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ABSTRACT

The atmosphere is a key component of the biogeochemical cycle of mercury, acting as a reservoir,
transport mechanism, and facilitator of chemical reactions. The chemical and physical behavior of
atmospheric mercury determines how, when, and where emitted mercury pollution impacts
ecosystems. In this review, we provide current information about what is known and what remains
uncertain regarding mercury in the atmosphere. We discuss new ambient, laboratory, and theoretical
information about the chemistry of mercury in various atmospheric media. We review what is known
about mercury in and on solid- and liquid-phase aerosols. We present recent findings related to wet and

dry deposition and spatial and temporal trends in atmospheric mercury concentrations. We also review
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atmospheric measurement methods that are in wide use and those that are currently under

development.
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1. Introduction

Mercury is a potent toxicant that impacts human (Bernhoft, 2012; Houston, 2011; Mergler et al., 2007)
and environmental health (Henny et al., 2002; Spry and Wiener, 1991; Warnick and Bell, 1969; Wright et
al., 2018). Although exposure of humans and wildlife to toxic levels of mercury typically occurs through
consumption of contaminated food (Castro-Gonzalez and Méndez-Armenta, 2008; Oken et al., 2005),
most anthropogenic mercury pollution is emitted into the atmosphere and enters ecosystems via

atmospheric deposition (Driscoll et al., 2013). Emitted gas-phase elemental mercury, which is relatively
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inert, can be transported globally (Ebinghaus et al., 2009; Sprovieri et al., 2016; Sprovieri et al., 2010)
before it is taken up by plants (Wright et al., 2016) or soils (Gustin et al., 2008) or oxidized in the
atmosphere (Jiao and Dibble, 2017a; Lam et al., 2019; Shah et al., 2016). Emissions of oxidized mercury
compounds have a more local impact than elemental mercury (Fu et al., 2015; Weiss-Penzias et al.,
2011), because they are more reactive, more water-soluble, and thus, deposit more quickly (Lin et al.,
2006). Chemical and physical transformations of atmospheric mercury are often reversible. In some
atmospheric environments, including polar spring (Steffen et al., 2015), the upper atmosphere (Lyman
and Jaffe, 2012; Slemr et al., 2018), and perhaps polluted urban areas (Chen et al., 2016), elemental
mercury can become oxidized relatively quickly. Once oxidized, mercury compounds dynamically
partition between the gas and aerosol phases (Amos et al., 2012; Cheng et al., 2014). Furthermore, they
are readily reduced back to elemental mercury from either phase (Landis et al., 2014; Saiz-Lopez et al.,
2018) and, at least in cloud and fog water, can undergo a variety of other chemical transformations (Li et
al., 2018; Lin and Pehkonen, 1999). The concentrations and speciation of mercury in the atmosphere
depend on proximity to sources (Fu et al., 2015), availability of oxidants (Obrist et al., 2011), aerosol
concentrations and properties (Malcolm et al., 2009), regional and global-scale meteorology (Holmes et

al., 2016), and surface conditions (Jiskra et al., 2018).

Ultimately, the fate of all mercury emitted to the atmosphere is to deposit to ecosystems. Elemental
mercury exchanges dynamically with plant stomata and soils (Eckley et al., 2011; Howard and Edwards,
2018; Obrist et al., 2017; Yu et al., 2018). Oxidized mercury compounds, whether in the gas or aerosol
phase, can be taken up by atmospheric water (Sheu and Lin, 2011; Zhou et al., 2018a) and deposited in
precipitation (Kaulfus et al., 2017; Zhou et al., 2018a) or undergo dry deposition to terrestrial and
aquatic surfaces (Sather et al., 2013; Wright et al., 2016). Mercury deposited to the terrestrial
environment can cause environmental harm as it is transported to aquatic systems (Fain et al., 2011;

Grigal, 2002). In the aquatic environment, it can be methylated (Heyes et al., 2006; Monperrus et al.,
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2007) and then bioaccumulated and biomagnified in the aquatic food chain (Hammerschmidt and
Fitzgerald, 2006; Schwindt et al., 2008). Human or animal consumption of high trophic-level fish
(Bernhoft, 2012) or other foods that have been contaminated with mercury (Barrett, 2010; Li et al.,

2010; Liet al,, 2012; Zhang et al., 2010; Zhao et al., 2019) can lead to toxic effects.

The purpose of this work is to present an updated review of the behavior and chemistry of mercury in
the atmosphere. Many reviews have already been published that cover various aspects of this topic.
These are referenced in the relevant sections below. Our goal is to provide updates and additions to,
rather than a reproduction of, these existing reviews and to underscore areas where uncertainty or lack
of consensus exists. We focus in particular on gas and aerosol phase chemistry, atmospheric deposition,

spatial and temporal trends, and measurement methods.

Some topics and sub-topics discussed herein contain more depth because they have not, to our
knowledge, been reviewed before. For other topics, we only provide overviews and highlights, since
extensive reviews already exist. Except in the context of its relation to spatial and temporal trends
(Section 4), we do not discuss emissions to the atmosphere, since this will be the subject of a separate

article in this issue.

Acronyms and abbreviations in the atmospheric mercury literature have been used inconsistently. We
use chemical formulas in this work wherever possible to avoid confusion. Oxidized mercury
measurements contain bias and are largely operationally-defined (Section 5.2.2), however, so we use
the less-specific acronyms GOM (gas-phase oxidized mercury) and PBM (particulate-bound mercury)
when describing these measurements. We use Hg" or full chemical formulas instead when certainty
exists about chemical formulas or oxidation states. We use Hg* when discussing oxidized mercury

compounds or ions in the aqueous phase.
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Atmospheric mercury concentrations are typically reported in units of ng or pg m=3, with the volume
measurement made at IUPAC standard conditions (Nic et al., 2005). We follow this convention in this

work.

Also, it remains unclear whether Tekran 2537 and similar mercury analyzers without upstream
processing equipment measure total gas-phase mercury or only elemental mercury. Thus, these
measurements are also operationally defined. We use the acronym GEM (gas-phase elemental
mercury) to describe them, though they likely include GEM and some portion of Hg" compounds that
exist in the atmosphere, and the amount of Hg" they include likely depends on the sampling
configuration and the chemical and physical conditions of the atmosphere. Also, when KCl denuders are
used upstream of elemental mercury analyzers, some of the captured Hg" is reduced to elemental
mercury and measured in that form (Lyman et al., 2010). Some have used the acronym TGM (total
gaseous mercury), rather than GEM, but, to our understanding, no information exists about the
percentage of gas-phase Hg'" that is analyzed by elemental mercury analyzers with an upsteam KClI
denuder or without upstream sample processing. Many have asserted that this issue is inconsequential,
because atmospheric Hg' concentrations are low relative to Hg® (Ci et al., 2011; Fu et al., 2012a), but this
assertion has been shown to be inaccurate in some environments (Fu et al., 2015; Obrist et al., 2011;
Swartzendruber et al., 2006; Weiss-Penzias et al., 2009), especially when the low bias in KCl-denuder
based GOM measurements is taken into account (Huang et al., 2013; Lyman et al., 2016). Thus, while
we use the acronym GEM to describe these measurements, we acknowledge that it doesn’t describe

most measurements reviewed herein with complete accuracy. See Section 5 for more information.

2. Gas and Particle-phase Chemistry

Si and Ariya (2018) reviewed the recent advances in atmospheric mercury chemistry, considering efforts

to determine Hg® oxidation pathways, aqueous reduction of Hg" compounds, and heterogeneous



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

mercury chemistry. Other relevant and recent reviews include Durnford and Dastoor (2011), Subir et al.
(2011), Subir et al. (2012), Gustin et al. (2015), Ariya et al. (2015), and Mao et al. (2016). Diagrams of

many of the relevant processes are available in Subir et al. (2011) and Si and Ariya (2018).

2.1. Gas-phase Oxidation

Elemental mercury oxidation is a key facet of the mercury biogeochemical cycle, given the relative
lifetimes and solubility of mercury in its different forms. Hg® persists in the atmosphere long enough to
be transported globally, whereas Hg" compounds are generally more water-soluble and thus more
readily removed from the atmosphere through wet and dry deposition (Driscoll et al., 2013). As such,
the conversion from Hg° to Hg" plays a key role in atmospheric and biogeochemical Hg cycling. Yet,
guestions remain as to the dominant oxidation pathway(s) in the atmosphere, largely due to
uncertainties around the kinetics associated with proposed mechanisms, an inability to determine the
chemical form of GOM in ambient air, and the validation of chemical models against measurements
made with known interferences (Obrist et al., 2018; Si and Ariya, 2018). Here we review the proposed
oxidation pathways, considering the most recent studies to report on their kinetics and viability to
contribute to ambient mercury chemistry. Tables summarizing the latest kinetics on gaseous mercury
redox chemistry are provided in Subir et al. (2011) and Si and Ariya (2018), including experimentally- or
theoretically-determined rate constants for each reaction and citations for the work that determined

them.

2.1.1. 03/OH

Oxidation by O3z and OH were once widely assumed to be the dominant oxidation mechanisms for
ambient Hg® (Calvert and Lindberg, 2005). These mechanisms continue to be routinely employed in

chemical models used to investigate mercury cycling and deposition (Cohen et al., 2016; De Simone et
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al., 2017; Pacyna et al., 2016). Several publications have reported the associated kinetics for oxidation
by O3 (Hall, 1995; Pal and Ariya, 2004b; Rutter et al., 2012; Snider et al., 2008) and OH (Miller et al.,
2001; Pal and Ariya, 2004a; Sommar et al., 2001), with a range of rate constants determined at
atmospherically relevant conditions (Si and Ariya, 2018). Some have argued, however, that these
reactions are irrelevant in the ambient atmosphere (Calvert and Lindberg, 2005; Hynes et al., 2009).
Recent work on Hg? oxidation by O; and OH has focused on the incorporation of these mechanisms and
their associated kinetics into chemical models and the validation of model output against available
measurements, which has continued to inform the role that Os/OH oxidation may play in the

atmosphere (Section 2.1.4).

2.1.2. Bromine

Bromine-initiated oxidation has been given a great deal of attention in the last decade as another
important gas-phase mechanism. Br oxidation is thought to proceed by a two-step mechanism, in which
gaseous Hg° reacts with photolytically-produced atomic Br to produce the unstable product HgBr that
can either dissociate back to Hg® or react with other species (such as Br, OH, BrO, HO,, or NO,) to form
inorganic Hg" compounds (Dibble et al., 2012; Dibble and Schwid, 2016; Goodsite et al., 2004; Holmes et
al., 2010; Horowitz et al., 2017; Jiao and Dibble, 2017b). The experimentally- and theoretically-
determined reaction rate constants for this mechanism also vary widely (Si and Ariya, 2018; Subir et al.,
2011), and a range of rate constants have been used (Shah et al., 2016). Naturally, the chemical form of
the resulting Hg" compound is dependent on the radical species that participates in the second step of
the reaction, but at this time no method exists to determine the chemical composition of GOM. Wang
et al. (2014a) argued that NO, and HO; could carry out the second step of the Br-induced oxidation
pathway in the marine boundary layer. The reaction of HgBr with NO, is proposed to produce either

BrHgNO; or BrHgONO, while the reaction of HgBr with HO, produces BrHgHO,. The kinetics of these
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secondary reactions were recently investigated for the first time using computational chemistry by Jiao

and Dibble (2017a).

