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We study the volume growth of metric balls as a function of the radius in discrete
spaces and focus on the relationship between volume growth and discrete curvature. We
improve volume growth bounds under a lower bound on the so-called Ollivier curvature
and discuss similar results under other types of discrete Ricci curvature.

Following recent work in the continuous setting of Riemannian manifolds (by the
1st author), we then bound the eigenvalues of the Laplacian of a graph under bounds
on the volume growth. In particular, A, of the graph can be bounded using a weighted
discrete Hardy inequality and the higher eigenvalues of the graph can be bounded by
the eigenvalues of a tridiagonal matrix times a multiplicative factor, both of which
only depend on the volume growth of the graph. As a direct application, we relate the
eigenvalues to the Cheeger isoperimetric constant. Using these methods, we describe
classes of graphs for which the Cheeger inequality is tight on the 2nd eigenvalue (i.e.
the 1st nonzero eigenvalue). We also describe a method for proving Buser's Inequality

in graphs, particularly under a lower bound assumption on curvature.
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2 B. Benson et al.
1 Introduction
1.1 History and motivation

In Riemannian geometry there is a large and celebrated body of literature relating the
Ricci curvature to various properties of the manifold, such as the Laplacian operator,
the volume, the diameter, and various isoperimetric properties [12, 17, 21]. There has
been much work in graphs and Markov chains studying the analogues of concepts that
arise in Riemannian geometry, for example the Laplacian, isoperimetric constant and
Cheeger inequalities [2, 3, 22]. These successes have motivated the problem of defining
the discrete Ricci curvature. There have so far been several proposed definitions of
discrete Ricci curvature [7, 10, 15, 23, 24, 37, 42, 43, 47]. 1t is generally unclear whether
or not any of these notions of curvature are equivalent, and in some instances examples
illustrate that they are not equivalent.

It is preferable that a notion of discrete Ricci curvature would allow for similar
results to those that hold for manifolds, such as relating global isoperimetric properties
to the discrete curvature. We should also hope that it is relatively easy to compute
the discrete curvature. In Riemannian geometry there are many results under the
hypothesis of positive (or non-negative) curvature; if we can find similar results for
graphs, we would like there to be large classes of interesting graphs that have positive
(or non-negative) curvature and be able to make use of it in refining or strengthening
various geometric and functional inequalities.

As mentioned above, there have been many distinct definitions of the discrete
Ricci curvature, each developed by taking a well-understood property of Ricci curvature
in Riemannian manifolds and adapting it to the setting of graphs and Markov chains.
In this work we will mainly focus on the Ollivier curvature, which is defined by the
solutions to minimum transport problems between balls of small radius. The so-called
Ollivier curvature was defined and developed significantly by Ollivier (although it was
introduced earlier, independently by Sammer) [42, 45].

To motivate this definition, we first briefly discuss the relationship between
optimal transport and curvature in manifolds. Let M be a Riemannian manifold with
points x, y, which are close enough to be connected via a unique distance minimizing
geodesic y and let v be a direction at x. We denote by the direction w at y, the parallel
transport of v along y to the point y using the manifold’s connection. Now consider
B(x,r) and B(y, r), the metric ball of small radius r > 0 centered at x and y, respectively.
We can move B(x,r) along a small distance « > 0 in the direction v by moving each

z € B(x,r) in the following way: transport v from x to z along the distance minimizing
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Volume Growth and Buser-Type Inequalities 3

geodesic from x to z, call this direction v,. Then move a distance « from z in the direction
v,, corresponding to a point 2z’ in the manifold. We can use the same procedure with
the vector w at y to move each point in B(y,r) distance « in the direction of w. If the
Ricci curvature is positive, then the average of the distances between points in B(x, r)
and B(y, r) will be further than their counterparts under the parallel transport of these
metric balls. On the other hand, if the curvature is negative, on average, the distances
between points in B(x,r) and B(y,r) will be closer than their counterparts under the
parallel transport. Ollivier observed that the average distance can be replaced by the
L,-Wasserstein distance between uniform distributions on B(x,r) and B(y,r), and this
metric is used in definition of the so-called Ollivier curvature, which can be used to
recover the manifold’s Ricci curvature (up to a factor) [42].

Ollivier used this concept to help define the discrete Ricci curvature [42]. The
metric balls B(x,r) and B(y, r) can also be defined on a graph where r is a non-negative
integer and x and y are vertices of the graph. Then the L,-Wasserstein distance between
the balls B(x,r) and B(y, r) determines a notion of curvature on the graph.

While definitions of Ollivier curvature can be applied to any metric measure
space, arguably its most fruitful use has been to define curvature in graphs with the
graph distance and counting measure, for example [9, 16, 29]. That will also be our
focus in this work: a well-known fact due to Bishop is that a Riemannian manifold
with a lower bound on its Ricci curvature will have the volume growth of its metric
balls controlled by this lower bound [12]. Under many notions of discrete curvature it
is unclear whether such a volume growth bound exists. In this work we will present a
volume growth that is interesting for regular graphs with a negative lower bound on
Ollivier curvature.

We will also briefly discuss the CDE’ curvature, which was created by Bauer,
Jost, and Liu [10]. The CDE’ inequality is a modification of the CD inequality of Bakry-
Emery, which is a discrete generalization of the Bochner formula from Riemannian
geometry. Those authors demonstrated a version of the Li-Yau gradient estimate for
graphs under the CDE’ curvature. This is a result that does not have any known analogue
in the setting of Ollivier curvature.

