

1 An Updated Review of Atmospheric Mercury

2 Seth N. Lyman,^{a,b} Irene Cheng,^c Lynne E. Gratz,^d Peter Weiss-Penzias,^{e,f} Leiming Zhang^c

3 ^aBingham Research Center, Utah State University, 320 N Aggie Blvd., Vernal, Utah, U.S.A.

4 ^bDepartment of Chemistry and Biochemistry, Utah State University, 4820 Old Main Hill, Logan, Utah,
5 U.S.A.

6 ^cAir Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto,
7 Ontario, Canada

8 ^dEnvironmental Studies Program, Colorado College, 14 East Cache la Poudre St., Colorado Springs, CO,
9 U.S.A.

10 ^eChemistry and Biochemistry Department, University of California, Santa Cruz, 1156 High St, Santa Cruz,
11 California, U.S.A.

12 ^fMicrobiology and Environmental Toxicology Department, University of California, Santa Cruz, 1156 High
13 St, Santa Cruz, California, U.S.A.

14

15 *Corresponding author, seth.lyman@usu.edu, +14357221740

16

17 ABSTRACT

18 The atmosphere is a key component of the biogeochemical cycle of mercury, acting as a reservoir,
19 transport mechanism, and facilitator of chemical reactions. The chemical and physical behavior of
20 atmospheric mercury determines how, when, and where emitted mercury pollution impacts
21 ecosystems. In this review, we provide current information about what is known and what remains
22 uncertain regarding mercury in the atmosphere. We discuss new ambient, laboratory, and theoretical
23 information about the chemistry of mercury in various atmospheric media. We review what is known
24 about mercury in and on solid- and liquid-phase aerosols. We present recent findings related to wet and
25 dry deposition and spatial and temporal trends in atmospheric mercury concentrations. We also review

26 atmospheric measurement methods that are in wide use and those that are currently under
27 development.

28

29

30 **GRAPHICAL ABSTRACT**

31

32 **KEYWORDS**

33 chemistry, deposition, gas-particle partitioning, oxidized

34

35 **1. Introduction**

36 Mercury is a potent toxicant that impacts human (Bernhoft, 2012; Houston, 2011; Mergler et al., 2007)
37 and environmental health (Henny et al., 2002; Spry and Wiener, 1991; Warnick and Bell, 1969; Wright et
38 al., 2018). Although exposure of humans and wildlife to toxic levels of mercury typically occurs through
39 consumption of contaminated food (Castro-González and Méndez-Armenta, 2008; Oken et al., 2005),
40 most anthropogenic mercury pollution is emitted into the atmosphere and enters ecosystems via
41 atmospheric deposition (Driscoll et al., 2013). Emitted gas-phase elemental mercury, which is relatively

42 inert, can be transported globally (Ebinghaus et al., 2009; Sprovieri et al., 2016; Sprovieri et al., 2010)
43 before it is taken up by plants (Wright et al., 2016) or soils (Gustin et al., 2008) or oxidized in the
44 atmosphere (Jiao and Dibble, 2017a; Lam et al., 2019; Shah et al., 2016). Emissions of oxidized mercury
45 compounds have a more local impact than elemental mercury (Fu et al., 2015; Weiss-Penzias et al.,
46 2011), because they are more reactive, more water-soluble, and thus, deposit more quickly (Lin et al.,
47 2006). Chemical and physical transformations of atmospheric mercury are often reversible. In some
48 atmospheric environments, including polar spring (Steffen et al., 2015), the upper atmosphere (Lyman
49 and Jaffe, 2012; Slemr et al., 2018), and perhaps polluted urban areas (Chen et al., 2016), elemental
50 mercury can become oxidized relatively quickly. Once oxidized, mercury compounds dynamically
51 partition between the gas and aerosol phases (Amos et al., 2012; Cheng et al., 2014). Furthermore, they
52 are readily reduced back to elemental mercury from either phase (Landis et al., 2014; Saiz-Lopez et al.,
53 2018) and, at least in cloud and fog water, can undergo a variety of other chemical transformations (Li et
54 al., 2018; Lin and Pehkonen, 1999). The concentrations and speciation of mercury in the atmosphere
55 depend on proximity to sources (Fu et al., 2015), availability of oxidants (Obrist et al., 2011), aerosol
56 concentrations and properties (Malcolm et al., 2009), regional and global-scale meteorology (Holmes et
57 al., 2016), and surface conditions (Jiskra et al., 2018).

58 Ultimately, the fate of all mercury emitted to the atmosphere is to deposit to ecosystems. Elemental
59 mercury exchanges dynamically with plant stomata and soils (Eckley et al., 2011; Howard and Edwards,
60 2018; Obrist et al., 2017; Yu et al., 2018). Oxidized mercury compounds, whether in the gas or aerosol
61 phase, can be taken up by atmospheric water (Sheu and Lin, 2011; Zhou et al., 2018a) and deposited in
62 precipitation (Kaulfus et al., 2017; Zhou et al., 2018a) or undergo dry deposition to terrestrial and
63 aquatic surfaces (Sather et al., 2013; Wright et al., 2016). Mercury deposited to the terrestrial
64 environment can cause environmental harm as it is transported to aquatic systems (Faïn et al., 2011;
65 Grigal, 2002). In the aquatic environment, it can be methylated (Heyes et al., 2006; Monperrus et al.,

66 2007) and then bioaccumulated and biomagnified in the aquatic food chain (Hammerschmidt and
67 Fitzgerald, 2006; Schwindt et al., 2008). Human or animal consumption of high trophic-level fish
68 (Bernhoft, 2012) or other foods that have been contaminated with mercury (Barrett, 2010; Li et al.,
69 2010; Li et al., 2012; Zhang et al., 2010; Zhao et al., 2019) can lead to toxic effects.

70 The purpose of this work is to present an updated review of the behavior and chemistry of mercury in
71 the atmosphere. Many reviews have already been published that cover various aspects of this topic.
72 These are referenced in the relevant sections below. Our goal is to provide updates and additions to,
73 rather than a reproduction of, these existing reviews and to underscore areas where uncertainty or lack
74 of consensus exists. We focus in particular on gas and aerosol phase chemistry, atmospheric deposition,
75 spatial and temporal trends, and measurement methods.

76 Some topics and sub-topics discussed herein contain more depth because they have not, to our
77 knowledge, been reviewed before. For other topics, we only provide overviews and highlights, since
78 extensive reviews already exist. Except in the context of its relation to spatial and temporal trends
79 (Section 4), we do not discuss emissions to the atmosphere, since this will be the subject of a separate
80 article in this issue.

81 Acronyms and abbreviations in the atmospheric mercury literature have been used inconsistently. We
82 use chemical formulas in this work wherever possible to avoid confusion. Oxidized mercury
83 measurements contain bias and are largely operationally-defined (Section 5.2.2), however, so we use
84 the less-specific acronyms GOM (gas-phase oxidized mercury) and PBM (particulate-bound mercury)
85 when describing these measurements. We use Hg^{II} or full chemical formulas instead when certainty
86 exists about chemical formulas or oxidation states. We use Hg^{2+} when discussing oxidized mercury
87 compounds or ions in the aqueous phase.

88 Atmospheric mercury concentrations are typically reported in units of ng or pg m⁻³, with the volume
89 measurement made at IUPAC standard conditions (Nic et al., 2005). We follow this convention in this
90 work.

91 Also, it remains unclear whether Tekran 2537 and similar mercury analyzers without upstream
92 processing equipment measure total gas-phase mercury or only elemental mercury. Thus, these
93 measurements are also operationally defined. We use the acronym GEM (gas-phase elemental
94 mercury) to describe them, though they likely include GEM and some portion of Hg^{II} compounds that
95 exist in the atmosphere, and the amount of Hg^{II} they include likely depends on the sampling
96 configuration and the chemical and physical conditions of the atmosphere. Also, when KCl denuders are
97 used upstream of elemental mercury analyzers, some of the captured Hg^{II} is reduced to elemental
98 mercury and measured in that form (Lyman et al., 2010). Some have used the acronym TGM (total
99 gaseous mercury), rather than GEM, but, to our understanding, no information exists about the
100 percentage of gas-phase Hg^{II} that is analyzed by elemental mercury analyzers with an upstream KCl
101 denuder or without upstream sample processing. Many have asserted that this issue is inconsequential,
102 because atmospheric Hg^{II} concentrations are low relative to Hg⁰ (Ci et al., 2011; Fu et al., 2012a), but this
103 assertion has been shown to be inaccurate in some environments (Fu et al., 2015; Obrist et al., 2011;
104 Swartzendruber et al., 2006; Weiss-Penzias et al., 2009), especially when the low bias in KCl-denuder
105 based GOM measurements is taken into account (Huang et al., 2013; Lyman et al., 2016). Thus, while
106 we use the acronym GEM to describe these measurements, we acknowledge that it doesn't describe
107 most measurements reviewed herein with complete accuracy. See Section 5 for more information.

108 **2. Gas and Particle-phase Chemistry**

109 Si and Ariya (2018) reviewed the recent advances in atmospheric mercury chemistry, considering efforts
110 to determine Hg⁰ oxidation pathways, aqueous reduction of Hg^{II} compounds, and heterogeneous

111 mercury chemistry. Other relevant and recent reviews include Durnford and Dastoor (2011), Subir et al.
112 (2011), Subir et al. (2012), Gustin et al. (2015), Ariya et al. (2015), and Mao et al. (2016). Diagrams of
113 many of the relevant processes are available in Subir et al. (2011) and Si and Ariya (2018).

114 **2.1. Gas-phase Oxidation**

115 Elemental mercury oxidation is a key facet of the mercury biogeochemical cycle, given the relative
116 lifetimes and solubility of mercury in its different forms. Hg^0 persists in the atmosphere long enough to
117 be transported globally, whereas Hg^{II} compounds are generally more water-soluble and thus more
118 readily removed from the atmosphere through wet and dry deposition (Driscoll et al., 2013). As such,
119 the conversion from Hg^0 to Hg^{II} plays a key role in atmospheric and biogeochemical Hg cycling. Yet,
120 questions remain as to the dominant oxidation pathway(s) in the atmosphere, largely due to
121 uncertainties around the kinetics associated with proposed mechanisms, an inability to determine the
122 chemical form of GOM in ambient air, and the validation of chemical models against measurements
123 made with known interferences (Obrist et al., 2018; Si and Ariya, 2018). Here we review the proposed
124 oxidation pathways, considering the most recent studies to report on their kinetics and viability to
125 contribute to ambient mercury chemistry. Tables summarizing the latest kinetics on gaseous mercury
126 redox chemistry are provided in Subir et al. (2011) and Si and Ariya (2018), including experimentally- or
127 theoretically-determined rate constants for each reaction and citations for the work that determined
128 them.

129 **2.1.1. O_3/OH**

130 Oxidation by O_3 and OH were once widely assumed to be the dominant oxidation mechanisms for
131 ambient Hg^0 (Calvert and Lindberg, 2005). These mechanisms continue to be routinely employed in
132 chemical models used to investigate mercury cycling and deposition (Cohen et al., 2016; De Simone et

133 al., 2017; Pacyna et al., 2016). Several publications have reported the associated kinetics for oxidation
134 by O₃ (Hall, 1995; Pal and Ariya, 2004b; Rutter et al., 2012; Snider et al., 2008) and OH (Miller et al.,
135 2001; Pal and Ariya, 2004a; Sommar et al., 2001), with a range of rate constants determined at
136 atmospherically relevant conditions (Si and Ariya, 2018). Some have argued, however, that these
137 reactions are irrelevant in the ambient atmosphere (Calvert and Lindberg, 2005; Hynes et al., 2009).
138 Recent work on Hg⁰ oxidation by O₃ and OH has focused on the incorporation of these mechanisms and
139 their associated kinetics into chemical models and the validation of model output against available
140 measurements, which has continued to inform the role that O₃/OH oxidation may play in the
141 atmosphere (Section 2.1.4).

142 *2.1.2. Bromine*

143 Bromine-initiated oxidation has been given a great deal of attention in the last decade as another
144 important gas-phase mechanism. Br oxidation is thought to proceed by a two-step mechanism, in which
145 gaseous Hg⁰ reacts with photolytically-produced atomic Br to produce the unstable product HgBr that
146 can either dissociate back to Hg⁰ or react with other species (such as Br, OH, BrO, HO₂, or NO₂) to form
147 inorganic Hg^{II} compounds (Dibble et al., 2012; Dibble and Schwid, 2016; Goodsite et al., 2004; Holmes et
148 al., 2010; Horowitz et al., 2017; Jiao and Dibble, 2017b). The experimentally- and theoretically-
149 determined reaction rate constants for this mechanism also vary widely (Si and Ariya, 2018; Subir et al.,
150 2011), and a range of rate constants have been used (Shah et al., 2016). Naturally, the chemical form of
151 the resulting Hg^{II} compound is dependent on the radical species that participates in the second step of
152 the reaction, but at this time no method exists to determine the chemical composition of GOM. Wang
153 et al. (2014a) argued that NO₂ and HO₂ could carry out the second step of the Br-induced oxidation
154 pathway in the marine boundary layer. The reaction of HgBr with NO₂ is proposed to produce either
155 BrHgNO₂ or BrHgONO, while the reaction of HgBr with HO₂ produces BrHgHO₂. The kinetics of these

156 secondary reactions were recently investigated for the first time using computational chemistry by Jiao
157 and Dibble (2017a).

158 *2.1.3. Other Potential Oxidants: Cl, H₂O₂, and NO₃*

159 While most recent work has focused on O₃, OH, and Br-induced oxidation chemistry, a small number of
160 other oxidants have also been proposed (Pacyna et al., 2016; Si and Ariya, 2018). Cl-initiated Hg⁰
161 oxidation likely also proceeds by a two-step mechanism with HgCl as the intermediate that is oxidized in
162 the second step by NO₂, HO₂, ClO, or BrO (Sun et al., 2016). Tokos et al. (1998) provided laboratory
163 measurements of the rate constant for gaseous Hg⁰ oxidation by hydrogen peroxide (H₂O₂). The nitrate
164 radical (NO₃) has also been proposed as a potential oxidant of Hg⁰ (Gustin et al., 2013; Lin and
165 Pehkonen, 1999; Peleg et al., 2015). Hynes et al. (2009) suggested the reaction is highly endothermic
166 and not atmospherically viable, while Dibble et al. (2012) used theoretical calculations to suggest that
167 NO₃ does not form strong bonds with Hg⁰ and thus is unlikely to initiate gas-phase oxidation. While NO₃
168 may not be capable of initiating Hg⁰ oxidation, Si and Ariya (2018) posited that it could be involved in the
169 secondary reaction of Hg^I to Hg^{II} that is initiated by another oxidant such as Br or OH. Due to large
170 uncertainties around the kinetics of these other oxidation mechanisms and/or questions of atmospheric
171 viability, these mechanisms have not been as thoroughly investigated in chemical modeling studies.

172 *2.1.4. Are Bromine Radicals the Globally Dominant Oxidant?*

173 The idea that there may be a globally-dominant oxidation mechanism for atmospheric mercury remains
174 a disputed topic in the mercury research community, largely due to uncertainties around reaction
175 kinetics and a lack of reliable measurements with high spatiotemporal coverage accompanied by
176 measurements of potentially relevant oxidants (Obrist et al., 2018; Pacyna et al., 2016; Si and Ariya,
177 2018; Travnikov et al., 2017). As noted above, oxidation of Hg⁰ by O₃ and OH remains a common

178 pathway in many global and regional chemical models (De Simone et al., 2014; Gencarelli et al., 2017;
179 Kos et al., 2013; Pacyna et al., 2016). Though the gas-phase reaction of Hg^0 with these oxidants was also
180 suggested to be too slow to act as the dominant oxidation mechanism in the atmosphere (Driscoll et al.,
181 2013; Hynes et al., 2009; Subir et al., 2011), some recent modeling studies have still found good
182 agreement with observed ambient GEM and mercury wet deposition when employing these
183 mechanisms (Travnikov et al., 2017; Weiss-Penzias et al., 2015).

184 On the other hand, Holmes et al. (2010) proposed that Br-induced oxidation is the globally-dominant
185 oxidation pathway, and some global models have continued with this assumption (Amos et al., 2012;
186 Horowitz et al., 2017). The Br-induced oxidation mechanism has been observed with measurements and
187 chemical models to drive gaseous mercury oxidation in certain environments, including the marine
188 boundary layer (Holmes et al., 2009; Wang et al., 2014a), the tropical and subtropical free troposphere
189 (Gratz et al., 2015a; Shah et al., 2016), in polar regions (Brooks et al., 2006; Goodsite et al., 2004; Jiao
190 and Dibble, 2017b; Steffen et al., 2008), and over the Dead Sea (Obrist et al., 2011) where halogen
191 species such as Br are abundant. It remains less clear what role this mechanism plays in the continental
192 free troposphere or boundary layer.

193 Several recent regionally-focused papers have attempted to address the question of a dominant
194 mercury oxidant. Ye et al. (2016) used a chemical box model to simulate ambient mercury
195 concentrations at marine, coastal, and inland sites in the Eastern United States. They found Br-initiated
196 oxidation to be important at the marine site, but O_3/OH oxidation to better explain observations at
197 coastal and inland sites. They also suggested the possibility of nighttime H_2O_2 oxidation at the inland
198 site. Weiss-Penzias et al. (2015) applied the GEOS-Chem global chemical model alternately with the Br
199 mechanism and O_3/OH mechanism to ambient mercury measurements from several high elevation sites
200 (four in the western United States and one in Asia) and found varying results, in part concluding that

201 neither mechanism alone could accurately explain the observations. Wang et al. (2014a) concluded that
202 while Br was the primary oxidant in the marine boundary layer, neither oxidation by Br nor by O₃/OH
203 alone could reproduce observations.

204 In a comparative modeling study, Travnikov et al. (2017) sought in part to identify the role of the
205 aforementioned oxidation pathways. They found that the Br mechanism was able to reproduce the
206 observed seasonal variation in the GOM-to-GEM ratio in the near-surface layer, but did not accurately
207 simulate the timing of seasonal wet deposition patterns in North America and Europe. In contrast, OH-
208 driven oxidation alone simulated the range and amplitude in mercury observations but shifted the
209 seasonal variability, and the O₃ mechanism alone did not simulate significant seasonal variability as is
210 seen in observations. These results suggested the possibility for more complex oxidation chemistry and
211 multiple oxidation pathways in different parts of the atmosphere and under different atmospheric
212 conditions (Travnikov et al. (2017)). Field studies that utilized thermal desorption methods have come to
213 similar conclusions (Gustin et al., 2016; Huang et al., 2017).

214 Given this recent work, the idea of a globally dominant oxidant remains in question. In fact, the leading
215 train of thought now appears to lean more toward the notion that gaseous mercury oxidation is carried
216 out by more complex chemical mechanisms and multiple oxidation pathways (in the gas phase and on
217 surfaces) that become more or less dominant by location and season (Pacyna et al., 2016; Travnikov et
218 al., 2017; Wang et al., 2015; Weiss-Penzias et al., 2015). It may, for example, be the case that the O₃/OH
219 mechanism is still relevant in certain environments (such as the continental boundary layer) even
220 though uncertainties in the associated kinetics and atmospheric viability remain, while the Br-induced
221 mechanism dominates in other environments such as the marine boundary layer, the subtropical free
222 troposphere, and polar regions; alternatively or additionally, there may be a two-step mechanism

223 initiated by one oxidant but carried forward by a different species depending on the location and/or
224 time of year (Horowitz et al., 2017; Pacyna et al., 2016; Si and Ariya, 2018; Travnikov et al., 2017).

225 An underlying source of uncertainty in all of these studies is that most of the work done to determine
226 the relevant oxidation pathways comes from chemical modeling work, wherein the included chemical
227 reactions have large and varying uncertainties around their associated kinetics (Si and Ariya, 2018).

228 Moreover, those model outputs are being compared predominantly with surface observations of GOM
229 that have known low bias due to interferences from O₃ and water vapor (Gustin et al., 2015; Jaffe et al.,
230 2014; Lyman et al., 2010; McClure et al., 2014). These circumstances undoubtedly limit the current
231 ability to ascertain the chemical mechanisms that govern mercury oxidation on local, regional, or global
232 scales.

233 2.1.5. *Chemical Composition of Gaseous Oxidized Mercury*

234 Another limitation in the current understanding of gaseous mercury chemistry is a lack of knowledge
235 about the chemical form(s) of GOM in the atmosphere. Current ambient air measurement techniques
236 operate by quantifying total GOM or by separating the gaseous from the particle-bound forms of
237 oxidized mercury, but the actual molecular forms of oxidized mercury cannot currently be distinguished.

238 Ambient GOM is believed to exist as Hg^{II}, with the assumption that Hg^I compounds are highly unstable
239 and thus reduces back to Hg⁰ or is further oxidized to Hg^{II}. Recent work using the University of Nevada
240 Reno Reactive Mercury Active System (UNRRMAS), which collects GOM onto nylon or cation exchange
241 membranes that are later analyzed by thermal desorption, has identified Hg^{II} compounds in ambient air
242 that match the thermal desorption patterns of HgBr₂, HgCl₂, HgO, Hg(NO₃)₂, and HgSO₄ (Gustin et al.,
243 2016; Huang et al., 2017). A study that used this method in Nevada found a prevalence of thermal
244 desorption profiles that match halogen-containing species at a high-elevation site, nitrogen- and
245 oxygen-containing species at an urban site (Gustin et al., 2016). This method currently requires

246 sampling onto membranes for 1-2 weeks to collect sufficient sample for analysis, making source or air
247 mass characterization challenging. Also, the possibility exists that mercury or membrane chemistry
248 changes during sampling, impacting thermal desorption results, and overlapping desorption profiles
249 have the potential to be misinterpreted (Though work to answer these questions is underway. See
250 Gustin et al. (2019)). Jones et al. (2016) and Deeds et al. (2015) have developed mass spectrometry
251 systems to identify oxidized mercury compounds. Both groups successfully identified mercury halides in
252 laboratory tests, but identification in ambient air has proven more difficult.

253 **2.2. Gas and Aerosol-phase Reduction**

254 Hg^{II} reduction has been reported in coal-fired power plant plumes (Edgerton et al., 2006; Landis et al.,
255 2014), and on particle surfaces, including clouds and aerosols with many different chemical
256 compositions (Ariya et al., 2015; Horowitz et al., 2017; Subir et al., 2012; Tacey et al., 2016; Tong et al.,
257 2013; Tong et al., 2014). Aqueous chemical reactions can occur on or within solid or liquid aerosols,
258 including mercury complex formation, and some of these reactions may allow mercury to be reduced to
259 the elemental form. In the aqueous phase, Hg²⁺ forms complexes with various ligands, such as sulfite,
260 chloride, and other halides. In the presence of UV, some Hg²⁺ complexes can undergo photoreduction
261 (Subir et al., 2012; Ariya et al., 2015). Malcolm et al. (2007) suggested that particle-to-gas partitioning
262 via reduction of Hg^{II} played a role in the loss of mercury collected on filter pack samples due to exposure
263 of the filter packs to acidic gases and high relative humidity conditions in coastal environments. Under
264 these conditions, Hg²⁺ forms complexes with sulfite in the aqueous phase that dissociates rapidly to Hg⁺
265 and then is lost as Hg⁰. More information about mercury chemistry in the atmospheric aqueous phase is
266 given in Section 2.6.

267 The inclusion of reduction processes in models has resulted in improved simulations of surface
268 concentrations and deposition fluxes (de Foy et al., 2016; Holmes et al., 2010; Lohman et al., 2006;
269 Pongprueksa et al., 2008; Zhang et al., 2012c). Many current chemical transport models assume that
270 Hg^{2+} reduction occurs in the aqueous phase within clouds (Horowitz et al., 2017; Shah et al., 2016).
271 However, a recent study looked at photoreduction pathways of atmospheric Hg^{II} compounds, showing
272 that irradiation experiments with rainwater do not support fast aqueous-phase Hg^{II} photoreduction
273 (Saiz-Lopez et al., 2018). In related work, Sitkiewicz et al. (2016) and Sitkiewicz et al. (2019) calculated
274 absorption cross-sections for many mercury compounds. Saiz-Lopez et al. (2018) suggest that arbitrarily
275 scaling up aqueous photolytic reduction rates (Horowitz et al., 2017) is inappropriate since measured
276 photoreduction rates in atmospheric water are low. Using calculated absorption cross-sections to infer
277 the corresponding gas-phase photoreduction rates for the main mercury compounds thought to be in
278 the atmosphere, Saiz-Lopez et al. (2018) and Saiz-Lopez et al. (2019) show that fast gas-phase photolysis
279 of Hg^{I} intermediates and Hg^{II} compounds dominates atmospheric mercury reduction and leads to a
280 factor-of-two increase in the modeled global atmospheric mercury lifetime. They further postulate that
281 relatively low photoreduction rates for HgBrOH and HgBr_2 allow these compounds to dominate
282 atmospheric Hg^{II} composition.

