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ABSTRACT 

In cases of severe carotid artery stenosis (CAS), carotid endarterectomy (CAE) is 

performed to recover lumen patency and alleviate stroke risk. Under current guidelines, the 

decision to surgically intervene relies primarily on the percent loss of native arterial lumen 

diameter within the stenotic region (i.e. the degree of stenosis). An underlying premise is that 

the degree of stenosis modulates flow-induced wall shear stress elevations at the lesion site, 

and thus indicates plaque rupture potential and stroke risk. Here, we conduct a retrospective 

study on pre-CAE computed tomography angiography (CTA) images from 50 patients with 

severe internal CAS (>60% stenosis) to better understand the influence of plaque and local 

vessel geometry on local hemodynamics, with geometrical descriptors that extend beyond the 

degree of stenosis. We first processed CTA images to define a set of multipoint geometric 

metrics characterizing the stenosed region, and next performed computational fluid dynamics 

simulations to quantify local wall shear stress and associated hemodynamic metrics. 

Correlation and regression analyses were used to relate obtained geometric and hemodynamic 

metrics, with inclusion of patient sub-classification based on the degree of stenosis. Our 

results suggest that in the context of severe CAS, prediction of shear stress-based metrics can 

be enhanced by consideration of readily available, multipoint geometric metrics in addition to 

the degree of stenosis.    

 

Keywords: Carotid endarterectomy; Carotid stenosis; Computational fluid dynamics; Plaque 

geometry; Prediction models.  
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1. INTRODUCTION 

Carotid artery interventions, such as carotid endarterectomy (CEA) and carotid artery 

stenting, have been used for over half a century to reduce stroke risk in patients presenting 

with severe carotid artery stenosis (CAS). However, these interventions carry an aggregate 

complication rate of 4.5%-7.0%, with potential negative outcomes including myocardial 

infarction, pulmonary embolism, and post-operative stroke 9,34,35. Clinical observations and 

experimental studies have demonstrated the importance of plaque geometry on local 

hemodynamics and embolic potential, motivating consideration of the degree of vessel 

stenosis in clinical decision making 3,21,25,32,39. Current guidelines for CAE from most major 

international bodies recommend intervention for neurologically symptomatic CAS with ≥ 

70% diameter reduction in the internal carotid artery (ICA), while others use a threshold of  ≥ 

50% diameter reduction 18,33. All guidelines recommend that in these cases, surgery is 

performed within two weeks of the onset of neurological symptoms 37. Existing guidelines for 

neurologically asymptomatic cases are less uniform, but clinical decision-making still 

depends mainly on the maximum degree of stenosis 33,37. In addition to the degree of stenosis, 

higher fidelity geometric details of the atherosclerotic plaque and parent vessel are accessible 

via clinical imaging including computed tomography angiography (CTA), and have been 

shown to significantly impact the local blood flow field and plaque mechanics 7,10,20,22. For 

instance, an increase in lesion axial length is inversely related to axial plaque stress in 

severely stenotic cases (≥0.60), thus suggesting extended lesions have relatively diminished 

embolic potential 7. Plaque asymmetry in the stenosed region has also been shown to impact 

local wall shear stress magnitudes and flow recirculation patterns 10,38. Other studies have 

found correlation between vessel tortuosity and flow-dependent pressure gradients, with a co-
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dependence on the degree of stenosis 27. In a study that examined both degree of stenosis and 

plaque eccentricity, these factors exhibited a strong interactive effect on the wall shear stress 

distribution 19. In these and other studies, finite element-based computational fluid dynamics 

(CFD) models were used to interrelate plaque geometry and local hemodynamics 2,3,28,46. 

Clinical integration of CFD models requires a noninvasive, image-based assessment of 

plaque and vessel geometry and estimation of inlet/outlet blood velocities/pressures in a 

control volume encompassing the diseased vasculature. CFD solutions provide three-

dimensional transient velocity/pressure fields and enable quantification of multiple 

hemodynamic metrics. These metrics include: flow-induced wall shear stress (WSS) – the 

tangential friction force on the endothelial or plaque surface; oscillatory shear index (OSI) – 

the temporal fluctuation of the WSS; and relative residence time (RRT) – the relative dynamic 

measure of local nonadherent particles within the flow field. These metrics have been linked 

to plaque accumulation, remodeling, and rupture risk 6,40. 