2.1.3. Other Potential Oxidants: Cl, H20,, and NO3

While most recent work has focused on O3, OH, and Br-induced oxidation chemistry, a small number of
other oxidants have also been proposed (Pacyna et al., 2016; Si and Ariya, 2018). Cl-initiated Hg°
oxidation likely also proceeds by a two-step mechanism with HgCl as the intermediate that is oxidized in
the second step by NO,, HO,, CIO, or BrO (Sun et al., 2016). Tokos et al. (1998) provided laboratory
measurements of the rate constant for gaseous Hg® oxidation by hydrogen peroxide (H,0,). The nitrate
radical (NOs) has also been proposed as a potential oxidant of Hg® (Gustin et al., 2013; Lin and
Pehkonen, 1999; Peleg et al., 2015). Hynes et al. (2009) suggested the reaction is highly endothermic
and not atmospherically viable, while Dibble et al. (2012) used theoretical calculations to suggest that
NOs does not form strong bonds with Hg® and thus is unlikely to initiate gas-phase oxidation. While NOs
may not be capable of initiating Hg® oxidation, Si and Ariya (2018) posited that it could be involved in the
secondary reaction of Hg' to Hg'" that is initiated by another oxidant such as Br or OH. Due to large
uncertainties around the kinetics of these other oxidation mechanisms and/or questions of atmospheric

viability, these mechanisms have not been as thoroughly investigated in chemical modeling studies.

2.1.4. Are Bromine Radicals the Globally Dominant Oxidant?

The idea that there may be a globally-dominant oxidation mechanism for atmospheric mercury remains
a disputed topic in the mercury research community, largely due to uncertainties around reaction
kinetics and a lack of reliable measurements with high spatiotemporal coverage accompanied by
measurements of potentially relevant oxidants (Obrist et al., 2018; Pacyna et al., 2016; Si and Ariya,

2018; Travnikov et al., 2017). As noted above, oxidation of Hg® by Os and OH remains a common



178  pathway in many global and regional chemical models (De Simone et al., 2014; Gencarelli et al., 2017;
179 Kos et al., 2013; Pacyna et al., 2016). Though the gas-phase reaction of Hg® with these oxidants was also
180 suggested to be too slow to act as the dominant oxidation mechanism in the atmosphere (Driscoll et al.,
181 2013; Hynes et al., 2009; Subir et al., 2011), some recent modeling studies have still found good

182 agreement with observed ambient GEM and mercury wet deposition when employing these

183 mechanisms (Travnikov et al., 2017; Weiss-Penzias et al., 2015).

184 On the other hand, Holmes et al. (2010) proposed that Br-induced oxidation is the globally-dominant
185  oxidation pathway, and some global models have continued with this assumption (Amos et al., 2012;
186 Horowitz et al., 2017). The Br-induced oxidation mechanism has been observed with measurements and
187  chemical models to drive gaseous mercury oxidation in certain environments, including the marine

188  boundary layer (Holmes et al., 2009; Wang et al., 2014a), the tropical and subtropical free troposphere
189 (Gratz et al., 2015a; Shah et al., 2016), in polar regions (Brooks et al., 2006; Goodsite et al., 2004, Jiao
190 and Dibble, 2017b; Steffen et al., 2008), and over the Dead Sea (Obrist et al., 2011) where halogen

191  species such as Br are abundant. It remains less clear what role this mechanism plays in the continental

192  free troposphere or boundary layer.

193  Several recent regionally-focused papers have attempted to address the question of a dominant

194 mercury oxidant. Ye et al. (2016) used a chemical box model to simulate ambient mercury

195 concentrations at marine, coastal, and inland sites in the Eastern United States. They found Br-initiated
196 oxidation to be important at the marine site, but O3/OH oxidation to better explain observations at

197 coastal and inland sites. They also suggested the possibility of nighttime H,0, oxidation at the inland
198 site. Weiss-Penzias et al. (2015) applied the GEOS-Chem global chemical model alternately with the Br
199 mechanism and O3/OH mechanism to ambient mercury measurements from several high elevation sites

200  (fourin the western United States and one in Asia) and found varying results, in part concluding that
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neither mechanism alone could accurately explain the observations. Wang et al. (2014a) concluded that
while Br was the primary oxidant in the marine boundary layer, neither oxidation by Br nor by Os/OH

alone could reproduce observations.

In a comparative modeling study, Travnikov et al. (2017) sought in part to identify the role of the
aforementioned oxidation pathways. They found that the Br mechanism was able to reproduce the
observed seasonal variation in the GOM-to-GEM ratio in the near-surface layer, but did not accurately
simulate the timing of seasonal wet deposition patterns in North America and Europe. In contrast, OH-
driven oxidation alone simulated the range and amplitude in mercury observations but shifted the
seasonal variability, and the O3 mechanism alone did not simulate significant seasonal variability as is
seen in observations. These results suggested the possibility for more complex oxidation chemistry and
multiple oxidation pathways in different parts of the atmosphere and under different atmospheric
conditions (Travnikov et al. (2017). Field studies that utilized thermal desorption methods have come to

similar conclusions (Gustin et al., 2016; Huang et al., 2017).

Given this recent work, the idea of a globally dominant oxidant remains in question. In fact, the leading
train of thought now appears to lean more toward the notion that gaseous mercury oxidation is carried
out by more complex chemical mechanisms and multiple oxidation pathways (in the gas phase and on
surfaces) that become more or less dominant by location and season (Pacyna et al., 2016; Travnikov et
al., 2017; Wang et al., 2015; Weiss-Penzias et al., 2015). It may, for example, be the case that the O3/OH
mechanism is still relevant in certain environments (such as the continental boundary layer) even
though uncertainties in the associated kinetics and atmospheric viability remain, while the Br-induced
mechanism dominates in other environments such as the marine boundary layer, the subtropical free

troposphere, and polar regions; alternatively or additionally, there may be a two-step mechanism

10
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initiated by one oxidant but carried forward by a different species depending on the location and/or

time of year (Horowitz et al., 2017; Pacyna et al., 2016; Si and Ariya, 2018; Travnikov et al., 2017).

An underlying source of uncertainty in all of these studies is that most of the work done to determine
the relevant oxidation pathways comes from chemical modeling work, wherein the included chemical
reactions have large and varying uncertainties around their associated kinetics (Si and Ariya, 2018).
Moreover, those model outputs are being compared predominantly with surface observations of GOM
that have known low bias due to interferences from O3 and water vapor (Gustin et al., 2015; Jaffe et al.,
2014; Lyman et al., 2010; McClure et al., 2014). These circumstances undoubtedly limit the current
ability to ascertain the chemical mechanisms that govern mercury oxidation on local, regional, or global

scales.

2.1.5. Chemical Composition of Gaseous Oxidized Mercury

Another limitation in the current understanding of gaseous mercury chemistry is a lack of knowledge
about the chemical form(s) of GOM in the atmosphere. Current ambient air measurement techniques
operate by quantifying total GOM or by separating the gaseous from the particle-bound forms of
oxidized mercury, but the actual molecular forms of oxidized mercury cannot currently be distinguished.
Ambient GOM is believed to exist as Hg", with the assumption that Hg' compounds are highly unstable
and thus reduces back to Hg® or is further oxidized to Hg". Recent work using the University of Nevada
Reno Reactive Mercury Active System (UNRRMAS), which collects GOM onto nylon or cation exchange
membranes that are later analyzed by thermal desorption, has identified Hg" compounds in ambient air
that match the thermal desorption patterns of HgBr,, HgCly, HgO, Hg(NOs),, and HgSO, (Gustin et al.,
2016; Huang et al., 2017). A study that used this method in Nevada found a prevalence of thermal
desorption profiles that match halogen-containing species at a high-elevation site, nitrogen- and

oxygen-containing species at an urban site (Gustin et al., 2016). This method currently requires

11
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sampling onto membranes for 1-2 weeks to collect sufficient sample for analysis, making source or air
mass characterization challenging. Also, the possibility exists that mercury or membrane chemistry
changes during sampling, impacting thermal desorption results, and overlapping desorption profiles
have the potential to be misinterpreted (Though work to answer these questions is underway. See
Gustin et al. (2019)). Jones et al. (2016) and Deeds et al. (2015) have developed mass spectrometry
systems to identify oxidized mercury compounds. Both groups successfully identified mercury halides in

laboratory tests, but identification in ambient air has proven more difficult.

2.2. Gas and Aerosol-phase Reduction

Hg" reduction has been reported in coal-fired power plant plumes (Edgerton et al., 2006; Landis et al.,
2014), and on particle surfaces, including clouds and aerosols with many different chemical
compositions (Ariya et al., 2015; Horowitz et al., 2017; Subir et al., 2012; Tacey et al., 2016; Tong et al.,
2013; Tong et al., 2014). Aqueous chemical reactions can occur on or within solid or liquid aerosols,
including mercury complex formation, and some of these reactions may allow mercury to be reduced to
the elemental form. In the aqueous phase, Hg?* forms complexes with various ligands, such as sulfite,
chloride, and other halides. In the presence of UV, some Hg* complexes can undergo photoreduction
(Subir et al., 2012; Ariya et al., 2015). Malcolm et al. (2007) suggested that particle-to-gas partitioning
via reduction of Hg" played a role in the loss of mercury collected on filter pack samples due to exposure
of the filter packs to acidic gases and high relative humidity conditions in coastal environments. Under
these conditions, Hg?* forms complexes with sulfite in the aqueous phase that dissociates rapidly to Hg*
and then is lost as Hg®. More information about mercury chemistry in the atmospheric aqueous phase is

given in Section 2.6.
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The inclusion of reduction processes in models has resulted in improved simulations of surface
concentrations and deposition fluxes (de Foy et al., 2016; Holmes et al., 2010; Lohman et al., 2006;
Pongprueksa et al., 2008; Zhang et al., 2012c). Many current chemical transport models assume that
Hg?* reduction occurs in the aqueous phase within clouds (Horowitz et al., 2017; Shah et al., 2016).
However, a recent study looked at photoreduction pathways of atmospheric Hg" compounds, showing
that irradiation experiments with rainwater do not support fast aqueous-phase Hg" photoreduction
(Saiz-Lopez et al., 2018). In related work, Sitkiewicz et al. (2016) and Sitkiewicz et al. (2019) calculated
absorption cross-sections for many mercury compounds. Saiz-Lopez et al. (2018) suggest that arbitrarily
scaling up aqueous photolytic reduction rates (Horowitz et al., 2017) is inappropriate since measured
photoreduction rates in atmospheric water are low. Using calculated absorption cross-sections to infer
the corresponding gas-phase photoreduction rates for the main mercury compounds thought to be in
the atmosphere, Saiz-Lopez et al. (2018) and Saiz-Lopez et al. (2019) show that fast gas-phase photolysis
of Hg' intermediates and Hg" compounds dominates atmospheric mercury reduction and leads to a
factor-of-two increase in the modeled global atmospheric mercury lifetime. They further postulate that
relatively low photoreduction rates for HgBrOH and HgBr; allow these compounds to dominate

atmospheric Hg" composition.