Volume growth estimates for Riemannian manifolds can also be applied to
study the eigenvalues of the Laplace-Beltrami operator, denoted Ay, On the manifold.
In fact, the relationship between the dimension, Ricci curvature, Cheeger constant,
and spectrum of the Laplace-Beltrami operator on a closed Riemannian n-manifold
has been well established. To remain consistent with the notation of the Laplace

eigenvalues on graphs, denote by 1,(M) the 1st nonzero eigenvalue of A, on M. In
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4 B. Benson et al.

geometry, the convention is to index the least positive eigenvalue by 1. However, we
adopt the convention used in graph theory throughout. Cheeger first showed that
Ao(M) > h%(M)/4, independent of the curvature or volume growth of the manifold [20].
Buser then proved that if the Ricci curvature of M is bounded below by —(n — 1)8§? with
8§ > 0, then

Ay (M) < 28(n — 1)h(M) + 10h(M).

Buser’s original proof of this inequality used work relating the volume growth to the
lower bound on the Ricci curvature due to Bishop [12] and Heintze and Karcher [26].
More recently, Agol proved a quantitative improvement of the estimate [1]. Soon after,
the 1st author proved an analogue giving upper bounds on every eigenvalue of Aj using
only the dimension, a lower bound on Ricci curvature, and the Cheeger constant; the
same quantities used in Buser’s original inequality [11]. In each of these results, the
lower bound on the Ricci curvature is necessary to control the volume growth of
the level sets of the distance functions from the optimal Cheeger splitting. Further
details are discussed in greater detail in Section 3. It should also be noted here that
in [33], Ledoux provided a simpler analytic proof of Buser’s original result and also
followed up with a remarkable dimension-free improvement (see Theorem 5.2 in [34]),
where the constants are independent of the dimension of the manifold.

A problem of particular interest for graphs is the relationship between the
isoperimetric constants and the spectral gap (A,) of the Laplacian of the graph. The
Cheeger and Buser inequalities have analogues for graphs. Such relationships are
frequently referred to in the literature as Cheeger-type inequalities and relates the
algebraic and geometric expansion properties of the graph. For the isoperimetric

constant h,,,, defined using the outer vertex boundary (also known as vertex expansion,

out’

and reviewed in the next section), the Cheeger inequalities [13] are

(V 1+ hout _ 1)2

2d

< )‘2 < hout (1)

for any d-regular graph. A long-standing problem of general interest is to determine the
class of graphs for which the lower inequality A, ~ h2,, is tight.

There is a previous proof of a discrete Buser’s inequality, which states that under
the condition of non-negative Ricci curvature (in the sense of the CD inequality of Bakry—
Emery), the lower Cheeger inequality is tight [30]. The proof method relies on decompos-
ing a candidate Cheeger-optimizing vertex set as a linear sum of eigenfunctions of the

Laplacian and analyzing the behavior of those functions under the heat flow operator
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Volume Growth and Buser-Type Inequalities 5

P,, which can be seen as the evolution of the random walk on the graph. This proof was

recently extended to bound the higher eigenvalues of the Laplacian [36].

1.2 Summary of results

We prove specific results bounding the spectrum using only volume growth. To
summarize, let A be a subset of the vertex set of a graph G. In Theorem 5.2, we prove
that 1,(G) can be bounded from above by a weighted discrete Hardy inequality, which
depends only on bounds on the volume growth of A. Such Hardy inequalities are well
understood and we combine our work with results of Miclo [39] to give quantitative
estimates on the 1st eigenvalues in terms of volume growth and h,,,,,(G), which are stated
in Theorem 5.10. We also prove in Theorem 5.3 that higher eigenvalues 1, (G) where k > 2
can be bounded above by the eigenvalues of matrices, which depends only on volume
growth bounds.

As an application of the relationship between the spectrum and volume growth,
we suggest an alternate proof method of Buser's inequality on graphs, which instead
uses a bound on volume growth around a set achieving the optimal Cheeger constant.
Such approach is inspired by the original proof of Buser [17], in the continuous setting
of manifolds, as well as subsequent improvements by Agol [1] and the 1st author [11]. In
particular, we can extend the proof of our Buser-type inequality on graphs to bound the
higher eigenvalues of the Laplacian. A similar result was demonstrated for manifolds
in previous work of the 1st author.

It is interesting to note that a bound on discrete curvature is only used
in our methods to find a suitable volume growth function. If a bound on volume
growth for a specific graph (or a family of graphs) exists under some other condition
unrelated to curvature, our theorems immediately admit upper bounds on eigenvalues.
In particular, we prove that any graph whose “shells"—sets of vertices a fixed distance
from a (Cheeger-optimal) isoperimetric cut-set—have volume bounded from above by
the volume of the cut-set satisfies

)‘2 = 22_7h<23ut'
Therefore, the lower Cheeger inequality is tight up to a multiplicative factor ¢ = c(d)
depending only on degree d of a d-regular graph. This result appears in Example 4.
In Example 6, we show that when the volume growth is bounded by a constant, that
higher eigenvalues can be bounded by higher Cheeger constants. Specifically, the
higher Cheeger constant h,,,(n) (arising from splitting the graph into n subgraphs).
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6 B. Benson et al.