The goal of the present study was to process pre-CAE CTA images to define and 

quantify multipoint descriptors of lesion geometry, and then build CFD models to compute 

hemodynamic metrics at the lesion site. Our hypothesis is that multiple metrics of lesion 

geometry, including but not limited to the degree of stenosis, will interactively modulate local 

hemodynamics in stenotic carotid arteries.  

2. METHODS 

2.1 Patient-specific data acquisition 

Fifty de-identified CTA images in DICOM format were obtained from patients with 

highly stenotic ICAs evaluated for CEA (Greenville Health System, Greenville, SC). 

According to NASCET criteria, all cases were at a high risk of stroke with the degree of 
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stenosis ranging from 67.4% to 99.1%. Handling and processing of patient images were 

performed in accordance with institutional ethics committee guidelines. All patients gave 

informed consent for use of their clinical imaging studies under IRB protocol Pro00027940. 

2.2 Geometry reconstruction and analysis 

2.2.1 Reconstruction of patient-specific geometries 

A semi-automated approach was developed to efficiently reconstruct the 3D arterial 

lumen and identify patient-specific geometric variables of the plaque and local vasculature 

(elaborated upon in subsequent sections). This semi-automated process yielded reproducible 

assessments independent of operator variability while minimizing time and resource 

consumption. The CTA volume is represented in a series of 2D images with a known distance 

between each image. A segmentation protocol was established using the Vascular Modeling 

Toolkit (VMTK; www.vmtk.org), an open-source pre-processing resource, to identify the 

boundaries of the arterial lumen for each slice of the scan using the distinct density-dependent 

voxel intensities between the angiography contrast dye and the plaque/arterial wall. The 

underlying algorithm in this automated process is based on an identification of centerlines and 

a robust decomposition of the bifurcation into its constituent branches, followed by mapping 

the surface of each of the branches onto the parametric plane 1. After manual selection of a 

seed point and definition of bounds, the boundaries of the arterial lumen were detected and 

smoothing algorithms were applied to remove fine-scale irregularities from the reconstructed 

surface. Finally, a non-uniform rational b-spline was then fit to the surface to facilitate 

domain discretization for CFD analysis (Figure 1A). 
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Figure 1. Carotid artery reconstruction and the 2D illustration of stenotic carotid artery. (A) 

Carotid artery reconstruction steps; CTA imaging output shown by a stack of 2D images of a 

representative carotid artery segment, extracted boundaries to define the surface of the arterial 

lumen, surface model and the linear tetrahedral volumetric mesh. (B) The maximal stenosis 

Smax and cross-sectional area A(x) are depicted. XD and XP specific center-point locations in 

the distal and proximal directions, respectively.  

Reconstructed domains were imported into the ANSYS ICEM-CFD meshing software 

and fit with a linear tetrahedral surface mesh using a robust octree formulation 8,12,17. After 

smoothing this mesh to increase the quality of the individual elements, a tetrahedral volume 

mesh was generated using a Delauney formulation 38,46. Finally, the arterial wall was fit with a 

triple layer of post-inflation hexahedral prism elements to allow for a more accurate capture 

of the hemodynamics in the boundary layer.  
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2.2.2 Calculation of geometric variables 

A MATLAB code was developed to extract the centerline along the vessel geometry 

and the cross-sectional area function (A(x)) at every point along the centerline path 1. A(x) was 

computed based on normal cross-sections of maximal inscribed spheres along the centerline. 

Geometric variables (described below) were calculated from A(x) center-point coordinates 

and the associated function value. The region of interest (ROI) for geometric variable 

calculation was a 5 mm radius sphere with a center-point coincident with the maximal degree 

of stenosis (Smax) (Figure 1B). The employed ROI sphere radius (5 mm) was motivated by 

typical lesion length (along the centerline) across the entire study cohort. Shear stress and 

related metrics (discussed in below sections) were temporally- and spatially-averaged within 

the ROI to minimize response variable sensitivity to model discretization. 