283 **2.3. Heterogeneous Oxidation**

284 Subir et al. (2012) and Ariya et al. (2015) suggested that the importance of heterogeneous chemistry in
285 atmospheric mercury cycling, including heterogeneous oxidation, has been underappreciated and
286 understudied. Gustin et al. (2013) suggested that heterogeneous reactions with aerosols and/or
287 manifold walls could explain oxidized mercury behavior during the RAMIX measurement
288 intercomparison study. It is well known that Hg^0 can be oxidized and undergo complex chemical
289 transformations in the aqueous phase, likely on deliquesced particulate matter as well as on cloud and

290 fog droplets (see Sections 2.2 and 2.6), but we discuss here the possibility of oxidation on aerosols more
291 generally. Many have argued that gas-phase mercury oxidation by O_3 is unlikely to occur in the
292 atmosphere (Section 2.1.1), but Calvert and Lindberg (2005) argued that the process could be favorable
293 if mediated by particle surfaces (see also Seigneur et al. (2006)). It is also possible that Hg^0 or unstable
294 Hg^I compounds could come in contact with aerosol surfaces, and that the aerosol surfaces could
295 mediate an oxidation reaction. The supposed product of the reaction of O_3 with Hg^0 is HgO (Pal and
296 Ariya, 2004b), and because this compound is not volatile (Lin and Pehkonen, 1999), the reaction
297 proposed by Calvert and Lindberg would lead to an increase in particle-bound mercury. If a different
298 reaction led to the formation of more volatile Hg^{II} compounds, those compounds could subsequently
299 transfer into the gas phase (Section 2.4). To our knowledge, this idea is completely theoretical, with no
300 field or laboratory studies showing conclusive evidence of aerosol-mediated mercury oxidation
301 reactions. Such studies are called for.

302 **2.4. Gas-Particle Partitioning**

303 In addition to primary emissions of particles that contain mercury, particulate-bound mercury can form
304 when gas-phase mercury can sorb to particles in the ambient atmosphere. While adsorption of Hg^0 to
305 particulate matter is believed to be negligible, gas-particle partitioning occurs for semi-volatile gas-
306 phase Hg^{II} (Seigneur et al., 1998). This partitioning process is dependent upon several factors, including
307 the air temperature, particle composition, and the existence of an aerosol aqueous phase.

308 *2.4.1. Temperature dependence*

309 Since Hg^{II} compounds are non-volatile or semivolatile (Lin and Pehkonen, 1999; Lin et al., 2006), they
310 partition to the particle phase at low temperatures and shift to the gas phase at high temperatures.
311 Several studies have derived gas-particle partitioning models for Hg^{II} as a function of air temperature. A

312 linear regression model was previously used to develop gas-particle partitioning relationships for other
313 semi-volatile organic compounds, e.g., PAHs (Pankow, 1991; Pankow, 1992), and is expressed as follows:

314
$$\log(1/K_p) = a + b(1/T)$$

315 K_p is a partition coefficient that quantitates the gas-particle partitioning of Hg^{II}, T is the temperature in
316 Kelvin, and a and b are the y-intercept and slope, respectively. K_p has been computed as shown below
317 using PBM, GOM and total particulate matter (Rutter and Schauer, 2007a; Rutter and Schauer, 2007b) or
318 particulate matter less than 2.5 μm in aerodynamic diameter (PM_{2.5}) (Amos et al., 2012; Cheng et al.,
319 2014), as:

320
$$K_p = \frac{PBM/TPM}{GOM}$$

321 where TPM is total particulate matter. While K_p is the most common gas-particle partitioning
322 parameter, another measure of gas-particle partitioning is the fraction of PBM in total oxidized mercury
323 (GOM+PBM) (Cheng et al., 2014), which was adopted from gas-particle partitioning models of water-
324 soluble organic compounds (Hennigan et al., 2008).

325 As shown in Table 1, the slopes and y-intercepts of gas-particle partitioning equations vary among
326 sampling locations. The slope can be sensitive to the aerosol composition, and variation in the y-
327 intercept may be due to differences in particle sizes and number concentrations (Rutter and Schauer,
328 2007a). Because GOM measurements are biased low, and because the extent of the bias changes with
329 atmospheric conditions (Lyman et al., 2016; McClure et al., 2014), the values in Table 1 are likely to
330 contain bias.

331 **Table 1: Temperature-dependent gas-particle partitioning models for Hg^{II}. K_p is the gas-particle partition**
 332 **coefficient and T is the temperature in Kelvin.**

Model	Type of data	Reference
$\text{Log}(1/K_p) = 15 - 4250(1/T)$	Field data from 1 site	Rutter and Schauer (2007a)
$\text{Log}(1/K_p) = 10 - 2500(1/T)$	Field data from 5 sites	Amos et al. (2012)
$\text{Log}(1/K_p) = 12.7 - 3485.3(1/T)$	Field data from 2 sites	Cheng et al. (2014)
$\text{Log}(1/K_p) = 13.5 - 3362.7(1/T)$	Field data from 1 site	Lee et al. (2016)
$\text{Log}(1/K_p) = 12 - 3092(1/T)$	Field data from 1 site	Zhang et al. (2017b)
$\text{Log}(1/K_p) = 19 - 5720(1/T)$	Lab-generated ammonium sulfate	Rutter and Schauer (2007a)
$\text{Log}(1/K_p) = 9 - 2780(1/T)$	Lab-generated adipic acid aerosols	Rutter and Schauer (2007a)

333 In many chemical transport models, Hg^{II} is assumed to exist completely in the gas phase or as an
 334 arbitrary percentage split between the gas and particle phases (Amos et al., 2012; Holmes et al., 2010;
 335 Lei et al., 2013). Gas-particle partitioning models derived from field measurements can produce K_p
 336 values that are, in most cases, similar to measured values (Cheng et al., 2014). Large discrepancies
 337 between predicted and observed K_p have been found at sites impacted by point sources, where other
 338 factors may influence the partitioning between GOM and PBM, such as emissions speciation and
 339 chemical composition of emitted aerosols (Cheng et al., 2014; Rutter and Schauer, 2007a; Rutter and
 340 Schauer, 2007b). Model simulations by Vijayaraghavan et al. (2008) that used the temperature-
 341 dependent gas-particle partitioning model developed by Rutter and Schauer (2007a) showed that the
 342 fraction of Hg^{II} partitioned to particles was 23% on average (ranging from 10-80%) with higher fractions
 343 in the western and midwestern United States due to colder temperatures and/or higher particulate
 344 concentrations (Vijayaraghavan et al., 2008). Another gas-particle partitioning model was derived and
 345 introduced into the GEOS-Chem model (Amos et al., 2012). Simulated Hg^{II} was present mostly in the
 346 gas-phase (>90%) in warm air and was only about 10% in the gas phase in cold air.

347 2.4.2. *Dependence on Aerosol Composition*

348 Aside from temperature, the chemical composition of aerosols and the presence or absence of an
349 aerosol aqueous phase affect the gas-particle partitioning of Hg^{II}. In an experimental study, K_p values
350 were measured for various synthetically-produced dry atmospheric aerosols, including NaNO₃, NaCl, KCl,
351 ammonium sulfate, levoglucosan, and adipic acid (Rutter and Schauer, 2007b). Large K_p values were
352 observed for NaNO₃, NaCl, and KCl, which indicates Hg^{II} tends to remain in the particle phase on those
353 surfaces. Small K_p values were found for ammonium sulfate, levoglucosan, and adipic acid, with an
354 estimated 50% of the Hg^{II} partitioning to the gas phase. Depending on the particle composition, K_p
355 ranged from 1-900 m³ µg⁻¹ (Rutter and Schauer, 2007b). The large partition coefficient for NaCl particles
356 was also confirmed in another experimental study, which tested the removal efficiency of ambient air
357 GOM and HgCl₂ by NaCl-coated sampling denuders (Malcolm et al., 2009). The results showed that
358 NaCl- and sea salt-coated denuders were able to remove 88-100% as much GOM in an air stream as KCl-
359 coated denuders. This suggests that Hg^{II} is efficiently scavenged by sea salt aerosols and is likely an
360 important sink for Hg^{II} at marine sites (Malcolm et al., 2009). Measurements of PBM using cascade
361 impactors in coastal and marine sites also found a large proportion of particulate mercury in coarse
362 particles, which consist mostly of sea salt (Feddersen et al., 2012).

363 Due to the solubility of GOM, the presence of an aerosol aqueous phase facilitates the uptake of GOM
364 to aerosols. This process has been described in several modeling studies conducted in the marine
365 boundary layer. Holmes et al. (2009) derived an algorithm to estimate the uptake of GOM by sea salt
366 aerosols in the aqueous phase. The scheme assumed Hg²⁺ forms aqueous complexes with chloride.
367 They used a mass transfer equation to describe the net flux of HgCl₂ and chloride complexes from the
368 gas to the aerosol aqueous phase. Their equation takes into account particle growth relative to the
369 radius of a dry particle. In another box model, the uptake of additional GOM species other than chloride

370 were also estimated using this mass transfer approach (Ye et al., 2016). Aerosol liquid water content
371 has a strong effect on the partitioning of GOM to the aerosol aqueous phase (Hedgecock et al., 2003; Ye
372 et al., 2016). This is further supported by other studies showing that increased water uptake by aerosols
373 drives the partitioning of water-soluble gases to the aerosol aqueous phase (Carlton and Turpin, 2013;
374 Hennigan et al., 2008).

375 Aqueous chemical reactions complicate gas-particle partitioning behavior and are discussed in Sections
376 2.2 and 2.3. The uptake of GOM by sea salt aerosols reduces GOM concentrations in the marine
377 boundary layer, according to model simulations. Selin et al. (2007) showed that one-third of global
378 mercury dry deposition is attributed to Hg^{II} compounds sorbed to sea salt. This process was also
379 necessary for the model to reproduce the low GOM concentrations typically observed in marine
380 environments. In another modeling study, it was estimated that almost all the Hg^{II} in the marine
381 boundary layer was associated with sea salts (Holmes et al., 2009). In this study, sea salt uptake
382 followed by deposition comprised 65-80% of the total deposition of Hg^{II} at marine boundary layer sites,
383 whereas direct deposition accounted for up to 15%.

384 **2.5. Particle-phase Size Distribution**

385 Generally, mercury in fine particles (< 2.5 μm in diameter) is formed by sorption of gaseous Hg^{II} during
386 or after condensation and coagulation of combustion products, while PBM in coarse particles (> 2.5 μm)
387 is formed through the sorption of gaseous Hg^{II} onto naturally generated particles, such as salt spray,
388 dust, and mechanical processes from anthropogenic sources (Chen et al., 2016; Mamane et al., 2008).
389 Because fine particles dominate the surface area of all particles in the atmosphere, it is generally
390 accepted that the majority of PBM resides in fine particles (Feddersen et al., 2012). In recent years, size-
391 resolved PBM measurements have been collected, usually using multi-stage impactors that collect size

392 fractions between 0.1 and 18 μm in diameter. Table 2 summarizes the results of these measurements in
393 both heavily polluted urban, mildly polluted suburban, and cleaner background air. Section 5 reviews
394 possible biases in these measurements. To our knowledge, size-fractionated PBM measurements have
395 not been reviewed in this way before.

Table 2: Summary of particle size-resolved measurements of PBM

Location	Period	Total PBM (pg m^{-3})	Size fraction with highest concentration of PBM (μm)	Composition of particle in size fraction with highest PBM concentration	Reference
Beijing, China	All year, 2016-17	297.9 ± 340.4	0.56–1	75-87% of total found in 0.05-2.0 μm size fraction	Tang et al. (2019)
Shanghai, China	Spring, 2017	318 ± 144	0.56 – 1.0	63.3% of total found in 0.05-2.0 μm size fraction	Han et al. (2018)
Shanghai, China	Winter, 2013-14	$4110 \pm 530^{\text{a}}$ $1340 \pm 150^{\text{b}}$	0.56 – 1.0 ^a 0.18 – 0.32 ^b	$32 \text{ pg } \mu\text{g}^{-1}^{\text{a}}$ $20 \text{ pg } \mu\text{g}^{-1}^{\text{b}}$	Chen et al. (2016)
Shanghai, China	All Year, 2013	$1270 \pm 716^{\text{a}}$ $341 \pm 187^{\text{b}}$	< 2.5	$10.7 \text{ pg } \mu\text{g}^{-1}^{\text{a}}$ $7.4 \text{ pg } \mu\text{g}^{-1}^{\text{b}}$	Chen et al. (2016)
Shanghai, China	Selected times, 2004-07	560 ± 220	1.6 – 3.7	$3.07 \text{ pg } \mu\text{g}^{-1}$	Xiu et al. (2009)
Seoul and Chuncheon, South Korea	Winter and summer, 2009-10	6.8 ± 6.5	0.18 – 0.32 at both urban and rural sites, both summer and winter	0.47 $\text{pg } \mu\text{g}^{-1}$ (urban, winter) 0.50 (rural, winter) 0.87 (urban, summer) 0.65 (rural, summer)	Kim et al. (2012)
Central Taiwan	Fall, 2010	297	< 1	$0.913 \pm 441 \text{ pg } \mu\text{g}^{-1}$ (industrial site)	Chen et al. (2012)
Taiwan	July-December 2018	48.8 ± 23.4	Coarse		Fang et al. (2019)
South China Sea	Fall 2015	3.2 ± 1.8	5.8 - 9.0		Chen et al. (2012); Wang et al. (2019)
Coastal Taiwan	Fall 2009-Winter 2010	70	2.5 - 10	$0.003\text{-}0.004 \text{ pg } \mu\text{g}^{-1}$ (suburban site)	Fang et al. (2010); also see Fang et al. (2012)
Coastal Maine	Winter and summer, 2009-10	5	3.3 – 4.7 summer 0.7 – 1.1 winter	60% of total PBM in summer found in 1.1 to 5.8 μm size fractions. 65 % of total PBM in winter found in < 1.1 μm size fraction.	Feddersen et al. (2012)
Central Poland	April 2013-October 2014	$7.3 - 22.6$	> 2.2	Coarse PBM concentration was 3.1 x higher than fine PBM	Siudek et al. (2016)

398 ^bNon-haze days in Shanghai, with mean PM10 of 60 mg m⁻³

399 Table 2 shows that in polluted air, such as in urban locations in China, Korea, and Taiwan, PBM is

400 dominantly found in fine particles (PM_{2.5}) and especially particles in the accumulation mode (0.1 – 2.0

401 μm diameter). A handful of studies reported the total mercury concentration in the particle size class

402 with the highest concentration of PBM using units of pg m⁻³ of PBM per $\mu\text{g m}^{-3}$ aerosol = pg μg^{-1} (Table

403 2). These studies report low mean PBM concentrations in cleaner coastal suburban areas of Taiwan

404 (Fang et al., 2010), higher values in the more urban areas of Taiwan and Korea (Chen et al., 2012; Kim et

405 al., 2012), and by far the highest values (up to 32 pg μg^{-1}) in the heavily polluted air of Shanghai (Chen et

406 al., 2016; Xiu et al., 2009). In Shanghai, PBM concentrations as a function of particle size were

407 determined on haze and non-haze days, where it was found that when the haze pollution was more

408 severe the concentrations of PBM were higher, which suggested to the authors that the complex

409 atmospheric conditions of haze days contributed to the growth of PBM in particles (Chen et al., 2016). In

410 another study in Shanghai, a PBM maximum occurred in the accumulation mode, and a smaller

411 secondary peak was observed in coarse mode particles (3-6 μm) (Chen et al., 2016). The authors

412 suggest that the bimodal distribution demonstrated that PBM might have different formation

413 mechanisms, including direct emissions from anthropogenic or natural sources and through the

414 adsorption of gaseous mercury on mainly coarse particles. Furthermore, in Shanghai, the dominant size

415 for PBM in the fine modes shifted from 0.32-0.56 μm during non-haze days to 0.56-1.0 μm during haze

416 days, which revealed the higher growth velocity of PBM on haze-days due to the condensation and

417 accumulation of mercury in particles (Chen et al., 2016). Keeler et al. (1995) observed a similar bimodal

418 distribution of PBM in urban Detroit, Michigan.

419 At locations further downwind of major PBM sources and in coastal areas, PBM is more abundant on

420 larger particles compared to what has been observed in large cities in Asia. Fang et al. (2010) observed

421 maximum PBM in the 2.5-10 μm size fraction in coastal Taiwan, similar to Feddersen et al. (2012) who
422 found that the 3.3-4.7 μm size fraction had the most PBM in the coastal northeastern United States, and
423 Wang et al. (2019) who found a tri-modal distribution in the South China Sea. PBM on coarse particles
424 could be sea salt aerosols, which readily take up Hg^{II} (Wang et al. (2019); Section 2.4.2). Siudek et al.
425 (2016) also found particles $> 2.2 \mu\text{m}$ had the most PBM in Central Poland, and Fang et al. (2019) found
426 the most PBM in the coarse mode at a polluted site in Taiwan. This presents an issue for the
427 measurement of PBM, since a common instrument used for total PBM is the Tekran 1135, and the inlet
428 of this instrument excludes particles larger than 2.5 μm , thereby potentially underestimating total PBM.
429 This instrument is subject to additional biases, as described in Section 5.

430 **2.6. Clouds and Fog**

431 While it is well known that Hg^{II} can be absorbed by cloud and fog droplets (Section 2.3), understanding
432 of the atmospheric chemistry of speciated mercury in clouds and fog is an emerging area of research.
433 Both fog and clouds are a visible aggregation of liquid aerosols that are held aloft due to the turbulent
434 movement of air (Roman et al., 2013). Fog is cloud in contact with the Earth's surface. Due to the
435 relatively small size of fog and cloud droplets, they have a large surface area and promote scavenging of
436 water-soluble gases and impaction of dry aerosol particles, which can lead to an enrichment of
437 pollutants in fog and clouds (Degefe et al., 2015; Malcolm et al., 2003). Deposition via impaction of
438 droplets with surfaces such as trees, plants, and human structures is known to be a major source of
439 pollutants to many watersheds (Malcolm et al., 2003). Hg⁰ can be oxidized, and Hg²⁺ can be reduced (Lin
440 and Pehkonen, 1998), and inorganic mercury can be methylated (Li et al., 2018; Yin et al., 2012), in
441 clouds and fog. Current research in this area has focused on 1) the degree of enrichment of total
442 mercury and CH₃Hg⁺ in clouds and fog and the identification of sources, 2) the potential for chemical
443 processing within clouds and fog that affects mercury concentrations and speciation, and 3) the

444 mechanisms and thermodynamics of aqueous-phase chemistry that transform mercury species within
445 the droplets.

446 We present a summary of measurements of total mercury and CH_3Hg^+ in cloud and fog water in Table 3,
447 since these data, to our knowledge, have not been summarized before. The environments studied
448 include marine stratus clouds over the open ocean, coastal fog, inland valley fog, and mountain-top
449 clouds. Total mercury mean concentrations in cloud and fog water ranged from 9.2 ng L^{-1} in a marine
450 stratus environment over the open ocean (Weiss-Penzias et al., 2018) to 70.5 ng L^{-1} in mountain-top
451 cloud water downwind of an industrial area in China (Li et al., 2018). Intermediate concentration values
452 of total mercury ($\sim 25 \text{ ng L}^{-1}$) were found in mountain top clouds far downwind of anthropogenic sources
453 in northeastern North America (Malcom et al., 2003) and Taiwan (Sheu and Lin, 2011), as well as in
454 marine fog water sampled in California (Weiss-Penzias et al., 2016a) and New Brunswick, Canada
455 (Ritchie et al., 2006). At the relatively polluted site of Mount Tai, China, the arsenic concentration (a
456 tracer of coal combustion) in cloud water was three times higher than in cloud water at a polluted site in
457 eastern North America and 20 times higher than in cloud water over the open ocean (Li et al., 2018).
458 Sulfate (also a coal-combustion tracer) concentrations in cloud water at Mount Tai were also elevated
459 compared to other sites.

460 In contrast, CH_3Hg^+ mean concentrations were highest in coastal fog and clouds over the coastal ocean
461 ($0.87\text{--}1.6 \text{ ng L}^{-1}$), compared to that found in inland clouds and fog ($0.2\text{--}0.5 \text{ ng L}^{-1}$). Recent evidence in
462 coastal California has found that coastal marine clouds and fog absorb oceanic emissions of $(\text{CH}_3)_2\text{Hg}$
463 and CH_3Hg^+ and can act as a vector of CH_3Hg^+ to coastal terrestrial ecosystems (Weiss-Penzias et al.,
464 2016a; Weiss-Penzias et al., 2018). This phenomenon may be restricted to the near coastline since
465 CH_3Hg^+ concentrations at a site within 50 m of the ocean were 3.7 times higher than at a site 40 km

466 inland, indicating the potential for photodemethylation of CH_3Hg^+ during the advection of fog water
 467 from ocean to land (Weiss-Penzias et al., 2016a).

468 **Table 3: Speciated mercury measurements (mean \pm std. dev.) in clouds and fog. Mean As SO_4^{2-} concentrations**
 469 **for select studies are also shown as an indicator of coal combustion influence. Percents in the particle phase**
 470 **were determined via filtration (pore size $\sim 0.5 \mu\text{m}$).**

Sample Type	Location	Dates	Total mercury (ng L ⁻¹)	Total CH_3Hg^+ (ng L ⁻¹)	% of total mercury in particle phase	% of CH_3Hg^+ in particle phase	As ($\mu\text{g L}^{-1}$)	SO_4^{2-} (mg L ⁻¹)	Reference
Marine stratus cloud water	Coastal California	Summer, 2016	9.18 ± 5.98	0.87 ± 0.66			0.12	2.95	Weiss-Penzias et al. (2018)
Advectional marine fog water	Coastal California	Summers, 2014, 2015	27.6 ± 25.8	1.6 ± 1.9	74%	94%		21.3	Weiss-Penzias et al. (2016a)
Valley radiation fog water	Inland California	Winter, 2016	24.0 ± 10.5	0.18 ± 0.09					Weiss-Penzias et al. (2018)
Valley radiation fog water	Inland California	Winter, 2003	11.0	0.5				31.1	Bittrich et al. (2011)
Mountain-top cloud water	Mountaintop New York	Summer 2010	4.3 ± 0.5	0.02 ± 0.00					Gerson et al. (2017)
Marine fog water	Bay of Fundy, Canada	Summer, 2003	2 to 435						Ritchie et al. (2006)
Mountain-top cloud water	Mountaintop Vermont	Summer-Fall, 1998	24.8				1.11	2.19	Malcolm et al. (2003)
Mountain-top cloud water	Mountaintop Taiwan	Winter, 2009	9.6					6.6	Sheu and Lin (2011)
Mountain-top cloud water	Mountaintop China	Summer, 2015	70.5 ± 100.6	0.15 ± 0.15	71%		5	39.0	Li et al. (2018)

471 The presence of CH_3Hg^+ in inland mountain-top and valley fogs and clouds far from the ocean suggests a
 472 CH_3Hg^+ formation mechanism must exist within the hydrometeors, with CH_3Hg^+ formation rates of
 473 sufficient magnitude to compensate for the continual loss of CH_3Hg^+ due to photodemethylation
 474 (Bittrich et al., 2011; Hammerschmidt et al., 2007; Li et al., 2018). Li et al. (2018) observed increased
 475 mass ratios of CH_3Hg^+ to dissolved total mercury in mountaintop cloud water in China that coincided

476 with decreased ionic strength. They suggested this could be an indicator of abiotic formation of CH_3Hg^+ .
477 The evidence suggests that higher ionic strength in cloud water inhibited methylation due to inorganic
478 ions out-competing organic ligands that can potentially be methyl donors, such as acetate,
479 methylcobalamin, methyl iodine, and other low-molecular-weight organics (Li et al., 2018). Furthermore,
480 this study observed that CH_3Hg^+ in cloud water was significantly correlated with propionate, indicating
481 formation of CH_3Hg^+ via alkylation by propionic acid as proposed by Yin et al. (2012). Future work is
482 needed to identify methyl donors and methylation mechanisms.