2.3. Heterogeneous Oxidation

Subir et al. (2012) and Ariya et al. (2015) suggested that the importance of heterogeneous chemistry in
atmospheric mercury cycling, including heterogeneous oxidation, has been underappreciated and
understudied. Gustin et al. (2013) suggested that heterogeneous reactions with aerosols and/or
manifold walls could explain oxidized mercury behavior during the RAMIX measurement
intercomparison study. It is well known that Hg® can be oxidized and undergo complex chemical

transformations in the aqueous phase, likely on deliquesced particulate matter as well as on cloud and
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fog droplets (see Sections 2.2 and 2.6), but we discuss here the possibility of oxidation on aerosols more
generally. Many have argued that gas-phase mercury oxidation by Os is unlikely to occur in the
atmosphere (Section 2.1.1), but Calvert and Lindberg (2005) argued that the process could be favorable
if mediated by particle surfaces (see also Seigneur et al. (2006)). It is also possible that Hg® or unstable
Hg' compounds could come in contact with aerosol surfaces, and that the aerosol surfaces could
mediate an oxidation reaction. The supposed product of the reaction of Oz with Hg® is HgO (Pal and
Ariya, 2004b), and because this compound is not volatile (Lin and Pehkonen, 1999), the reaction
proposed by Calvert and Lindberg would lead to an increase in particle-bound mercury. If a different
reaction led to the formation of more volatile Hg" compounds, those compounds could subsequently
transfer into the gas phase (Section 2.4). To our knowledge, this idea is completely theoretical, with no
field or laboratory studies showing conclusive evidence of aerosol-mediated mercury oxidation

reactions. Such studies are called for.

2.4. Gas-Particle Partitioning

In addition to primary emissions of particles that contain mercury, particulate-bound mercury can form
when gas-phase mercury can sorb to particles in the ambient atmosphere. While adsorption of Hg° to
particulate matter is believed to be negligible, gas-particle partitioning occurs for semi-volatile gas-
phase Hg" (Seigneur et al., 1998). This partitioning process is dependent upon several factors, including

the air temperature, particle composition, and the existence of an aerosol aqueous phase.

2.4.1. Temperature dependence

Since Hg" compounds are non-volatile or semivolatile (Lin and Pehkonen, 1999; Lin et al., 2006), they
partition to the particle phase at low temperatures and shift to the gas phase at high temperatures.

Several studies have derived gas-particle partitioning models for Hg'" as a function of air temperature. A

14
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linear regression model was previously used to develop gas-particle partitioning relationships for other

semi-volatile organic compounds, e.g., PAHs (Pankow, 1991; Pankow, 1992), and is expressed as follows:
Log(1/K,) = a + b(1/T)

K, is a partition coefficient that quantitates the gas-particle partitioning of Hg", T is the temperature in
Kelvin, and a and b are the y-intercept and slope, respectively. Kyhas been computed as shown below
using PBM, GOM and total particulate matter (Rutter and Schauer, 2007a; Rutter and Schauer, 2007b) or
particulate matter less than 2.5 um in aerodynamic diameter (PM,s) (Amos et al., 2012; Cheng et al.,

2014), as:

. PBM /TPM
P GOM

where TPM is total particulate matter. While K, is the most common gas-particle partitioning
parameter, another measure of gas-particle partitioning is the fraction of PBM in total oxidized mercury
(GOM+PBM) (Cheng et al., 2014), which was adopted from gas-particle partitioning models of water-

soluble organic compounds (Hennigan et al., 2008).

As shown in Table 1, the slopes and y-intercepts of gas-particle partitioning equations vary among
sampling locations. The slope can be sensitive to the aerosol composition, and variation in the y-
intercept may be due to differences in particle sizes and number concentrations (Rutter and Schauer,
2007a). Because GOM measurements are biased low, and because the extent of the bias changes with
atmospheric conditions (Lyman et al., 2016; McClure et al., 2014), the values in Table 1 are likely to

contain bias.
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Table 1: Temperature-dependent gas-particle partitioning models for Hg". Kpis the gas-particle partition

coefficient and T is the temperature in Kelvin.

Model

Type of data

Reference

Log(1/K,) = 15 - 4250(1/T)

Field data from 1 site

Rutter and Schauer (2007a)

Log(1/K,) = 10 - 2500(1/T)

Field data from 5 sites

Amos et al. (2012)

Log(1/K,) = 12.7 - 3485.3(1/T)

Field data from 2 sites

Cheng et al. (2014)

Log(1/K,) = 13.5 - 3362.7(1/T)

Field data from 1 site

Lee et al. (2016)

Log(1/K,) = 12 - 3092(1/T)

Field data from 1 site

Zhang et al. (2017b)

Log(1/K,) = 19 - 5720(1/T)

Lab-generated ammonium
sulfate

Rutter and Schauer (2007a)

Log(1/K,) = 9 - 2780(1/T)

Lab-generated adipic acid
aerosols

Rutter and Schauer (2007a)

In many chemical transport models, Hg" is assumed to exist completely in the gas phase or as an

arbitrary percentage split between the gas and particle phases (Amos et al., 2012; Holmes et al., 2010;

Lei et al., 2013). Gas-particle partitioning models derived from field measurements can produce K,

values that are, in most cases, similar to measured values (Cheng et al., 2014). Large discrepancies

between predicted and observed K, have been found at sites impacted by point sources, where other

factors may influence the partitioning between GOM and PBM, such as emissions speciation and

chemical composition of emitted aerosols (Cheng et al., 2014; Rutter and Schauer, 2007a; Rutter and

Schauer, 2007b). Model simulations by Vijayaraghavan et al. (2008) that used the temperature-

dependent gas-particle partitioning model developed by Rutter and Schauer (2007a) showed that the

fraction of Hg" partitioned to particles was 23% on average (ranging from 10-80%) with higher fractions

in the western and midwestern United States due to colder temperatures and/or higher particulate

concentrations (Vijayaraghavan et al., 2008). Another gas-particle partitioning model was derived and

introduced into the GEOS-Chem model (Amos et al., 2012). Simulated Hg'"was present mostly in the

gas-phase (>90%) in warm air and was only about 10% in the gas phase in cold air.
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2.4.2. Dependence on Aerosol Composition

Aside from temperature, the chemical composition of aerosols and the presence or absence of an
aerosol agueous phase affect the gas-particle partitioning of Hg". In an experimental study, K, values
were measured for various synthetically-produced dry atmospheric aerosols, including NaNOs, NaCl, KCl,
ammonium sulfate, levoglucosan, and adipic acid (Rutter and Schauer, 2007b). Large K, values were
observed for NaNOs, NaCl, and KCl, which indicates Hg" tends to remain in the particle phase on those
surfaces. Small K, values were found for ammonium sulfate, levoglucosan, and adipic acid, with an
estimated 50% of the Hg" partitioning to the gas phase. Depending on the particle composition, K,
ranged from 1-900 m3 ug?* (Rutter and Schauer, 2007b). The large partition coefficient for NaCl particles
was also confirmed in another experimental study, which tested the removal efficiency of ambient air
GOM and HgCl, by NaCl-coated sampling denuders (Malcolm et al., 2009). The results showed that
NaCl- and sea salt-coated denuders were able to remove 88-100% as much GOM in an air stream as KCI-
coated denuders. This suggests that Hg" is efficiently scavenged by sea salt aerosols and is likely an
important sink for Hg" at marine sites (Malcolm et al., 2009). Measurements of PBM using cascade
impactors in coastal and marine sites also found a large proportion of particulate mercury in coarse

particles, which consist mostly of sea salt (Feddersen et al., 2012).

Due to the solubility of GOM, the presence of an aerosol aqueous phase facilitates the uptake of GOM
to aerosols. This process has been described in several modeling studies conducted in the marine
boundary layer. Holmes et al. (2009) derived an algorithm to estimate the uptake of GOM by sea salt
aerosols in the aqueous phase. The scheme assumed Hg?* forms aqueous complexes with chloride.
They used a mass transfer equation to describe the net flux of HgCl, and chloride complexes from the
gas to the aerosol aqueous phase. Their equation takes into account particle growth relative to the

radius of a dry particle. In another box model, the uptake of additional GOM species other than chloride
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were also estimated using this mass transfer approach (Ye et al., 2016). Aerosol liquid water content
has a strong effect on the partitioning of GOM to the aerosol aqueous phase (Hedgecock et al., 2003; Ye
et al., 2016). This is further supported by other studies showing that increased water uptake by aerosols
drives the partitioning of water-soluble gases to the aerosol aqueous phase (Carlton and Turpin, 2013;

Hennigan et al., 2008).

Agueous chemical reactions complicate gas-particle partitioning behavior and are discussed in Sections
2.2 and 2.3. The uptake of GOM by sea salt aerosols reduces GOM concentrations in the marine
boundary layer, according to model simulations. Selin et al. (2007) showed that one-third of global
mercury dry deposition is attributed to Hg" compounds sorbed to sea salt. This process was also
necessary for the model to reproduce the low GOM concentrations typically observed in marine
environments. In another modeling study, it was estimated that almost all the Hg" in the marine
boundary layer was associated with sea salts (Holmes et al., 2009). In this study, sea salt uptake
followed by deposition comprised 65-80% of the total deposition of Hg" at marine boundary layer sites,

whereas direct deposition accounted for up to 15%.

2.5. Particle-phase Size Distribution

Generally, mercury in fine particles (< 2.5 um in diameter) is formed by sorption of gaseous Hg" during
or after condensation and coagulation of combustion products, while PBM in coarse particles (> 2.5 um)
is formed through the sorption of gaseous Hg' onto naturally generated particles, such as salt spray,
dust, and mechanical processes from anthropogenic sources (Chen et al., 2016; Mamane et al., 2008).
Because fine particles dominate the surface area of all particles in the atmosphere, it is generally
accepted that the majority of PBM resides in fine particles (Feddersen et al., 2012). In recent years, size-

resolved PBM measurements have been collected, usually using multi-stage impactors that collect size
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392  fractions between 0.1 and 18 um in diameter. Table 2 summarizes the results of these measurements in
393 both heavily polluted urban, mildly polluted suburban, and cleaner background air. Section 5 reviews
394 possible biases in these measurements. To our knowledge, size-fractionated PBM measurements have

395 not been reviewed in this way before.
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Table 2: Summary of particle size-resolved measurements of PBM

than fine PBM

Location Period Total PBM Size fraction with Composition of Reference
(pg m3) highest particle in size
concentration of fraction with
PBM (um) highest PBM
concentration
Beijing, China | All year, 2979+ 0.56-1 75-87% of total Tang et al. (2019)
2016-17 340.4 found in 0.05-2.0
um size fraction
Shanghai, Spring, 2017 | 318 £ 144 0.56-1.0 63.3% of total Han et al. (2018)
China found in 0.05-2.0
um size fraction
Shanghai, Winter, 4110+530° | 0.56-1.0° 32 pg ugt? Chen et al. (2016)
China 2013-14 1340 +150° | 0.18-0.32° 20 pg ugt?
Shanghai, All Year, 1270+ 716* | <25 10.7 pg ug™?® Chen et al. (2016)
China 2013 341+187° 7.4 pg ug®
Shanghai, Selected 560 + 220 1.6-3.7 3.07 pg ug* Xiu et al. (2009)
China times, 2004-
07
Seoul and Winter and 6.8+6.5 0.18—-0.32 at both 0.47 pg pg* Kim et al. (2012)
Chuncheon, summer, urban and rural (urban, winter)
South Korea 2009-10 sites, both summer 0.50 (rural,
and winter winter)
0.87 (urban,
summer)
0.65 (rural,
summer)
Central Fall, 2010 297 <1 0.913 £ 441 pg Chen et al. (2012)
Taiwan pg! (industrial
site)
Taiwan July- 48.8+23.4 Coarse Fang et al. (2019)
December
2018
South China Fall 2015 3.2+1.8 5.8-9.0 Chen et al. (2012);
Sea Wang et al. (2019)
Coastal Fall 2009- 70 2.5-10 0.003-0.004 pg Fang et al. (2010); also
Taiwan Winter 2010 ug?(suburban see Fang et al. (2012)
site)
Coastal Winter and 5 3.3-4.7 summer 60% of total PBM | Feddersen et al. (2012)
Maine summer, 0.7 -1.1 winter in summer found
2009-10 in1.1to5.8 um
size fractions.
65 % of total
PBM in winter
foundin< 1.1
pum size fraction.
Central April 2013- 7.3-22.6 >2.2 Coarse PBM Siudek et al. (2016)
Poland October concentration
2014 was 3.1 x higher