 A set of nine geometric variables were extracted from the reconstructed geometries to 

describe the complex geometry of the ROI. Degree of stenosis, S, is the ratio between the 

minimal lumen area within the ROI and the proximal lumen area of the non-diseased section 

of the common carotid artery. For subsequent analyses, cases were subclassified based on the 

degree of stenosis (0.67 < S < 0.80, 0.80 ≤ S < 0.90 and 0.90 ≤ S < 1.00). Proximal tortuosity, 

��, and distal tortuosity, ��, are the ratios of the centerline path length divided by the point-to-

point distances from Smax to the proximal and distal ends of the ROI, respectively. Proximal 

luminal concavity, ��, and distal luminal concavity, ��, are the absolute values of the second 

derivative of A(x) with respect to proximal/distal locations (x). A(x) is a quadratic function 

that returns the lumen area at the position x defined with respect to the location of Smax. 

Proximal area-averaged slope, ���, and distal area-averaged slope, ���, are the integrals of the 

first derivative of A(x) with respect to distance divided by the area function in either proximal 



7 

 

and distal sides of the Smax, respectively. Stenosis-to-proximal-end slope, ��, and distal-end-

to-stenosis slope, ��, are the absolute values of the change in lumen area over end-to-end 

distance (Table 1).  

Table 1. Definition of geometric variables with respective formulas. 

Geometric variables Definition 

Degree of stenosis; � = 1 − ��
���� �(�)������� �(�)  

Proximal tortuosity; �� 
= ��
��������
�� between the vessel centerline at the proximal end of 

the region of interest and Smax 

Distal tortuosity; �� 
= ��
��������
�� between the vessel centerline at the distal end of the 

region of interest and Smax 

Proximal luminal 

concavity; �� 

= � ������ !"/$%&'()� � , where A is a quadratic function of distance on 

proximal side; *(+) = ,+- + /+ + 0. 

Distal luminal concavity; �� 

= � ������ !"/$%&'()� � , where A is a quadratic function of distance on 

distal side; *(+) = ,+- + /+ + 0. 

Proximal area-averaged 

slope; ��� 
= 1 232"� !"/$%&'()� 4+5� !"/$%&'()6  , where A is a quadratic function of 

distance on proximal side; *(+) = ,+- + /+ + 0. 

Distal area-averaged 

slope; ��� 
= 1 232"� !"/$%&'()� 4+5� !"/$%&'()6  , where A is a quadratic function of 

distance on distal side; *(+) = ,+- + /+ + 0. 

Stenosis-to-proximal-end 

slope; �� 

= � ∆�∆5� !"/$%&'()�, where ∆A is the area change over length on 

proximal side of the region of interest. 

Distal-end-to-stenosis 

slope; �� 

= � ∆�∆5� !"/$%&'()�, where ∆A is the area change over length on 

distal side of the region of interest. 
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2.3 CFD model construction 

CFD models were developed with a finite volume-based Navier-Stokes solver 

(ANSYS-Fluent v. 17.2), and each model was run over three cardiac cycles under an 

assumption of laminar flow 26,29. The results presented here refer to averages obtained over 

the third cardiac cycle in order to minimize the influence of initial flow conditions. The blood 

was characterized as an incompressible non-Newtonian Carreau fluid (η0=0.25 Pa·s; 

η∞=0.0035 Pa·s; λ=25; n=0.25) with a constant density of 1060 kg/m3 and zero-slip boundary 

conditions were applied to the rigid arterial walls 29. A previously acquired carotid artery 

velocity profile attained from a healthy human male subject  was converted to a continuous 

function using a Fourier transform and then used as an inlet velocity boundary condition on 

the proximal segment of the common carotid artery (CCA) 14,31,36,48. A fully developed 

velocity profile was established within 2 cm downstream of the inlet across all cases. In 

accordance with prior studies on highly stenoses carotid arteries, uniform pressures of 

70 mmHg and 90 mmHg were prescribed to the internal and external carotid artery outlets, 

respectively 45. A mesh-independent solution was identified in a subset of cases (5) as the 

lowest mesh density for which subsequently increasing density (>30% increase in total 

number of elements) did not significantly alter the computed peak WSS value (<1% change). 