Specifically, under the same aforementioned volume growth assumptions, we have, for

any positive integers n and k,

2772
A < K2 ( 5 +o(1)) By (M)

2 Notation

A graph G = (V,E) has a vertex set V and an edge set E that contains 2-element subsets
of V. A finite graph is one where V is a finite set. If {x,y} € E, we say that x and y are
neighbors, denoted x ~ y. A common shorthand is that the edge {x, y} may be denoted
xy. The degree of a vertex x is the number of neighbors of x. A locally finite graph is
one where each vertex has a finite set of neighbors. For some integer d > 0, a d-regular
graph is one where each vertex has exactly d neighbors. Clearly, such a graph is also
locally finite.

A walk on G is a series of vertices vy, vy,...,v, so that v;_;v; is an edge for all
i=1,...n. Agraph is connected if every pair of vertices comprises the two ends of some
walk. For the rest of this work, we will only consider connected graphs.

Let G be a d-regular graph. The adjacency operator A on the space {f: V — R}
is defined by the equation

Afx) =4 > fw),

yx~y

and the Laplacian operator A on the same space is

Afx) =3 D fx) —fW).

yiy~x

In other words, one has A = I — A, where I is the identity operator satisfying
If = f. (In other parts of the literature, these operators are sometimes referred to as
the normalized adjacency operator and normalized Laplacian.)

Observe that for a finite graph A is a symmetric and positive semi-definite
matrix; as such, the eigenvalues of A are all real and non-negative. By convention we
write the eigenvalues of A (counting multiplicities) as 1;(A), A,(A),... with A;(A) <
Ay(A) < .... It is well-known that A;(A) is achieved by the eigenfunction f = 1 with
A; = 0. The spectral gap of G is the difference between the two least eigenvalues of A,
which is A,(A) since A;(A) = 0. Often we write these values as 1,(G), 1,(G), ..., even

suppressing the graph G when clear.
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Volume Growth and Buser-Type Inequalities 7

Let G be a d-regular, finite graph. For a vertex subset A c V, define the edge
boundary 9A to be {x,y} e E: x € A;y ¢ A. The (Cheeger) edge isoperimetric constant is
defined as h(G) = min, % , where the minimization is over all sets A with 0 < |A| < %

Cheeger-type inequalities relate edge and vertex isoperimetric constants to the
spectral gap of the Laplacian of the graph. In particular, classical results (e.g., [3, 4, 48],
to cite just a few) show that %2 <X, < 2h.

In addition to the edge boundary of a set A C V, one can define two different
vertex boundaries: the inner vertex boundary is 9;,A = {x € A : dy ~ x;y ¢ A}, and the
outer vertex boundary is 9,,,A ={y ¢ A:3Ix ~y;x € A}.

Following [13], one has the (Cheeger) vertex isoperimetric constants using the

vertex boundaries:

10in Al
|A]

A
h;,(G) = min and h,,,(G) = min 105uAl '

In all cases, the minimization is over non-empty vertex sets with |A| < %|V(G)|. Observe
the trivial bounds h(G) < h;,(G) < d - h(G) and h(G) < h,,,(G) < d - h(G), so bounds on
the vertex constants imply bounds on the edge constants and vice versa.

There are also a pair of Cheeger-type inequalities for each of these isoperimetric
constants [2, 13]; in particular, for the outer vertex boundary, the inequalities are as

follows:

2
(V 1+ hout B 1) < hout

2d? -

where the additional factors of d in the denominators as compared to the edge Cheeger
inequalities arise from the need to normalize h,;.

We now define the Ollivier curvature, which relies on concepts of optimal or
minimum transport. Let X be a measurable metric space with metric dist(-,-), and let
w, v be two probability measures on X. The L; Wasserstein (also known as minimum-

transport or earth-mover) distance [6] is

W, (i, v) = inf / dist (x,y) m(x,y),

m JxxX
where the minimum is taken over all joint distributions (couplings) m on X x X with left
marginal x and right marginal v. Qualitatively, we wish to transport the distribution p
to v. Here m is a movement plan that moves probability mass m(x, y) from x to y, and

we choose m to minimize the average distance moved by the mass.

020z AInp 1.z uo Jasn ABojouyoa] Jo synsu] eibioss) Aq 202029S/SOSZUl/UIW/EE0 L 0L /10P/10BSqe-]o1E/ulwl/woo dnooiwapese//:sdiy woJj papeojumoq



8 B. Benson et al.

There is a well-known dual to the minimization problem [5]:

Wi = swp [ fo- [ fu, @
X X

feLip(1)
where Lip(1l) is the space of functions with Lipschitz constant equal to one. A
maximizing function for this equation is sometimes known as a Kantorovich potential.
Observe that if the probability measures u, and y, (on X) have finite support,
both the primal and dual characterizations of W (114, 1) are linear programs on a finite
set of variables. All the probability distributions we will consider in our discussion of
Ollivier curvature will be of this type. For these distributions we will use the notation of
finite sums indexed by vertices rather than integrals over the measure space of vertices.
Let G be a locally finite connected graph and x € V(G) a vertex with degree d,.

Define a probability measure u, on V so that

1 o

5 ifv=x
My (V) = ﬁ ifv~x

0 otherwise.