397

®Haze days in Shanghai, with mean PM10 of 240 mg m
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®Non-haze days in Shanghai, with mean PM10 of 60 mg m=

Table 2 shows that in polluted air, such as in urban locations in China, Korea, and Taiwan, PBM is
dominantly found in fine particles (PM2s) and especially particles in the accumulation mode (0.1 -2.0
um diameter). A handful of studies reported the total mercury concentration in the particle size class
with the highest concentration of PBM using units of pg m= of PBM per ug m= aerosol = pg ug* (Table
2). These studies report low mean PBM concentrations in cleaner coastal suburban areas of Taiwan
(Fang et al., 2010), higher values in the more urban areas of Taiwan and Korea (Chen et al., 2012; Kim et
al., 2012), and by far the highest values (up to 32 pg ug™) in the heavily polluted air of Shanghai (Chen et
al., 2016; Xiu et al., 2009). In Shanghai, PBM concentrations as a function of particle size were
determined on haze and non-haze days, where it was found that when the haze pollution was more
severe the concentrations of PBM were higher, which suggested to the authors that the complex
atmospheric conditions of haze days contributed to the growth of PBM in particles (Chen et al., 2016). In
another study in Shanghai, a PBM maximum occurred in the accumulation mode, and a smaller
secondary peak was observed in coarse mode particles (3-6 um) (Chen et al., 2016). The authors
suggest that the bimodal distribution demonstrated that PBM might have different formation
mechanisms, including direct emissions from anthropogenic or natural sources and through the
adsorption of gaseous mercury on mainly coarse particles. Furthermore, in Shanghai, the dominant size
for PBM in the fine modes shifted from 0.32-0.56 um during non-haze days to 0.56-1.0 um during haze
days, which revealed the higher growth velocity of PBM on haze-days due to the condensation and
accumulation of mercury in particles (Chen et al., 2016). Keeler et al. (1995) observed a similar bimodal

distribution of PBM in urban Detroit, Michigan.

At locations further downwind of major PBM sources and in coastal areas, PBM is more abundant on

larger particles compared to what has been observed in large cities in Asia. Fang et al. (2010) observed
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maximum PBM in the 2.5-10 um size fraction in coastal Taiwan, similar to Feddersen et al. (2012) who
found that the 3.3-4.7 um size fraction had the most PBM in the coastal northeastern United States, and
Wang et al. (2019) who found a tri-modal distribution in the South China Sea. PBM on coarse particles
could be sea salt aerosols, which readily take up Hg" (Wang et al. (2019); Section 2.4.2). Siudek et al.
(2016) also found particles > 2.2 um had the most PBM in Central Poland, and Fang et al. (2019) found
the most PBM in the coarse mode at a polluted site in Taiwan. This presents an issue for the
measurement of PBM, since a common instrument used for total PBM is the Tekran 1135, and the inlet
of this instrument excludes particles larger than 2.5 um, thereby potentially underestimating total PBM.

This instrument is subject to additional biases, as described in Section 5.

2.6. Clouds and Fog

While it is well known that Hg" can be absorbed by cloud and fog droplets (Section 2.3), understanding
of the atmospheric chemistry of speciated mercury in clouds and fog is an emerging area of research.
Both fog and clouds are a visible aggregation of liquid aerosols that are held aloft due to the turbulent
movement of air (Roman et al., 2013). Fog is cloud in contact with the Earth’s surface. Due to the
relatively small size of fog and cloud droplets, they have a large surface area and promote scavenging of
water-soluble gases and impaction of dry aerosol particles, which can lead to an enrichment of
pollutants in fog and clouds (Degefie et al., 2015; Malcolm et al., 2003). Deposition via impaction of
droplets with surfaces such as trees, plants, and human structures is known to be a major source of
pollutants to many watersheds (Malcolm et al., 2003). Hg® can be oxidized, and Hg?* can be reduced (Lin
and Pehkonen, 1998), and inorganic mercury can be methylated (Li et al., 2018; Yin et al., 2012), in
clouds and fog. Current research in this area has focused on 1) the degree of enrichment of total
mercury and CHsHg" in clouds and fog and the identification of sources, 2) the potential for chemical

processing within clouds and fog that affects mercury concentrations and speciation, and 3) the
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mechanisms and thermodynamics of aqueous-phase chemistry that transform mercury species within

the droplets.

We present a summary of measurements of total mercury and CHsHg" in cloud and fog water in Table 3,
since these data, to our knowledge, have not been summarized before. The environments studied
include marine stratus clouds over the open ocean, coastal fog, inland valley fog, and mountain-top
clouds. Total mercury mean concentrations in cloud and fog water ranged from 9.2 ng L in a marine
stratus environment over the open ocean (Weiss-Penzias et al., 2018) to 70.5 ng L'! in mountain-top
cloud water downwind of an industrial area in China (Li et al., 2018). Intermediate concentration values
of total mercury (~25 ng L) were found in mountain top clouds far downwind of anthropogenic sources
in northeastern North America (Malcom et al., 2003) and Taiwan (Sheu and Lin, 2011), as well as in
marine fog water sampled in California (Weiss-Penzias et al., 2016a) and New Brunswick, Canada
(Ritchie et al., 2006). At the relatively polluted site of Mount Tai, China, the arsenic concentration (a
tracer of coal combustion) in cloud water was three times higher than in cloud water at a polluted site in
eastern North America and 20 times higher than in cloud water over the open ocean (Li et al., 2018).
Sulfate (also a coal-combustion tracer) concentrations in cloud water at Mount Tai were also elevated

compared to other sites.

In contrast, CHsHg" mean concentrations were highest in coastal fog and clouds over the coastal ocean
(0.87-1.6 ng L), compared to that found in inland clouds and fog (0.2-0.5 ng L'). Recent evidence in
coastal California has found that coastal marine clouds and fog absorb oceanic emissions of (CHs),Hg
and CHsHg" and can act as a vector of CH3Hg* to coastal terrestrial ecosystems (Weiss-Penzias et al.,
2016a; Weiss-Penzias et al., 2018). This phenomenon may be restricted to the near coastline since

CHsHg" concentrations at a site within 50 m of the ocean were 3.7 times higher than at a site 40 km
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inland, indicating the potential for photodemethylation of CHsHg* during the advection of fog water

from ocean to land (Weiss-Penzias et al., 2016a).

Table 3: Speciated mercury measurements (mean t std. dev.) in clouds and fog. Mean As SO.* concentrations

for select studies are also shown as an indicator of coal combustion influence. Percents in the particle phase

were determined via filtration (pore size ~0.5 pm).

Sample Type Location Dates Total Total |% of total(% of As S04> Reference
mercury |CHsHg* |mercury |CHsHg*in| (ugL?) |(mglL?)
(ngL?!) |(ngL?) |in particle
particle |phase
phase

Marine stratus |Coastal Summer, [9.18+ |0.87 0.12 2.95 Weiss-
cloud water California 2016 5.98 0.66 Penzias et al.

(2018)
Advective Coastal Summers, 27.6+ [1.6+1.9]74% 94% 21.3 Weiss-
marine fog California 2014, 2015 |25.8 Penzias et al.
water (2016a)
Valley radiation |Inland Winter, 240+ 1[0.18% Weiss-
fog water California 2016 10.5 0.09 Penzias et al.

(2018)
Valley radiation |Inland Winter, 11.0 0.5 311 Bittrich et al.
fog water California 2003 (2011)
Mountain-top |Mountaintop Summer |4.3+0.5/0.02 + Gerson et al.
cloud water New York 2010 0.00 (2017)
Marine fog Bay of Fundy,|Summer, |2 to 435 Ritchie et al.
water Canada 2003 (2006)
Mountain-top |Mountaintop [Summer- |24.8 1.11 2.19 Malcolm et
cloud water Vermont Fall, 1998 al. (2003)
Mountain-top |Mountaintop (Winter, 9.6 6.6 Sheu and Lin
cloud water Taiwan 2009 (2011)
Mountain-top |Mountaintop [Summer, |70.5+ (0.15% [71% 5 39.0 Li et al.
cloud water China 2015 100.6 |0.15 (2018)

The presence of CH3Hg" in inland mountain-top and valley fogs and clouds far from the ocean suggests a

CHs3Hg" formation mechanism must exist within the hydrometeors, with CHsHg* formation rates of

sufficient magnitude to compensate for the continual loss of CHsHg* due to photodemethylation

(Bittrich et al., 2011; Hammerschmidt et al., 2007; Li et al., 2018). Li et al. (2018) observed increased

mass ratios of CHsHg* to dissolved total mercury in mountaintop cloud water in China that coincided
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with decreased ionic strength. They suggested this could be an indicator of abiotic formation of CHsHg".
The evidence suggests that higher ionic strength in cloud water inhibited methylation due to inorganic
ions out-competing organic ligands that can potentially be methyl donors, such as acetate,
methylcobalamin, methyl iodine, and other low-molecular-weight organics (Li et al., 2018). Furthermore,
this study observed that CHsHg" in cloud water was significantly correlated with propionate, indicating
formation of CH3Hg"* via alkylation by propionic acid as proposed by Yin et al. (2012). Future work is

needed to identify methyl donors and methylation mechanisms.

Cloud water chemistry also affects the speciation of inorganic mercury compounds. Highly acidic (pH <
4) cloud water at Mount Bamboo displayed 10-20 times higher total mercury concentrations than cloud
water at pH > 4 (Sheu and Lin, 2011). The authors suggest this is due to reduced oxidation of Hg® and/or
enhanced Hg?* reduction at higher pH values, a notion consistent with early studies (Lin and Pehkonen,
1999; Pleuel and Munthe, 1995). Some studies have shown GEM depletion during acidic fog events,

which could mean that acidic fog can absorb and oxidize Hg® (Hall et al., 2006; Xiu et al., 2009)

Recent thermodynamic modeling work has focused on using stability constants (log K) of multiple
chemical species of mercury including compounds with halides, sulfate, nitrate, nitrite, ammonia,
carbonate, low-molecular-weight organics, and dissolved organic matter, to determine the dominant
species of Hg?* compounds present in cloud drops as a function of pH. Li et al. (2018) found that 50-90%
of dissolved Hg?* complexes with dissolved organic matter at pH < 6, whereas at pH > 6 the dissolved
Hg?* was found predominantly (> 60%) in the Hg(OH), form. This finding was consistent with an earlier
study that also found Hg(OH), was the dominant form found in Sacramento Valley, California, where pH
of fog water was on the basic side (5.7-6.8) (Bittrich et al., 2011). In the absence of dissolved organic
matter, Bittrich et al. (2011) found that chloride complexes (HgCl* and HgCl,) were the dominant

chemical species of Hg?".
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In summary, concentrations of total mercury and CHsHg"* in cloud and fog water are generally enhanced
above those typically found in rainwater due to 1) lower liquid water content in cloud and fog water, 2)
greater rates of gas-particle scavenging due to smaller hydrometeor size, and 3) relatively increased
acidity, which prevents the reduction of Hg?* to Hg’. Marine clouds and fog may become enriched in
CHsHg* due to oceanic emissions of organic mercury compounds to the atmosphere and gas scavenging
by acidic marine aerosols. CHsHg" in clouds and fog may also be produced in situ most likely due to an
abiotic mechanism involving low-molecular-weight organic ligands that can donate a methyl group to

Hg?.