Based on these studies, a minimum of 100,000 elements spanning the 8 cm length of the 

reconstructed carotid bifurcation was used in all models. 
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2.4 Post-processing 

2.4.1 Hemodynamic response variables 

To calculate time-averaged wall shear stress (TAWSS), the instantaneous WSS was 

calculated and then averaged spatially/temporally across all elements in the ROI over the third 

cardiac cycle: 

TAWSS = <= 1 |?��|=6 4@     (1) 

Mean oscillatory shear index (OSI) is a dimensionless parameter ranging from 0 to 0.5 

that is defined based on the temporal fluctuation of WSS and averaged over the ROI, as: 

OSI = 0.5 F1 − G1 HIIJK  ��G1 |HII| ��JK L                 (2) 

where T is the elapsed time and WSS is the magnitude at each individual node. Mean relative 

residence time (RRT) considers both the averaged WSS and mean OSI: 

RRT = <NOPQQ(<R- SQT) = <G1 HIIJK  ��G    (3) 

with values reported in Pa-1. RRT reflects the residence time of blood in contact with or near 

the endothelium and is considered an important factor in plaque genesis 29. 

2.4.2 Statistical analyses 

Data were analyzed using MATLAB to identify correlations between geometric and 

hemodynamic variables, with Spearman correlation used to quantify correlation strength and 

significance. Correlation analyses were carried for all cases together (general approach) or a 

piecewise approach that was based on a sub-classification of cases via degree of stenosis (0.67 

< S < 0.80, 0.80 ≤ S < 0.90 and 0.90 ≤ S < 1.00). Geometrical variables with statistically 

significant correlation to a given CFD hemodynamic variable were then used to develop 

predictive regression models that consider the former as input and the latter as output. 
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Backward stepwise multiple linear regression was performed for model parameter 

identification, with inclusion of variable interactions only if model R2 was increased by > 0.05 

due to the inclusion. Regression models were developed based on either the entire sample set 

(general regression) or over the defined sub-classification ranges (piecewise regression). Of 

the 50 CTA images, 45 were used for regression model parameter identification, and 5 were 

reserved for evaluating the predictive capability of the regression models by comparing 

predicted values of hemodynamic response variables against obtained CFD results.  

Figure 2. Descriptive statistics of CTA-based geometric variables and results obtained from 

CFD simulations. (A) Each bar represents a range of values. The length of each bar denotes 

the number of each range for each of the geometric variables; Degree of Stenosis; �, Proximal 

Tortuosity; ��  , Distal Tortuosity; ��  , Proximal Luminal Concavity; ��  , Distal Luminal 
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Concavity; �� , Proximal Area-Averaged Slope; ���  , Distal Area-Averaged Slope; ���  , 

Stenosis-to-Proximal-end Slope; ��  and Distal-end-to-Stenosis Slope; �� . (B) - output 

variables calculated from CFD simulations; TAWSS, OSI and RRT.  

 

3. RESULTS 

CTA-based vessel geometric models were used to extract geometric variables (9 per 

case) using the aforementioned semi-automated approach. Geometric models were also used 

in CFD simulations that compute local hemodynamic response variables derived from WSS 

(3 per case). Descriptive statistics for geometrical variables and CFD-based hemodynamic 

variables are shown in Figure 2. Three representative cases from each sub-classifications of 

the degree of stenosis are shown along with the distribution of hemodynamic variables 

relative to the degree of stenosis (Figure 3).  
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Figure 3. 3D mapping of results from CFD simulations for a representative sample of 

reconstructed geometries selected from each of the three ranges of stenotic severity (0.67 < S 

< 0.80, 0.80 ≤ S < 0.90 and 0.90 ≤ S < 1.00) and the distribution of hemodynamic variables 

with respect to the degree of stenosis for all samples. Stenosis severity ranges from 0.67 < S < 

1 and datapoints are labeled with different colors indicating the severity category (Green: 0.67 

< S < 0.80, Blue: 0.80 ≤ S < 0.90 and Red: 0.90 ≤ S < 1.00). (A) 3D mapping of TAWSS for 

three representative cases and distribution of TAWSS with respect to degree of stenosis. (B) 

3D mapping of OSI for three representative cases and distribution of OSI with respect to 

degree of stenosis. (C) 3D mapping of RRT for three representative cases and distribution of 

RRT with respect to degree of stenosis. 

