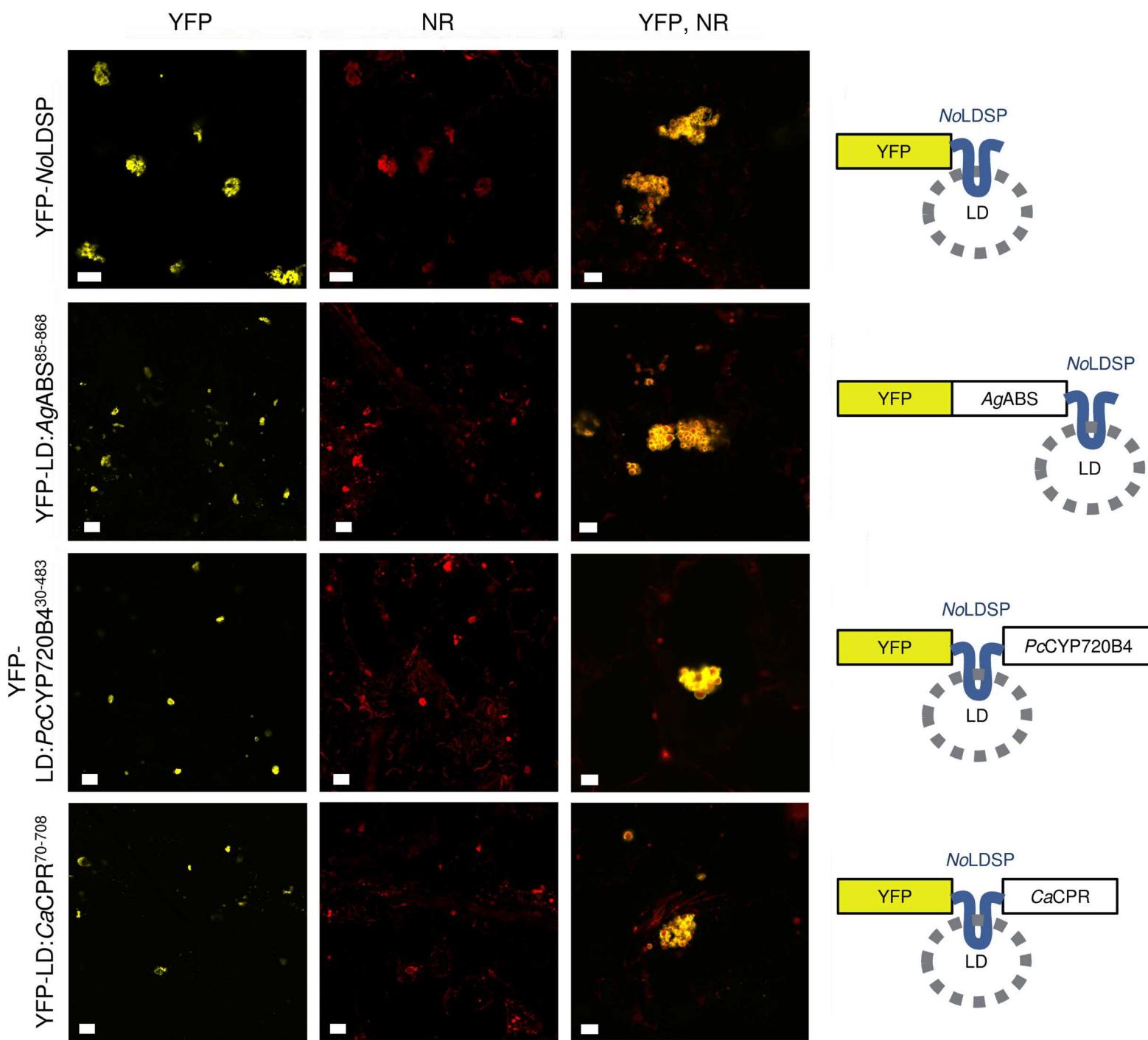



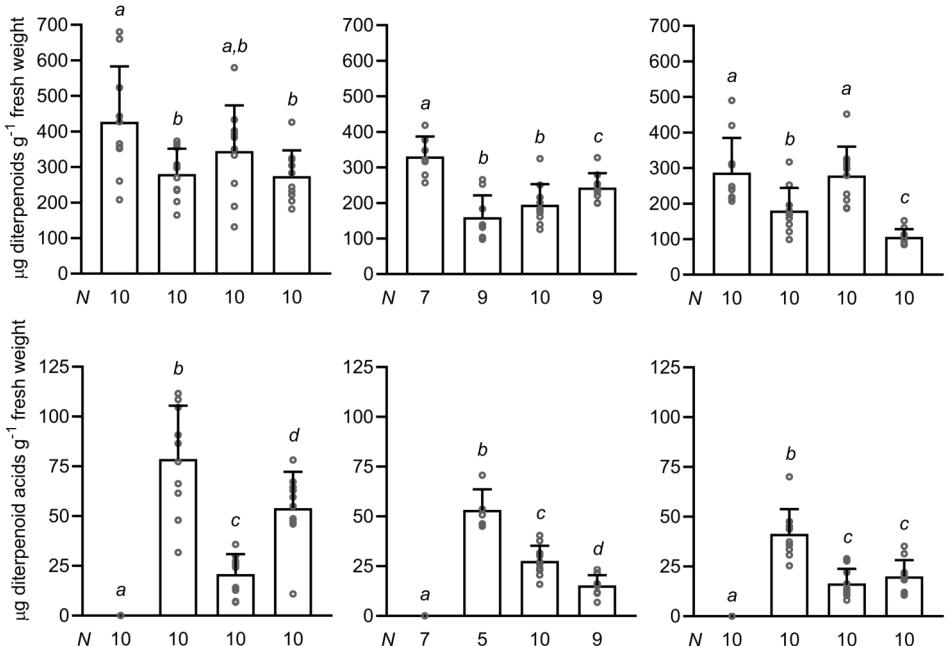
<i>PbDXS</i>	-	-	●	-	-	-	●	●
plastid: <i>AtFDPS</i>	-	●	●	-	-	●	●	●
plastid: <i>PcPAS</i>	●	●	●	●	●	●	●	●
<i>AtWRI1</i> ¹⁻³⁹⁷	-	-	-	●	●	●	●	●
NoLDSP	-	-	-	-	●	-	●	●