3. Deposition

3.1. Wet Deposition

Sprovieri et al. (2010) reviewed worldwide atmospheric mercury measurements and included discussion
of wet deposition. Sprovieri et al. (2017) found high spatial variability in wet deposition rates across the
globe but demonstrated a general trend of highest wet deposition in the lower and mid-latitudes of the
Northern Hemisphere, with lower deposition rates in the Arctic and the Southern Hemisphere. In North
America, wet deposition tends to be highest in the southeastern United States (Prestbo and Gay, 2009;
Weiss-Penzias et al., 2016b). Wet deposition in urban areas of China is higher than in North America
and Europe (Fu et al., 2012b), but for rural areas, the values are similar (Fu et al., 2015). As with
atmospheric mercury concentrations (Section 4.2), wet deposition amounts have decreased at many
locations around the globe (Keeler et al., 2005; Muntean et al., 2014; Prestbo and Gay, 2009; Weiss-

Penzias et al., 2016b; Zhang and Jaeglé, 2013).

Urban/industrial locations tend to have higher mercury wet deposition than rural/remote locations, but

this association can be weak, because atmospheric processes, not just local emissions, are important
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drivers of mercury uptake by precipitation (Sprovieri et al., 2010). Many studies have noted the
influence of emission sources on spatial trends in mercury wet deposition (Fu et al., 2015; Gratz and
Keeler, 2011; Gratz et al., 2013; Guo et al., 2008; Lynam et al., 2016; Ma et al., 2015; Michael et al.,
2016; Qin et al., 2016; Siudek et al., 2016; Wang et al., 2014b; White et al., 2009), including at the global
scale (Sprovieri et al., 2017). Weiss-Penzias et al. (2016b), Zhang et al. (2016), and a review by Obrist et
al. (2018) showed that wet deposition follows temporal trends in global and regional anthropogenic

mercury emissions.

Most studies report that wet mercury deposition is higher in warm seasons, and this has been attributed
to more precipitation (Fu et al., 2015; Michael et al., 2016; Qin et al., 2016; Sanei et al., 2010; Seo et al.,
2012; Sprovieri et al., 2017), more availability of Hg" compounds in the atmosphere (Caffrey et al., 2010;
Lynam et al., 2016), better efficiency of rain relative to snow at scavenging gas-phase Hg" (Gratz et al.,
2009; Landis et al., 2002; Selin and Jacob, 2008; White et al., 2013), or a higher prevalence of deep
convective clouds (Lynam et al., 2016). While short rain events tend to lead to higher mercury
concentrations in rainwater, annual wet deposition fluxes tend to be positively correlated with annual

rainfall (Prestbo and Gay, 2009; Sprovieri et al., 2017).

Some researchers have shown significant positive correlations between total mercury concentrations in
rainwater and mercury concentrations in surface-level ambient air (Brunke et al., 2016; Fu et al., 2015;
Seo et al.,, 2012; Zhou et al., 2018a), while others have not (Mao et al., 2017b). Cheng and Zhang (2016)
showed that relationships between atmospheric GOM and wet deposition are more reasonable when
the known low bias in GOM measurements (Bu et al., 2018; Lyman et al., 2010; McClure et al., 2014) is

taken into account.

Scavenging rates of surface-level GOM are higher in rain than in snow, while particle-phase mercury

shows the opposite trend (Amos et al., 2012; Cheng et al., 2015; Lombard et al., 2011; Mao et al., 2012;
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Seo et al., 2012; Zhou et al., 2018a). GOM scavenging tends to be dominant for both precipitation types,
however (Seo et al., 2012; Zhou et al., 2018a), and a variety of studies confirm that GOM scavenging is,
in general, more important than particulate scavenging for wet deposition (Bullock et al., 2009; Cheng et
al., 2015; Sakata and Asakura, 2007; Selin and Jacob, 2008). Cheng et al. (2015) found that fine-
particulate PBM and coarse-particulate PBM contributed 8-36% and 5-27%, respectively, depending on
the location, to total wet deposition at nine wet deposition monitoring sites in North America. They
estimated that gaseous Hg" compounds contribute 39-87% to wet deposition. Amos et al. (2012)
showed that model simulations with gas-particle partitioning better predicted wet deposition than

simulations that did not include partitioning behavior.

Several recent papers highlight the influence on wet deposition of deep convective clouds that scavenge
Hg" from the middle and upper troposphere (Holmes et al., 2016; Kaulfus et al., 2017; Selin and Jacob,
2008; Shah and Jaeglé, 2017; Sprovieri et al., 2017). Emphasis has been placed on this phenomenon in
the Gulf of Mexico region (Guentzel et al., 2001; Shanley et al., 2015; Sprovieri et al., 2017), but others
have shown the importance of upper-atmosphere Hg" scavenging on wet deposition in high-elevation
areas (Gerson et al., 2017; Huang and Gustin, 2012; Kaulfus et al., 2017), and throughout the
atmosphere generally (Holmes et al., 2016; Selin and Jacob, 2008). Change to the oxidation capacity of

the atmosphere would affect mercury wet deposition. This is discussed in Section 4.2.4.

3.2. Dry Deposition

Measurement and modeling approaches for quantifying dry deposition of GOM and PBM and air-surface
exchange fluxes of GEM, and field studies measuring GOM and PBM dry deposition and mercury in
litterfall and throughfall were reviewed in detail by Wright et al. (2016). Measurement and modeling

studies of air-surface exchange of GEM were also reviewed by Zhu et al. (2016). Dry deposition velocities
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generated from field measurements were previously documented in Zhang et al. (2009). Future research
needs were recommended in Zhang et al. (2017a). A summary of the major findings from earlier
reviews, as well as recent progress in measurement and modeling studies of dry mercury deposition, are
presented below. Measurement methods for dry mercury deposition are reviewed in Section 5.2.3.
Change to the oxidation capacity of the atmosphere would affect mercury dry deposition. This is

discussed in Section 4.2.4.

3.2.1. Measurement and Modeling Data

Field measurement data reviewed by Wright et al. (2016) showed that median values of GOM plus PBM
dry deposition were on the order of ~10 pg m2 yrtin Asia and ~6 pg m2 yrtin North America. The
difference between the two continents can be explained by the much higher anthropogenic emissions
and thus ambient concentrations in Asia. The ranges of the values were similar between the two
continents, e.g., from ~1.0 to 500 pg m yrl. Few measurements of GOM and PBM dry deposition have

been made in other parts of the world.

Modeled GOM plus PBM dry deposition fluxes (using methods that rely on measured air concentrations)
tend to be in the same range as measurement values (though ambient air measurements of Hg" are
biased low; see Section 5). Modeled GOM plus PBM dry deposition data from Asia, Europe, and North
America ranged from <0.1 to ~400 pg m2 yr! (Wright et al., 2016). Median and mean modeled
deposition were ten times higher in Asia than in Europe and North America, partly due to the higher
ambient concentrations of GOM plus PBM in Asia. In a later study by Wright et al. (2016), multi-year
averages of modeled GOM plus PBM dry deposition fluxes across North America were on the order of
<1- 6 pug m2 yrlwith the exception of a high elevation site, where annual dry deposition was estimated
to be ~60 pg m2yrl. GOM generally contributes more to dry deposition than PBM due to the faster

deposition process of GOM.
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Measurements of GEM fluxes have frequently shown bi-directional exchange features. Similar to GOM
and PBM flux measurements, GEM flux data have mostly been obtained in East Asia and North America,
while some data have been collected in Europe and little is available in other parts of the world. Most
studies have focused on quantifying GEM emissions, rather than deposition because the amount of
mercury emitted from natural surfaces has been estimated to be twice as much of the anthropogenic
emissions globally (Zhu et al., 2016). GEM emission fluxes observed in East Asia are higher than those
observed in the other continents, likely due to the re-emission of previously deposited mercury from

anthropogenic sources (Zhu et al., 2016).

However, more recent studies have shown that Hg® dry deposition may be more important than
previously assumed in earlier studies (Enrico et al., 2016; Obrist et al., 2017; Wright et al., 2016). lJiskra
et al. (2018) hypothesize that one possible reason for this is that mercury deposited as Hg'" to leaf
surfaces is more likely to re-emit than Hg® deposited through stomata (though Hg® has been shown to be
sorbed to leaves via non-stomatal pathways as well; See Arnold et al. (2018) and Stamenkovic and
Gustin (2009)). Net GEM dry deposition over vegetated canopies becomes increasingly important in
regions where mercury input to soil from atmospheric dry and wet deposition of Hg' is low, and thus
mercury emissions from the soil are low. For example, a mass balance study supported by mercury
stable isotope composition measurements revealed that atmospheric mercury deposition to a peat bog
system was dominated by GEM dry deposition (Enrico et al., 2016). Another mass balance study coupled
with comprehensive measurements of mercury stable isotopic signatures in all related media revealed
that higher mercury content in Arctic soil compared to temperate soil was predominantly due to tundra
uptake of GEM (Obrist et al., 2017). Modeling estimates of the dry deposition budget across North
America confirmed that Hg® dry deposition to forest canopies is more important than dry deposition of
GOM plus PBM on an annual basis, and this finding is supported by regional litterfall mercury data

collected across eastern North America (Wright et al., 2016).
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The number of available measurements of mercury in litterfall and throughfall has been increasing.
Mercury content in litterfall and throughfall are generally higher in urban regions of Asia, followed by
remote regions in Asia, then locations in Europe and North America (Wright et al., 2016). Mercury dry
deposition was estimated by Wright et al. (2016) from concurrent measurements of litterfall,
throughfall, and open-space wet deposition for forests with such data. They found that dry and wet
deposition were equally important in the total deposition budget. A comparison of multi-year data of
litterfall and wet deposition across the eastern and mid-western United States also suggests the same

conclusion (Risch and Kenski, 2018).

Considering the importance of litterfall mercury in the dry deposition budget, global mercury deposition
through litterfall was estimated based on the published litterfall mercury data and forest coverage
worldwide (Wang et al., 2016). A total of ~1200 Mg yr! of litterfall mercury was obtained globally, which
was several times higher than the estimated mercury emissions from forest landscapes. Since litterfall
mercury is derived primarily from Hg® uptake through stomata (Zhang et al., 2012a), this suggests that

global forest ecosystems are a strong sink for Hg®.

3.2.2. Emerging Research Activities

The ultimate goal of quantifying atmospheric mercury deposition to various ecosystems is to assess the
impact of mercury sources to human, animal, and ecosystem health (Wright et al., 2018). Thus,
monitoring programs should be designed to better link the sources, transportation, and fates of
atmospheric mercury by concurrently measuring mercury in all the concerned biological media. This has
been done in a few recent studies. In a southwest China watershed, litterfall, throughfall, runoff, and
soil concentrations of total mercury and CHsHg* were sampled for two years (Du et al., 2018), results
from which showed litterfall as the predominant route for both total mercury and CHsHg* to the soil.

The same study also found that total mercury and CHsHg* were concentrated in different media during
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litter decomposition. Also, while a portion of wet-deposited mercury may be lost from the canopy floor
through rainwater runoff, the majority of litterfall mercury is likely to remain on the forest floor for a
long period. Thus, mercury dynamics in the process of litter decomposition is crucial to understanding
the final fate of the dry deposited mercury and its input to soil and downstream aquatic systems in
forest catchments. For example, Zhou et al. (2018b) measured mercury biogeochemical cycling and
fractionation processes in coniferous and broadleaf forests in southwest China by measuring total

mercury, CHsHg", and litterfall biomass in the process of litter decomposition over one year.