3.1 Simulation results and correlation: TAWSS 

Computational simulations qualitatively show an increase in TAWSS magnitudes with 

increasing degree of stenosis, with clearly nonuniform stress distributions both proximal and 

distal to the bifurcation point (Figure 3A). Within these cases of severe CAS, TAWSS was 

generally elevated with increasing degree of stenosis. However, an exponential regression 

model was statistically insignificant when applied across all cases (R2=0.52; p = 0.14), 

motivating consideration of additional geometric variables to predict shear stress and related 

metrics. When sub-classified based on the degree of stenosis, TAWSS is relatively more 

sensitive to increased stenosis in the severe cases (0.90 ≤ S < 1.00); with averaged values of 

17.81 ± 16.05 Pa, 29.74 ± 15.95 Pa and 118.72 ± 117.71 Pa for 0.67 < S < 0.80, 0.80 ≤ S < 

0.90 and 0.90 ≤ S < 1.00, respectively (Figure 3A). While a general correlation analysis 

revealed a positive correlation between TAWSS and the degree of stenosis, as well as both 

proximal and distal area-averaged slopes, the significance of these factors was not fully 
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maintained throughout piecewise correlation analysis (Figure 4). Most notably, no correlation 

between TAWSS and the degree of stenosis was observed in the intermediate stenosis 

subclassification (0.80 ≤ S < 0.90)   

3.2 Simulation results and correlation: OSI and RRT 

Representative colorimetric plots of OSI and RRT underscore the inherent relation 

between these flow field metrics, with obvious coincidence of vessel regions experiencing 

locally elevated values (Figure 3B-C). There was no general correlation (p<0.15) between the 

area-averaged mean OSI and the degree of stenosis, and only sporadic correlation when sub-

classifications were considered (Figure 4). Using the general correlation analysis, no 

statistically significant relationship was found between OSI and any of the defined geometric 

variables. For the OSI piecewise correlation analyses there is at least one geometric variable 

with stronger correlation as compared to degree of stenosis in each subclassification range. 

Area-averaged mean RRT exhibits a consistent negative correlation to the degree of stenosis, 

with the strongest relation in the least stenosed vessels (0.67 < S < 0.80) (Figure 4).  
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Figure 4. Spearman correlation analysis results for ρ demonstrating the strength of the 

association between hemodynamic and geometric variables. (A) Spearman correlation 

coefficient and statistical significance assessment using the general approach and including all 

samples. (B-D) – using the piecewise approach with 0.67 < S < 0.80, 0.80 ≤ S < 0.90 and 0.90 

≤ S < 1.00, respectively. ρ>0 and ρ<0 values are shaded with shades of red and blue, 

respectively. darker shades indicate greater magnitudes of ρ values. (* indicates p-value<0.1 

and ** indicates p-value<0.05) 

3.3 Regression models 

Multiple linear regression models were generated using the defined geometric 

variables that correlated with CFD hemodynamic variables (p<0.1), as well as potential 

interactive effects among these geometric variables. For each of the hemodynamic variables, 

the following general and piecewise regression models were obtained:  
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TAWSS 

General: UV,W X*?�� [Pa] =  261.44 − 274.7 × � − 488.04 × ��� + 564.64 × � × ��� ,     d <0.001             

Piecewise: UV,W X*?�� [Pa] =
f 17.94 − 3.471 ×��� − 19.30 × �� + 20.578 × ��� ×��        0.67 < � < 0.80,   d = 0.0758.8104 + 17.278 × ���                                                                          0.80 ≤ � < 0.90,  d = 0.035−1754.8 + 1856.9 × � + 49.766 × ���                                            0.90 ≤ � < 1.00,    d = 0.002   

OSI 

General: ---- 

Piecewise: UV,W j�k [−] =

lmn
mo0.009 + 0.017 × ��                                                                                0.67 < � < 0.80,   d = 0.0660.065 − 0.04 × ��� − 0.018 × �� − 0.013 �� ×���                   0.80 ≤ � < 0.90,  d = 0.001−0.235 + 0.278 × � + 0.159 ×  ��� − 0.008 ×��� − 0.178 � × ��� + 0.006 ×  ��� ×���                                                                                                                          0.90 ≤ � < 1.00,    d = 0.010