Here, think of taking one step of a random walk starting at x and with laziness

parameter 1/2.

Definition 2.1. If x,y € V, the Ollivier curvature with is

Wl (/’Lxl My)

3
d(x,y) 3

k(x,y)=1-—
The choice of laziness parameter is to some extent not important: suppose we

vary the value p = pu,(x) = p,(y). When p > max( ) , the optimal transport

1 1
dx+17 dy+1
plans and the value «(x, y) vary linearly with 1 — p [16].

For later sections, we need some basic and well-known facts about Ollivier

curvature, which we now briefly review.

Theorem 2.1 (Neighbors minimizing curvature (Y. Ollivier [42]). Suppose that
k(u,v) > k whenever u,v € V are neighboring vertices. Then, also for any x,y € V

(not necessarily neighbors), we have «(x,y) > k.

In other words, it is equivalent to say that k is a global lower bound on curvature
and that k is a lower bound on the curvature between each pair of neighbors. We give a

quick proof due to Ollivier [42].
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Volume Growth and Buser-Type Inequalities 9

Proof. Observe thatif u ~ v, then W, (i, u,) =1 —«(u,v) <1—k.
Let x = xy,%;,...,X; = y be a geodesic path in G. Because W, is a metric, it
follows that

l
Wi (g tty) < D Wi, o 1ty) < (1= R)A(x,y)

i=1

A-kdey) _ |

and k(x,y) > 1 — dx,y)

Ollivier also provided a result for estimating curvature on product graphs. Later,
we will use the following result to apply our techniques to the discrete hypercube. In
our notation, the graph product GLUJH has vertex set V(G) x V(H), and edges (x,y) ~ (w, z)

if (x,y) and (w, z) are adjacent in one component and identical in other other.

Theorem 2.2 (Ollivier curvature tensorization (Y. Ollivier [42])). Let G be a d-regular
graph and denote GOGO---0JG with r terms in the product by G". Suppose that for
every x,y € V(G), it holds that «(x,y) > k. Then for every x’,y’ € V(G"), we have that
k(x,y) = £

Again, we provide a short proof from Ollivier’s original work [42].

Proof. Letx and y be neighbors in G". By Theorem 2.1, it suffices to show «(x,y) > r.
Without loss of generality we may assume x = (x;,X,,...X,) and y = (y;,X,,...X,). Let

f1 be the Kantorovich potential satisfying
> Ay, (V) = D iy, (V) =1 —k(xy,y)) <1—k.
v v
Define f(z,,...,z,) = f;(z;), then we see that
D FWpy(w) = D f(w)p, (w)

1 -1
:; (Zvlfl (V)Myl (V) - ZV:fI (V)Mxl (V)) + rT (fl (Yl) _fl (Xl ))

r—1 k
=1--.
r r

<Sa-k+
r

In other words, we have «(x,y) >

V
Sl
|
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10 B. Benson et al.
3 Volume Growth and Spectral Gap in Manifolds

In this section we will outline the proof of Buser-type results on manifolds, particularly
following the work of Buser [17], of Agol [1], and of the 1st author [11]. In the following
sections we will develop analogous methods to bound the spectral gap and higher
eigenvalues in graphs.

Let M be an n-dimensional manifold and let A and B be a Cheeger-minimizing
partition of M, so that their common boundary ¥ = dA = 9B satisfies

Vol(%)

min (Vol(4), Vol(B))

h(M) =

The minimax principle tells us that A,(M) < maxx,(4), A;(B) where eigenfunc-
tions f of A (similarly B) corresponding to eigenvalue u satisfy the Dirichlet boundary

conditions

Af =nufonA

f(x)=o.
Here, 1, (A) (similarly A,(B)) is the least non-zero value p for which an eigenfunction
exists. Without loss of generality assume that A;(4) > A;(B). The Rayleigh principle
tells us that 1,(A) of a manifold is achieved by minimizing the Rayleigh quotient
Ja IVFI 2/fAf2 over functions satisfying the boundary condition f(¥) = 0. For more
details, see [19, 28, 32].

Buser’s idea is to use a test-function for this Rayleigh quotient that depends

linearly on the distance from %, which we denote disty. (p). Specifically, one constructs

dists. (p) if disty(p) <t
fp) = > *
t if disty.(p) > t.

Define A(t) = {p € A : dist5(p) < t}. Buser observes that
/ IVF]% < / 1 = Vol(A(t)) and
A A(t)
/ 2> / t? = t% (Vol(A) — Vol(A(?)) .
A A—A(t)

Now, for any ¢ > 0 satisfying Vol(4) > Vol(A(?)), one sees that

Vol(A(t))
(Vol(A) — Vol(A(2))

ho(M) < =
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Volume Growth and Buser-Type Inequalities 11

What remains is to bound Vol(A(t)). In this step, Buser uses a global lower
bound on Ricci curvature and the crucial assumption that ¥ is a Cheeger-optimal cut-
set. Suppose N is a compact hypersurface (codimension-1 submanifold) of M. Further,
assume that the planes of M containing a tangent vector of a geodesic segment, which
minimizes the distance to IV, have sectional curvatures are bounded below by §. A
consequence of the Heintze—Karcher comparison theorem [26] is the following volume

growth bound: there exists vy € C*°[0, c0) such that for all ¢ > 0, we have
Vol,,_; (dist™" (v)) < Vol,_; (Z)vy(1).