4. Spatial and Temporal Distribution

4.1. Spatial Patterns

An extensive review of GEM and GOM measurements over oceans and land was conducted by Mao et
al. (2016). Thus, this section provides only a brief overview of the spatial distribution of atmospheric
mercury. Uncertainty exists about the amount of Hg" collected in GEM measurements, and most GOM
measurements are known to be biased low (Section 5), so some of the information presented is likely

only qualitative.

4.1.1. Marine Environments

Mao et al. (2016) analyzed 50+ measurement campaigns undertaken from 1965 to 2012. Average
concentrations of GEM over the Pacific and Mediterranean Seas were higher than other marine
environments. GEM over the Pacific was elevated due to mercury emissions outflow from Eastern
China. Over the Mediterranean Sea, industrial pollution from Europe, meteorological conditions
conducive to evasion of GEM from surface water, and emissions from shipping ports contributed to

elevated concentrations (Sprovieri et al., 2010). Arctic and Antarctic concentrations of GEM were lower
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owing to the poles’ remoteness from anthropogenic emissions and atmospheric mercury depletion

events (Steffen et al., 2008).

GEM in the northern hemisphere marine atmosphere is higher than the southern hemisphere, due in
part to greater anthropogenic emissions in the northern hemisphere (Mao et al., 2016; Slemr et al.,
2011; Sprovieri et al., 2016; Sprovieri et al., 2010). However, Soerensen et al. (2012) reported that the
hemispheric gradient has decreased, possibly because declining ocean mercury concentrations in the

North Atlantic have significantly reduced GEM evasion in that region.

GOM measurements have covered the Atlantic, Indian, Pacific, Arctic, and Antarctic Oceans, and the
Mediterranean. Concentrations can be extremely high (>1000 pg m?3) at the poles (Mao et al., 2016)
during springtime depletion events that cause rapid conversion of Hg? to Hg" (Steffen et al., 2013).
Arctic mercury depletion events were treated in detail by Steffen et al. (2008), Steffen et al. (2015), and

Dastoor et al. (2015).

4.1.2. Terrestrial Environments

Measurements of GEM and GOM in terrestrial environments have been summarized in previous review
papers (Mao et al., 2016; Sprovieri et al., 2010). The GOM measurements in these reviews were mostly
collected with KCI denuder-based systems, which are biased low (see Section 5). Spatial patterns of
GEM on a regional scale have been analyzed across Canada (Cole et al., 2014), the United States (Amos
et al., 2012; Weiss-Penzias et al., 2016b), the United Kingdom (Brown et al., 2015), and China (Fu et al.,
2015). The survey by Mao et al. (2016) considered 100+ measurement campaigns at continental sites
worldwide that were conducted between 2003 and 2013. The review paper compared GEM and GOM
concentrations by region and by site characteristics and discussed driving mechanisms for the variability

in GEM and GOM. On a global scale, mean GEM concentrations are higher in Asia than in Europe, and
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North America. Urban sites tend to have the highest GEM concentrations. Mean concentrations are

similar among remote, rural and high elevation sites.

Sprovieri et al. (2016) presented spatial patterns in GEM from the Global Mercury Observation System
network. The paper reported 2010-2015 GEM measurements at 27 sites comprising 17 northern
hemisphere sites, five tropical region sites, and five southern hemisphere sites. Their work showed GEM
concentrations decreasing with latitude. They showed that, during 2013-2014, mean GEM
concentrations were ~1.5 ng m3 in the northern hemisphere, ~¥1.2 ng m in the tropics and ~0.9 ng m?3

in the southern hemisphere.

Mao et al. (2016) also reviewed +65 measurement campaigns of GOM that were undertaken between
2003 and 2013. Few measurements of GOM have been reported at continental sites in Europe and the
Southern Hemisphere. Mean GOM concentrations were similar at continental sites in the United States
and Asia. GOM concentrations at continental Canadian sites were lower than those in the United States
and Asia. Maximum concentrations in GOM have reached a few hundred pg m= in Canada and
thousands of pg m3in the United States and Asia. Mean GOM concentrations at urban and high

elevation continental locations were both elevated compared to rural and remote continental sites.

4.1.3. Upper Troposphere and Lower Stratosphere

Vertical distributions of GEM and GOM have been reported from several aircraft measurement studies.
In flights over the southern United States and the North American Arctic, GEM concentrations were
constant from the surface to altitudes of 4-6 km (Brooks et al., 2014; Mao et al., 2010). In the free
troposphere, GEM concentrations were slightly lower than those in the boundary layer (Mao et al.,

2010; Weigelt et al., 2016). Results from transcontinental flights show that GEM concentrations in the
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stratosphere can drop to 0.25-0.7 ng m~ (Slemr et al., 2009; Slemr et al., 2018). Depletion of GEM in

stratospheric air masses was also confirmed in a flight over North America (Lyman and Jaffe, 2012).

GOM concentrations, in contrast, tend to increase with altitude. Brooks et al. (2014) observed a
maximum concentration of 120 pg m™ at 2-4 km above sea level during the summertime over the
southern United States. In upper tropospheric air and air influenced by the stratosphere, GOM
concentrations can reach several hundreds of pg m (Fain et al., 2009; Gratz et al., 2015a; Lyman and

Jaffe, 2012; Shah et al., 2016; Swartzendruber et al., 2006).

4.2. Temporal Trends and Potential Driving Mechanisms

4.2.1. Elemental Mercury Concentrations

Long-term trends in GEM concentrations have been reported for many ground stations, such as in Mace
Head, Ireland; Cape Point, South Africa; Seoul, Korea; Okinawa, Japan, and across North America and the
United Kingdom. These studies examined trends in GEM from the 1990s to as recently as 2016 and
show that GEM concentrations have decreased from the 1990s to 2005-2013 (Brown et al., 2015; Cole
et al., 2014; Ebinghaus et al., 2011; Kim et al., 2016; Martin et al., 2017; Marumoto et al., 2019; Slemr et
al., 2011; Weigelt et al., 2015; Weiss-Penzias et al., 2016b; Zhang et al., 2016). Slemr et al. (2011)
estimated an annual decreasing trend of 1.4% and 2.7% per year in the northern and southern
hemispheres from 1996 to 2009, respectively. GEM concentrations at Mace Head decreased by 1.3%
per year from 1996 to 2013 (Weigelt et al., 2015; Zhang et al., 2016). In the United Kingdom, a decrease
of 21% from 2003 to 2013 equates to ~1.9% per year decrease (Brown et al., 2015). At Canadian sites,
GEM concentrations fell by 0.9% to 3.3% per year since the 1990s based on ten sites with 5 to 15 years
of data (Cole et al., 2014). GEM declines in the Arctic were smaller, ranging from 0.6% to 0.9% per year

(Chen et al., 2015; Cole et al., 2013; Cole and Steffen, 2010). Aside from ground stations, shipboard
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measurements have indicated that GEM decreases of 2.5% per year from 1977 to 2009 over the North
Atlantic (Soerensen et al., 2012). Navratil et al. (2018) showed that mercury concentrations in tree rings
in central and eastern Europe have decreased from 1975 to 2015. The decreasing trend in GEM
estimated using tree ring concentrations as a proxy was similar in magnitude to the observed GEM trend

at Mace Head (Navratil et al., 2018).

Beginning in the early to mid-2000s, several studies have observed a more modest decrease in GEM and
even a constant or increasing trend in some cases. In North America, GEM concentrations showed a flat
or less negative trend from 2008 to 2013 (Weiss-Penzias et al., 2016b). Weigelt et al. (2015) found a
decreasing trend in GEM at Mace Head from 1996 to 2009, but GEM decreased at a slower pace from
2010 to 2013. GEM in Seoul, Korea remained constant from 2004 to 2011 (Kim et al., 2016). Increasing
trends were found at Cape Point, South Africa, and two sites in China during the 2007-2015 and 2002-
2013 periods, respectively (Fu et al., 2015; Martin et al., 2017). Potential explanations for these

temporal trends are discussed in the following sections.

4.2.2. Anthropogenic Emissions

Trends in GEM concentrations have not always been consistent with those of global anthropogenic
emissions (Slemr et al., 2011); however, this comparison depends on the emissions inventory. From
1980 to 2000, global anthropogenic emissions were constant, according to Streets et al. (2017), whereas
for a part of this period (1990 to ~2005) atmospheric GEM concentrations have decreased as mentioned
above. In contrast, a global anthropogenic emissions inventory developed by Zhang et al. (2016) found a
decrease in emissions by 0.5-1.4% per year from 1990 to 2010. Model simulations using this inventory
reproduced the decreasing trends in GEM in North America and Europe from 1990 to 2010. This
inventory accounted for several important changes in emissions: (1) decreased emissions from

commercial products, (2) increased artisanal and small-scale gold mining emissions in developing
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countries, and (3) decreased power plant emissions due to the installation of pollution control devices
and subsequent changes in emissions speciation. The uncertainties in the emissions ranged from -33%
to 60% in the study by Zhang et al. (2016), while a previous emissions inventory showed that the
uncertainties in emissions vary by continent (27-50%) and source type (25% to a factor of 3) (Pacyna et
al., 2010). Therefore, an accurate global anthropogenic emissions inventory is essential for interpreting
trends in atmospheric concentrations and assessing the effectiveness of mercury pollution control
policies. Comparison with regional or local emissions might be more suitable for explaining long-term
concentration trends. Studies in the United Kingdom and northeastern United States found that
regional and local reductions in anthropogenic emissions significantly contributed to long-term declines

in GEM (Brown et al., 2015; Zhou et al., 2017a).

From 2000-2015, there was a slight increase in global anthropogenic emissions (Streets et al., 2017;
Streets et al., 2019), which may have contributed to the slower decline or increasing trend in GEM after
2005. Streets et al. (2019) estimated that global anthropogenic emissions have increased by 1.8% per
year from 2010 (2188 Mg) to 2015 (2380 Mg). Anthropogenic emissions declined in North America and
most of Europe, but increased in Central America, South Asia, and Eastern Africa. The increase in global
anthropogenic emissions is attributed to caustic soda and cement production and artisanal gold mining
in developing countries. The largest emissions in 2015 are from East Asia (Streets et al., 2019).
However, annual anthropogenic emissions in China have stabilized from 2006 to 2014 (Streets et al.,

2019; Wu et al., 2016).

4.2.3. Natural Emissions, Re-emissions, and Sinks

Anthropogenic mercury emissions only make up approximately one-third of the total emissions to the
atmosphere (Pacyna et al., 2016; Slemr et al., 2011). Thus, changes in GEM might not be entirely due to

changes in anthropogenic emissions. Natural emissions and re-emissions comprise 70% of the total
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atmospheric emissions, and 36% of this is from oceans (Pacyna et al., 2016). Soerensen et al. (2012)
observed a decrease in GEM of 2.5% per year over the North Atlantic from 1977 to 2010 and suggested
that the decline was attributed to decreasing mercury concentrations in the ocean (80% decrease since
1980), which reduced evasion of GEM from the ocean. They found this process to be a more important
factor contributing to the decrease in GEM than anthropogenic emissions reductions in North America
and Europe. Possible reasons for the decrease in oceanic mercury include lower Hg" deposition owing
to decreasing Hg" emissions, and a reduction in mercury effluent released to rivers (Soerensen et al.,

2012).