483 Cloud water chemistry also affects the speciation of inorganic mercury compounds. Highly acidic ($\text{pH} <$
484 4) cloud water at Mount Bamboo displayed 10-20 times higher total mercury concentrations than cloud
485 water at $\text{pH} > 4$ (Sheu and Lin, 2011). The authors suggest this is due to reduced oxidation of Hg^0 and/or
486 enhanced Hg^{2+} reduction at higher pH values, a notion consistent with early studies (Lin and Pehkonen,
487 1999; Pleuel and Munthe, 1995). Some studies have shown GEM depletion during acidic fog events,
488 which could mean that acidic fog can absorb and oxidize Hg^0 (Hall et al., 2006; Xiu et al., 2009)

489 Recent thermodynamic modeling work has focused on using stability constants ($\log K$) of multiple
490 chemical species of mercury including compounds with halides, sulfate, nitrate, nitrite, ammonia,
491 carbonate, low-molecular-weight organics, and dissolved organic matter, to determine the dominant
492 species of Hg^{2+} compounds present in cloud drops as a function of pH. Li et al. (2018) found that 50-90%
493 of dissolved Hg^{2+} complexes with dissolved organic matter at $\text{pH} < 6$, whereas at $\text{pH} > 6$ the dissolved
494 Hg^{2+} was found predominantly (> 60%) in the $\text{Hg}(\text{OH})_2$ form. This finding was consistent with an earlier
495 study that also found $\text{Hg}(\text{OH})_2$ was the dominant form found in Sacramento Valley, California, where pH
496 of fog water was on the basic side (5.7-6.8) (Bittrich et al., 2011). In the absence of dissolved organic
497 matter, Bittrich et al. (2011) found that chloride complexes (HgCl^+ and HgCl_2) were the dominant
498 chemical species of Hg^{2+} .

499 In summary, concentrations of total mercury and CH_3Hg^+ in cloud and fog water are generally enhanced
500 above those typically found in rainwater due to 1) lower liquid water content in cloud and fog water, 2)
501 greater rates of gas-particle scavenging due to smaller hydrometeor size, and 3) relatively increased
502 acidity, which prevents the reduction of Hg^{2+} to Hg^0 . Marine clouds and fog may become enriched in
503 CH_3Hg^+ due to oceanic emissions of organic mercury compounds to the atmosphere and gas scavenging
504 by acidic marine aerosols. CH_3Hg^+ in clouds and fog may also be produced in situ most likely due to an
505 abiotic mechanism involving low-molecular-weight organic ligands that can donate a methyl group to
506 Hg^{2+} .

507 **3. Deposition**

508 **3.1. Wet Deposition**

509 Sprovieri et al. (2010) reviewed worldwide atmospheric mercury measurements and included discussion
510 of wet deposition. Sprovieri et al. (2017) found high spatial variability in wet deposition rates across the
511 globe but demonstrated a general trend of highest wet deposition in the lower and mid-latitudes of the
512 Northern Hemisphere, with lower deposition rates in the Arctic and the Southern Hemisphere. In North
513 America, wet deposition tends to be highest in the southeastern United States (Prestbo and Gay, 2009;
514 Weiss-Penzias et al., 2016b). Wet deposition in urban areas of China is higher than in North America
515 and Europe (Fu et al., 2012b), but for rural areas, the values are similar (Fu et al., 2015). As with
516 atmospheric mercury concentrations (Section 4.2), wet deposition amounts have decreased at many
517 locations around the globe (Keeler et al., 2005; Muntean et al., 2014; Prestbo and Gay, 2009; Weiss-
518 Penzias et al., 2016b; Zhang and Jaeglé, 2013).

519 Urban/industrial locations tend to have higher mercury wet deposition than rural/remote locations, but
520 this association can be weak, because atmospheric processes, not just local emissions, are important

521 drivers of mercury uptake by precipitation (Sprovieri et al., 2010). Many studies have noted the
522 influence of emission sources on spatial trends in mercury wet deposition (Fu et al., 2015; Gratz and
523 Keeler, 2011; Gratz et al., 2013; Guo et al., 2008; Lynam et al., 2016; Ma et al., 2015; Michael et al.,
524 2016; Qin et al., 2016; Siudek et al., 2016; Wang et al., 2014b; White et al., 2009), including at the global
525 scale (Sprovieri et al., 2017). Weiss-Penzias et al. (2016b), Zhang et al. (2016), and a review by Obrist et
526 al. (2018) showed that wet deposition follows temporal trends in global and regional anthropogenic
527 mercury emissions.

528 Most studies report that wet mercury deposition is higher in warm seasons, and this has been attributed
529 to more precipitation (Fu et al., 2015; Michael et al., 2016; Qin et al., 2016; Sanei et al., 2010; Seo et al.,
530 2012; Sprovieri et al., 2017), more availability of Hg^{II} compounds in the atmosphere (Caffrey et al., 2010;
531 Lynam et al., 2016), better efficiency of rain relative to snow at scavenging gas-phase Hg^{II} (Gratz et al.,
532 2009; Landis et al., 2002; Selin and Jacob, 2008; White et al., 2013), or a higher prevalence of deep
533 convective clouds (Lynam et al., 2016). While short rain events tend to lead to higher mercury
534 concentrations in rainwater, annual wet deposition fluxes tend to be positively correlated with annual
535 rainfall (Prestbo and Gay, 2009; Sprovieri et al., 2017).

536 Some researchers have shown significant positive correlations between total mercury concentrations in
537 rainwater and mercury concentrations in surface-level ambient air (Brunke et al., 2016; Fu et al., 2015;
538 Seo et al., 2012; Zhou et al., 2018a), while others have not (Mao et al., 2017b). Cheng and Zhang (2016)
539 showed that relationships between atmospheric GOM and wet deposition are more reasonable when
540 the known low bias in GOM measurements (Bu et al., 2018; Lyman et al., 2010; McClure et al., 2014) is
541 taken into account.

542 Scavenging rates of surface-level GOM are higher in rain than in snow, while particle-phase mercury
543 shows the opposite trend (Amos et al., 2012; Cheng et al., 2015; Lombard et al., 2011; Mao et al., 2012;

544 Seo et al., 2012; Zhou et al., 2018a). GOM scavenging tends to be dominant for both precipitation types,
545 however (Seo et al., 2012; Zhou et al., 2018a), and a variety of studies confirm that GOM scavenging is,
546 in general, more important than particulate scavenging for wet deposition (Bullock et al., 2009; Cheng et
547 al., 2015; Sakata and Asakura, 2007; Selin and Jacob, 2008). Cheng et al. (2015) found that fine-
548 particulate PBM and coarse-particulate PBM contributed 8–36% and 5–27%, respectively, depending on
549 the location, to total wet deposition at nine wet deposition monitoring sites in North America. They
550 estimated that gaseous Hg^{II} compounds contribute 39–87% to wet deposition. Amos et al. (2012)
551 showed that model simulations with gas-particle partitioning better predicted wet deposition than
552 simulations that did not include partitioning behavior.

553 Several recent papers highlight the influence on wet deposition of deep convective clouds that scavenge
554 Hg^{II} from the middle and upper troposphere (Holmes et al., 2016; Kaulfus et al., 2017; Selin and Jacob,
555 2008; Shah and Jaeglé, 2017; Sprovieri et al., 2017). Emphasis has been placed on this phenomenon in
556 the Gulf of Mexico region (Guentzel et al., 2001; Shanley et al., 2015; Sprovieri et al., 2017), but others
557 have shown the importance of upper-atmosphere Hg^{II} scavenging on wet deposition in high-elevation
558 areas (Gerson et al., 2017; Huang and Gustin, 2012; Kaulfus et al., 2017), and throughout the
559 atmosphere generally (Holmes et al., 2016; Selin and Jacob, 2008). Change to the oxidation capacity of
560 the atmosphere would affect mercury wet deposition. This is discussed in Section 4.2.4.

561 **3.2. Dry Deposition**

562 Measurement and modeling approaches for quantifying dry deposition of GOM and PBM and air-surface
563 exchange fluxes of GEM, and field studies measuring GOM and PBM dry deposition and mercury in
564 litterfall and throughfall were reviewed in detail by Wright et al. (2016). Measurement and modeling
565 studies of air-surface exchange of GEM were also reviewed by Zhu et al. (2016). Dry deposition velocities

566 generated from field measurements were previously documented in Zhang et al. (2009). Future research
567 needs were recommended in Zhang et al. (2017a). A summary of the major findings from earlier
568 reviews, as well as recent progress in measurement and modeling studies of dry mercury deposition, are
569 presented below. Measurement methods for dry mercury deposition are reviewed in Section 5.2.3.
570 Change to the oxidation capacity of the atmosphere would affect mercury dry deposition. This is
571 discussed in Section 4.2.4.

572 *3.2.1. Measurement and Modeling Data*

573 Field measurement data reviewed by Wright et al. (2016) showed that median values of GOM plus PBM
574 dry deposition were on the order of $\sim 10 \mu\text{g m}^{-2} \text{ yr}^{-1}$ in Asia and $\sim 6 \mu\text{g m}^{-2} \text{ yr}^{-1}$ in North America. The
575 difference between the two continents can be explained by the much higher anthropogenic emissions
576 and thus ambient concentrations in Asia. The ranges of the values were similar between the two
577 continents, e.g., from ~ 1.0 to $500 \mu\text{g m}^{-2} \text{ yr}^{-1}$. Few measurements of GOM and PBM dry deposition have
578 been made in other parts of the world.

579 Modeled GOM plus PBM dry deposition fluxes (using methods that rely on measured air concentrations)
580 tend to be in the same range as measurement values (though ambient air measurements of Hg^{II} are
581 biased low; see Section 5). Modeled GOM plus PBM dry deposition data from Asia, Europe, and North
582 America ranged from <0.1 to $\sim 400 \mu\text{g m}^{-2} \text{ yr}^{-1}$ (Wright et al., 2016). Median and mean modeled
583 deposition were ten times higher in Asia than in Europe and North America, partly due to the higher
584 ambient concentrations of GOM plus PBM in Asia. In a later study by Wright et al. (2016), multi-year
585 averages of modeled GOM plus PBM dry deposition fluxes across North America were on the order of
586 <1 - $6 \mu\text{g m}^{-2} \text{ yr}^{-1}$ with the exception of a high elevation site, where annual dry deposition was estimated
587 to be $\sim 60 \mu\text{g m}^{-2} \text{ yr}^{-1}$. GOM generally contributes more to dry deposition than PBM due to the faster
588 deposition process of GOM.

589 Measurements of GEM fluxes have frequently shown bi-directional exchange features. Similar to GOM
590 and PBM flux measurements, GEM flux data have mostly been obtained in East Asia and North America,
591 while some data have been collected in Europe and little is available in other parts of the world. Most
592 studies have focused on quantifying GEM emissions, rather than deposition because the amount of
593 mercury emitted from natural surfaces has been estimated to be twice as much of the anthropogenic
594 emissions globally (Zhu et al., 2016). GEM emission fluxes observed in East Asia are higher than those
595 observed in the other continents, likely due to the re-emission of previously deposited mercury from
596 anthropogenic sources (Zhu et al., 2016).

597 However, more recent studies have shown that Hg^0 dry deposition may be more important than
598 previously assumed in earlier studies (Enrico et al., 2016; Obrist et al., 2017; Wright et al., 2016). Jiskra
599 et al. (2018) hypothesize that one possible reason for this is that mercury deposited as Hg^{II} to leaf
600 surfaces is more likely to re-emit than Hg^0 deposited through stomata (though Hg^0 has been shown to be
601 sorbed to leaves via non-stomatal pathways as well; See Arnold et al. (2018) and Stamenkovic and
602 Gustin (2009)). Net GEM dry deposition over vegetated canopies becomes increasingly important in
603 regions where mercury input to soil from atmospheric dry and wet deposition of Hg^{II} is low, and thus
604 mercury emissions from the soil are low. For example, a mass balance study supported by mercury
605 stable isotope composition measurements revealed that atmospheric mercury deposition to a peat bog
606 system was dominated by GEM dry deposition (Enrico et al., 2016). Another mass balance study coupled
607 with comprehensive measurements of mercury stable isotopic signatures in all related media revealed
608 that higher mercury content in Arctic soil compared to temperate soil was predominantly due to tundra
609 uptake of GEM (Obrist et al., 2017). Modeling estimates of the dry deposition budget across North
610 America confirmed that Hg^0 dry deposition to forest canopies is more important than dry deposition of
611 GOM plus PBM on an annual basis, and this finding is supported by regional litterfall mercury data
612 collected across eastern North America (Wright et al., 2016).

613 The number of available measurements of mercury in litterfall and throughfall has been increasing.
614 Mercury content in litterfall and throughfall are generally higher in urban regions of Asia, followed by
615 remote regions in Asia, then locations in Europe and North America (Wright et al., 2016). Mercury dry
616 deposition was estimated by Wright et al. (2016) from concurrent measurements of litterfall,
617 throughfall, and open-space wet deposition for forests with such data. They found that dry and wet
618 deposition were equally important in the total deposition budget. A comparison of multi-year data of
619 litterfall and wet deposition across the eastern and mid-western United States also suggests the same
620 conclusion (Risch and Kenski, 2018).

621 Considering the importance of litterfall mercury in the dry deposition budget, global mercury deposition
622 through litterfall was estimated based on the published litterfall mercury data and forest coverage
623 worldwide (Wang et al., 2016). A total of $\sim 1200 \text{ Mg yr}^{-1}$ of litterfall mercury was obtained globally, which
624 was several times higher than the estimated mercury emissions from forest landscapes. Since litterfall
625 mercury is derived primarily from Hg^0 uptake through stomata (Zhang et al., 2012a), this suggests that
626 global forest ecosystems are a strong sink for Hg^0 .

627 3.2.2. *Emerging Research Activities*

628 The ultimate goal of quantifying atmospheric mercury deposition to various ecosystems is to assess the
629 impact of mercury sources to human, animal, and ecosystem health (Wright et al., 2018). Thus,
630 monitoring programs should be designed to better link the sources, transportation, and fates of
631 atmospheric mercury by concurrently measuring mercury in all the concerned biological media. This has
632 been done in a few recent studies. In a southwest China watershed, litterfall, throughfall, runoff, and
633 soil concentrations of total mercury and CH_3Hg^+ were sampled for two years (Du et al., 2018), results
634 from which showed litterfall as the predominant route for both total mercury and CH_3Hg^+ to the soil.
635 The same study also found that total mercury and CH_3Hg^+ were concentrated in different media during

636 litter decomposition. Also, while a portion of wet-deposited mercury may be lost from the canopy floor
637 through rainwater runoff, the majority of litterfall mercury is likely to remain on the forest floor for a
638 long period. Thus, mercury dynamics in the process of litter decomposition is crucial to understanding
639 the final fate of the dry deposited mercury and its input to soil and downstream aquatic systems in
640 forest catchments. For example, Zhou et al. (2018b) measured mercury biogeochemical cycling and
641 fractionation processes in coniferous and broadleaf forests in southwest China by measuring total
642 mercury, CH_3Hg^+ , and litterfall biomass in the process of litter decomposition over one year.

643 **4. Spatial and Temporal Distribution**

644 **4.1. Spatial Patterns**

645 An extensive review of GEM and GOM measurements over oceans and land was conducted by Mao et
646 al. (2016). Thus, this section provides only a brief overview of the spatial distribution of atmospheric
647 mercury. Uncertainty exists about the amount of Hg^{II} collected in GEM measurements, and most GOM
648 measurements are known to be biased low (Section 5), so some of the information presented is likely
649 only qualitative.

650 **4.1.1. Marine Environments**

651 Mao et al. (2016) analyzed 50+ measurement campaigns undertaken from 1965 to 2012. Average
652 concentrations of GEM over the Pacific and Mediterranean Seas were higher than other marine
653 environments. GEM over the Pacific was elevated due to mercury emissions outflow from Eastern
654 China. Over the Mediterranean Sea, industrial pollution from Europe, meteorological conditions
655 conducive to evasion of GEM from surface water, and emissions from shipping ports contributed to
656 elevated concentrations (Sprovieri et al., 2010). Arctic and Antarctic concentrations of GEM were lower

657 owing to the poles' remoteness from anthropogenic emissions and atmospheric mercury depletion
658 events (Steffen et al., 2008).

659 GEM in the northern hemisphere marine atmosphere is higher than the southern hemisphere, due in
660 part to greater anthropogenic emissions in the northern hemisphere (Mao et al., 2016; Slemr et al.,
661 2011; Sprovieri et al., 2016; Sprovieri et al., 2010). However, Soerensen et al. (2012) reported that the
662 hemispheric gradient has decreased, possibly because declining ocean mercury concentrations in the
663 North Atlantic have significantly reduced GEM evasion in that region.

664 GOM measurements have covered the Atlantic, Indian, Pacific, Arctic, and Antarctic Oceans, and the
665 Mediterranean. Concentrations can be extremely high ($>1000 \text{ pg m}^{-3}$) at the poles (Mao et al., 2016)
666 during springtime depletion events that cause rapid conversion of Hg^0 to Hg^{II} (Steffen et al., 2013).
667 Arctic mercury depletion events were treated in detail by Steffen et al. (2008), Steffen et al. (2015), and
668 Dastoor et al. (2015).

669 *4.1.2. Terrestrial Environments*

670 Measurements of GEM and GOM in terrestrial environments have been summarized in previous review
671 papers (Mao et al., 2016; Sprovieri et al., 2010). The GOM measurements in these reviews were mostly
672 collected with KCl denuder-based systems, which are biased low (see Section 5). Spatial patterns of
673 GEM on a regional scale have been analyzed across Canada (Cole et al., 2014), the United States (Amos
674 et al., 2012; Weiss-Penzias et al., 2016b), the United Kingdom (Brown et al., 2015), and China (Fu et al.,
675 2015). The survey by Mao et al. (2016) considered 100+ measurement campaigns at continental sites
676 worldwide that were conducted between 2003 and 2013. The review paper compared GEM and GOM
677 concentrations by region and by site characteristics and discussed driving mechanisms for the variability
678 in GEM and GOM. On a global scale, mean GEM concentrations are higher in Asia than in Europe, and

679 North America. Urban sites tend to have the highest GEM concentrations. Mean concentrations are
680 similar among remote, rural and high elevation sites.

681 Sprovieri et al. (2016) presented spatial patterns in GEM from the Global Mercury Observation System
682 network. The paper reported 2010-2015 GEM measurements at 27 sites comprising 17 northern
683 hemisphere sites, five tropical region sites, and five southern hemisphere sites. Their work showed GEM
684 concentrations decreasing with latitude. They showed that, during 2013-2014, mean GEM
685 concentrations were $\sim 1.5 \text{ ng m}^{-3}$ in the northern hemisphere, $\sim 1.2 \text{ ng m}^{-3}$ in the tropics and $\sim 0.9 \text{ ng m}^{-3}$
686 in the southern hemisphere.

687 Mao et al. (2016) also reviewed +65 measurement campaigns of GOM that were undertaken between
688 2003 and 2013. Few measurements of GOM have been reported at continental sites in Europe and the
689 Southern Hemisphere. Mean GOM concentrations were similar at continental sites in the United States
690 and Asia. GOM concentrations at continental Canadian sites were lower than those in the United States
691 and Asia. Maximum concentrations in GOM have reached a few hundred pg m^{-3} in Canada and
692 thousands of pg m^{-3} in the United States and Asia. Mean GOM concentrations at urban and high
693 elevation continental locations were both elevated compared to rural and remote continental sites.

694 *4.1.3. Upper Troposphere and Lower Stratosphere*

695 Vertical distributions of GEM and GOM have been reported from several aircraft measurement studies.
696 In flights over the southern United States and the North American Arctic, GEM concentrations were
697 constant from the surface to altitudes of 4-6 km (Brooks et al., 2014; Mao et al., 2010). In the free
698 troposphere, GEM concentrations were slightly lower than those in the boundary layer (Mao et al.,
699 2010; Weigelt et al., 2016). Results from transcontinental flights show that GEM concentrations in the

700 stratosphere can drop to 0.25-0.7 ng m⁻³ (Slemr et al., 2009; Slemr et al., 2018). Depletion of GEM in
701 stratospheric air masses was also confirmed in a flight over North America (Lyman and Jaffe, 2012).

702 GOM concentrations, in contrast, tend to increase with altitude. Brooks et al. (2014) observed a
703 maximum concentration of 120 pg m⁻³ at 2-4 km above sea level during the summertime over the
704 southern United States. In upper tropospheric air and air influenced by the stratosphere, GOM
705 concentrations can reach several hundreds of pg m⁻³ (Fain et al., 2009; Gratz et al., 2015a; Lyman and
706 Jaffe, 2012; Shah et al., 2016; Swartzendruber et al., 2006).

707 **4.2. Temporal Trends and Potential Driving Mechanisms**

708 *4.2.1. Elemental Mercury Concentrations*

709 Long-term trends in GEM concentrations have been reported for many ground stations, such as in Mace
710 Head, Ireland; Cape Point, South Africa; Seoul, Korea; Okinawa, Japan, and across North America and the
711 United Kingdom. These studies examined trends in GEM from the 1990s to as recently as 2016 and
712 show that GEM concentrations have decreased from the 1990s to 2005-2013 (Brown et al., 2015; Cole
713 et al., 2014; Ebinghaus et al., 2011; Kim et al., 2016; Martin et al., 2017; Marumoto et al., 2019; Slemr et
714 al., 2011; Weigelt et al., 2015; Weiss-Penzias et al., 2016b; Zhang et al., 2016). Slemr et al. (2011)
715 estimated an annual decreasing trend of 1.4% and 2.7% per year in the northern and southern
716 hemispheres from 1996 to 2009, respectively. GEM concentrations at Mace Head decreased by 1.3%
717 per year from 1996 to 2013 (Weigelt et al., 2015; Zhang et al., 2016). In the United Kingdom, a decrease
718 of 21% from 2003 to 2013 equates to ~1.9% per year decrease (Brown et al., 2015). At Canadian sites,
719 GEM concentrations fell by 0.9% to 3.3% per year since the 1990s based on ten sites with 5 to 15 years
720 of data (Cole et al., 2014). GEM declines in the Arctic were smaller, ranging from 0.6% to 0.9% per year
721 (Chen et al., 2015; Cole et al., 2013; Cole and Steffen, 2010). Aside from ground stations, shipboard

722 measurements have indicated that GEM decreases of 2.5% per year from 1977 to 2009 over the North
723 Atlantic (Soerensen et al., 2012). Navrátil et al. (2018) showed that mercury concentrations in tree rings
724 in central and eastern Europe have decreased from 1975 to 2015. The decreasing trend in GEM
725 estimated using tree ring concentrations as a proxy was similar in magnitude to the observed GEM trend
726 at Mace Head (Navrátil et al., 2018).

727 Beginning in the early to mid-2000s, several studies have observed a more modest decrease in GEM and
728 even a constant or increasing trend in some cases. In North America, GEM concentrations showed a flat
729 or less negative trend from 2008 to 2013 (Weiss-Penzias et al., 2016b). Weigelt et al. (2015) found a
730 decreasing trend in GEM at Mace Head from 1996 to 2009, but GEM decreased at a slower pace from
731 2010 to 2013. GEM in Seoul, Korea remained constant from 2004 to 2011 (Kim et al., 2016). Increasing
732 trends were found at Cape Point, South Africa, and two sites in China during the 2007-2015 and 2002-
733 2013 periods, respectively (Fu et al., 2015; Martin et al., 2017). Potential explanations for these
734 temporal trends are discussed in the following sections.