Now, the volume growth bound Vol(A(¢)) < fot v(s)Vol(X) ds can be applied (when

clear we will suppress the § in vg). Specifically, Buser finds the bound

t
oy (M) < Jo v(s)Vc;l(E)ds
t2Vol(A) — t2 [y v(s)Vol(X)ds
h [Sv(s)ds
T 21— h [ v(s)ds)

for A,(M) in terms of the curvature (again, because the volume growth function v
depends on curvature), the Cheeger cut-set A and boundary ¥. We will not reproduce
the remainder of Buser’s proof [17], which is somewhat technical, except to state the

result:

Theorem 3.1 (Buser’s Inequality (P. Buser, 1982)). If M is an n-dimensional manifold

with —(8%)(n — 1) as a lower bound on curvature (for some § > 0), then
Ay (M) < c(8h(M) + h(M)?),
where c is a universal constant.

More recently, Agol observed that the constant in Buser’s proof can be improved
by optimizing over all possible test-functions that depend on the distance from ¥, not
just those that grow linearly up to some critical distance t [1]. While reformulating
Agol's result using Sturm-Liouville theory, the 1st author showed that the method can be
extended to give bounds on the higher eigenvalues [11]. One begins with the observation
that

Aor (M) < max (A (4), 1 (B)), (4)

020z AInp 1.z uo Jasn ABojouyoa] Jo synsu] eibioss) Aq 202029S/SOSZUl/UIW/EE0 L 0L /10P/10BSqe-]o1E/ulwl/woo dnooiwapese//:sdiy woJj papeojumoq



12 B. Benson et al.

where A; (M), A,(M), ... are the eigenvalues of M in increasing order and A and B have

the properties that

e B=AC,
e Vol(A) < Vol(B),
e ANB=0A=3B=:7%,

_ Vol(®)
o hM)= Vol(A) *

We denote D to be the set A or B that achieves the maximum in Equation 4. Here, the

Rayleigh quotient is

: o [V (F)II? dVol
A) — infsup 221V DI” Aol
i e S Y 2

where U is the set of k-dimensional subspaces of the Sobolev space Hé (D) on which
f(¥) = 0. Limiting to only those functions f that depend on the distance from X, the

co-area formula implies that

o0 oy 2 . -1
A (D) < infsup Jo_ f'(s)*Vol(disty " (s)) ds

' 5
V fev f(fof(s)ZVol(distgl(s)) ds )

where distgl(s) is the set {p € D : dist(p, X) = s} and V is the set of all k-dimensional
subspaces of H} [0, c0) on which f(0) = 0.

Given a Heintze-Karcher-type growth bound Vol(distg1 (s)) < v(s)Vol(Z), observe
that

Vol(A(s)) :/ Vol (distgl(r)) de gVol(z)/ v(z)dz.
0 0

Because X is the Cheeger-achieving boundary and distg1 (s) is the boundary for

some other non-Cheeger-achieving partition of M, we have

Vol(Z)
h(M) = —
min (Vol(A), Vol(B))
and also
f o1
(M) < Vol(disty" (s))

min (Vol(A \ A(s)), Vol(BU A(s)))
In the case that Vol(B U A(s)) > Vol(A \ A(s)), we have

fop—1
) < Vol(disty, (S)),
Vol(A \ A(s))
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Volume Growth and Buser-Type Inequalities 13

and so
Vol(dist3(s)) > h(M)Vol(A) — h(M)Vol(A(s))
> Vol(T) — h(M)Vol(Z)/OS v(r)de
= Vol(%) (1 — h(M) /Os v(t)dt) .

In the other case, we have that Vol(B U A(s)) < Vol(A — A(s)). As such, it follows
that Vol(B) < Vol(A4), in other words, the set B is the Cheeger minimizing set. We find
that

VOl(distgl(s)) > h(M)Vol(B U A(s)) > h(M)Vol(B) = Vol(X),

with the last equality following from the definition of X.

Combining both cases, the 1st author achieves the lower bound

Vol(dist3!(s)) > Vol(%) (1 - h(M)/ v(r)dt) .
0

Observe that this bound is only meaningful for values of s where

h(M) /Sv(r)dr < 1.
0

Because the parameter s is continuous, one can always apply such values. This is one of
several ways in which the discrete formulation on graphs presents a challenge, which
does not appear in the related continuous result on Riemannian manifolds.

Define now T to be the value for which h(M) fOT v(r)dr = 1. With both an upper
and lower bound for Vol(distg1 (s)), it is possible to plug those bounds into Equation 5,

truncating the integrals at T, to obtain the bound

T f 2
A (A) < infsup Jo f/(®)%v(s)ds

T s ! (6)
W few [y f($)? (1 —h [y v(r)dr) ds

where W is the set of k-dimensional subspaces of Hé [0, T] in which f(0) = 0.
What remains is the technical problem of finding the function f that mini-
mizes the Rayleigh quotient in Equation 6. Such a function is an eigenfunction of a

Sturm-Liouville problem, which leads to an eigenvalue comparison. Specifically, the
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14 B. Benson et al.

eigenvalues of the Laplacian on the manifold are bounded above by the eigenvalues of
a Sturm-Liouville (ODE) problem, which depends only on the same data as in Buser's
original inequality: namely, the Cheeger constant, dimension, and Ricci curvature lower
bound. For more details, see [11].