On the other hand, the Arctic has experienced the opposite effect, according to Chen et al. (2015).
Model simulations showed that rising temperatures in the last decade led to fewer depletion events and
subsequently lower Hg" deposition. The increasing temperatures also reduced the amount of sea ice,
which enhanced GEM evasion. The combination of these factors led to a much weaker decreasing trend
in GEM over the Arctic from 2000 to 2009 compared to those of North America and Europe (Chen et al.,
2015). The increasing trend in GEM at Cape Point, South Africa from 2007 to 2015 has been attributed
to biomass burning in the southern hemisphere and the ENSO (EI-Nifio Southern Oscillation) cycle
(Martin et al., 2017). An increase in deposition via vegetation uptake of GEM could also explain the
decrease in GEM concentrations since 1990, according to Jiskra et al. (2018). They noted that net
primary production has been increasing since 1990, and that spatial patterns and seasonal variations in
net primary production and CO, mixing ratios are consistent with those of GEM concentrations (Jiskra et

al., 2018).

4.2.4. Oxidative capacity

Changes in atmospheric oxidant concentrations have the potential to affect long-term trends in Hg®. As

discussed in Section 2, important Hg® oxidants are thought to include Br, O3, OH, and perhaps others
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(H202, NOs, etc.). We provide an overview of trends in atmospheric oxidants to assess their roles in
affecting long-term trends in Hg®. Most studies on the oxidative capacity of the atmosphere have

focused on O3, H,0,, OH, and nitrate radical.

In general, the global trend in tropospheric O; from the preindustrial era to ~2000 is positive (Alexander
and Mickley, 2015; Chan and Vet, 2010; Hartmann et al., 2013; Murray et al., 2014), with one study
suggesting a 24 £ 11% increase since the preindustrial era. Global background Os has continued to
increase recently, though trends can vary by season (Chan and Vet, 2010; Cooper et al., 2012; Zhang and
Jaffe, 2017), and in some areas of Europe and the eastern United States, O3 has decreased due to
regional reductions in precursor emissions (Simon et al., 2014; Yan et al., 2018). A comparison of 16
models suggests an increasing trend for OH of 7.0 + 4.3% from preindustrial times to the present
(Murray et al., 2014). Long-term variability in OH can be largely explained by tropospheric mean O3
photolysis rates, water vapor, and emissions of NOx and reactive carbon (Alexander and Mickley, 2015;
Murray et al., 2014). Global mean OH is projected to increase (Gratz et al., 2015b) by 4-13% by 2050
due to increased water vapor and NOx emissions from lightning, although the increase may be
attenuated by increases in methane (Alexander and Mickley, 2015). Investigators have used ice core
measurements to infer a 50-60% increase in atmospheric H,0, over the past 100-200 years, with the
largest increases observed after 1970 (Alexander and Mickley, 2015). Models suggest H,0, and nitrate
radicals have increased in the present day compared to preindustrial times by 18% and 130%,
respectively (Murray et al., 2014). H,O,trends in the future are expected to track OH radicals, while
trends in nitrate radicals will likely depend on those of NO, emissions (Alexander and Mickley, 2015).
Knowledge of trends in atmospheric halogens is very limited. We are not aware of any information on
the trends in atmospheric bromine. Cuevas et al. (2018) reported a factor of 3 increase in atmospheric

iodine from 1950 to 2010 based on ice core measurements in the North Atlantic.
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Overall, studies point to an increase in the oxidative capacity over the last century, and especially over
the past several decades, which may have decreased Hg® concentrations in the atmosphere. Since these
trends are expected to continue, continued decreases in Hg® can also be expected. Information is
needed about trends in atmospheric Br. Improved understanding of Hg® oxidation mechanisms and

kinetics (Section 2.1) would improve understanding of these phenomena.

5. Measurement Methods

Pandey et al. (2011) and Gustin et al. (2015) reviewed atmospheric mercury measurement methods and
instrumentation. Both included comprehensive reviews of common and newly-developed
measurement techniques. Pandey et al. discussed quality control and calibration considerations for
GEM, and Gustin et al. detailed the challenges with GOM measurements. Reviews by Huang et al.
(2014) and McLagan et al. (2016) focused specifically on passive methods for measurement of
atmospheric mercury concentrations. Wright et al. (2016) reviewed dry deposition, litterfall, and
throughfall methods. Zhang et al. (2017a) discussed problems with current measurement methods and

made recommendations for improvements.

5.1. Monitoring Networks

Stylo et al. (2016) reviewed current atmospheric mercury monitoring networks. Major networks include
the Global Mercury Observation System, the National Atmospheric Deposition Program’s Atmospheric
Mercury Network (mostly in North America), the Asia-Pacific Mercury Monitoring Network, and the
Arctic Monitoring and Assessment Programme. Canada, the United Kingdom, Japan, Korea, and
Australia also operate atmospheric monitoring networks. Mercury wet deposition networks are
operated by the National Atmospheric Deposition Program (North America) and the Global Mercury

Observation System. Recommendations from a number of papers (Kumari et al., 2015; Sprovieri et al.,
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2016; Sprovieri et al., 2010; Stylo et al., 2016; Zhang et al., 2017a) and the Global Mercury Assessment
2018 (UNEP, 2019) find that the spatial coverage of atmospheric mercury measurements is inadequate,
particularly in Latin America, the Caribbean, the Middle East, Africa, Russia, southern Asia, and the
southern hemisphere. Stylo et al. (2016) noted that locations with higher and increasing anthropogenic
mercury emissions, such as in Asia and South America, have relatively few atmospheric mercury
monitoring sites. GEM is the routinely monitored form of atmospheric mercury, whereas there are
fewer measurements of GOM and a scarcity of size-fractionated PBM measurements (Mao et al., 2016;
Sprovieri et al., 2010). As has been highlighted in previous reviews (Fu et al., 2015; Zhang et al., 2017a),
consistent data management practices, such as standard operating procedures, quality control checks
and access to data, between monitoring networks are needed to ensure that all collected data are

intercomparable.

5.2. Current Measurement Methods

5.2.1. Elemental Mercury

The vast majority of recent studies that have measured GEM (without speciation) have used pre-
concentration on gold traps followed by thermal desorption into a cold-vapor atomic fluorescence
detector. Most have used a Tekran 2537 analyzer (Agnan et al., 2018; Denzler et al., 2017; Hoglind et
al., 2018; Howard and Edwards, 2018; Howard et al., 2017; Kamp et al., 2018; Karthik et al., 2017; Liu et
al., 2017; Mao et al., 2017a; Martin et al., 2017; Mason et al., 2017; Nerentorp Mastromonaco et al.,
2017; Obrist et al., 2017; Prete et al., 2018; Read et al., 2017; Sizmur et al., 2017; Spolaor et al., 2018;
Yin et al., 2018; Yu et al., 2018; Zhang et al., 2017a). In some studies, samples were collected manually
on gold traps followed by quantification by atomic fluorescence (Black et al., 2018; Wang et al., 2017;

Zhou et al., 2017b) or atomic absorption (El-Feky et al., 2018), while a few recent studies used a Lumex
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Zeeman atomic absorption analyzer (Kalinchuk et al., 2018a; Kalinchuk et al., 2018b), a Gardis-5 analyzer
(Albuquerque et al., 2017), a laser-induced fluorescence system (Hynes et al., 2017a; Hynes et al.,

2017b), and a mercury lidar system (Lian et al., 2018).

In spite of work that has been undertaken to determine whether Tekran 2537 or similar analyzers
measure total gas-phase mercury or Hg® uncertainty still exists, as discussed by Gustin et al. (2015). A
viable approach for measurement of total mercury is to employ a pyrolyzer that has been tested and
shown to reduce most or all Hg" compounds (e.g., see supplemental information for Lyman and Jaffe
(2012) and supplemental information for Ambrose et al. (2015)) upstream of mercury analyzers.
Quantitative exclusion of PBM from total mercury measurements with impactors or filters upstream of
pyrolyzers is likely impossible, since impactors and filters likely either retain some GOM (Feng et al.,
2000) or release PBM as GOM (Lynam and Keeler, 2002; Lynam and Keeler, 2005; Rutter et al., 2008;
Rutter and Schauer, 2007a), depending on conditions. See Sections 2.4 and 5.2.2 for more discussion of
these phenomena. GOM capture devices upstream of the analyzer can ensure that GEM measurements

sample only Hg®. Section 5.3 provides references for several GOM capture devices.

5.2.2. Speciated Mercury

Many continue to use KCl denuder-based systems (especially the Tekran 1130/1135 speciation system)
to measure GOM, in spite of overwhelming evidence that KCl denuders suffer from a low bias in ambient
air (see reviews by Pandey et al. (2011), Gustin et al. (2015), and Zhang et al. (2017a) and recent
evidence for bias presented by Cheng and Zhang (2016) and Bu et al. (2018)). It is possible that KCI
denuders perform well in some environments, but this has yet to be demonstrated and remains
speculative. Some recent studies have acknowledged the potential for bias in their measurements (Lin
et al., 2019; Liu et al., 2019; Xu et al., 2017; Zhang et al., 2017b; Zhou et al., 2019; Zhou et al., 2018a),

but the majority have not (Castagna et al., 2018; Duan et al., 2017b; Fang et al., 2018; Lin et al., 2019; Lin
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et al., 2017; Shen et al., 2017; Tang et al., 2018). None of these studies incorporated GOM calibrations,
as has been called for repeatedly (Gustin et al., 2015; Jaffe et al., 2014; Lyman et al., 2016; Pandey et al.,
2011; Zhang et al., 2017a). Many KCl denuder-based and other atmospheric measurement studies
indicated they followed operating procedures and quality assurance guidelines established by
measurement networks, including the Global Mercury Observation System (Castagna et al., 2018;
Howard et al., 2017; Karthik et al., 2017; Liu et al., 2019; Martin et al., 2017; Nerentorp Mastromonaco
et al., 2017; Read et al., 2017; Spolaor et al., 2018) and the Atmospheric Mercury Network (Mao et al.,

2017a).

Many recent studies utilized automated Tekran speciation systems to measure PBM (with aerodynamic
diameter <2.5 um), and these are mentioned above. Others used high-volume particle samplers, usually
with quartz fiber filters that were baked before sampling to remove residual mercury (Albuquerque et
al., 2017; Cheng et al., 2017; Duan et al., 2017a; Guo et al., 2017; Han et al., 2018; Li et al., 2017,
Morton-Bermea et al., 2018; Qie et al., 2018; Yu et al., 2019). After sampling, filters were analyzed using
a variety of standard methods. Several studies have shown that these traditional particle sampling
methods lead to biases for particulate mercury. GOM can adhere to filter material or to collected
particulate matter (Gustin et al., 2015; Pandey et al., 2011; Rutter and Schauer, 2007a; Talbot et al.,
2011) and particulate mercury can re-volatilize and be lost from filters during collection (Gustin et al.,
2015; Lynam and Keeler, 2002; Lynam and Keeler, 2005; Rutter et al., 2008), possibly via reduction of
Hg" compounds to Hg° (Malcolm and Keeler, 2007). Particulate-bound mercury measured by Tekran
speciation systems has also been shown to suffer from bias (Gustin et al., 2015), and no particle-bound
mercury measurements are calibrated (Gustin et al., 2015; Jaffe et al., 2014). Unfortunately, no
particulate mercury measurement system has been demonstrated to be free from interferences and