735 *4.2.2. Anthropogenic Emissions*

736 Trends in GEM concentrations have not always been consistent with those of global anthropogenic
737 emissions (Slemr et al., 2011); however, this comparison depends on the emissions inventory. From
738 1980 to 2000, global anthropogenic emissions were constant, according to Streets et al. (2017), whereas
739 for a part of this period (1990 to ~2005) atmospheric GEM concentrations have decreased as mentioned
740 above. In contrast, a global anthropogenic emissions inventory developed by Zhang et al. (2016) found a
741 decrease in emissions by 0.5-1.4% per year from 1990 to 2010. Model simulations using this inventory
742 reproduced the decreasing trends in GEM in North America and Europe from 1990 to 2010. This
743 inventory accounted for several important changes in emissions: (1) decreased emissions from
744 commercial products, (2) increased artisanal and small-scale gold mining emissions in developing

745 countries, and (3) decreased power plant emissions due to the installation of pollution control devices
746 and subsequent changes in emissions speciation. The uncertainties in the emissions ranged from -33%
747 to 60% in the study by Zhang et al. (2016), while a previous emissions inventory showed that the
748 uncertainties in emissions vary by continent (27-50%) and source type (25% to a factor of 3) (Pacyna et
749 al., 2010). Therefore, an accurate global anthropogenic emissions inventory is essential for interpreting
750 trends in atmospheric concentrations and assessing the effectiveness of mercury pollution control
751 policies. Comparison with regional or local emissions might be more suitable for explaining long-term
752 concentration trends. Studies in the United Kingdom and northeastern United States found that
753 regional and local reductions in anthropogenic emissions significantly contributed to long-term declines
754 in GEM (Brown et al., 2015; Zhou et al., 2017a).

755 From 2000-2015, there was a slight increase in global anthropogenic emissions (Streets et al., 2017;
756 Streets et al., 2019), which may have contributed to the slower decline or increasing trend in GEM after
757 2005. Streets et al. (2019) estimated that global anthropogenic emissions have increased by 1.8% per
758 year from 2010 (2188 Mg) to 2015 (2380 Mg). Anthropogenic emissions declined in North America and
759 most of Europe, but increased in Central America, South Asia, and Eastern Africa. The increase in global
760 anthropogenic emissions is attributed to caustic soda and cement production and artisanal gold mining
761 in developing countries. The largest emissions in 2015 are from East Asia (Streets et al., 2019).
762 However, annual anthropogenic emissions in China have stabilized from 2006 to 2014 (Streets et al.,
763 2019; Wu et al., 2016).

764 *4.2.3. Natural Emissions, Re-emissions, and Sinks*

765 Anthropogenic mercury emissions only make up approximately one-third of the total emissions to the
766 atmosphere (Pacyna et al., 2016; Slemr et al., 2011). Thus, changes in GEM might not be entirely due to
767 changes in anthropogenic emissions. Natural emissions and re-emissions comprise 70% of the total

768 atmospheric emissions, and 36% of this is from oceans (Pacyna et al., 2016). Soerensen et al. (2012)
769 observed a decrease in GEM of 2.5% per year over the North Atlantic from 1977 to 2010 and suggested
770 that the decline was attributed to decreasing mercury concentrations in the ocean (80% decrease since
771 1980), which reduced evasion of GEM from the ocean. They found this process to be a more important
772 factor contributing to the decrease in GEM than anthropogenic emissions reductions in North America
773 and Europe. Possible reasons for the decrease in oceanic mercury include lower Hg^{II} deposition owing
774 to decreasing Hg^{II} emissions, and a reduction in mercury effluent released to rivers (Soerensen et al.,
775 2012).

776 On the other hand, the Arctic has experienced the opposite effect, according to Chen et al. (2015).
777 Model simulations showed that rising temperatures in the last decade led to fewer depletion events and
778 subsequently lower Hg^{II} deposition. The increasing temperatures also reduced the amount of sea ice,
779 which enhanced GEM evasion. The combination of these factors led to a much weaker decreasing trend
780 in GEM over the Arctic from 2000 to 2009 compared to those of North America and Europe (Chen et al.,
781 2015). The increasing trend in GEM at Cape Point, South Africa from 2007 to 2015 has been attributed
782 to biomass burning in the southern hemisphere and the ENSO (El-Niño Southern Oscillation) cycle
783 (Martin et al., 2017). An increase in deposition via vegetation uptake of GEM could also explain the
784 decrease in GEM concentrations since 1990, according to Jiskra et al. (2018). They noted that net
785 primary production has been increasing since 1990, and that spatial patterns and seasonal variations in
786 net primary production and CO_2 mixing ratios are consistent with those of GEM concentrations (Jiskra et
787 al., 2018).

788 **4.2.4. Oxidative capacity**

789 Changes in atmospheric oxidant concentrations have the potential to affect long-term trends in Hg^0 . As
790 discussed in Section 2, important Hg^0 oxidants are thought to include Br , O_3 , OH , and perhaps others

791 (H₂O₂, NO₃, etc.). We provide an overview of trends in atmospheric oxidants to assess their roles in
792 affecting long-term trends in Hg⁰. Most studies on the oxidative capacity of the atmosphere have
793 focused on O₃, H₂O₂, OH, and nitrate radical.

794 In general, the global trend in tropospheric O₃ from the preindustrial era to ~2000 is positive (Alexander
795 and Mickley, 2015; Chan and Vet, 2010; Hartmann et al., 2013; Murray et al., 2014), with one study
796 suggesting a 24 ± 11% increase since the preindustrial era. Global background O₃ has continued to
797 increase recently, though trends can vary by season (Chan and Vet, 2010; Cooper et al., 2012; Zhang and
798 Jaffe, 2017), and in some areas of Europe and the eastern United States, O₃ has decreased due to
799 regional reductions in precursor emissions (Simon et al., 2014; Yan et al., 2018). A comparison of 16
800 models suggests an increasing trend for OH of 7.0 ± 4.3% from preindustrial times to the present
801 (Murray et al., 2014). Long-term variability in OH can be largely explained by tropospheric mean O₃
802 photolysis rates, water vapor, and emissions of NO_x and reactive carbon (Alexander and Mickley, 2015;
803 Murray et al., 2014). Global mean OH is projected to increase (Gratz et al., 2015b) by 4-13% by 2050
804 due to increased water vapor and NO_x emissions from lightning, although the increase may be
805 attenuated by increases in methane (Alexander and Mickley, 2015). Investigators have used ice core
806 measurements to infer a 50-60% increase in atmospheric H₂O₂ over the past 100-200 years, with the
807 largest increases observed after 1970 (Alexander and Mickley, 2015). Models suggest H₂O₂ and nitrate
808 radicals have increased in the present day compared to preindustrial times by 18% and 130%,
809 respectively (Murray et al., 2014). H₂O₂ trends in the future are expected to track OH radicals, while
810 trends in nitrate radicals will likely depend on those of NO_x emissions (Alexander and Mickley, 2015).
811 Knowledge of trends in atmospheric halogens is very limited. We are not aware of any information on
812 the trends in atmospheric bromine. Cuevas et al. (2018) reported a factor of 3 increase in atmospheric
813 iodine from 1950 to 2010 based on ice core measurements in the North Atlantic.

814 Overall, studies point to an increase in the oxidative capacity over the last century, and especially over
815 the past several decades, which may have decreased Hg⁰ concentrations in the atmosphere. Since these
816 trends are expected to continue, continued decreases in Hg⁰ can also be expected. Information is
817 needed about trends in atmospheric Br. Improved understanding of Hg⁰ oxidation mechanisms and
818 kinetics (Section 2.1) would improve understanding of these phenomena.

819 **5. Measurement Methods**

820 Pandey et al. (2011) and Gustin et al. (2015) reviewed atmospheric mercury measurement methods and
821 instrumentation. Both included comprehensive reviews of common and newly-developed
822 measurement techniques. Pandey et al. discussed quality control and calibration considerations for
823 GEM, and Gustin et al. detailed the challenges with GOM measurements. Reviews by Huang et al.
824 (2014) and McLagan et al. (2016) focused specifically on passive methods for measurement of
825 atmospheric mercury concentrations. Wright et al. (2016) reviewed dry deposition, litterfall, and
826 throughfall methods. Zhang et al. (2017a) discussed problems with current measurement methods and
827 made recommendations for improvements.

828 **5.1. Monitoring Networks**

829 Stylo et al. (2016) reviewed current atmospheric mercury monitoring networks. Major networks include
830 the Global Mercury Observation System, the National Atmospheric Deposition Program's Atmospheric
831 Mercury Network (mostly in North America), the Asia-Pacific Mercury Monitoring Network, and the
832 Arctic Monitoring and Assessment Programme. Canada, the United Kingdom, Japan, Korea, and
833 Australia also operate atmospheric monitoring networks. Mercury wet deposition networks are
834 operated by the National Atmospheric Deposition Program (North America) and the Global Mercury
835 Observation System. Recommendations from a number of papers (Kumari et al., 2015; Sprovieri et al.,

836 2016; Sprovieri et al., 2010; Stylo et al., 2016; Zhang et al., 2017a) and the Global Mercury Assessment
837 2018 (UNEP, 2019) find that the spatial coverage of atmospheric mercury measurements is inadequate,
838 particularly in Latin America, the Caribbean, the Middle East, Africa, Russia, southern Asia, and the
839 southern hemisphere. Stylo et al. (2016) noted that locations with higher and increasing anthropogenic
840 mercury emissions, such as in Asia and South America, have relatively few atmospheric mercury
841 monitoring sites. GEM is the routinely monitored form of atmospheric mercury, whereas there are
842 fewer measurements of GOM and a scarcity of size-fractionated PBM measurements (Mao et al., 2016;
843 Sprovieri et al., 2010). As has been highlighted in previous reviews (Fu et al., 2015; Zhang et al., 2017a),
844 consistent data management practices, such as standard operating procedures, quality control checks
845 and access to data, between monitoring networks are needed to ensure that all collected data are
846 intercomparable.

847 **5.2. Current Measurement Methods**

848 *5.2.1. Elemental Mercury*

849 The vast majority of recent studies that have measured GEM (without speciation) have used pre-
850 concentration on gold traps followed by thermal desorption into a cold-vapor atomic fluorescence
851 detector. Most have used a Tekran 2537 analyzer (Agnan et al., 2018; Denzler et al., 2017; Hoglind et
852 al., 2018; Howard and Edwards, 2018; Howard et al., 2017; Kamp et al., 2018; Karthik et al., 2017; Liu et
853 al., 2017; Mao et al., 2017a; Martin et al., 2017; Mason et al., 2017; Nerentorp Mastromonaco et al.,
854 2017; Obrist et al., 2017; Prete et al., 2018; Read et al., 2017; Sizmur et al., 2017; Spolaor et al., 2018;
855 Yin et al., 2018; Yu et al., 2018; Zhang et al., 2017a). In some studies, samples were collected manually
856 on gold traps followed by quantification by atomic fluorescence (Black et al., 2018; Wang et al., 2017;
857 Zhou et al., 2017b) or atomic absorption (El-Feky et al., 2018), while a few recent studies used a Lumex

858 Zeeman atomic absorption analyzer (Kalinchuk et al., 2018a; Kalinchuk et al., 2018b), a Gardis-5 analyzer
859 (Albuquerque et al., 2017), a laser-induced fluorescence system (Hynes et al., 2017a; Hynes et al.,
860 2017b), and a mercury lidar system (Lian et al., 2018).

861 In spite of work that has been undertaken to determine whether Tekran 2537 or similar analyzers
862 measure total gas-phase mercury or Hg^0 , uncertainty still exists, as discussed by Gustin et al. (2015). A
863 viable approach for measurement of total mercury is to employ a pyrolyzer that has been tested and
864 shown to reduce most or all Hg^{II} compounds (e.g., see supplemental information for Lyman and Jaffe
865 (2012) and supplemental information for Ambrose et al. (2015)) upstream of mercury analyzers.

866 Quantitative exclusion of PBM from total mercury measurements with impactors or filters upstream of
867 pyrolyzers is likely impossible, since impactors and filters likely either retain some GOM (Feng et al.,
868 2000) or release PBM as GOM (Lynam and Keeler, 2002; Lynam and Keeler, 2005; Rutter et al., 2008;
869 Rutter and Schauer, 2007a), depending on conditions. See Sections 2.4 and 5.2.2 for more discussion of
870 these phenomena. GOM capture devices upstream of the analyzer can ensure that GEM measurements
871 sample only Hg^0 . Section 5.3 provides references for several GOM capture devices.

872 *5.2.2. Speciated Mercury*

873 Many continue to use KCl denuder-based systems (especially the Tekran 1130/1135 speciation system)
874 to measure GOM, in spite of overwhelming evidence that KCl denuders suffer from a low bias in ambient
875 air (see reviews by Pandey et al. (2011), Gustin et al. (2015), and Zhang et al. (2017a) and recent
876 evidence for bias presented by Cheng and Zhang (2016) and Bu et al. (2018)). It is possible that KCl
877 denuders perform well in some environments, but this has yet to be demonstrated and remains
878 speculative. Some recent studies have acknowledged the potential for bias in their measurements (Lin
879 et al., 2019; Liu et al., 2019; Xu et al., 2017; Zhang et al., 2017b; Zhou et al., 2019; Zhou et al., 2018a),
880 but the majority have not (Castagna et al., 2018; Duan et al., 2017b; Fang et al., 2018; Lin et al., 2019; Lin

881 et al., 2017; Shen et al., 2017; Tang et al., 2018). None of these studies incorporated GOM calibrations,
882 as has been called for repeatedly (Gustin et al., 2015; Jaffe et al., 2014; Lyman et al., 2016; Pandey et al.,
883 2011; Zhang et al., 2017a). Many KCl denuder-based and other atmospheric measurement studies
884 indicated they followed operating procedures and quality assurance guidelines established by
885 measurement networks, including the Global Mercury Observation System (Castagna et al., 2018;
886 Howard et al., 2017; Karthik et al., 2017; Liu et al., 2019; Martin et al., 2017; Nerentorp Mastromonaco
887 et al., 2017; Read et al., 2017; Spolaor et al., 2018) and the Atmospheric Mercury Network (Mao et al.,
888 2017a).

889 Many recent studies utilized automated Tekran speciation systems to measure PBM (with aerodynamic
890 diameter $<2.5 \mu\text{m}$), and these are mentioned above. Others used high-volume particle samplers, usually
891 with quartz fiber filters that were baked before sampling to remove residual mercury (Albuquerque et
892 al., 2017; Cheng et al., 2017; Duan et al., 2017a; Guo et al., 2017; Han et al., 2018; Li et al., 2017;
893 Morton-Bermea et al., 2018; Qie et al., 2018; Yu et al., 2019). After sampling, filters were analyzed using
894 a variety of standard methods. Several studies have shown that these traditional particle sampling
895 methods lead to biases for particulate mercury. GOM can adhere to filter material or to collected
896 particulate matter (Gustin et al., 2015; Pandey et al., 2011; Rutter and Schauer, 2007a; Talbot et al.,
897 2011) and particulate mercury can re-volatilize and be lost from filters during collection (Gustin et al.,
898 2015; Lynam and Keeler, 2002; Lynam and Keeler, 2005; Rutter et al., 2008), possibly via reduction of
899 Hg^{II} compounds to Hg^0 (Malcolm and Keeler, 2007). Particulate-bound mercury measured by Tekran
900 speciation systems has also been shown to suffer from bias (Gustin et al., 2015), and no particle-bound
901 mercury measurements are calibrated (Gustin et al., 2015; Jaffe et al., 2014). Unfortunately, no
902 particulate mercury measurement system has been demonstrated to be free from interferences and
903 bias.

904 5.2.3. *Dry Deposition*

905 Most existing measurement methods for quantifying dry deposition and air-surface exchange fluxes of
906 speciated atmospheric mercury can be grouped into three major categories, including
907 micrometeorological approaches, dynamic gas flux chambers, and surrogate surface approaches (Wright
908 et al., 2016; Zhu et al., 2016). Other methods (GEM/²²²Rn ratio, GEM/CO ratio, enriched isotope tracer)
909 have also been occasionally used (Zhu et al., 2016). Flux measurements using any of these approaches
910 are subject to large uncertainties. For example, concentrations at different heights need to be measured
911 using the micrometeorological approaches, but measuring mercury at low concentrations is challenging
912 due to technological limitations of the available instruments (Jaffe et al., 2014). Dynamic gas flux
913 chambers can be deployed over soil, water, low canopy, or tree branches, and have been used for GEM
914 (Carpi et al., 2007; Eckley et al., 2011; Lyman et al., 2007) and GOM (Miller et al., 2019). The measured
915 fluxes may not be representative of an entire area, however, due to heterogeneity in land use cover.
916 Also, different designs inside the dynamic gas flux chambers can cause the measured fluxes to differ by
917 up to one order of magnitude (Eckley et al., 2010). Surrogate surfaces may not perform the same way as
918 natural surfaces in collecting mercury, and uncertainties in measured GOM and PBM dry deposition are
919 larger than a factor of two depending on the selected surrogate surfaces and instrument setup (as
920 detailed in Wright et al. (2016)). A new surrogate surface sampler was recently developed utilizing a
921 three-dimensional deposition surface, which is expected to mimic the physical structure of many natural
922 surfaces more closely than the traditional flat surrogate surface designs (Hall et al., 2017). Collocated
923 measurements using different techniques should be performed to constrain measurement uncertainties
924 (Fritsche et al., 2008; Osterwalder et al., 2018; Zhu et al., 2015). Standardized protocols should be
925 developed for commonly used measurement techniques.

926 Measurements of mercury in litterfall and throughfall have been increasingly used to provide knowledge
927 of mercury deposition over forest canopies. The majority of mercury in litterfall is considered to be from
928 stomatal uptake of Hg^0 (Zhang et al., 2012a) and can be used as a rough and conservative estimation of
929 atmospheric mercury dry deposition (the portion that is retained in leaves). Mercury in throughfall also
930 includes a portion of previously dry deposited mercury (the portion that is washed off from the canopy).

931 Concurrent measurements of litterfall, throughfall, and open-space wet deposition measurements can
932 be used to estimate dry deposition on seasonal or longer time scales, whereby dry deposition is
933 approximated as litterfall plus throughfall minus open-space wet deposition (Wright et al., 2016).

934 Modeling methods for estimating mercury dry deposition either use the inferential approach, which
935 calculates flux as the product of surface air concentration and modeled dry deposition velocity of
936 speciated mercury (Engle et al., 2010; Gustin et al., 2012; Lyman et al., 2007; Marsik et al., 2007;
937 Peterson et al., 2012; Zhang et al., 2012b), or use the bi-directional air-surface exchange model, which
938 simulates emission from and deposition to land surfaces simultaneously (Baker and Bash, 2012; Xu et al.,
939 1999). While the inferential approach has been used for GOM, PBM, and GEM, the bidirectional air-
940 surface exchange approach is generally only used for GEM. Note that flux uncertainties in these
941 modeling approaches are expected to be on a similar order of magnitude to those of field flux
942 measurements because models were initially developed and validated using the limited flux
943 measurements.

944 *5.2.4. Wet Deposition and Cloud/Fog Water Mercury*

945 Unlike methods for measurement of dry deposition, wet deposition measurement methods are well-
946 established and have been standardized by measurement networks (Prestbo and Gay, 2009; Sprovieri et
947 al., 2017). Various collectors have been used (Guentzel et al., 1995; Landis and Keeler, 1997; Morrison
948 et al., 1995; Sakata and Marumoto, 2005), but all involve collection of precipitation through funnels and

949 into trace-cleaned bottles, usually with a cover that opens during rain events. Samples are then
950 analyzed in the laboratory via standard protocols for total, methylated, and/or particulate-bound
951 mercury.

952 Wet deposition samples have been collected over different timescales, impacting how data can be
953 utilized. The National Atmospheric Deposition Program collects weekly samples (Prestbo and Gay,
954 2009), while the Global Mercury Observation System collects semi-weekly samples at most sites
955 (Sprovieri et al., 2017). These sampling frequencies provide data that are useful for quantifying total
956 deposition or understanding longer-term trends (Vijayaraghavan et al.; Weiss-Penzias et al., 2016b). In
957 some studies, event-based samples, which can be used to understand short-term meteorological
958 influences and source contributions, have been collected (Hoyer et al., 1995; Keeler et al., 2005; Landing
959 et al., 2010; Marumoto and Matsuyama, 2014; White et al., 2013).

960 Cloud and fog water samples are collected by drawing droplet-laden air through Teflon strands and/or
961 rods. Water adsorbs to the Teflon and runs down into a sample outlet, where it is collected in bottles
962 (Demoz et al., 1996; Ritchie et al., 2006; Weiss-Penzias et al., 2012). Laboratory analysis methods for fog
963 and cloud water samples are the same as for wet deposition.

964 **5.3. New and Alternate Methods**

965 McClure et al. (2014) and Gratz et al. (2019) installed a pyrolyzer upstream of a Tekran 2537 mercury
966 analyzer when sampling the ambient atmosphere, providing clarity about the forms of mercury they
967 measured (see discussion in the Introduction and Section 5.2.1). Some work has been done recently to
968 improve Tekran 2537 detection by post-processing detector output (Ambrose, 2017). Srivastava and
969 Hodges (2018) have developed a laser detection method that could be applied to ambient air, and they
970 used that method to compare against established vapor pressure-temperature relationships. Their

971 measurements were within the range of uncertainty of those reported by Huber et al. (2006) and Quétel
972 et al. (2016), but were 8.5% higher than those reported by Dumarey et al. (2010). Additional alternative
973 collection methods have been developed and have potential for ambient air measurement, including
974 gold nanoparticles followed by atomic fluorescence detection (Bearzotti et al., 2018) and nanofiber
975 chemosensors (Macagnano et al., 2017a; Macagnano et al., 2017b).

976 A wide variety of passive samplers are in recent use or under development, with all but one (Fang et al.,
977 2017) focusing on GEM. Studies used activated carbon (Lin et al., 2017; McLagan et al., 2018), gold
978 nanoparticles (Papa et al., 2018; Santos et al., 2017), or other substrates (Fang et al., 2017; Lin et al.,
979 2017; Macagnano et al., 2018) to collect mercury from ambient air.

980 Several new measurement methods for Hg^{II} have been developed recently. Slemr et al. (2018) reported
981 aircraft measurements that used quartz wool traps for GOM (see also Lyman and Jaffe (2012)), though
982 the authors acknowledge a potential for bias under some conditions (Ambrose et al., 2015; Ambrose et
983 al., 2013; Hynes et al., 2017b). Cation-exchange membranes continue to be used to capture GOM
984 (Huang and Gustin, 2015; Huang et al., 2015), and recent work has confirmed they perform better than
985 KCl denuders (Bu et al., 2018) and do not absorb appreciable amounts of Hg⁰ (Miller et al., 2019). A
986 mercury speciation system that collects total mercury by passing air through a pyrolyzer and oxidized
987 mercury by passing air through a cation-exchange membrane has been successfully deployed from
988 aircraft (Ambrose et al., 2015; Gratz et al., 2015a). Cation-exchange membranes may be subject to bias
989 in some conditions (Huang and Gustin, 2015). Additional information about membrane methods can be
990 found in Section 2.1.5. Other Hg^{II} collection surfaces, including zirconia (Urba et al., 2017) and KCl-
991 coated filters and sand (Bu et al., 2018), also show promise.

992 Marusczak et al. (2016) added mercury in the Tekran speciation system's flush cycle (flush of zero air
993 before KCl denuder is heated) to mercury recovered from the denuder and found that this method led

994 to comparable results between KCl denuder measurements and measurements made with
995 polyethersulfone membranes. The cation-exchange membranes mentioned in the previous paragraph
996 are made of polyethersulfone, but they are also treated with a proprietary process that confers cation
997 exchange properties. It is not known how these two membrane types compare with each other, or
998 whether the use of flush data with denuder desorption data in Tekran speciation systems is an adequate
999 method to correct biases in speciation system Hg^{II} results.

1000 **6. Key Uncertainties and Research Needs**

1001 **6.1. Oxidation Mechanisms**

1002 Several sources of uncertainty around gas-phase mercury speciation and chemistry create a need for
1003 additional work. First, better constraints on reaction kinetics and associated rate constants are needed
1004 to more accurately inform the mechanisms deployed in chemical models. Consistent measurements of
1005 speciated mercury and improved spatiotemporal coverage of those measurements are also needed,
1006 especially since most previous measurements of GOM and PBM have been uncalibrated. This includes
1007 measurements across diverse ambient environments, vertically within the troposphere, and at different
1008 times of the year to capture the impact of meteorological and chemical conditions on speciated mercury
1009 concentrations.