  

RRT 

General: UV,W ppX [PaR<] = 0.355 − 0.1437 × � + 0.609 × �� − 0.504 × ��� + 0.265 ×�� − 0.63 × � × �� + 0.493× � ×��� − 0.341 × � ×�� − 0.068 × �� ×��� + 0.0566 × �� ×��+ 0.0184 × ��� ×�� ,                                     d < 0.001 

Piecewise: UV,W ppX [PaR<] =

lmm
n
mmo
9.821 − 10.604 × � − 10.916 × �� − 0.435 × ��� + 12.414 × �� ×���                                                                                                                                                     0.67 < � < 0.80,             d = 0.011−3.93 + 4.64 × � + 4.665 × �� + 1 ×�� − 5.312 × � × �� − 1.138 × � × ��                                                                                                                                     0.80 ≤ � < 0.90,             d < 0.0011.106 + 1.199 × � + 1.064 × �� − 1.095 × � × ��          0.90 ≤ � < 1.00,             d = 0.018
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The descriptive and predictive capabilities of identified regression models were 

evaluated by comparing model- and CFD-derived values of hemodynamic response variables 

(Figures 5). While no significant general regression model was obtained for OSI, piecewise 

regression resulted in significant descriptive and predictive models (Figure 5B). Piecewise as 

opposed to general regression modeling resulted in a substantial improvement in both the 

descriptive and predictive capabilities with respect to TAWSS and RRT (Figures 5A and C).  
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Figure 5. Relationship between hemodynamic variables obtained from CFD results with 

respect to the regression models and respective residuals. (A) Distribution of the TAWSS 



18 

 

from CFD and regression models (general and piecewise) obtained using 45 cases. Filled data 

points show values predicted by the model that were not used in development of the model (5 

cases). (Right:) Distribution of residuals with respect to the degree of stenosis for all samples 

using general regression and piecewise regression model; filled data points indicate results 

from the piecewise model. (General model average residual and standard deviation: 0.86 and 

3.10, respectively. Piecewise model average residual and standard deviation: 0.28 and 0.90, 

respectively). (B) Distribution of the OSI from CFD and piecewise regression model obtained 

using 45 cases. Filled data points show values predicted by the model that were not used in 

development of the model (5 cases). (Right:) Distribution of residuals with respect to the 

degree of stenosis for all samples using piecewise regression model. (Average residual and 

standard deviation: 0.35 and 1.18, respectively). (C) Distribution of the RRT from CFD and 

regression models (general and piecewise) obtained using 45 cases. Filled data points show 

values predicted by the model that were not used in development of the model (5 cases). 

(Right:) Distribution of residuals with respect to the degree of stenosis for all samples using 

general regression and piecewise regression model; filled data points indicate results from the 

piecewise model. (General model average residual and standard deviation: 0.46 and 1.27, 

respectively. Piecewise model average residual and standard deviation: 0.43 and 1.18, 

respectively). For all (A), (B) and (C), datapoints are labeled with different colors (Green, 

Blue and Red; from low to high) indicating their associated stenosis severity category, and 

dotted lines represent 95% confidence intervals. 

4. DISCUSSION 

The present study involves presurgical CTA scans from 50 patients with sufficient 

carotid artery stenosis to meet the current NASCET guidelines for the recommendation of 



19 

 

open surgery intervention (i.e. carotid endarterectomy). These guidelines, although are the 

current gold standard for surgical decision making, inherently rely on one geometric 

parameter determined at one axial plaque location 15. Several experimental and computational 

studies have elucidated the importance of other geometrical attributes of the plaque on flow-

induced wall shear stress, flow reversal and the progression of the stenotic occlusion 7,10,44. To 

that end, the primary goal of this study was to identify a set of novel local geometric variables 

that can collectively predict local wall shear stress and related hemodynamic indicators of risk 

in highly stenotic carotid arteries. Although risk assessment in CAS is highly multifactorial, 

this work focuses on predicting local shear stress levels based on patient-specific geometry. 