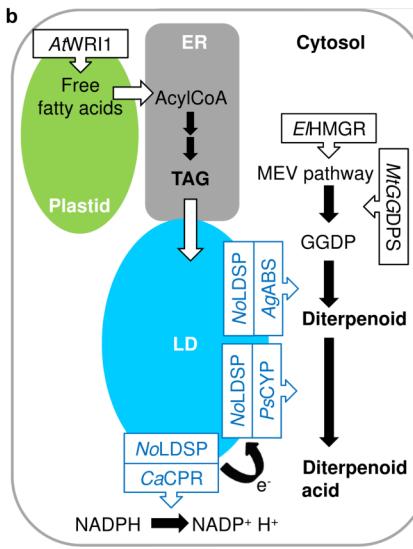




<i>PbDXS</i>	-	-	-	-	-	-	-	●	●	●	●	●	●
plastid: <i>MtGGDPS</i>	-	●	-	-	-	-	-	●	-	-	-	-	-
plastid: <i>SaGGDPS</i>	-	-	●	-	-	-	-	●	-	-	-	-	-
plastid: <i>TsGGDPS</i>	-	-	-	●	-	-	-	-	●	-	-	-	-
plastid: <i>EpGGDPS1</i>	-	-	-	-	●	-	-	-	-	●	-	-	-
plastid: <i>EpGGDPS2</i>	-	-	-	-	-	●	-	-	-	-	●	-	-
plastid: <i>MeGGDPS</i>	-	-	-	-	-	-	●	-	-	-	-	-	●
plastid: <i>AgABS</i>	●	●	●	●	●	●	●	●	●	●	●	●	●


<i>PbDXS</i>	-	-	●	-	-	-	-	●	●
plastid: <i>MtGGDPS</i>	-	●	●	-	-	-	●	●	●
plastid: <i>AgABS</i>	●	●	●	●	●	●	●	●	●
<i>AtWR11-397</i>	-	-	-	●	●	●	●	●	●
NoLDSP	-	-	-	-	-	●	-	●	●


<i>EHMGR</i> ¹⁵⁹⁻⁵⁸²	-	-	●	-	-	-	-	●	●
cytosol: <i>MtGGDPS</i>	-	●	●	-	-	-	●	●	●
cytosol: <i>AgABS</i> ⁸⁵⁻⁸⁶⁸	●	●	●	●	●	●	●	●	●
<i>AtWR11-397</i>	-	-	-	●	●	●	●	●	●
NoLDSP	-	-	-	-	-	●	-	●	●


$AtWRI1^{1-397}$	-	●	●	-	●	●	-	●	●
<i>NoLDSP</i>	-	-	●	-	●	●	-	●	●
<i>E1HMGR^{159-582}</i>	-	-	-	-	-	●	-	-	-
cytosol: <i>AtFDPS</i>	-	-	-	-	-	●	-	-	-
cytosol: <i>PcPAS</i>	-	-	-	●	●	●	-	-	-
<i>PbDXS</i>	-	-	-	-	-	-	-	-	●
plastid: <i>AtFDPS</i>	-	-	-	-	-	-	-	-	●
plastid: <i>PcPAS</i>	-	-	-	-	-	-	●	●	●


$AtWRI1^{1-397}$	-	●	●	-	●	●	-	●	●
<i>NoLDSP</i>	-	-	●	-	●	●	-	●	●
<i>PbDXS</i>	-	-	-	-	-	●	-	-	-
plastid: <i>MtGGDPS</i>	-	-	-	-	-	●	-	-	-
plastid: <i>AgABS</i>	-	-	-	●	●	●	-	-	-
<i>E1HMGR^{159-582}</i>	-	-	-	-	-	-	-	-	●
cytosol: <i>MtGGDPS</i>	-	-	-	-	-	-	-	-	●
cytosol: <i>AgABS^{85-868}</i>	-	-	-	-	-	-	●	●	●

a

b

<i>PbDXS</i>	●	●	●	●
plastid: <i>MGGDPs</i>	●	●	●	●
plastid: <i>AgABS</i>	●	●	●	●
<i>E/HMGR</i> ¹⁵⁹⁻⁵⁸²	-	-	-	-
cytosol: <i>MGGDPs</i>	-	-	-	-
cytosol: <i>AgABS</i> ⁸⁵⁻⁸⁶⁸	-	-	-	-
LD: <i>AgABS</i> ⁸⁵⁻⁸⁶⁸	-	-	-	-
ER: <i>PsCYP720B4</i>	-	●	-	-
cytosol: <i>PsCYP720B4</i> ³⁰⁻⁴⁸³	-	-	●	-
LD: <i>PsCYP720B4</i> ³⁰⁻⁴⁸³	-	-	-	●
LD: <i>CaCPR</i> ⁷⁰⁻⁷⁰⁸	-	-	-	●
<i>AMRI11</i> ¹⁻³⁹⁷	●	●	●	●
<i>NoLDSP</i>	●	●	●	-