We will see in Section 5 that in the discrete case, higher eigenvalues of the graph
A, (G) can be bounded by the eigenvalues of a tridiagonal matrix times a multiplicative
factor. The entries of the matrix only depend on the bounds on volume growth,
which can be given in terms of several notions of the graph’s curvature. Further, the
multiplicative factor can be interpreted using the upper bound on the volume growth
of the graph and the outer vertex Cheeger constant or its analogues corresponding to

splitting the graph into more than two subgraphs.

4 The Relationship Between Volume Growth and Curvature

In Section 5, we develop the relationship between the spectrum of the Laplace operator
on a graph and the volume growth of subsets of the graph. Our goal is to also develop
the connection between the spectrum, notions of curvature, and the Cheeger constant of
the graph in the form of Buser-type inequalities. To allow us to make these connections
in Section 5, in this section we discuss volume growth in graphs under several notions

of a curvature lower bound.

4.1 Bounds under CDE’ curvature

We first present a volume growth bound under the so-called CDE’ inequality. This notion
of discrete curvature is a variant of the CD inequality, which was introduced by Bakry-
Emery in [7]. The CDE’ inequality was introduced by Bauer et al. [10]. We present only
the definition of CDE’(K, N) herein, for a full discussion the reader can consult the paper
of Bauer et al.

Let f,g : V(G) — R be functions and x € V(G). The field-squared operator
I'(f,g)(x) is defined by

1
F(f,9x) = 2d. > (&) —fy) @) —gy).

X yiy~x

A graph G is said to satisfy the CDE'(K,N) inequality at x if for every function
f:V(G) —» R,

1

f*(3AT(ogf,logf) — Tlogf, Alogf)) = - (Alogf)* + KT (£.f).
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Volume Growth and Buser-Type Inequalities 15

In this case, we say that K is a lower bound on the CDE’ curvature of G at x with
dimension N.
In a follow-up work [27], a volume growth bound was discovered under a lower

bound on CDE’ curvature:

Theorem 4.1. (Horn, Lin, Liu & Yau [27]) Let G be a locally finite graph satisfying
CDE'(n,0). Then there exists a constant C depending on n such that for all x € V and
any integers r, s with r > s:

log(C)

dist; ()] < € (g) PED | dist=(s)]. 7)

Note that a similar volume growth bound (albeit with a multiplicative factor
V/d in the base of the exponent) is implicit in the recent article [41] under the CD(n, 0)
inequality, and a similar corollary can be obtained by the following method. We use this

bound on ball volumes to prove the following bound on shell volumes:

Corollary 4.2, Let G be a graph satisfying CDE’(n, 0) at all vertices x € V(G). Let X C V,
and let C = C(G) be the constant from Theorem 4.1, let r > 0. Then

log(C)

1 Joe(® r O\ @
|disty," (r)| < d|Z|C(r—1)s@ | C I -1
r —_—

Proof. Letting s =r —1in Equation 7, the estimate becomes

log(C)

log(2)
) |dist;}(r — 1)|.

r

|dist; ! (r)| < c(

r—1
Since we are interested in counting vertices with distance exactly r from x, we wish to
consider |dist;1(r)| - |dist;1 (r—1)|, so we subtract |dist;1(r —1)| from both sides of the
previous inequality to give

log(C)

r log(2)
) — 1| |dist;1(r = 1)

-1

|dist ()| — |dist;'(r—1)| < | C (r

In fact, we want to consider the set of vertices with distance exactly r from X. We can

sum over all x € ¥ on both sides of the previous equation to give

log(C)

log(2)
) — 1| |dist; (r—1).

r
r—1

dists' (M| < D |disty ! ()] — [disty ' (r = D < D c(

XeX XeX
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16 B. Benson et al.

Simplifying, we find

log(0)

dists ()] < 121 | e (——) " =1 | max |distz! (r — 1))
z - r—1 xes z

Now we wish to estimate the term max, 5

Equation 7, this time we replace r with r — 1 in the formula and take s = 1. As a result,

|dist§1(r — 1)| and we will again apply

our estimate becomes

log(C)

.1 log(C©) r Tog(2)
|disty, (r)| < d|Z|C(r — 1)1e@ | C ! -1,
r_

observing that |dist;1(1)| =d. |

4.2 Bounds under Ollivier curvature

Next, we will find upper bounds on the shell volume |dist;1 (1)| in terms of a lower bound
on Ollivier curvature. It is simple to convert such bounds into bounds on the ball volume

(analogous to the Bishop—Gromov Volume Comparison Theorem [12]) with the equation

r

B (] =" |disty (@)

i=0

In this area, there is a previous result due to Paeng [44].