Regions with complex geometries are susceptible to focal complications arising from 

low WSS, exemplified by the prevalence of carotid atheroma in the vicinity of the carotid 

bifurcation 11,47. Conversely, moderately elevated WSS (~30 Pa) can promote the formation of 

lumen thrombus and severely elevated WSS (over 40 Pa) can cause local endothelial injury 

and denudation 16. Several previous studies have examined trends in the TAWSS in severely 

stenotic cases; Li et al. reported TAWSS as high as 73 Pa located distal to the point of 

maximal stenosis in a patient-specific model 26. A similar observation was made by Su et al., 

noting elevated TAWSS (79 Pa) with 90% stenosis, compared to baseline values that were 

less than 12 Pa 42. As reported in the literature and observed this study, stenosis generally 

elevates TAWSS but does so in a complex manner that is suggestive of interactive effects 

with other geometric characteristics7,44. 

Spatial and temporal fluctuations of the WSS vector are quantified by the mean OSI 

and RRT. Higher degrees of stenotic occlusion (>50-60%) are associated with a sharp 

increase of OSI and RRT 29. It was shown previously that in an idealized geometry an 
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increase in stenosis results in larger downstream vortices, and as a result higher magnitudes of 

OSI become more prominent farther from the maximum stenosis 29,44. We observed a 

reduction in OSI local to the lesion which our results find to be independent of the local 

geometry 13,24. OSI, however, does show a positive association with stenosis as occlusion 

progresses and demonstrates correlations with parameters other than stenosis at different 

stages of the pathology (i.e. three subcategories of stenotic severity). Furthermore, our 

qualitative examinations confirmed an increase of OSI distal and proximal to the lesion site, 

areas where flow reversal is predominant 13,30. 

For RRT, it was shown that the degree of stenosis has a strong negative association 

with the RRT, regardless of what sample population was considered. Strong negative 

correlation between the degree of stenosis and the mean RRT in the ROI can be explained 

with the increased pressure gradient induced by the pathology that will result in lower 

residence time while WSS values are maximal 13,29. An interesting outcome of this study is 

that all correlating proximal characteristics showed a positive relation with the RRT, and 

almost all distal parameters a negative relation. Among all geometric variables that 

demonstrated correlation within sub-classifications, the positive correlation between ��  and 

the mean RRT remained consistent and thus is strong candidate variable to predict RRT 

directly from CTA images. 

Limitations 

While our study incorporated a total of 50 cases and yielded multiple significant 

predictors of local hemodynamic variables, identified regression models may not be relevant 

to non-severe cases. In these models, vessel walls are assumed rigid; results might differ in 

models with deformable vessel walls and when fluid-structure interactions are accounted for. 
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Furthermore, CFD models were built using patient-specific geometries, but representative 

flow field boundary conditions were applied uniformly across all cases. It is well 

acknowledged that the application of an inlet flow waveform acquired from a healthy patient 

diminishes the direct translational relevance of obtained results; however, uniform boundary 

conditions (among cases) were selected to facilitate isolation of geometric determinants of 

local wall shear stress. Additionally, all CFD models in this study were generated under the 

laminar flow assumption. While previous studies suggest a likely transition to turbulent flow 

in the case of highly stenotic carotid arteries, we only considered laminar flow  4,22,41,43. Future 

iterations of our work will consider new segmentation methods in which flux-based higher 

order tensor is utilized for an improved modeling accuracy at branching points 5. Finally, our 

computational models must be validated in future studies via comparing predictions to results 

acquired from four-dimensional flow magnetic resonance imaging (MRI) and reference CFD 

analysis results 23.  

5. CONCLUSION 

Our study is based on the definition and quantification of a novel set of local 

geometric variables which extended beyond the degree of stenosis. Computational results 

predict that key geometric variables, in addition to the degree of stenosis, significantly 

modulate local wall shear stress (and related metrics) in the context of severe CAS.  

Moreover, piece-wise multiple linear regression modeling suggests that different sets of 

geometric variables (which include the degree of stenosis) are determinants of wall shear 

stress across case subclassifications based solely on the degree of stenosis. We expect that 

different sets of geometric determinants would manifest under lower degrees of stenosis, 
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which could be identified in CFD-based analyses and potentially influence surgical decision 

making in the context of CEA. 
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