1010 Continued development of measurement techniques that avoid biases from other atmospheric
1011 constituents, and that can identify the chemical composition of GOM, is also needed. These
1012 improvements in measurement methods and spatiotemporal data coverage can more accurately inform
1013 chemical modeling efforts and, in turn, more clearly identify the oxidation mechanism(s) that govern
1014 ambient gaseous mercury chemistry.

1015 **6.2. Particle-phase Processes**

1016 While several studies have determined gas-particle partitioning relationships for Hg^{II}, these studies were
1017 based on uncalibrated measurements made with methods known to contain bias. While these studies
1018 likely capture the qualitative aspects of Hg^{II} gas-particle partitioning, calibrated, unbiased measurements
1019 of gas- and particle-phase Hg^{II} are needed to improve quantitative understanding of this phenomenon.

1020 The relationship between aerosol particle size distribution and particle-bound Hg^{II} concentrations is an
1021 area of emerging research, especially in urban environments where particle loadings are high. Currently,
1022 little knowledge exists about the different formation mechanisms of particle-bound Hg^{II}, whether from
1023 direct emissions or through adsorption of gas-phase mercury on preexisting particles. A better
1024 understanding of the growth velocity of particle-bound Hg^{II} during haze days in megacities such as
1025 Shanghai is of the utmost importance, since PBM has been observed to be enriched in accumulation
1026 mode particles, and this size class is the most relevant in terms of human health effects.

1027 **6.3. Cloud Chemistry**

1028 Uncertainty exists regarding the aqueous chemistry of CH₃Hg⁺ in cloud and fog droplets. There is
1029 currently no accepted mechanism of CH₃Hg⁺ formation from inorganic mercury through an abiotic
1030 mechanism within a hydrometeor, and more work is needed in this area, both in the laboratory and the
1031 field. Also, additional measurements of CH₃Hg⁺ in marine clouds and fog are needed to determine a
1032 possible source from oceanic emissions of CH₃HgCH₃. Measurements of CH₃Hg⁺ in clouds, fog, and rain
1033 affected by urban emissions could help elucidate potential pathways of CH₃Hg⁺ abiotic synthesis in
1034 polluted environments.

1035 **6.4. Dry Deposition**

1036 Stable isotope and flux studies have shown that Hg^0 dominates total dry deposition in some
1037 environments. Direct measurements of Hg^{II} deposition have been extremely few, however (surrogate
1038 surfaces, deposition models, and throughfall measurements do not directly detect Hg^{II} surface fluxes to
1039 natural surfaces). Direct flux measurements of Hg^{II} are needed, but may be impractical due to
1040 technological limitations. Alternatively, simultaneous quantification of Hg flux using multiple existing
1041 methods (GEM air-surface exchange, surrogate surfaces, litterfall, throughfall, inferential models) will
1042 likely better constrain method uncertainties than using any single method and may provide a more
1043 complete picture of mercury dry deposition/air-surface exchange processes.

1044 **6.5. Spatial and Temporal Trends**

1045 In the last ten years, GEM concentrations have decreased modestly in many areas, but have been
1046 increasing in some regions. Climates, emission sources, and atmospheric composition will continue to
1047 change, and continuation of globally-distributed long-term measurements is needed to track these
1048 trends, identify persistent and new sources of mercury, and assess the efficacy of mercury pollution
1049 control policies. The impact that climate change may have on the mercury biogeochemical cycle is at
1050 present highly speculative (Krabbenhoft and Sunderland, 2013; Obrist et al., 2018; Selin, 2014; Stern et
1051 al., 2012).

1052 **6.6. Measurement Techniques**

1053 Many atmospheric mercury measurements have been made with inadequate specificity and insufficient
1054 field validation. This is true for measurements that have targeted Hg^0 and those that have targeted gas-
1055 and particle-phase Hg^{II} . Future mercury measurements must use methods wherein the captured species

1056 are clearly and quantitatively understood. Many emerging techniques and modifications of existing
1057 techniques appear able to meet this need. Future measurements must also be supported by routine
1058 calibration checks in ambient air in real field conditions. Field calibration techniques are readily
1059 available for Hg⁰, are becoming available for gas-phase Hg^{II}, and are unavailable (to our knowledge) for
1060 particle-phase Hg^{II}.

1061 **7. Author Contributions**

1062 All authors contributed to all sections of this document. Seth Lyman edited the document and led the
1063 review effort. Lynne Gratz led the gas-phase chemistry section. Irene Cheng led the gas-particle
1064 partitioning and trends sections. Peter Weiss-Penzias led the particulate-bound mercury and cloud and
1065 fog sections. Leiming Zhang led the dry deposition section. Seth Lyman led the wet deposition and
1066 measurement methods sections. Except for the first author, author order was determined
1067 alphabetically.

1068 **8. Acknowledgements**

1069 The preparation of this manuscript was supported in part by U.S. National Science Foundation grant
1070 number 1700722.

1071 **9. References**

1072 Agnan Y, Douglas TA, Helmig D, Hueber J, Obrist D. Mercury in the Arctic tundra snowpack: temporal
1073 and spatial concentration patterns and trace gas exchanges. *Cryosphere* 2018; 12: 1939-1956.
1074 Albuquerque M, Coutinho M, Rodrigues J, Ginja J, Borrego C. Long-term monitoring of trace metals in
1075 PM10 and total gaseous mercury in the atmosphere of Porto, Portugal. *Atmos. Pollut. Res.* 2017; 8: 535-
1076 544.

1077 Alexander B, Mickley LJ. Paleo-Perspectives on Potential Future Changes in the Oxidative Capacity of the
1078 Atmosphere Due to Climate Change and Anthropogenic Emissions. *Curr. Pollut. Rep.* 2015; 1: 57-69.

1079 Ambrose JL. Improved methods for signal processing in measurements of mercury by Tekran® 2537A
1080 and 2537B instruments. *Atmos. Meas. Tech.* 2017; 10: 5063-5073.

1081 Ambrose JL, Gratz LE, Jaffe DA, Campos T, Flocke FM, Knapp DJ, Stechman DM, Stell M, Weinheimer AJ,
1082 Cantrell CA, Mauldin RL. Mercury emission ratios from coal-fired power plants in the Southeastern
1083 United States during NOMADSS. *Environ. Sci. Technol.* 2015; 49: 10389-10397.

1084 Ambrose JL, Lyman SN, Huang J, Gustin MS, Jaffe DA. Fast time resolution oxidized mercury
1085 measurements during the Reno Atmospheric Mercury Intercomparison Experiment (RAMIX). *Environ.*
1086 *Sci. Technol.* 2013; 47: 7285-7294.

1087 Amos HM, Jacob DJ, Holmes C, Fisher JA, Wang Q, Yantosca RM, Corbitt ES, Galarneau E, Rutter A,
1088 Gustin M, Steffen A, Schauer J, graydon JA, St. Louis VL, Talbot R, Edgerton E, Zhang Y, Sunderland EM.
1089 Gas-particle partitioning of atmospheric Hg (II) and its effect on global mercury deposition. *Atmos.*
1090 *Chem. Phys.* 2012; 12: 591-603.

1091 Ariya PA, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G, Poulain A, Ryjkov A, Semeniuk K, Subir M.
1092 Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric
1093 interfaces: A review and future directions. *Chem. Rev.* 2015; 115: 3760-3802.

1094 Arnold J, Gustin MS, Weisberg PJ. Evidence for nonstomatal uptake of Hg by aspen and translocation of
1095 Hg from foliage to tree rings in Austrian pine. *Environ. Sci. Technol.* 2018; 52: 1174-1182.

1096 Baker KR, Bash JO. Regional scale photochemical model evaluation of total mercury wet deposition and
1097 speciated ambient mercury. *Atmos. Environ.* 2012; 49: 151-162.

1098 Barrett JR. Rice is a significant source of methylmercury: research in china assesses exposures. Environ.

1099 Health Perspect. 2010; A398.

1100 Bearzotti A, Papa P, Macagnano A, Zampetti E, Venditti I, Fioravanti R, Fontana L, Matassa R, Familiari G,

1101 Fratoddi I. Environmental Hg vapours adsorption and detection by using functionalized gold

1102 nanoparticles network. Journal of Environmental Chemical Engineering 2018; 6: 4706-4713.

1103 Bernhoft RA. Mercury toxicity and treatment: a review of the literature. J. Environ. Public Health 2012;

1104 2012.

1105 Bittrich D, Rutter A, Hall B, Schauer J. Photodecomposition of methylmercury in atmospheric waters.

1106 Aerosol Air Qual. Res. 2011; 11: 290-298.

1107 Black O, Chen J, Scircle A, Zhou Y, Cizdziel JV. Adaption and use of a quadcopter for targeted sampling of

1108 gaseous mercury in the atmosphere. Environ. Sci. Pollut. Res. 2018; 25: 13195-13202.

1109 Brooks S, Ren X, Cohen M, Luke WT, Kelley P, Artz R, Hynes A, Landing W, Martos B. Airborne vertical

1110 profiling of mercury speciation near Tullahoma, TN, USA. Atmosphere 2014; 5: 557-574.

1111 Brooks SB, Saiz-Lopez A, Skov H, Lindberg SE, Plane JM, Goodsir ME. The mass balance of mercury in

1112 the springtime arctic environment. Geophys. Res. Lett. 2006; 33: L13812.

1113 Brown RJC, Goddard SL, Butterfield DM, Brown AS, Robins C, Mustoe CL, McGhee EA. Ten years of

1114 mercury measurement at urban and industrial air quality monitoring stations in the UK. Atmos. Environ.

1115 2015; 109: 1-8.

1116 Brunke E-G, Walters C, Mkololo T, Martin L, Labuschagne C, Silwana B, Slemr F, Weigelt A, Ebinghaus R,

1117 Somerset V. Mercury in the atmosphere and in rainwater at Cape Point, South Africa. *Atmos. Environ.*

1118 2016; 125: 24-32.

1119 Bu X, Zhang H, Lv G, Lin H, Chen L, Yin X, Shen G, Yuan W, Zhang W, Wang X, Tong Y. Comparison of

1120 Reactive Gaseous Mercury Collection by Different Sampling Methods in a Laboratory Test and Field

1121 Monitoring. *Environ. Sci. Technol. Lett.* 2018; 5: 600-607.

1122 Bullock OR, Atkinson D, Braverman T, Civerolo K, Dastoor A, Davignon D, Ku JY, Lohman K, Myers TC,

1123 Park RJ, Seigneur C, Selin NE, Sistla G, Vijayaraghavan K. An analysis of simulated wet deposition of

1124 mercury from the North American Mercury Model Intercomparison Study. *J. Geophys. Res. Atmos.* 2009;

1125 114: D08301.

1126 Caffrey J, Landing W, Nolek S, Gosnell K, Bagui S, Bagui S. Atmospheric deposition of mercury and major

1127 ions to the Pensacola (Florida) watershed: spatial, seasonal, and inter-annual variability. *Atmos. Chem.*

1128 *Phys.* 2010; 10: 5425-5434.

1129 Calvert JG, Lindberg SE. Mechanisms of mercury removal by O₃ and OH in the atmosphere. *Atmos.*

1130 *Environ.* 2005; 39: 3355-3367.

1131 Carlton AG, Turpin BJ. Particle partitioning potential of organic compounds is highest in the Eastern US

1132 and driven by anthropogenic water. *Atmos. Chem. Phys.* 2013; 13: 10203-10214.

1133 Carpi A, Frei A, Cocris D, McCloskey R, Contreras E, Ferguson K. Analytical artifacts produced by a

1134 polycarbonate chamber compared to a Teflon chamber for measuring surface mercury fluxes. *Anal.*

1135 *Bioanal. Chem.* 2007; 388: 361-365.

1136 Castagna J, Bencardino M, D'Amore F, Esposito G, Pirrone N, Sprovieri F. Atmospheric mercury species
1137 measurements across the Western Mediterranean region: Behaviour and variability during a 2015
1138 research cruise campaign. *Atmos. Environ.* 2018; 173: 108-126.

1139 Castro-González M, Méndez-Armenta M. Heavy metals: Implications associated to fish consumption.
1140 *Environ. Toxicol. Pharmacol.* 2008; 26: 263-271.

1141 Chan E, Vet RJ. Baseline levels and trends of ground level ozone in Canada and the United States. *Atmos.*
1142 *Chem. Phys.* 2010; 10: 8629-8647.

1143 Chen L, Zhang Y, Jacob DJ, Soerensen AL, Fisher JA, Horowitz HM, Corbitt ES, Wang X. A decline in Arctic
1144 Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic
1145 and northern midlatitudes. *Geophys. Res. Lett.* 2015; 42: 6076-6083.

1146 Chen S-J, Lo C-T, Fang G-C, Huang C-S. Particulate-bound mercury (Hg [p]) size distributions in central
1147 Taiwan. *Environ. Forsensics* 2012; 13: 98-104.

1148 Chen X, Balasubramanian R, Zhu Q, Behera SN, Bo D, Huang X, Xie H, Cheng J. Characteristics of
1149 atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai. *Atmos.*
1150 *Environ.* 2016; 131: 400-408.

1151 Cheng I, Zhang L. Uncertainty assessment of gaseous oxidized mercury measurements collected by
1152 Atmospheric Mercury Network. *Environ. Sci. Technol.* 2016; 51: 855-862.

1153 Cheng I, Zhang L, Blanchard P. Regression modeling of gas-particle partitioning of atmospheric oxidized
1154 mercury from temperature data. *J. Geophys. Res. Atmos.* 2014; 119: 11850-11863.

1155 Cheng I, Zhang L, Mao H. Relative contributions of gaseous oxidized mercury and fine and coarse
1156 particle-bound mercury to mercury wet deposition at nine monitoring sites in North America. *J.*
1157 *Geophys. Res. Atmos.* 2015; 120: 8549-8562.

1158 Cheng N, Duan L, Xiu G, Zhao M, Qian G. Comparison of atmospheric PM2.5-bounded mercury species
1159 and their correlation with bromine and iodine at coastal urban and island sites in the eastern China.
1160 *Atmos. Res.* 2017; 183: 17-25.

1161 Ci Z, Zhang X, Wang Z, Niu Z. Atmospheric gaseous elemental mercury (GEM) over a coastal/rural site
1162 downwind of East China: temporal variation and long-range transport. *Atmos. Environ.* 2011; 45: 2480-
1163 2487.

1164 Cohen MD, Draxler RR, Artz RS, Blanchard P, Gustin MS, Han Y-J, Holsen TM, Jaffe DA, Kelley P, Lei H,
1165 Loughner CP, Luke WT, Lyman SN, Niemi D, Pacyna JM, Pilote M, Poissant L, Ratte D, Ren X, Steenhuisen
1166 F, Steffen A, Tordon R, Wilson SJ. Modeling the global atmospheric transport and deposition of mercury
1167 to the Great Lakes. *Elem. Sci. Anth.* 2016; 3: 118.

1168 Cole A, Steffen A, Pfaffhuber KA, Berg T, Pilote M, Poissant L, Tordon R, Hung H. Ten-year trends of
1169 atmospheric mercury in the high Arctic compared to Canadian sub-Arctic and mid-latitude sites. *Atmos.*
1170 *Chem. Phys.* 2013; 13: 1535-1545.

1171 Cole AS, Steffen A. Trends in long-term gaseous mercury observations in the Arctic and effects of
1172 temperature and other atmospheric conditions. *Atmos. Chem. Phys.* 2010; 10: 4661-4672.

1173 Cole AS, Steffen A, Eckley CS, Narayan J, Pilote M, Tordon R, Graydon JA, St. Louis VL, Xu X, Branfireun
1174 BA. A survey of mercury in air and precipitation across Canada: Patterns and trends. *Atmosphere* 2014;
1175 5: 635-668.

1176 Cooper OR, Gao RS, Tarasick D, Leblanc T, Sweeney C. Long-term ozone trends at rural ozone monitoring
1177 sites across the United States, 1990-2010. *J. Geophys. Res. Atmos.* 2012; 117.

1178 Cuevas CA, Maffezzoli N, Corella JP, Spolaor A, Valletlonga P, Kjær HA, Simonsen M, Winstrup M, Vinther
1179 B, Horvat C, Fernandez RP, Kinnison D, Lamarque JF, Barbante C, Saiz-Lopez A. Rapid increase in
1180 atmospheric iodine levels in the North Atlantic since the mid-20th century. *Nat. Commun.* 2018; 9.

1181 Dastoor A, Ryzhkov A, Durnford D, Lehnher I, Steffen A, Morrison H. Atmospheric mercury in the
1182 Canadian Arctic. Part II: Insight from modeling. *Sci. Total Environ.* 2015; 509: 16-27.

1183 de Foy B, Tong Y, Yin X, Zhang W, Kang S, Zhang Q, Zhang G, Wang X, Schauer JJ. First field-based
1184 atmospheric observation of the reduction of reactive mercury driven by sunlight. *Atmos. Environ.* 2016;
1185 134: 27-39.

1186 De Simone F, Artaxo P, Bencardino M, Cinnirella S, Carbone F, D'Amore F, Dommergues A, Feng XB,
1187 Gencarelli CN, Hedgecock IM. Particulate-phase mercury emissions from biomass burning and impact on
1188 resulting deposition: a modelling assessment. *Atmos. Chem. Phys.* 2017; 17: 1881-1899.

1189 De Simone F, Gencarelli CN, Hedgecock IM, Pirrone N. Global atmospheric cycle of mercury: A model
1190 study on the impact of oxidation mechanisms. *Environ. Sci. Pollut. Res.* 2014; 21: 4110-4123.

1191 Deeds DA, Ghoshdastidar A, Raofie F, Guérette El-Ae, Tessier A, Ariya PA. Development of a Particle-Trap
1192 Preconcentration-Soft Ionization Mass Spectrometric Technique for the Quantification of Mercury
1193 Halides in Air. *Anal. Chem.* 2015; 87: 5109-5116.

1194 Degefe D, El-Madany T-S, Held M, Hejkal J, Hammer E, Dupont J-C, Haeffelin M, Fleischer E, Klemm O.
1195 Fog chemical composition and its feedback to fog water fluxes, water vapor fluxes, and microphysical
1196 evolution of two events near Paris. *Atmos. Res.* 2015; 164: 328-338.

1197 Demoz B, Collett Jr J, Daube Jr B. On the Caltech active strand cloudwater collectors. *Atmos. Res.* 1996;
1198 41: 47-62.

1199 Denzler B, Bogdal C, Henne S, Obrist D, Steinbacher M, Hungerbühler K. Inversion Approach to Validate
1200 Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station
1201 Jungfraujoch (3580 m). *Environ. Sci. Technol.* 2017; 51: 2846-2853.

1202 Dibble T, Zelie M, Mao H. Thermodynamics of reactions of ClHg and BrHg radicals with atmospherically
1203 abundant free radicals. *Atmos. Chem. Phys.* 2012; 12: 10271-10279.

1204 Dibble TS, Schwid AC. Thermodynamics limits the reactivity of BrHg radical with volatile organic
1205 compounds. *Chem. Phys. Lett.* 2016; 659: 289-294.

1206 Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N. Mercury as a global pollutant: sources, pathways,
1207 and effects. *Environ. Sci. Technol.* 2013; 47: 4967-4983.

1208 Du H, Ma M, Sun T, An S, Igarashi Y, Wang D. Methyl and total mercury in different media and
1209 associated fluxes in a watershed forest, Southwest China. *Int. J. Environ. Res. Public Health* 2018; 15.

1210 Duan L, Cheng N, Xiu G, Wang F, Chen Y. Characteristics and source appointment of atmospheric
1211 particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate
1212 mercury in marine environment. *Environ. Pollut.* 2017a; 224: 26-34.

1213 Duan L, Wang X, Wang D, Duan Y, Cheng N, Xiu G. Atmospheric mercury speciation in Shanghai, China.
1214 *Sci. Total Environ.* 2017b; 578: 460-468.

1215 Dumarey R, Brown RJ, Corns WT, Brown AS, Stockwell PB. Elemental mercury vapour in air: the origins
1216 and validation of the 'Dumarey equation' describing the mass concentration at saturation. *Accredit.*
1217 *Qual. Assur.* 2010; 15: 409-414.

1218 Durnford D, Dastoor A. The behavior of mercury in the cryosphere: A review of what we know from
1219 observations. *J. Geophys. Res. Atmos.* 2011; 116.

1220 Ebinghaus R, Banic C, Beauchamp S, Jaffe D, Kock HH, Pirrone N, Poissant L, Sprovieri F, Weiss-Penzias P.
1221 Spatial Coverage and Temporal Trends of Land-based Atmospheric Mercury Measurements in the
1222 Northern and Southern Hemispheres. *Mercury Fate and Transport in the Global Atmosphere: Emissions,*
1223 *Measurements, and Models.* Springer Verlag, New York, 2009, pp. 223.

1224 Ebinghaus R, Jennings SG, Kock HH, Derwent RG, Manning AJ, Spain TG. Decreasing trends in total
1225 gaseous mercury observations in baseline air at Mace Head, Ireland from 1996 to 2009. *Atmos. Environ.*
1226 2011; 45: 3475-3480.

1227 Eckley C, Gustin M, Marsik F, Miller M. Measurement of surface mercury fluxes at active industrial gold
1228 mines in Nevada (USA). *Sci. Total Environ.* 2011; 409: 514-522.

1229 Eckley CS, Gustin M, Lin CJ, Li X, Miller MB. The influence of dynamic chamber design and operating
1230 parameters on calculated surface-to-air mercury fluxes. *Atmos. Environ.* 2010; 44: 194-203.

1231 Edgerton ES, Hartsell BE, Jansen JJ. Mercury speciation in coal-fired power plant plumes observed at
1232 three surface sites in the southeastern US. *Environ. Sci. Technol.* 2006; 40: 4563-4570.

1233 El-Feky AA, El-Azab W, Ebiad MA, Masod MB, Faramawy S. Monitoring of elemental mercury in ambient
1234 air around an Egyptian natural gas processing plant. *J. Nat. Gas Sci. Eng.* 2018; 54: 189-201.

1235 Engle MA, Tate MT, Krabbenhoft DP, Schauer JJ, Kolker A, Shanley JB, Bothner MH. Comparison of
1236 atmospheric mercury speciation and deposition at nine sites across central and eastern North America.
1237 *J. Geophys. Res. Atmos.* 2010; 115.

1238 Enrico M, Roux GL, Maruszak N, Heimbürger LE, Claustres A, Fu X, Sun R, Sonke JE. Atmospheric
1239 Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition. *Environ. Sci.*
1240 *Technol.* 2016; 50: 2405-2412.

1241 Faïn X, Obrist D, Hallar AG, McCubbin I, Rahn T. High levels of reactive gaseous mercury observed at a
1242 high elevation research laboratory in the Rocky Mountains. *Atmos. Chem. Phys.* 2009; 9: 8049-8060.

1243 Faïn X, Obrist D, Pierce A, Barth C, Gustin MS, Boyle DP. Whole-watershed mercury balance at Sagehen
1244 Creek, Sierra Nevada, CA. *Geochim. Cosmochim. Acta* 2011; 75: 2379-2392.

1245 Fang G-C, Kao C-L, Huang P-W, Chen H-M, Wu Y-L, Liang G-R. Particulates and particulates-bound
1246 mercury (Hg (p)) sizes (PM 18, PM 10, PM 2.5, PM 1, PM< 1) distributions study by using MOUDI sampler
1247 at a complex sampling site. *Environ. Geochem. Health* 2019: 1-11.

1248 Fang G-C, Lo C-T, Liu C-K. Seasonal variations (autumn, winter, and spring) of atmospheric particulate
1249 and particulate-bound mercury Hg (p) at a suburban/coastal area. *Environ. Forsensics* 2010; 11: 300-
1250 308.

1251 Fang G, Zhang L, Huang C. Measurements of size-fractionated concentration and bulk dry deposition of
1252 atmospheric particulate bound mercury. *Atmos. Environ.* 2012; 61: 371-377.