Theorem 4.3 (Paeng [44]). Let G be a graph with maximum degree D. Let r be an integer
with 0 < r < diam(G). Assume that «(x,y) > kfor all x,y € V.

r—1

7' <o ] (1 - gm) . ®)

m=0

These bounds are only useful in the case that k > 0: if we set kK = 0 above, we see
only the trivial result that |[f~(r)| < D". In the case k > 0, we see that |dist;1 ([2/k+1])]| <
0; that is, G has [2/k] < diam(G). Because G is finite, G has polynomial volume growth
with |dist;1(r)| < |V(G)|r° (depending on G, a much tighter bound may be possible.)
We develop results that are useful in the case that G has a negative lower bound on
curvature. We find that such graphs do not necessarily have polynomial volume growth.
We remark here that it remains an open question whether or not a bound of k(x,y) > 0,

forall x,y € V, implies polynomial volume growth.
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Volume Growth and Buser-Type Inequalities 17

Theorem 4.4. Let G be a d-regular graph with «(v;,v,) > k, for every pair of vertices
v,,V,. Fix x € V, define S; = dist;'(i). Then fori > 1,

1S;411 < d+1-2dk

Proof. First, we bound e(S;, S;, ;), the number of edges between S; and S;,,. Let z € S;,
z is adjacent to some vertex y(z) € S;_;. (If z is adjacent to multiple vertices in S;_;,
choose y(z) arbitrarily from them.) Let T(z) be the set of common neighbors of z and
y(2). Neither y nor a neighbor of y can be in S;,;, so e(z,S;, ;) < d —1—|T(z)|. (Note that
we frequently suppress y(z) to y.) Let T* = ZzeSi IT(2)|, so e(S;, S;;1) < (d—1)|S;| = T*.
Next, for each z we wish to use the Kantorovich characterization of W, (I Iy)-

Define the following test-function f:

e f(y)=0.
e f(z)=1.
° fIT(z) =0.

e For any other neighbor v of y, f(v) = —1.

e Let W(z) be the set of neighbors of z (besides y) that are not in T(z) and
are adjacent to a neighbor of y (besides z) that is not in T(z). We may set
flwe =0.

e LetU(z)=N2)\{ylUT(z)UW), setf|U(Z) = 1. Here we use N(z) to denote
the set of neighbors of z.

e f can be made 1-Lipschitz by setting f = 0 on every other vertex.

We have:

Uz)| —d

|IT(z)|+2—-d
2d ’

D fon,x) =1+ 23

X

and > f(x)u,(x) =

Combining the two, we get

U@2)|—-2-|T(2)]

11—k > gf(x)wz(x) — 1y (x) = 1+ o

and rearranging gives
IT(2)| + 2 — 2dk > |U(2)].

If a neighbor of z is not in U(z), the neighbor must be either y, adjacent to y (and

thus in T'(z)), or adjacent to more than one neighbor of y, and hence in W(z).
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18 B. Benson et al.

Any vertex in S; ; for which z is the only neighbor in S; must be in U(z). The

total number U* of vertices in S;,; that are adjacent to only one vertex in S; is at most
Ut < D U@ < D (T@)|+2 - 2dk) = T" + 15,12 - 2dk).
Z Z

We can now see that the number of vertices in S; ; that are adjacent to more

than one vertex in S; is bounded above by

d-1)|S;| - T* — U*
5 .

This is because the total number of possible edges from S; to these vertices is at most
e(S;, S;;1) < (d —1)|S;| — T* less the U* edges that are accounted for by vertices in S;
with only one neighbor in S;. Every other vertex must be incident to at least 2 of those
(d —1)|S;| = T* — U* edges, so we divide by 2.

Now, we add the other U* vertices in S;,; to achieve the desired result:

N (d=DISj| =T* —U* _ (d=DIS}| = T* +U*

2 2
_ @d=DIS;| - T" + @ —2dR)IS;| + T* _ d+1 —2dk|S|
= 2 - 2 i

|Si+1| <U"

[ |
Following the same proof outline, we obtain a better bound for bipartite graphs.

Theorem 4.5. Let G be a d-regular bipartite graph with « (v, v,) > k for every pair of

vertices v;,v,. Fix x € V, define S; = dist;1 (i). Fori > 1,

d—dk
2

Siy1l < |S;1-

Proof. First, we bound e(S;, S;, ;), the number of edges between S; and S;,,. Let z € S;,

i+1
z is adjacent to some vertex y(z) € S;_;. Because y ¢ S;,;, e(z,S;,;) < d — 1. Clearly,
e(S;, Sip1) < (d = 1D)|S;l.

Next, for each z we wish to use the Kantorovich characterization of W, (My: ).

Define a test-function f:

e f(y)=0.
e f(z)=1.
e For any other neighbor v of y, f(v) = —1.
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Volume Growth and Buser-Type Inequalities 19

e Let W(z) be the set of neighbors of z (besides y) that are adjacent to a
neighbor of y other than z. Set f|y,,) = 0.

o LetU(z) = N(2)\ ({y} UW(2)), set fly, = 2.

e f can be made 1-Lipschitz by setting f = 1 on any other vertex in the same

set of the bipartition as z and f = 0 on any other vertex in the same set as y.

We have

—-d

21U(2)| —d
WL and Y foouy e = 22

2
Z‘f(x)uz(x) =1t 2d

Combining

2|U(z)| — 2

1-k > lef(x)(uzor) —ny(0) 2 14+ = —,

resulting in
U@2)| <1 - dk.

If a neighbor of z is not in U(z), it must be either y or adjacent to more than one
neighbor of y, and thus in W(z).
Any vertex in S;,; for which z is the only neighbor in S; must be in U(z). The

total number U* of vertices in S;,; that are adjacent to only one vertex in S; is at most

Ut < > IU@I <1811 - dk).