bias.
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5.2.3. Dry Deposition

Most existing measurement methods for quantifying dry deposition and air-surface exchange fluxes of
speciated atmospheric mercury can be grouped into three major categories, including
micrometeorological approaches, dynamic gas flux chambers, and surrogate surface approaches (Wright
etal., 2016; Zhu et al., 2016). Other methods (GEM/???Rn ratio, GEM/CO ratio, enriched isotope tracer)
have also been occasionally used (Zhu et al., 2016). Flux measurements using any of these approaches
are subject to large uncertainties. For example, concentrations at different heights need to be measured
using the micrometeorological approaches, but measuring mercury at low concentrations is challenging
due to technological limitations of the available instruments (Jaffe et al., 2014). Dynamic gas flux
chambers can be deployed over soil, water, low canopy, or tree branches, and have been used for GEM
(Carpi et al., 2007; Eckley et al., 2011; Lyman et al., 2007) and GOM (Miller et al., 2019). The measured
fluxes may not be representative of an entire area, however, due to heterogeneity in land use cover.
Also, different designs inside the dynamic gas flux chambers can cause the measured fluxes to differ by
up to one order of magnitude (Eckley et al., 2010). Surrogate surfaces may not perform the same way as
natural surfaces in collecting mercury, and uncertainties in measured GOM and PBM dry deposition are
larger than a factor of two depending on the selected surrogate surfaces and instrument setup (as
detailed in Wright et al. (2016)). A new surrogate surface sampler was recently developed utilizing a
three-dimensional deposition surface, which is expected to mimic the physical structure of many natural
surfaces more closely than the traditional flat surrogate surface designs (Hall et al., 2017). Collocated
measurements using different techniques should be performed to constrain measurement uncertainties
(Fritsche et al., 2008; Osterwalder et al., 2018; Zhu et al., 2015). Standardized protocols should be

developed for commonly used measurement techniques.
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Measurements of mercury in litterfall and throughfall have been increasingly used to provide knowledge
of mercury deposition over forest canopies. The majorify of mercury in litterfall is considered to be from
stomatal uptake of Hg® (Zhang et al., 2012a) and can be used as a rough and conservative estimation of
atmospheric mercury dry deposition (the portion that is retained in leaves). Mercury in throughfall also
includes a portion of previously dry deposited mercury (the portion that is washed off from the canopy).
Concurrent measurements of litterfall, throughfall, and open-space wet deposition measurements can
be used to estimate dry deposition on seasonal or longer time scales, whereby dry deposition is

approximated as litterfall plus throughfall minus open-space wet deposition (Wright et al., 2016).

Modeling methods for estimating mercury dry deposition either use the inferential approach, which
calculates flux as the product of surface air concentration and modeled dry deposition velocity of
speciated mercury (Engle et al., 2010; Gustin et al., 2012; Lyman et al., 2007; Marsik et al., 2007;
Peterson et al., 2012; Zhang et al., 2012b), or use the bi-directional air-surface exchange model, which
simulates emission from and deposition to land surfaces simultaneously (Baker and Bash, 2012; Xu et al.,
1999). While the inferential approach has been used for GOM, PBM, and GEM, the bidirectional air-
surface exchange approach is generally only used for GEM. Note that flux uncertainties in these
modeling approaches are expected to be on a similar order of magnitude to those of field flux
measurements because models were initially developed and validated using the limited flux

measurements.

5.2.4. Wet Deposition and Cloud/Fog Water Mercury

Unlike methods for measurement of dry deposition, wet deposition measurement methods are well-
established and have been standardized by measurement networks (Prestbo and Gay, 2009; Sprovieri et
al., 2017). Various collectors have been used (Guentzel et al., 1995; Landis and Keeler, 1997; Morrison

et al., 1995; Sakata and Marumoto, 2005), but all involve collection of precipitation through funnels and
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into trace-cleaned bottles, usually with a cover that opens during rain events. Samples are then
analyzed in the laboratory via standard protocols for total, methylated, and/or particulate-bound

mercury.

Wet deposition samples have been collected over different timescales, impacting how data can be
utilized. The National Atmospheric Deposition Program collects weekly samples (Prestbo and Gay,
2009), while the Global Mercury Observation System collects semi-weekly samples at most sites
(Sprovieri et al., 2017). These sampling frequencies provide data that are useful for quantifying total
deposition or understanding longer-term trends (Vijayaraghavan et al.; Weiss-Penzias et al., 2016b). In
some studies, event-based samples, which can be used to understand short-term meteorological
influences and source contributions, have been collected (Hoyer et al., 1995; Keeler et al., 2005; Landing

et al., 2010; Marumoto and Matsuyama, 2014; White et al., 2013).

Cloud and fog water samples are collected by drawing droplet-laden air through Teflon strands and/or
rods. Water adsorbs to the Teflon and runs down into a sample outlet, where it is collected in bottles
(Demoz et al., 1996; Ritchie et al., 2006; Weiss-Penzias et al., 2012). Laboratory analysis methods for fog

and cloud water samples are the same as for wet deposition.

5.3. New and Alternate Methods

McClure et al. (2014) and Gratz et al. (2019) installed a pyrolyzer upstream of a Tekran 2537 mercury
analyzer when sampling the ambient atmosphere, providing clarity about the forms of mercury they
measured (see discussion in the Introduction and Section 5.2.1). Some work has been done recently to
improve Tekran 2537 detection by post-processing detector output (Ambrose, 2017). Srivastava and
Hodges (2018) have developed a laser detection method that could be applied to ambient air, and they

used that method to compare against established vapor pressure-temperature relationships. Their
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measurements were within the range of uncertainty of those reported by Huber et al. (2006) and Quétel
et al. (2016), but were 8.5% higher than those reported by Dumarey et al. (2010). Additional alternative
collection methods have been developed and have potential for ambient air measurement, including
gold nanoparticles followed by atomic fluorescence detection (Bearzotti et al., 2018) and nanofiber

chemosensors (Macagnano et al., 2017a; Macagnano et al., 2017b).

A wide variety of passive samplers are in recent use or under development, with all but one (Fang et al.,
2017) focusing on GEM. Studies used activated carbon (Lin et al., 2017; McLagan et al., 2018), gold
nanoparticles (Papa et al., 2018; Santos et al., 2017), or other substrates (Fang et al., 2017; Lin et al.,

2017; Macagnano et al., 2018) to collect mercury from ambient air.

Several new measurement methods for Hg" have been developed recently. Slemr et al. (2018) reported
aircraft measurements that used quartz wool traps for GOM (see also Lyman and Jaffe (2012)), though
the authors acknowledge a potential for bias under some conditions (Ambrose et al., 2015; Ambrose et
al., 2013; Hynes et al., 2017b). Cation-exchange membranes continue to be used to capture GOM
(Huang and Gustin, 2015; Huang et al., 2015), and recent work has confirmed they perform better than
KCl denuders (Bu et al., 2018) and do not absorb appreciable amounts of Hg® (Miller et al., 2019). A
mercury speciation system that collects total mercury by passing air through a pyrolyzer and oxidized
mercury by passing air through a cation-exchange membrane has been successfully deployed from
aircraft (Ambrose et al., 2015; Gratz et al., 2015a). Cation-exchange membranes may be subject to bias
in some conditions (Huang and Gustin, 2015). Additional information about membrane methods can be
found in Section 2.1.5. Other Hg" collection surfaces, including zirconia (Urba et al., 2017) and KCI-

coated filters and sand (Bu et al., 2018), also show promise.

Marusczak et al. (2016) added mercury in the Tekran speciation system’s flush cycle (flush of zero air

before KCl denuder is heated) to mercury recovered from the denuder and found that this method led
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to comparable results between KCl denuder measurements and measurements made with
polyethersulfone membranes. The cation-exchange membranes mentioned in the previous paragraph
are made of polyethersulfone, but they are also treated with a proprietary process that confers cation
exchange properties. Itis not known how these two membrane types compare with each other, or
whether the use of flush data with denuder desorption data in Tekran speciation systems is an adequate

method to correct biases in speciation system Hg" results.

6. Key Uncertainties and Research Needs

6.1. Oxidation Mechanisms

Several sources of uncertainty around gas-phase mercury speciation and chemistry create a need for
additional work. First, better constraints on reaction kinetics and associated rate constants are needed
to more accurately inform the mechanisms deployed in chemical models. Consistent measurements of
speciated mercury and improved spatiotemporal coverage of those measurements are also needed,
especially since most previous measurements of GOM and PBM have been uncalibrated. This includes
measurements across diverse ambient environments, vertically within the troposphere, and at different
times of the year to capture the impact of meteorological and chemical conditions on speciated mercury

concentrations.

Continued development of measurement techniques that avoid biases from other atmospheric
constituents, and that can identify the chemical composition of GOM, is also needed. These
improvements in measurement methods and spatiotemporal data coverage can more accurately inform
chemical modeling efforts and, in turn, more clearly identify the oxidation mechanism(s) that govern

ambient gaseous mercury chemistry.
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6.2. Particle-phase Processes

While several studies have determined gas-particle partitioning relationships for Hg", these studies were
based on uncalibrated measurements made with methods known to contain bias. While these studies
likely capture the qualitative aspects of Hg" gas-particle partitioning, calibrated, unbiased measurements

of gas- and particle-phase Hg" are needed to improve quantitative understanding of this phenomenon.

The relationship between aerosol particle size distribution and particle-bound Hg" concentrations is an
area of emerging research, especially in urban environments where particle loadings are high. Currently,
little knowledge exists about the different formation mechanisms of particle-bound Hg", whether from
direct emissions or through adsorption of gas-phase mercury on preexisting particles. A better
understanding of the growth velocity of particle-bound Hg" during haze days in megacities such as
Shanghai is of the utmost importance, since PBM has been observed to be enriched in accumulation

mode particles, and this size class is the most relevant in terms of human health effects.

6.3. Cloud Chemistry

Uncertainty exists regarding the aqueous chemistry of CHsHg" in cloud and fog droplets. There is
currently no accepted mechanism of CHsHg* formation from inorganic mercury through an abiotic
mechanism within a hydrometeor, and more work is needed in this area, both in the laboratory and the
field. Also, additional measurements of CHsHg" in marine clouds and fog are needed to determine a
possible source from oceanic emissions of CH3HgCHs. Measurements of CHsHg* in clouds, fog, and rain
affected by urban emissions could help elucidate potential pathways of CHsHg* abiotic synthesis in

polluted environments.
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6.4. Dry Deposition

Stable isotope and flux studies have shown that Hg® dominates total dry deposition in some
environments. Direct measurements of Hg" deposition have been extremely few, however (surrogate
surfaces, deposition models, and throughfall measurements do not directly detect Hg" surface fluxes to
natural surfaces). Direct flux measurements of Hg" are needed, but may be impractical due to
technological limitations. Alternatively, simultaneous quantification of Hg flux using multiple existing
methods (GEM air-surface exchange, surrogate surfaces, litterfall, throughfall, inferential models) will
likely better constrain method uncertainties than using any single method and may provide a more

complete picture of mercury dry deposition/air-surface exchange processes.

6.5. Spatial and Temporal Trends

In the last ten years, GEM concentrations have decreased modestly in many areas, but have been
increasing in some regions. Climates, emission sources, and atmospheric composition will continue to
change, and continuation of globally-distributed long-term measurements is needed to track these
trends, identify persistent and new sources of mercury, and assess the efficacy of mercury pollution
control policies. The impact that climate change may have on the mercury biogeochemical cycle is at
present highly speculative (Krabbenhoft and Sunderland, 2013; Obrist et al., 2018; Selin, 2014; Stern et

al., 2012).

6.6. Measurement Techniques

Many atmospheric mercury measurements have been made with inadequate specificity and insufficient
field validation. This is true for measurements that have targeted Hg® and those that have targeted gas-

and particle-phase Hg". Future mercury measurements must use methods wherein the captured species
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are clearly and quantitatively understood. Many emerging techniques and modifications of existing
techniques appear able to meet this need. Future measurements must also be supported by routine
calibration checks in ambient air in real field conditions. Field calibration techniques are readily
available for Hg®, are becoming available for gas-phase Hg", and are unavailable (to our knowledge) for

particle-phase Hg".
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