1253 Fang GC, Lo CT, Cho MH, Zhuang YJ, Tsai KH, Huang CY, Xiao YF. Annual ambient atmospheric mercury
1254 speciation measurement from Longjing, a rural site in Taiwan. *Environ. Geochem. Health* 2017; 39: 901-
1255 911.

1256 Fang GC, Tsai KH, Huang CY, Yang KPO, Xiao YF, Huang WC, Zhuang YJ. Seasonal variations of ambient air
1257 mercury species nearby an airport. *Atmos. Res.* 2018; 202: 96-104.

1258 Feddersen D, Talbot R, Mao H, Sive B. Size distribution of particulate mercury in marine and coastal
1259 atmospheres. *Atmos. Chem. Phys.* 2012; 12: 10899-10909.

1260 Feng XB, Sommar J, Gardfeldt K, Lindqvist O. Improved determination of gaseous divalent mercury in
1261 ambient air using KCl coated denuders. *Fresenius J. Anal. Chem.* 2000; 366: 423-428.

1262 Fritsche J, Obrist D, Zeeman MJ, Conen F, Eugster W, Alewell C. Elemental mercury fluxes over a sub-
1263 alpine grassland determined with two micrometeorological methods. *Atmos. Environ.* 2008; 42: 2922-
1264 2933.

1265 Fu X, Feng X, Shang L, Wang S, Zhang H. Two years of measurements of atmospheric total gaseous
1266 mercury (TGM) at a remote site in Mt. Changbai area, Northeastern China. *Atmos. Chem. Phys.* 2012a;
1267 12: 4215-4226.

1268 Fu X, Feng X, Sommar J, Wang S. A review of studies on atmospheric mercury in China. *Sci. Total Environ.*
1269 2012b; 421: 73-81.

1270 Fu X, Zhang H, Yu B, Wang X, Lin C, Feng X. Observations of atmospheric mercury in China: a critical
1271 review. *Atmos. Chem. Phys.* 2015; 15: 9455-9476.

1272 Gencarelli CN, Bieser J, Carbone F, De Simone F, Hedgecock IM, Matthias V, Travnikov O, Yang X, Pirrone
1273 N. Sensitivity model study of regional mercury dispersion in the atmosphere. *Atmos. Chem. Phys.* 2017;
1274 17: 627-643.

1275 Gerson JR, Driscoll CT, Demers JD, Sauer AK, Blackwell BD, Montesdeoca MR, Shanley JB, Ross DS.

1276 Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns

1277 in methylmercury inputs and production. *J. Geophys. Res. Biogeosci.* 2017; 122: 1922-1939.

1278 Goodsite ME, Plane J, Skov H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere.

1279 *Environ. Sci. Technol.* 2004; 38: 1772-1776.

1280 Gratz L, Ambrose J, Jaffe D, Shah V, Jaeglé L, Stutz J, Festa J, Spolaor M, Tsai C, Selin N, Song S, Zhou X,

1281 Weinheimer A, Knapp DJ, Montzka DD, Flocke F, Campos T, Apel EC, Hornbrook RS, Blake N, Hall S,

1282 Tyndall G, Reeves M, Stechman D, Stell M. Oxidation of mercury by bromine in the subtropical Pacific

1283 free troposphere. *Geophys. Res. Lett.* 2015a; 42: 10494–10502.

1284 Gratz L, Jaffe D, Hee J. Causes of increasing ozone and decreasing carbon monoxide in springtime at the

1285 Mt. Bachelor Observatory from 2004 to 2013. *Atmos. Environ.* 2015b; 109: 323-330.

1286 Gratz LE, Eckley CS, Schwantes SJ, Mattson E. Ambient Mercury Observations near a Coal-Fired Power

1287 Plant in a Western US Urban Area. *Atmosphere* 2019; 10: 176.

1288 Gratz LE, Keeler GJ. Sources of mercury in precipitation to Underhill, VT. *Atmos. Environ.* 2011; 45: 5440-

1289 5449.

1290 Gratz LE, Keeler GJ, Miller EK. Long-term relationships between mercury wet deposition and

1291 meteorology. *Atmos. Environ.* 2009; 43: 6218-6229.

1292 Gratz LE, Keeler GJ, Morishita M, Barres JA, Dvonch JT. Assessing the emission sources of atmospheric

1293 mercury in wet deposition across Illinois. *Sci. Total Environ.* 2013; 448: 120-131.

1294 Grigal D. Inputs and outputs of mercury from terrestrial watersheds: a review. *Environ. Rev.* 2002; 10: 1-
1295 39.

1296 Guentzel J, Landing W, Gill G, Pollman C. Atmospheric deposition of mercury in Florida: the FAMS
1297 project (1992–1994). *Mercury as a Global Pollutant*. Springer, 1995, pp. 393-402.

1298 Guentzel JL, Landing WM, Gill GA, Pollman CD. Processes influencing rainfall deposition of mercury in
1299 Florida. *Environ. Sci. Technol.* 2001; 35: 863-873.

1300 Guo J, Kang S, Huang J, Zhang Q, Rupakheti M, Sun S, Tripathee L, Rupakheti D, Panday AK, Sillanpää M,
1301 Paudyal R. Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of
1302 Nepal, South Asia. *Sci. Total Environ.* 2017; 579: 1240-1248.

1303 Guo Y, Feng X, Li Z, He T, Yan H, Meng B, Zhang J, Qiu G. Distribution and wet deposition fluxes of total
1304 and methyl mercury in Wujiang River Basin, Guizhou, China. *Atmos. Environ.* 2008; 42: 7096-7103.

1305 Gustin M, Dunham-Cheatham SM, Zhang L. Comparison of four methods for measurement of reactive,
1306 gaseous oxidized, and particulate bound mercury. *Environ. Sci. Technol.* 2019; *submitted*.

1307 Gustin M, Weiss-Penzias PS, Peterson C. Investigating sources of gaseous oxidized mercury in dry
1308 deposition at three sites across Florida, USA. *Atmos. Chem. Phys.* 2012; 12: 9201-9219.

1309 Gustin MS, Amos HM, Huang J, Miller MB, Heidecorn K. Measuring and modeling mercury in the
1310 atmosphere: a critical review. *Atmos. Chem. Phys.* 2015; 15: 5697-5713.

1311 Gustin MS, Huang J, Miller MB, Peterson C, Jaffe DA, Ambrose J, Finley BD, Lyman SN, Call K, Talbot R,
1312 Feddersen D, Mao H, Lindberg S. Do we understand what the mercury speciation instruments are
1313 actually measuring? Results of RAMIX. *Environ. Sci. Technol.* 2013; 47: 7295-7306.

1314 Gustin MS, Lindberg SE, Weisberg PJ. An update on the natural sources and sinks of atmospheric
1315 mercury. *Appl. Geochem.* 2008; 23: 482-493.

1316 Gustin MS, Pierce AM, Huang J, Miller MB, Holmes H, Loria-Salazar SM. Evidence for different reactive
1317 Hg sources and chemical compounds at adjacent valley and high elevation locations. *Environ. Sci.*
1318 *Technol.* 2016; DOI: 10.1021/acs.est.6b03339.

1319 Hall B. The gas phase oxidation of elemental mercury by ozone. *Mercury as a Global Pollutant*. Springer,
1320 1995, pp. 301-315.

1321 Hall B, Olson M, Rutter A, Frontiera R, Krabbenhoft D, Gross D, Yuen M, Rudolph T, Schauer J.
1322 Atmospheric mercury speciation in Yellowstone National Park. *Sci. Total Environ.* 2006; 367: 354-366.

1323 Hall NL, Dvonch JT, Marsik FJ, Barres JA, Landis MS. An artificial turf-based surrogate surface collector for
1324 the direct measurement of atmospheric mercury dry deposition. *Int. J. Environ. Res. Public Health* 2017;
1325 14.

1326 Hammerschmidt CR, Fitzgerald WF. Methylmercury in freshwater fish linked to atmospheric mercury
1327 deposition. *Environ. Sci. Technol.* 2006; 40: 7764-7770.

1328 Hammerschmidt CR, Lamborg CH, Fitzgerald WF. Aqueous phase methylation as a potential source of
1329 methylmercury in wet deposition. *Atmos. Environ.* 2007; 41: 1663-1668.

1330 Han D, Zhang J, Hu Z, Ma Y, Duan Y, Han Y, Chen X, Zhou Y, Cheng J, Wang W. Particulate mercury in
1331 ambient air in Shanghai, China: Size-specific distribution, gas-particle partitioning, and association with
1332 carbonaceous composition. *Environ. Pollut.* 2018; 238: 543-553.

1333 Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi YAR, Dentener FJ,
1334 Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai P. Observations:
1335 Atmosphere and surface. Climate Change 2013 the Physical Science Basis: Working Group I Contribution
1336 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 9781107057999,
1337 2013, pp. 159-254.

1338 Hedgecock IM, Pirrone N, Sprovieri F, Pesenti E. Reactive gaseous mercury in the marine boundary layer:
1339 Modelling and experimental evidence of its formation in the Mediterranean region. *Atmos. Environ.*
1340 2003; 37: 41-49.

1341 Hennigan CJ, Bergin MH, Dibb JE, Weber RJ. Enhanced secondary organic aerosol formation due to
1342 water uptake by fine particles. *Geophys. Res. Lett.* 2008; 35.

1343 Henny CJ, Hill EF, Hoffman DJ, Spalding MG, Grove RA. Nineteenth century mercury: hazard to wading
1344 birds and cormorants of the Carson River, Nevada. *Ecotoxicology* 2002; 11: 213-231.

1345 Heyes A, Mason RP, Kim E-H, Sunderland E. Mercury methylation in estuaries: Insights from using
1346 measuring rates using stable mercury isotopes. *Mar. Chem.* 2006; 102: 134-147.

1347 Hoglind H, Eriksson S, Gardfeldt K. Ship-based measurements of atmospheric mercury concentrations
1348 over the Baltic Sea. *Atmosphere* 2018; 9.

1349 Holmes CD, Jacob DJ, Corbitt ES, Mao J, Yang X, Talbot R, Slemr F. Global atmospheric model for mercury
1350 including oxidation by bromine atoms. *Atmos. Chem. Phys.* 2010; 10: 12037-12057.

1351 Holmes CD, Jacob DJ, Mason RP, Jaffe DA. Sources and deposition of reactive gaseous mercury in the
1352 marine atmosphere. *Atmos. Environ.* 2009; 43: 2278-2285.

1353 Holmes CD, Krishnamurthy NP, Caffrey JM, Landing WM, Edgerton ES, Knapp KR, Nair US.

1354 Thunderstorms increase mercury wet deposition. *Environ. Sci. Technol.* 2016; 50: 9343-9350.

1355 Horowitz HM, Jacob DJ, Zhang Y, Dibble TS, Slemr F, Amos HM, Schmidt JA, Corbitt ES, Marais EA,

1356 Sunderland EM. A new mechanism for atmospheric mercury redox chemistry: Implications for the global

1357 mercury budget. *Atmos. Chem. Phys.* 2017; 17: 6353-6371.

1358 Houston MC. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. *J. Clin.*

1359 *Hypertens.* 2011; 13: 621-627.

1360 Howard D, Edwards GC. Mercury fluxes over an Australian alpine grassland and observation of nocturnal

1361 atmospheric mercury depletion events. *Atmos. Chem. Phys.* 2018; 18: 129-142.

1362 Howard D, Nelson PF, Edwards GC, Morrison AL, Fisher JA, Ward J, Harnwell J, Schoot Mvd, Atkinson B,

1363 Chambers SD. Atmospheric mercury in the Southern Hemisphere tropics: seasonal and diurnal variations

1364 and influence of inter-hemispheric transport. *Atmos. Chem. Phys.* 2017; 17: 11623-11636.

1365 Hoyer M, Burke J, Keeler G. Atmospheric sources, transport and deposition of mercury in Michigan: two

1366 years of event precipitation. *Water, Air, Soil Pollut.* 1995; 80: 199-208.

1367 Huang J, Gustin MS. Evidence for a free troposphere source of mercury in wet deposition in the Western

1368 United States. *Environ. Sci. Technol.* 2012; 46: 6621-6629.

1369 Huang J, Gustin MS. Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated

1370 Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences. *Environ. Sci.*

1371 *Technol.* 2015; 49: 6102-6108.

1372 Huang J, Lyman SN, Hartman JS, Gustin MS. A review of passive sampling systems for ambient air
1373 mercury measurements. *Environ. Sci. Proc. Imp.* 2014; 16: 374-392.

1374 Huang J, Miller MB, Edgerton E, Gustin MS. Use of criteria pollutants, active and passive mercury
1375 sampling, and receptor modeling to understand the chemical forms of gaseous oxidized mercury in
1376 Florida. *Atmos. Chem. Phys. Discuss.* 2015; 15: 12069-12105.

1377 Huang J, Miller MB, Edgerton E, Sexauer Gustin M. Deciphering potential chemical compounds of
1378 gaseous oxidized mercury in Florida, USA. *Atmos. Chem. Phys.* 2017; 17: 1689-1698.

1379 Huang J, Miller MB, Weiss-Penzias P, Gustin MS. Comparison of gaseous oxidized Hg measured by KCl-
1380 coated denuders, and nylon and cation exchange membranes. *Environ. Sci. Technol.* 2013; 47: 7307-
1381 7316.

1382 Huber ML, Laeisecke A, Friend DG. Correlation for the vapor pressure of mercury. *Ind. Eng. Chem. Res.*
1383 2006; 45: 7351-7361.

1384 Hynes AJ, Donohoue DL, Goodsite ME, Hedgecock IM. Our current understanding of major chemical and
1385 physical processes affecting mercury dynamics in the atmosphere and at the air-water/terrestrial
1386 interfaces. In: Mason R, Pirrone N, editors. *Mercury Fate and Transport in the Global Atmosphere*.
1387 Springer US, 2009, pp. 427-457; 457.

1388 Hynes AJ, Everhart S, Bauer D, Remeika J, Tatum Ernest C. In situ and denuder-based measurements of
1389 elemental and reactive gaseous mercury with analysis by laser-induced fluorescence – results from the
1390 Reno Atmospheric Mercury Intercomparison Experiment. *Atmos. Chem. Phys.* 2017a; 17: 465-483.

1391 Hynes AJ, Everhart S, Bauer D, Remeika J, Tatum Ernest C. In situ and denuder-based measurements of
1392 elemental and reactive gaseous mercury with analysis by laser-induced fluorescence – results from the
1393 Reno Atmospheric Mercury Intercomparison Experiment. *Atmos. Chem. Phys.* 2017b; 17: 465-483.

1394 Jaffe DA, Lyman S, Amos HM, Gustin MS, Huang J, Selin NE, Levin L, Ter Schure A, Mason RP, Talbot R,
1395 Rutter A, Finley B, Jaeglé L, Shah V, McClure CD, Ambrose JL, Gratz L, Lindberg S, Weiss-Penzias P, Sheu
1396 GR, Feddersen D, Horvat M, Dastoor A, Hynes A, Mao H, Sonke JE, Slemr F, Fisher JA, Ebinghaus R, Zhang
1397 Y, Edwards G. Progress on understanding atmospheric mercury hampered by uncertain measurements.
1398 *Environ. Sci. Technol.* 2014; 48: 7204-7206.

1399 Jiao Y, Dibble TS. First kinetic study of the atmospherically important reactions BrHg+ NO₂ and BrHg+
1400 HOO. *Phys. Chem. Chem. Phys.* 2017a; 19: 1826-1838.

1401 Jiao Y, Dibble TS. Structures, Vibrational Frequencies, and Bond Energies of the BrHgOX and BrHgXO
1402 Species Formed in Atmospheric Mercury Depletion Events. *J. Phys. Chem. A* 2017b; 121: 7976-7985.

1403 Jiskra M, Sonke JE, Obrist D, Bieser J, Ebinghaus R, Myhre CL, Pfaffhuber KA, Wängberg I, Kyllonen K,
1404 Worthy D, Martin LG, Labuschagne C, Mkololo T, Ramonet M, Magand O, Dommergue A. A vegetation
1405 control on seasonal variations in global atmospheric mercury concentrations. *Nature Geosci.* 2018; 11:
1406 244-250.

1407 Jones CP, Lyman SN, Jaffe DA, Allen T, O'Neil TL. Detection and quantification of gas-phase oxidized
1408 mercury compounds by GC/MS. *Atmos. Meas. Tech.* 2016; 9: 2195-2205.

1409 Kalinchuk V, Lopatnikov E, Astakhov A. Gradient measurements of gaseous elemental mercury (Hg0) in
1410 the marine boundary layer of the northwest Sea of Japan (East Sea). *Environ. Pollut.* 2018a; 237: 1124-
1411 1136.

1412 Kalinchuk VV, Mishukov VF, Astakhov AS. Arctic source for elevated atmospheric mercury (Hg0) in the
1413 western Bering Sea in the summer of 2013. *J. Environ. Sci.* 2018b; 68: 114-121.

1414 Kamp J, Skov H, Jensen B, Sørensen LL. Fluxes of gaseous elemental mercury (GEM) in the High Arctic
1415 during atmospheric mercury depletion events (AMDEs). *Atmos. Chem. Phys.* 2018; 18: 6923-6938.

1416 Karthik R, Paneerselvam A, Ganguly D, Hariharan G, Srinivasulu S, Purvaja R, Ramesh R. Temporal
1417 variability of atmospheric Total Gaseous Mercury and its correlation with meteorological parameters at
1418 a high-altitude station of the South India. *Atmos. Pollut. Res.* 2017; 8: 164-173.

1419 Kaulfus AS, Nair U, Holmes CD, Landing WM. Mercury wet scavenging and deposition differences by
1420 precipitation type. *Environ. Sci. Technol.* 2017; 51: 2628-2634.

1421 Keeler G, Glinsorn G, Pirrone N. Particulate mercury in the atmosphere: its significance, transport,
1422 transformation and sources. *Water, Air, Soil Pollut.* 1995; 80: 159-168.

1423 Keeler GJ, Gratz LE, Al-Wali K. Long-term atmospheric mercury wet deposition at Underhill, Vermont.
1424 *Ecotoxicology* 2005; 14: 71-83.

1425 Kim KH, Brown RJC, Kwon E, Kim IS, Sohn JR. Atmospheric mercury at an urban station in Korea across
1426 three decades. *Atmos. Environ.* 2016; 131: 124-132.

1427 Kim P-R, Han Y-J, Holsen TM, Yi S-M. Atmospheric particulate mercury: Concentrations and size
1428 distributions. *Atmos. Environ.* 2012; 61: 94-102.

1429 Kos G, Ryzhkov A, Dastoor A, Narayan J, Steffen A, Ariya P, Zhang L. Evaluation of discrepancy between
1430 measured and modelled oxidized mercury species. *Atmos. Chem. Phys.* 2013; 13: 4839-4863.

1431 Krabbenhoft DP, Sunderland EM. Global change and mercury. *Science* 2013; 341: 1457-1458.

1432 Kumari A, Kumar B, Manzoor S, Kulshrestha U. Status of atmospheric mercury research in South Asia: A
1433 review. *Aerosol Air Qual. Res.* 2015; 15: 1092-1109.

1434 Lam KT, Wilhelmsen CJ, Schwid AC, Jiao Y, Dibble TS. Computational Study on the Photolysis of BrHgONO
1435 and the Reactions of BrHgO \bullet with CH₄, C₂H₆, NO, and NO₂: Implications for Formation of Hg (II)
1436 Compounds in the Atmosphere. *J. Phys. Chem. A* 2019.

1437 Landing W, Caffrey J, Nolek S, Gosnell K, Parker W. Atmospheric wet deposition of mercury and other
1438 trace elements in Pensacola, Florida. *Atmos. Chem. Phys.* 2010; 10: 4867-4877.

1439 Landis MS, Keeler GJ. Critical evaluation of a modified automatic wet-only precipitation collector for
1440 mercury and trace element determinations. *Environ. Sci. Technol.* 1997; 31: 2610-2615.

1441 Landis MS, Ryan JV, ter Schure AF, Laudal D. Behavior of mercury emissions from a commercial coal-
1442 fired power plant: The relationship between stack speciation and near-field plume measurements.
1443 *Environ. Sci. Technol.* 2014; 48: 13540-13548.

1444 Landis MS, Vette AF, Keeler GJ. Atmospheric mercury in the Lake Michigan basin: influence of the
1445 Chicago/Gary urban area. *Environ. Sci. Technol.* 2002; 36: 4508-4517.

1446 Lee GS, Kim PR, Han YJ, Holsen TM, Seo YS, Yi SM. Atmospheric speciated mercury concentrations on an
1447 island between China and Korea: Sources and transport pathways. *Atmos. Chem. Phys.* 2016; 16: 4119-
1448 4133.

1449 Lei H, Liang XZ, Wuebbles DJ, Tao Z. Model analyses of atmospheric mercury: Present air quality and
1450 effects of transpacific transport on the United States. *Atmos. Chem. Phys.* 2013; 13: 10807-10825.

1451 Li P, Feng X, Qiu G. Methylmercury exposure and health effects from rice and fish consumption: a
1452 review. *Int. J. Environ. Res. Public Health* 2010; 7: 2666-2691.

1453 Li P, Feng X, Yuan X, Chan HM, Qiu G, Sun G-X, Zhu Y-G. Rice consumption contributes to low level
1454 methylmercury exposure in southern China. *Environ. Int.* 2012; 49: 18-23.

1455 Li T, Wang Y, Mao H, Wang S, Talbot RW, Zhou Y, Wang Z, Nie X, Qie G. Insights on Chemistry of Mercury
1456 Species in Clouds over Northern China: Complexation and Adsorption. *Environ. Sci. Technol.* 2018; 52:
1457 5125-5134.

1458 Li Y, Wang Y, Li Y, Li T, Mao H, Talbot R, Nie X, Wu C, Zhao Y, Hou C, Wang G, Zhou J, Qie G.
1459 Characteristics and potential sources of atmospheric particulate mercury in Jinan, China. *Sci. Total
1460 Environ.* 2017; 574: 1424-1431.

1461 Lian M, Shang L, Duan Z, Li Y, Zhao G, Zhu S, Qiu G, Meng B, Sommar J, Feng X, Svanberg S. Lidar
1462 mapping of atmospheric atomic mercury in the Wanshan area, China. *Environ. Pollut.* 2018; 240: 353-
1463 358.

1464 Lin C-J, Pehkonen SO. The chemistry of atmospheric mercury: a review. *Atmos. Environ.* 1999; 33: 2067-
1465 2079.

1466 Lin CJ, Pehkonen SO. Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl-): Implications for
1467 tropospheric mercury chemistry. *J. Geophys. Res. Atmos.* 1998; 103: 28093-28102.

1468 Lin CJ, Pongprueksa P, Lindberg SE, Pehkonen SO, Byun D, Jang C. Scientific uncertainties in atmospheric
1469 mercury models I: Model science evaluation. *Atmos. Environ.* 2006; 40: 2911-2928.

1470 Lin H, Tong Y, Yin X, Zhang Q, Zhang H, Zhang H, Chen L, Kang S, Zhang W, Schauer J, De Foy B, Bu X,
1471 Wang X. First measurement of atmospheric mercury species in Qomolangma Natural Nature Preserve,
1472 Tibetan Plateau, and evidence of transboundary pollutant invasion. *Atmos. Chem. Phys.* 2019; 19: 1373-
1473 1391.

1474 Lin H, Zhang W, Deng C, Tong Y, Zhang Q, Wang X. Evaluation of passive sampling of gaseous mercury
1475 using different sorbing materials. *Environ. Sci. Pollut. Res.* 2017; 24: 14190-14197.

1476 Liu C, Fu X, Zhang H, Ming L, Xu H, Zhang L, Feng X. Sources and outflows of atmospheric mercury at Mt.
1477 Changbai, northeastern China. *Sci. Total Environ.* 2019; 663: 275-284.

1478 Liu Y, Wu B, Hao Y, Zhu W, Li Z, Chai X. Site-specific diel mercury emission fluxes in landfill: combined
1479 effects of vegetation and meteorological factors. *Waste Manage.* 2017; 59: 247-254.

1480 Lohman K, Seigneur C, Edgerton E, Jansen J. Modeling mercury in power plant plumes. *Environ. Sci.
1481 Technol.* 2006; 40: 3848-3854.

1482 Lombard M, Bryce J, Mao H, Talbot R. Mercury deposition in southern New Hampshire, 2006–2009.
1483 *Atmos. Chem. Phys.* 2011; 11: 7657-7668.

1484 Lyman S, Jones C, O'Neil T, Allen T, Miller M, Gustin MS, Pierce AM, Luke W, Ren X, Kelley P. Automated
1485 Calibration of Atmospheric Oxidized Mercury Measurements. *Environ. Sci. Technol.* 2016; 50: 12921-
1486 12927.

1487 Lyman SN, Gustin MS, Prestbo EM, Marsik FJ. Estimation of Dry Deposition of Atmospheric Mercury in
1488 Nevada by Direct and Indirect Methods. *Environ. Sci. Technol.* 2007; 41: 1970-1976.

1489 Lyman SN, Jaffe DA. Elemental and oxidized mercury in the upper troposphere and lower stratosphere.

1490 Nature Geosci. 2012; 5: 114-117.

1491 Lyman SN, Jaffe DA, Gustin MS. Release of mercury halides from KCl denuders in the presence of ozone.

1492 Atmos. Chem. Phys. 2010; 10: 8197-8204.

1493 Lynam M, Keeler G. Comparison of methods for particulate phase mercury analysis: sampling and

1494 analysis. Anal. Bioanal. Chem. 2002; 374: 1009-1014.

1495 Lynam MM, Dvonch JT, Barres JA, Landis MS, Kamal AS. Investigating the impact of local urban sources

1496 on total atmospheric mercury wet deposition in Cleveland, Ohio, USA. Atmos. Environ. 2016; 127: 262-

1497 271.

1498 Lynam MM, Keeler GJ. Artifacts associated with the measurement of particulate mercury in an urban

1499 environment: The influence of elevated ozone concentrations. Atmos. Environ. 2005; 39: 3081-3088.

1500 Ma M, Wang D, Du H, Sun T, Zhao Z, Wei S. Atmospheric mercury deposition and its contribution of the

1501 regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest

1502 China. Environ. Sci. Pollut. Res. 2015; 22: 20007-20018.

1503 Macagnano A, Papa P, Avossa J, Perri V, Marelli M, Sprovieri F, Zampetti E, De Cesare F, Bearzotti A,

1504 Pirrone N. Passive sampling of gaseous elemental mercury based on a composite tio2np/aunp layer.

1505 Nanomaterials 2018; 8.

1506 Macagnano A, Perri V, Zampetti E, Bearzotti A, De Cesare F, Sprovieri F, Pirrone N. A smart nanofibrous

1507 material for adsorbing and detecting elemental mercury in air. Atmos. Chem. Phys. 2017a; 17: 6883-

1508 6893.

1509 Macagnano A, Perri V, Zampetti E, Ferretti AM, Sprovieri F, Pirrone N, Bearzotti A, Esposito G, De Cesare

1510 F. Elemental mercury vapor chemoresistors employing TiO₂ nanofibers photocatalytically decorated

1511 with Au-nanoparticles. *Sens. Actuators B Chem.* 2017b; 247: 957-967.

1512 Malcolm EG, Ford AC, Redding TA, Richardson MC, Strain BM, Tetzner SW. Experimental investigation of

1513 the scavenging of gaseous mercury by sea salt aerosol. *J. Atmos. Chem.* 2009; 63: 221-234.

1514 Malcolm EG, Keeler GJ. Evidence for a sampling artifact for particulate-phase mercury in the marine

1515 atmosphere. *Atmos. Environ.* 2007; 41: 3352-3359.

1516 Malcolm EG, Keeler GJ, Lawson ST, Sherbatskoy TD. Mercury and trace elements in cloud water and

1517 precipitation collected on Mt. Mansfield, Vermont. *J. Environ. Monit.* 2003; 5: 584-590.

1518 Mamane Y, Perrino C, Yossef O, Catrambone M. Source characterization of fine and coarse particles at

1519 the East Mediterranean coast. *Atmos. Environ.* 2008; 42: 6114-6130.

1520 Mao H, Cheng I, Zhang L. Current understanding of the driving mechanisms for spatiotemporal

1521 variations of atmospheric speciated mercury: A review. *Atmos. Chem. Phys.* 2016; 16: 12897-12924.

1522 Mao H, Hall D, Ye Z, Zhou Y, Felton D, Zhang L. Impacts of large-scale circulation on urban ambient

1523 concentrations of gaseous elemental mercury in New York, USA. *Atmos. Chem. Phys.* 2017a; 17: 11655-

1524 11671.

1525 Mao H, Talbot R, Hegarty J, Koerner J. Speciated mercury at marine, coastal, and inland sites in New

1526 England—Part 2: Relationships with atmospheric physical parameters. *Atmos. Chem. Phys.* 2012; 12:

1527 4181-4206.

1528 Mao H, Talbot RW, Sive BC, Youn Kim S, Blake DR, Weinheimer AJ. Arctic mercury depletion and its
1529 quantitative link with halogens. *J. Atmos. Chem.* 2010; 65: 1-26.

1530 Mao H, Ye Z, Driscoll C. Meteorological effects on Hg wet deposition in a forested site in the Adirondack
1531 region of New York during 2000–2015. *Atmos. Environ.* 2017b; 168: 90-100.

1532 Marsik FJ, Keeler GJ, Landis MS. The dry-deposition of speciated mercury to the Florida Everglades:
1533 Measurements and modeling. *Atmos. Environ.* 2007; 41: 136-149.

1534 Martin LG, Labuschagne C, Brunke EG, Weigelt A, Ebinghaus R, Slemr F. Trend of atmospheric mercury
1535 concentrations at Cape Point for 1995-2004 and since 2007. *Atmos. Chem. Phys.* 2017; 17: 2393-2399.

1536 Marumoto K, Matsuyama A. Mercury speciation in wet deposition samples collected from a coastal area
1537 of Minamata Bay. *Atmos. Environ.* 2014; 86: 220-227.

1538 Marumoto K, Suzuki N, Shibata Y, Takeuchi A, Takami A, Fukuzaki N, Kawamoto K, Mizohata A, Kato S,
1539 Yamamoto T. Long-Term Observation of Atmospheric Speciated Mercury during 2007–2018 at Cape
1540 Hedo, Okinawa, Japan. *Atmosphere* 2019; 10: 362.

1541 Marusczak N, Sonke JE, Fu X, Jiskra M. Tropospheric GOM at the Pic du Midi Observatory—correcting bias
1542 in denuder based observations. *Environ. Sci. Technol.* 2016; 51: 863-869.

1543 Mason RP, Hammerschmidt CR, Lamborg CH, Bowman KL, Swarr GJ, Shelley RU. The air-sea exchange of
1544 mercury in the low latitude Pacific and Atlantic Oceans. *Deep Sea Res. (I Oceanogr. Res. Pap.)* 2017; 122:
1545 17-28.

1546 McClure CD, Jaffe DA, Edgerton ES. Evaluation of the KCl denuder method for gaseous oxidized mercury
1547 using HgBr₂ at an in-service AMNet site. *Environ. Sci. Technol.* 2014; 48: 11437-11444.

1548 McLagan DS, Mazur ME, Mitchell CP, Wania F. Passive air sampling of gaseous elemental mercury: a
1549 critical review. *Atmos. Chem. Phys.* 2016; 16: 3061-3076.

1550 McLagan DS, Mitchell CPJ, Steffen A, Hung H, Shin C, Stupple GW, Olson ML, Luke WT, Kelley P, Howard
1551 D, Edwards GC, Nelson PF, Xiao H, Sheu GR, Dreyer A, Huang H, Abdul Hussain B, Lei YD, Tavshunsky I,
1552 Wania F. Global evaluation and calibration of a passive air sampler for gaseous mercury. *Atmos. Chem.*
1553 *Phys.* 2018; 18: 5905-5919.

1554 Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH. *Ambio* 2007; 36:
1555 3.

1556 Michael R, Stuart AL, Trotz MA, Akiwumi F. Source apportionment of wet-deposited atmospheric
1557 mercury in Tampa, Florida. *Atmos. Res.* 2016; 170: 168-175.

1558 Miller G, Quashnick J, Hebert V. Reaction rate of metallic mercury with hydroxyl radical in the gas phase.
1559 Abstracts of Papers of the American Chemical Society. 221. American Chemical Society, 2001, pp. U47-
1560 U47.

1561 Miller MB, Dunham-Cheatham SM, Gustin MS, Edwards GC. Evaluation of cation exchange membrane
1562 performance under exposure to high Hg0 and HgBr2 concentrations. *Atmos. Meas. Tech.* 2019; 12:
1563 1207-1217.

1564 Monperrus M, Tessier E, Amouroux D, Leynaert A, Huonnic P, Donard O. Mercury methylation,
1565 demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. *Mar.*
1566 *Chem.* 2007; 107: 49-63.

1567 Morrison KA, Kuhn ES, Watras CJ. Comparison of three methods of estimating atmospheric mercury
1568 deposition. *Environ. Sci. Technol.* 1995; 29: 571-576.

1569 Morton-Bermea O, Garza-Galindo R, Hernández-Álvarez E, Ordoñez-Godínez SL, Amador-Muñoz O,

1570 Beramendi-Orosco L, Miranda J, Rosas-Pérez I. Atmospheric PM_{2.5} Mercury in the Metropolitan Area of

1571 Mexico City. *Bull. Environ. Contam. Toxicol.* 2018; 100: 588-592.

1572 Muntean M, Janssens-Maenhout G, Song S, Selin NE, Olivier JG, Guizzardi D, Maas R, Dentener F. Trend

1573 analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury

1574 emissions. *Sci. Total Environ.* 2014; 494: 337-350.

1575 Murray LT, Mickley LJ, Kaplan JO, Sofen ED, Pfeiffer M, Alexander B. Factors controlling variability in the

1576 oxidative capacity of the troposphere since the Last Glacial Maximum. *Atmos. Chem. Phys.* 2014; 14:

1577 3589-3622.

1578 Navrátil T, Nováková T, Shanley JB, Rohovec J, Matoušková Š, Vaňková M, Norton SA. Larch Tree Rings as

1579 a Tool for Reconstructing 20th Century Central European Atmospheric Mercury Trends. *Environ. Sci.*

1580 *Technol.* 2018; 52: 11060-11068.

1581 Nerentorp Mastromonaco MG, Gårdfeldt K, Langer S. Mercury flux over West Antarctic Seas during

1582 winter, spring and summer. *Mar. Chem.* 2017; 193: 44-54.

1583 Nic M, Hovorka L, Jirat J, Kosata B, Znamenacek J. IUPAC compendium of chemical terminology-the gold

1584 book: International Union of Pure and Applied Chemistry, 2005.

1585 Obrist D, Agnan Y, Jiskra M, Olson CL, Colegrove DP, Hueber J, Moore CW, Sonke JE, Helming D. Tundra

1586 uptake of atmospheric elemental mercury drives Arctic mercury pollution. *Nature* 2017; 547: 201-204.

1587 Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury

1588 processes in response to human and natural perturbations: Changes of emissions, climate, and land use.

1589 *Ambio* 2018; 47: 116-140.

1590 Obrist D, Tas E, Peleg M, Matveev V, Faïn X, Asaf D, Luria M. Bromine-induced oxidation of mercury in
1591 the mid-latitude atmosphere. *Nature Geosci.* 2011; 4: 22-26.

1592 Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, Rich-Edwards JW, Gillman
1593 MW. Maternal fish consumption, hair mercury, and infant cognition in a US cohort. *Environ. Health
1594 Perspect.* 2005; 113: 1376-1380.

1595 Osterwalder S, Sommar J, Åkerblom S, Jocher G, Fritsche J, Nilsson MB, Bishop K, Alewell C. Comparative
1596 study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland.
1597 *Atmos. Environ.* 2018; 172: 16-25.

1598 Pacyna JM, Travnikov O, Simone FD, Hedgecock IM, Sundseth K, Pacyna EG, Steenhuizen F, Pirrone N,
1599 Munthe J, Kindbom K. Current and future levels of mercury atmospheric pollution on a global scale.
1600 *Atmos. Chem. Phys.* 2016; 16: 12495-12511.

1601 Pal B, Ariya PA. Gas-Phase HO-Initiated Reactions of Elemental Mercury: Kinetics, Product Studies, and
1602 Atmospheric Implications. *Environ. Sci. Technol.* 2004a; 38: 5555-5566.

1603 Pal B, Ariya PA. Studies of ozone initiated reactions of gaseous mercury: kinetics, product studies, and
1604 atmospheric implications. *Phys. Chem. Chem. Phys.* 2004b; 6: 572-579.

1605 Pandey SK, Kim K-H, Brown RJ. Measurement techniques for mercury species in ambient air. *Trends
1606 Analyt. Chem.* 2011; 30: 899-917.

1607 Pankow JF. Common y-intercept and single compound regressions of gas-particle partitioning data vs
1608 1/T. *Atmos. Environ.* 1991; 25: 2229-2239.

1609 Pankow JF. Application of common y-intercept regression parameters for log K_p vs 1/T for predicting
1610 gas-particle partitioning in the urban environment. *Atmos. Environ.* 1992; 26: 2489-2497.

1611 Papa P, Fratoddi I, Venditti I, Vichi F, Macagnano A, Zampetti E, Bearzotti A. Use of gold nanoparticles as
1612 substrate for diffusive monitoring of gaseous mercury. *Materials* 2018; 11.

1613 Peleg M, Tas E, Matveev V, Obrist D, Moore CW, Gabay M, Luria M. Observational evidence for
1614 involvement of nitrate radicals in nighttime oxidation of mercury. *Environ. Sci. Technol.* 2015.

1615 Peterson C, Alishahi M, Gustin MS. Testing the use of passive sampling systems for understanding air
1616 mercury concentrations and dry deposition across Florida, USA. *Sci. Total Environ.* 2012; 424: 297-307.

1617 Pleuel K, Munthe J. Modelling the atmospheric mercury cycle-chemistry in fog droplets. *Atmos. Environ.*
1618 1995; 29: 1441-1457.

1619 Pongprueksa P, Lin C-J, Lindberg SE, Jang C, Braverman T, Bullock Jr OR, Ho TC, Chu H-W. Scientific
1620 uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution,
1621 and Hg (II) reduction mechanism. *Atmos. Environ.* 2008; 42: 1828-1845.

1622 Prestbo EM, Gay DA. Wet deposition of mercury in the US and Canada, 1996-2005: Results and analysis
1623 of the NADP mercury deposition network (MDN). *Atmos. Environ.* 2009; 43: 4223-4233.

1624 Prete D, Davis M, Lu J. Factors affecting the concentration and distribution of gaseous elemental
1625 mercury in the urban atmosphere of downtown Toronto. *Atmos. Environ.* 2018; 192: 24-34.

1626 Qie G, Wang Y, Wu C, Mao H, Zhang P, Li T, Li Y, Talbot R, Hou C, Yue T. Distribution and sources of
1627 particulate mercury and other trace elements in PM 2.5 and PM 10 atop Mount Tai, China. *J. Environ.*
1628 *Manage.* 2018; 215: 195-205.

1629 Qin C, Wang Y, Peng Y, Wang D. Four-year record of mercury wet deposition in one typical industrial city
1630 in southwest China. *Atmos. Environ.* 2016; 142: 442-451.

1631 Quétel CR, Zampella M, Brown RJC. Temperature dependence of Hg vapour mass concentration at
1632 saturation in air: New SI traceable results between 15 and 30°C. *Trends Analyt. Chem.* 2016; 85: 81-88.

1633 Read KA, Neves LM, Carpenter LJ, Lewis AC, Fleming ZF, Kentisbeer J. Four years (2011-2015) of total
1634 gaseous mercury measurements from the Cape Verde Atmospheric Observatory. *Atmos. Chem. Phys.*
1635 2017; 17: 5393-5406.

1636 Risch MR, Kenski DM. Spatial patterns and temporal changes in atmospheric-mercury deposition for the
1637 Midwestern USA, 2001-2016. *Atmosphere* 2018; 9: 29.

1638 Ritchie CD, Richards W, Arp PA. Mercury in fog on the Bay of Fundy (Canada). *Atmos. Environ.* 2006; 40:
1639 6321-6328.

1640 Roman P, Polkowska Ż, Namieśnik J. Sampling procedures in studies of cloud water composition: A
1641 review. *Crit. Rev. Environ. Sci. Technol.* 2013; 43: 1517-1555.

1642 Rutter A, Shakya K, Lehr R, Schauer J, Griffin R. Oxidation of gaseous elemental mercury in the presence
1643 of secondary organic aerosols. *Atmos. Environ.* 2012; 59: 86-92.

1644 Rutter AP, Hanford KL, Zwiers JT, Perillo-Nicholas AL, Schauer JJ, Olson ML. Evaluation of an offline
1645 method for the analysis of atmospheric reactive gaseous mercury and particulate mercury. *J. Air Waste
1646 Manage. Assoc.* 2008; 58: 377-383.

1647 Rutter AP, Schauer JJ. The effect of temperature on the gas-particle partitioning of reactive mercury in
1648 atmospheric aerosols. *Atmos. Environ.* 2007a; 41: 8647-8657.

1649 Rutter AP, Schauer JJ. The impact of aerosol composition on the particle to gas partitioning of reactive
1650 mercury. *Environ. Sci. Technol.* 2007b; 41: 3934-3939.

1651 Saiz-Lopez A, Acuña AU, Trabelsi T, Carmona-García J, Dávalos JZ, Rivero D, Cuevas CA, Kinnison DE,
1652 Sitkiewicz SP, Roca-Sanjuán D. Gas-Phase Photolysis of Hg (I) Radical Species: A New Atmospheric
1653 Mercury Reduction Process. *J. Am. Chem. Soc.* 2019.

1654 Saiz-Lopez A, Sitkiewicz SP, Roca-Sanjuán D, Oliva-Enrich JM, Dávalos JZ, Notario R, Jiskra M, Xu Y, Wang
1655 F, Thackray CP, Sunderland EM, Jacob DJ, Travnikov O, Cuevas CA, Acuña AU, Rivero D, Plane JMC,
1656 Kinnison DE, Sonke JE. Photoreduction of gaseous oxidized mercury changes global atmospheric
1657 mercury speciation, transport and deposition. *Nat. Commun.* 2018; 9: 4796.

1658 Sakata M, Asakura K. Estimating contribution of precipitation scavenging of atmospheric particulate
1659 mercury to mercury wet deposition in Japan. *Atmos. Environ.* 2007; 41: 1669-1680.

1660 Sakata M, Marumoto K. Wet and dry deposition fluxes of mercury in Japan. *Atmos. Environ.* 2005; 39:
1661 3139-3146.

1662 Sanei H, Outridge P, Goodarzi F, Wang F, Armstrong D, Warren K, Fishback L. Wet deposition mercury
1663 fluxes in the Canadian sub-Arctic and southern Alberta, measured using an automated precipitation
1664 collector adapted to cold regions. *Atmos. Environ.* 2010; 44: 1672-1681.

1665 Santos EB, Ferlin S, Fostier AH, Mazali IO. Using gold nanoparticles as passive sampler for indoor
1666 monitoring of gaseous elemental mercury. *J. Braz. Chem. Soc.* 2017; 28: 1274-1280.

1667 Sather ME, Mukerjee S, Smith L, Mathew J, Jackson C, Callison R, Scrapper L, Hathcoat A, Adam J, Keese
1668 D, Ketcher P, Brunette R, Karlstrom J, Ven der Jagt G. Gaseous oxidized mercury dry deposition

1669 measurements in the Four Corners area and Eastern Oklahoma, USA. *Atmos. Pollut. Res.* 2013; 4: 168-

1670 180.

1671 Schwindt AR, Fournie JW, Landers DH, Schreck CB, Kent ML. Mercury concentrations in salmonids from

1672 western US National Parks and relationships with age and macrophage aggregates. *Environ. Sci. Technol.*

1673 2008; 42: 1365-1370.

1674 Seigneur C, Abeck H, Chia G, Reinhard M, Bloom NS, Prestbo E, Saxena P. Mercury adsorption to

1675 elemental carbon (soot) particles and atmospheric particulate matter. *Atmos. Environ.* 1998; 32: 2649-

1676 2657.

1677 Seigneur C, Vijayaraghavan K, Lohman K. Atmospheric mercury chemistry: Sensitivity of global model

1678 simulations to chemical reactions. *J. Geophys. Res. Atmos.* 2006; 111.

1679 Selin NE. Global change and mercury cycling: Challenges for implementing a global mercury treaty.

1680 *Environ. Toxicol. Chem.* 2014; 33: 1202-1210.

1681 Selin NE, Jacob DJ. Seasonal and spatial patterns of mercury wet deposition in the United States:

1682 Constraints on the contribution from North American anthropogenic sources. *Atmos. Environ.* 2008; 42:

1683 5193-5204.

1684 Selin NE, Javob DJ, Park RJ, Yantosca RM, Strode S, Jaeglé L, Jaffe D. Chemical cycling and deposition of

1685 atmospheric mercury: Global constraints from observations. *J. Geophys. Res. Atmos.* 2007; 112: D02308.

1686 Seo Y-S, Han Y-J, Choi H-D, Holsen TM, Yi S-M. Characteristics of total mercury (TM) wet deposition:

1687 scavenging of atmospheric mercury species. *Atmos. Environ.* 2012; 49: 69-76.

1688 Shah V, Jaeglé L. Subtropical subsidence and surface deposition of oxidized mercury produced in the
1689 free troposphere. *Atmos. Chem. Phys.* 2017; 17: 8999-9017.

1690 Shah V, Jaeglé L, Gratz L, Ambrose J, Jaffe D, Selin N, Song S, Campos T, Flocke F, Reeves M, Stechman D,
1691 Stell M, Festa J, Stutz J, Weinheimer A, Knapp DJ, Montzka DD, Tyndall G, Apel EC, Hornbrook RS, Hills
1692 AJ, Riemer DD, Blake N, Cantrell CA, Mauldin RL. Origin of oxidized mercury in the summertime free
1693 troposphere over the southeastern US. *Atmos. Chem. Phys.* 2016; 16: 1511-1530.

1694 Shanley JB, Engle MA, Scholl M, Krabbenhoft DP, Brunette R, Olson ML, Conroy ME. High mercury wet
1695 deposition at a “clean air” site in Puerto Rico. *Environ. Sci. Technol.* 2015; 49: 12474-12482.

1696 Shen H, Tsai CM, Yuan CS, Jen YH, Ie IR. How incense and joss paper burning during the worship
1697 activities influences ambient mercury concentrations in indoor and outdoor environments of an Asian
1698 temple? *Chemosphere* 2017; 167: 530-540.

1699 Sheu G-R, Lin N-H. Mercury in cloud water collected on Mt. Bamboo in northern Taiwan during the
1700 northeast monsoon season. *Atmos. Environ.* 2011; 45: 4454-4462.

1701 Si L, Ariya PA. Recent advances in atmospheric chemistry of mercury. *Atmosphere* 2018; 9.

1702 Simon H, Reff A, Wells B, Xing J, Frank N. Ozone trends across the United States over a period of
1703 decreasing NO_x and VOC emissions. *Environ. Sci. Technol.* 2014; 49: 186-195.

1704 Sitkiewicz SP, Oliva JM, Dávalos JZ, Notario R, Saiz-Lopez A, Alcoba DR, Oña OB, Roca-Sanjuán D. Ab
1705 initio quantum-chemical computations of the electronic states in HgBr₂ and IBr: Molecules of interest
1706 on the Earth’s atmosphere. *The Journal of chemical physics* 2016; 145: 244304.

1707 Sitkiewicz SP, Rivero D, Oliva-Enrich JM, Saiz-Lopez A, Roca-Sanjuán D. Ab initio quantum-chemical
1708 computations of the absorption cross sections of HgX 2 and HgXY (X, Y= Cl, Br, and I): molecules of
1709 interest in the Earth's atmosphere. *Phys. Chem. Chem. Phys.* 2019; 21: 455-467.

1710 Siudek P, Kurzyca I, Siepak J. Atmospheric deposition of mercury in central Poland: sources and seasonal
1711 trends. *Atmos. Res.* 2016; 170: 14-22.

1712 Sizmur T, McArthur G, Risk D, Tordon R, O'Driscoll NJ. Gaseous mercury flux from salt marshes is
1713 mediated by solar radiation and temperature. *Atmos. Environ.* 2017; 153: 117-125.

1714 Slemr F, Brunke E-G, Ebinghaus R, Kuss J. Worldwide trend of atmospheric mercury since 1995. *Atmos.*
1715 *Chem. Phys.* 2011; 11: 4779-4787.

1716 Slemr F, Ebinghaus R, Brenninkmeijer CAM, Hermann M, Kock HH, Martinsson BG, Schuck T, Sprung D,
1717 van Velthoven P, Zahn A, Ziereis H. Gaseous mercury distribution in the upper troposphere and lower
1718 stratosphere observed onboard the CARIBIC passenger aircraft. *Atmos. Chem. Phys.* 2009; 9: 1957-1969.

1719 Slemr F, Weigelt A, Ebinghaus R, Bieser J, Brenninkmeijer CAM, Rauthe-Schöch A, Hermann M,
1720 Martinsson BG, Van Velthoven P, Bönisch H, Neumaier M, Zahn A, Ziereis H. Mercury distribution in the
1721 upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC
1722 observatory: 2014-2016. *Atmos. Chem. Phys.* 2018; 18: 12329-12343.

1723 Snider G, Raofie F, Ariya PA. Effects of relative humidity and CO (g) on the O 3-initiated oxidation
1724 reaction of Hg 0 (g): kinetic & product studies. *Phys. Chem. Chem. Phys.* 2008; 10: 5616-5623.

1725 Soerensen AL, Jacob DJ, Streets DG, Witt MLI, Ebinghaus R, Mason RP, Andersson M, Sunderland EM.
1726 Multi-decadal decline of mercury in the North Atlantic atmosphere explained by changing subsurface
1727 seawater concentrations. *Geophys. Res. Lett.* 2012; 39: L21810.

1728 Sommar J, Gårdfeldt K, Strömberg D, Feng X. A kinetic study of the gas-phase reaction between the
1729 hydroxyl radical and atomic mercury. *Atmos. Environ.* 2001; 35: 3049-3054.

1730 Spolaor A, Angot H, Roman M, Dommergue A, Scarchilli C, Vardè M, Del Guasta M, Pedeli X, Varin C,
1731 Sprovieri F. Feedback mechanisms between snow and atmospheric mercury: Results and observations
1732 from field campaigns on the Antarctic plateau. *Chemosphere* 2018; 197: 306-317.

1733 Sprovieri F, Pirrone N, Bencardino M, D'Amore F, Angot H, Barbante C, Brunke E-G, Arcega-Cabrera F,
1734 Cairns W, Comero S. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and
1735 Southern hemispheres. *Atmos. Chem. Phys.* 2017; 17: 2689-2708.

1736 Sprovieri F, Pirrone N, Bencardino M, D'Amore F, Carbone F, Cinnirella S, Mannarino V, Landis M,
1737 Ebinghaus R, Weigelt A, Brunke EG, Labuschagne C, Martin L, Munthe J, Wangberg I, Artaxo P, Morais F,
1738 Barbosa HM, Brito J, Cairns W, Barbante C, Dieguez MC, Garcia PE, Dommergue A, Angot H, Magand O,
1739 Skov H, Horvat M, Kotnik J, Read KA, Neves LM, Gawlik BM, Sena F, Mashyanov N, Obolkin V, Wip D,
1740 Feng XB, Zhang H, X. F, Ramachandran R, Cossa D, Knoery J, Maruszak N, Nerentorp M, Norstrom C.
1741 Atmospheric Mercury Concentrations observed at ground-based monitoring sites globally distributed in
1742 the framework of the GMOS network. *Atmos. Chem. Phys.* 2016; 16: 11915-11935.

1743 Sprovieri F, Pirrone N, Ebinghaus R, Kock H, Dommergue A. A review of worldwide atmospheric mercury
1744 measurements. *Atmos. Chem. Phys.* 2010; 10: 8245-8265.

1745 Spry DJ, Wiener JG. Metal bioavailability and toxicity to fish in low-alkalinity lakes: a critical review.
1746 *Environ. Pollut.* 1991; 71: 243-304.

1747 Srivastava A, Hodges JT. Development of a High-Resolution Laser Absorption Spectroscopy Method with
1748 Application to the Determination of Absolute Concentration of Gaseous Elemental Mercury in Air. *Anal.*
1749 *Chem.* 2018; 90: 6781-6788.

1750 Stamenkovic J, Gustin MS. Nonstomatal versus stomatal uptake of atmospheric mercury. *Environ. Sci.*
1751 *Technol.* 2009; 43: 1367-1372.

1752 Steffen A, Bottenheim J, Cole A, Douglas TA, Ebinghaus R, Friess U, Netcheva S, Nghiem S, Sihler H,
1753 Staebler R. Atmospheric mercury over sea ice during the OASIS-2009 campaign. *Atmos. Chem. Phys.*
1754 2013; 13: 7007-7021.

1755 Steffen A, Douglas T, Amyot M, Ariya P, Aspmo K, Berg T, Bottenheim J, Brooks S, Cobbett F, Dastoor A.
1756 A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. *Atmos.*
1757 *Chem. Phys.* 2008; 8: 1445-1482.

1758 Steffen A, Lehnher I, Cole A, Ariya P, Dastoor A, Durnford D, Kirk J, Pilote M. Atmospheric mercury in
1759 the Canadian Arctic. Part I: A review of recent field measurements. *Sci. Total Environ.* 2015; 509: 3-15.

1760 Stern GA, Macdonald RW, Outridge PM, Wilson S, Chetelat J, Cole A, Hintelmann H, Loseto LL, Steffen A,
1761 Wang F. How does climate change influence arctic mercury? *Sci. Total Environ.* 2012; 414: 22-42.

1762 Streets DG, Horowitz HM, Jacob DJ, Lu Z, Levin L, Ter Schure AFH, Sunderland EM. Total Mercury
1763 Released to the Environment by Human Activities. *Environ. Sci. Technol.* 2017; 51: 5969-5977.

1764 Streets DG, Horowitz HM, Lu Z, Levin L, Thackray CP, Sunderland EM. Global and regional trends in
1765 mercury emissions and concentrations, 2010–2015. *Atmos. Environ.* 2019: 417-427.

1766 Stylo M, Alvarez J, Dittkrist J, Jiao H. Global review of Mercury Monitoring Networks. United Nations
1767 Environmental Program, Geneva, Switzerland, 2016.

1768 Subir M, Ariya PA, Dastoor AP. A review of uncertainties in atmospheric modeling of mercury chemistry
1769 I. Uncertainties in existing kinetic parameters—Fundamental limitations and the importance of
1770 heterogeneous chemistry. *Atmos. Environ.* 2011; 45: 5664-5676.

1771 Subir M, Ariya PA, Dastoor AP. A review of the sources of uncertainties in atmospheric mercury
1772 modeling II. Mercury surface and heterogeneous chemistry—A missing link. *Atmos. Environ.* 2012; 46: 1-
1773 10.

1774 Sun G, Sommar J, Feng X, Lin C-J, Ge M, Wang W, Yin R, Fu X, Shang L. Mass-dependent and-
1775 independent fractionation of mercury isotope during gas-phase oxidation of elemental mercury vapor
1776 by atomic Cl and Br. *Environ. Sci. Technol.* 2016; 50: 9232-9241.

1777 Swartzendruber PC, Jaffe DA, Prestbo EM, Weiss-Penzias P, Selin NE, Park R, Jacob DJ, Strode S, Jaeglé L.
1778 Observations of reactive gaseous mercury in the free troposphere at the Mt. Bachelor Observatory. *J.*
1779 *Geophys. Res. Atmos.* 2006; 111: D24301.

1780 Tacey SA, Xu L, Mavrikakis M, Schauer JJ. Heterogeneous Reduction Pathways for Hg (II) Species on Dry
1781 Aerosols: A First-Principles Computational Study. *J. Phys. Chem. A* 2016; 120: 2106-2113.

1782 Talbot R, Mao H, Feddersen D, Smith M, Kim SY, Sive B, Haase K, Ambrose J, Zhou Y, Russo R.
1783 Comparison of Particulate Mercury Measured with Manual and Automated Methods. *Atmosphere* 2011;
1784 2: 1-20.

1785 Tang Y, Wang S, Wu Q, Liu K, Li Z, Zou J, Hou D, Wu Y, Duan L. Measurement of size-fractionated
1786 particulate-bound mercury in Beijing and implications on sources and dry deposition of mercury. *Sci.*
1787 *Total Environ.* 2019; 675: 176-183.

1788 Tang Y, Wang S, Wu Q, Liu K, Wang L, Li S, Gao W, Zhang L, Zheng H, Li Z, Hao J. Recent decrease trend of
1789 atmospheric mercury concentrations in East China: The influence of anthropogenic emissions. *Atmos.*
1790 *Chem. Phys.* 2018; 18: 8279-8291.

1791 Tokos JJS, Hall B, Calhoun JA, Prestbo EM. Homogeneous gas-phase reaction of Hg° with H_2O_2 , O_3 , CH_3I ,
1792 AND (CH_3I)₂: Implications for atmospheric Hg cycling. *Atmos. Environ.* 1998; 32: 823-827.

1793 Tong Y, Eichhorst T, Olson MR, McGinnis JE, Turner I, Rutter AP, Shafer MM, Wang X, Schauer JJ.
1794 Atmospheric photolytic reduction of Hg (II) in dry aerosols. *Environ. Sci. Proc. Imp.* 2013; 15: 1883-1888.

1795 Tong Y, Eichhorst T, Olson MR, Rutter AP, Shafer MM, Wang X, Schauer JJ. Comparison of
1796 heterogeneous photolytic reduction of Hg (II) in the coal fly ashes and synthetic aerosols. *Atmos. Res.*
1797 2014; 138: 324-329.

1798 Travnikov O, Angot H, Artaxo P, Bencardino M, Bieser J, D'Amore F, Dastoor A, De Simone F, Diéguez
1799 MC, Dommergue A, Ebinghaus R, Feng XB, Gencarelli CN, Hedgecock IM, Magand O, Martin L, Matthias
1800 V, Mashyanov N, Pirrone N, Ramachandran R, Read KA, Ryjkov A, Selin NE, Sena F, Song S, Sprovieri F,
1801 Wip D, Wangberg I, Yang X. Multi-model study of mercury dispersion in the atmosphere: atmospheric
1802 processes and model evaluation. *Atmos. Chem. Phys.* 2017; 5271-5295.

1803 UNEP. Global Mercury Assessment 2018. United Nations Environment Program, Geneva, Switzerland,
1804 2019.

1805 Urba A, Valiulis D, Šarlauskas J, Kvietkus K, Šakalys J, Selskis A. A pilot study of different materials applied
1806 for active sampling of gaseous oxidized mercury in the atmospheric air. *Atmos. Pollut. Res.* 2017.

1807 Vijayaraghavan K, Karamchandani P, Seigneur C, Balmori R, Chen SY. Plume-in-grid modeling of
1808 atmospheric mercury. *J. Geophys. Res. Atmos.* 2008; 113.

1809 Vijayaraghavan K, Stoeckenius T, Ma L, Yarwood G, Morris R, Levin L. Analysis of temporal trends in
1810 mercury emissions and deposition in Florida. 10th International Conference on Mercury as a Global
1811 Pollutant. Halifax, NS, Canada, pp. MG4A-O10.

1812 Wang C, Wang Z, Hui F, Zhang X. Speciated atmospheric mercury and sea-air exchange of gaseous
1813 mercury in the South China Sea. *Atmos. Chem. Phys.* 2019; 19: 10111-10127.

1814 Wang F, Saiz-Lopez A, Mahajan A, Martín JG, Armstrong D, Lemes M, Hay T, Prados-Roman C. Enhanced
1815 production of oxidised mercury over the tropical Pacific Ocean: a key missing oxidation pathway. *Atmos.*
1816 *Chem. Phys.* 2014a; 14: 1323.

1817 Wang S, Schmidt JA, Baidar S, Coburn S, Dix B, Koenig TK, Apel E, Bowdalo D, Campos TL, Eloranta E,
1818 Evans MJ, DiGangi J, Zondlo M, Gao RS, Haggerty JA, Hall SR, Hornbrook RS, Jacob DJ, Morley B, Pierce B,
1819 Reeves M, Romashkin P, Ter Schure A, Vlokamer R. Active and widespread halogen chemistry in the
1820 tropical and subtropical free troposphere. *Proc. Natl. Acad. Sci. U. S. A.* 2015; 112: 9281-9286.

1821 Wang X, Bao Z, Lin CJ, Yuan W, Feng X. Assessment of Global Mercury Deposition through Litterfall.
1822 *Environ. Sci. Technol.* 2016; 50: 8548-8557.

1823 Wang Y, Liu R, Li Y, Cui X, Zhou J, Liu S, Zhang Y. GEM in the marine atmosphere and air-sea exchange of
1824 Hg during late autumn and winter cruise campaigns over the marginal seas of China. *Atmos. Res.* 2017;
1825 191: 84-93.

1826 Wang Y, Peng Y, Wang D, Zhang C. Wet deposition fluxes of total mercury and methylmercury in core
1827 urban areas, Chongqing, China. *Atmos. Environ.* 2014b; 92: 87-96.

1828 Warnick SL, Bell HL. The acute toxicity of some heavy metals to different species of aquatic insects. *J.*
1829 *Water Pollut. Control Fed.* 1969; 41: 280-284.

1830 Weigelt A, Ebinghaus R, Manning AJ, Derwent RG, Simmonds PG, Spain TG, Jennings SG, Slemr F.
1831 Analysis and interpretation of 18 years of mercury observations since 1996 at Mace Head, Ireland.
1832 *Atmos. Environ.* 2015; 100: 85-93.

1833 Weigelt A, Ebinghaus R, Pirrone N, Bieser J, Bödewadt J, Esposito G, Slemr F, Van Velthoven PFJ, Zahn A,
1834 Ziereis H. Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe. *Atmos.*
1835 *Chem. Phys.* 2016; 16: 4135-4146.

1836 Weiss-Penzias P, Amos H, Selin N, Gustin M, Jaffe D, Obrist D, Sheu G-R, Giang A. Use of a global model
1837 to understand speciated atmospheric mercury observations at five high-elevation sites. *Atmos. Chem.*
1838 *Phys.* 2015; 15: 1161-1173.

1839 Weiss-Penzias P, Coale K, Heim W, Fernandez D, Oliphant A, Dodge C, Hoskins D, Farlin J, Moranville R,
1840 Olson A. Total-and monomethyl-mercury and major ions in coastal California fog water: Results from
1841 two years of sampling on land and at sea. *Elem. Sci. Anth.* 2016a; 4.

1842 Weiss-Penzias P, Gustin MS, Lyman SN. Observations of speciated atmospheric mercury at three sites in
1843 Nevada: Evidence for a free tropospheric source of reactive gaseous mercury. *J. Geophys. Res.* 2009; 114:
1844 D14302.

1845 Weiss-Penzias P, Sorooshian A, Coale K, Heim W, Crosbie E, Dadashazar H, MacDonald AB, Wang Z,

1846 Jonsson H. Aircraft Measurements of Total Mercury and Monomethyl Mercury in Summertime Marine

1847 Stratus Cloudwater from Coastal California, USA. Environ. Sci. Technol. 2018; 52: 2527-2537.

1848 Weiss-Penzias PS, Gay DA, Brigham ME, Parsons MT, Gustin MS, ter Schure A. Trends in mercury wet

1849 deposition and mercury air concentrations across the US and Canada. Sci. Total Environ. 2016b; 568:

1850 546-556.

1851 Weiss-Penzias PS, Gustin MS, Lyman SN. Sources of gaseous oxidized mercury and mercury dry

1852 deposition at two southeastern US sites. Atmos. Environ. 2011; 45: 4569-4579.

1853 Weiss-Penzias PS, Ortiz C, Acosta RP, Heim W, Ryan JP, Fernandez D, Collett JL, Flegal AR. Total and

1854 monomethyl mercury in fog water from the central California coast. Geophys. Res. Lett. 2012; 39.

1855 White EM, Keeler GJ, Landis MS. Spatial variability of mercury wet deposition in eastern Ohio:

1856 summertime meteorological case study analysis of local source influences. Environ. Sci. Technol. 2009;

1857 43: 4946-4953.

1858 White EM, Landis MS, Keeler GJ, Barres JA. Investigation of mercury wet deposition physicochemistry in

1859 the Ohio River Valley through automated sequential sampling. Sci. Total Environ. 2013; 448: 107-119.

1860 Wright LP, Zhang L, Cheng I, Aherne J, Wentworth GR. Impacts and effects indicators of atmospheric

1861 deposition of major pollutants to various ecosystems-A review. Aerosol Air Qual. Res. 2018; 18: 1953-

1862 1992.

1863 Wright PL, Zhang L, Marsik FJ. Overview of mercury dry deposition, litterfall, and throughfall studies.

1864 Atmos. Chem. Phys. 2016; 16: 13399-13416.

1865 Wu Q, Wang S, Li G, Liang S, Lin CJ, Wang Y, Cai S, Liu K, Hao J. Temporal trend and spatial distribution of
1866 speciated atmospheric mercury emissions in China during 1978–2014. *Environ. Sci. Technol.* 2016; 50:
1867 13428-13435.

1868 Xiu G, Cai J, Zhang W, Zhang D, Büeler A, Lee S, Shen Y, Xu L, Huang X, Zhang P. Speciated mercury in
1869 size-fractionated particles in Shanghai ambient air. *Atmos. Environ.* 2009; 43: 3145-3154.

1870 Xu X, Liao Y, Cheng I, Zhang L. Potential sources and processes affecting speciated atmospheric mercury
1871 at Kejimkujik National Park, Canada: Comparison of receptor models and data treatment methods.
1872 *Atmos. Chem. Phys.* 2017; 17: 1381-1400.

1873 Xu X, Yang X, Miller DR, Helble JJ, Carley RJ. Formulation of bi-directional atmosphere-surface exchanges
1874 of elemental mercury. *Atmos. Environ.* 1999; 33: 4345-4355.

1875 Yan Y, Pozzer A, Ojha N, Lin J, Lelieveld J. Analysis of European ozone trends in the period 1995-2014.
1876 *Atmos. Chem. Phys.* 2018; 18: 5589-5605.

1877 Ye Z, Mao H, Lin CJ, Youn Kim S. Investigation of processes controlling summertime gaseous elemental
1878 mercury oxidation at midlatitudinal marine, coastal, and inland sites. *Atmos. Chem. Phys.* 2016; 16:
1879 8461-8478.

1880 Yin X, Kang S, Foy Bd, Ma Y, Tong Y, Zhang W, Wang X, Zhang G, Zhang Q. Multi-year monitoring of
1881 atmospheric total gaseous mercury at a remote high-altitude site (Nam Co, 4730 m asl) in the inland
1882 Tibetan Plateau region. *Atmos. Chem. Phys.* 2018; 18: 10557-10574.

1883 Yin Y, Chen B, Mao Y, Wang T, Liu J, Cai Y, Jiang G. Possible alkylation of inorganic Hg (II) by
1884 photochemical processes in the environment. *Chemosphere* 2012; 88: 8-16.

1885 Yu G, Qin X, Xu J, Zhou Q, Wang B, Huang K, Deng C. Characteristics of particulate-bound mercury at
1886 typical sites situated on dust transport paths in China. *Sci. Total Environ.* 2019; 648: 1151-1160.

1887 Yu Q, Luo Y, Wang S, Wang Z, Hao J, Duan L. Gaseous elemental mercury (GEM) fluxes over canopy of
1888 two typical subtropical forests in south China. *Atmos. Chem. Phys.* 2018; 18: 495-509.

1889 Zhang H, Feng X, Larssen T, Qiu G, Vogt RD. In inland China, rice, rather than fish, is the major pathway
1890 for methylmercury exposure. *Environ. Health Perspect.* 2010; 118: 1183-1188.

1891 Zhang L, Blanchard P, Gay DA, Prestbo E, Risch M, Johnson D, Narayan J, Zsolwai R, Holsen T, Miller E.
1892 Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central
1893 North America. *Atmos. Chem. Phys.* 2012a; 12: 4327-4340.

1894 Zhang L, Blanchard P, Johnson D, Dastoor A, Ryzhkov A, Lin C, Vijayaraghavan K, Gay D, Holsen T, Huang
1895 J. Assessment of modeled mercury dry deposition over the Great Lakes region. *Environ. Pollut.* 2012b;
1896 161: 272-283.

1897 Zhang L, Jaffe DA. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor
1898 Observatory (MBO) during 2004–2015. *Atmos. Environ.* 2017; 165: 143-154.

1899 Zhang L, Lyman S, Mao H, Lin C-J, Gay DA, Wang S, Sexauer Gustin M, Feng X, Wania F. A synthesis of
1900 research needs for improving the understanding of atmospheric mercury cycling. *Atmos. Chem. Phys.*
1901 2017a; 17: 9133-9144.

1902 Zhang L, Wang L, Wang S, Dou H, Li J, Li S, Hao J. Characteristics and sources of speciated atmospheric
1903 mercury at a coastal site in the East China Sea region. *Aerosol Air Qual. Res.* 2017b; 17: 2913-2923.

1904 Zhang L, Wright LP, Blanchard P. A review of current knowledge concerning dry deposition of
1905 atmospheric mercury. *Atmos. Environ.* 2009; 43: 5853-5864.

1906 Zhang Y, Jacob DJ, Horowitz HM, Chen L, Amos HM, Krabbenhoft DP, Slemr F, Louis VLS, Sunderland EM.
1907 Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions.
1908 *Proc. Natl. Acad. Sci. U. S. A.* 2016; 113: 526-531.

1909 Zhang Y, Jaeglé L. Decreases in mercury wet deposition over the United States during 2004–2010: Roles
1910 of domestic and global background emission reductions. *Atmosphere* 2013; 4: 113-131.

1911 Zhang Y, Jaeglé Lv, Donkelaar Av, Martin R, Holmes C, Amos H, Wang Q, Talbot R, Artz R, Brooks S.
1912 Nested-grid simulation of mercury over North America. *Atmos. Chem. Phys.* 2012c; 12: 6095-6111.

1913 Zhao H, Yan H, Zhang L, Sun G, Li P, Feng X. Mercury contents in rice and potential health risks across
1914 China. *Environ. Int.* 2019; 126: 406-412.

1915 Zhou H, Hopke PK, Zhou C, Holsen TM. Ambient mercury source identification at a New York State urban
1916 site: Rochester, NY. *Sci. Total Environ.* 2019; 650: 1327-1337.

1917 Zhou H, Zhou C, Hopke PK, Holsen TM. Mercury wet deposition and speciated mercury air
1918 concentrations at rural and urban sites across New York state: Temporal patterns, sources and
1919 scavenging coefficients. *Sci. Total Environ.* 2018a; 637-638: 943-953.

1920 Zhou H, Zhou C, Lynam MM, Dvonch JT, Barres JA, Hopke PK, Cohen M, Holsen TM. Atmospheric
1921 Mercury Temporal Trends in the Northeastern United States from 1992 to 2014: Are Measured
1922 Concentrations Responding to Decreasing Regional Emissions? *Environ. Sci. Technol. Lett.* 2017a; 4: 91-
1923 97.

1924 Zhou J, Wang Z, Zhang X. Deposition and Fate of Mercury in Litterfall, Litter, and Soil in Coniferous and

1925 Broad-Leaved Forests. *J. Geophys. Res. Biogeosci.* 2018b; 123: 2590-2603.

1926 Zhou J, Wang Z, Zhang X, Sun T. Investigation of factors affecting mercury emission from subtropical

1927 forest soil: A field controlled study in southwestern China. *J. Geochem. Explor.* 2017b; 176: 128-135.

1928 Zhu W, Lin CJ, Wang X, Sommar J, Fu X, Feng X. Global observations and modeling of atmosphere-

1929 surface exchange of elemental mercury: A critical review. *Atmos. Chem. Phys.* 2016; 16: 4451-4480.

1930 Zhu W, Sommar J, Lin CJ, Feng X. Mercury vapor air-surface exchange measured by collocated

1931 micrometeorological and enclosure methods - Part II: Bias and uncertainty analysis. *Atmos. Chem. Phys.*

1932 2015; 15: 5359-5376.

1933