We can now bound the number of vertices in S, ; that are adjacent to more than

one vertex in S; from above by
(d—-DIs;| - U”
2

This is because the total number of possible edges from S; to these vertices is at most
e(S;, Siy1) < (d —1)|S;| less the U* edges that are accounted for by vertices in S;,; with
only one neighbor in S;. Each counted vertex must be incident to at least 2 of those
(d — 1)|S;| — U* edges, so we divide by 2.

Now, we add the other U* vertices to achieve the desired bound on |S;|:

d-=DIS;|-U" (d-DIS;)|+U"
+ =
2 2
—1IS: 1— . 1—
< (d )ISII-Z( dk)lS;| _ d( - k)|5i|-

|Si+1| <U
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20 B. Benson et al.

We continue to denote S; = dist, (i) and summarize the results of Theorems 4.4

and 4.5 as follows.

Theorem 4.6. For any d-regular graph, fori > 1, we have

1+ L —2k\!
|Si|sdl(+df) .

For any d-regular bipartite graph, for i > 1, we also have

i—1
S| < di(l;k) )
2

Proof. Observe S; =1 and S; = d for every graph. Repeated application of Theorems
4.4 and 4.5 gives the desired bounds for S; when i > 2. This can be made formal using

induction, which is left to the reader. [ |

As far as we are aware, these are the 1st non-trivial bounds on volume growth
under a negative bound on Ollivier curvature. A weakness in the proof method is that
vertices in S; ; are counted either as having exactly one neighbor in S; (i.e., in some
set U(x)), or as having several neighbors (W(x)), but the upper bound on IS; 11, assumes
the worst case—that there are a large number of vertices of type W, each having only
2 neighbors in S;. For graphs where that assumption is correct (or close), our bound is
somewhat tight. In other graphs, the average number of neighbors in S; for any vertex
in S;,, can be O(d). For those graphs the bound is not tight. Below we give an example

illustrating this issue.

Example 1. Let T, be the infinite p-regular tree and Tg be the Cartesian product graph
T,07,0---0T), with the product taken g times. Note that Tg is pg-regular. It is easy to
compute that T, has k(x, y) = 2%” if x ~ y. By tensorization of curvature (see for instance
[30]), we know that Tg has k(x,y) > zp%qp whenever x ~ y.

Because Tg is bipartite, we apply the 2nd statement of Theorem 4.6 to find the
bound

1— 2P

ldZ @) < (pg)' [ —=2L =pq(

i—1
pa+l) _ 1) , (©)

2
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Volume Growth and Buser-Type Inequalities 21

so that
log(|d;* (i)]) < ilog (w - 1) + 0(1). (10)

A vertexy e dist;1 (i) is characterized by the distance from x parallel to each of
the g copies of T), in the product graph, and, given those distances, by the path taken in
T, of that distance.

There are (i+‘31_1) choices of what distance is traveled along each copy of T,. At
each step of any path taken along some copy of T, there are either p possibilities (for

the 1st step) or p — 1 possibilities (for any subsequent step). As such, we have
. 3 ‘ . 3 ‘
(”q )(p— 1) < |dist; (1)) < (”q )p‘I(p— 1), (1)
q q
It follows that
log(|dist; 1 (@)]) =ilog(p — 1) + O(1). (12)

Observe that g is the maximum number of neighbors that y € dist;l(i) has in
dist;'(i — 1). The difference between the bound from Theorem 4.6 of ilog (% - 1)
and the actual value ilog(p) results from the value of g. As discussed before, the reason
for this is that in the proof of Theorem 4.6, the upper bound assumes as a worst-case
scenario that every vertex in dist;1 (i) has either 1 or 2 neighbors in dist;1 (i—1). Butin

fact, as i grows almost every vertex in the i-shell of Tg has g neighbors in the (i—1)-shell.

We conjecture here that Tg actually experiences the maximum volume growth

for their curvature and regularity.

Conjecture 4.1. Let G be a pg-regular graph so that if u,v € V(G), then «(u,v) > 2p;p

T
Letx € V(G) and y € V(Tg). Then for any i > 0, one has
|dist; ' ()] < |dist, @)].

Qualitatively, the graph Tg is conjectured to fill the same role that the space
of constant curvature does in the Bishop Volume Comparison Theorem. A case of this
conjecture is that the d-dimensional lattice Tg is conjectured to have the fastest volume
growth for any 2d-regular graph with curvature lower bound 0. If correct, this would

prove that any such graph has polynomial volume growth.
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22 B. Benson et al.
5 Volume Growth and Spectral Estimates in Graphs

In this section we follow the methods from the continuous setting that were developed
by Benson [11] and discussed in Section 3. First, we demonstrate an upper bound for an
eigenvalue A, (G) by taking the Rayleigh quotient of a function based only on distance
from a cut-set . Next, we optimize that quotient by treating it as a discrete Hardy-type

inequality.

Remark 5.1. In applying our results using volume growth to bound the spectrum, we
will use the relationship between notions of curvature of the graph and volume growth,
as introduced and referenced in the previous section. The bounds that illustrate this
relationship are the only point in our analysis that relies on the discrete curvature.
Given another volume growth result (either based on another notion of discrete
curvature or unrelated to curvature), it will be possible to repeat the analysis we present

here and achieve similar results.

5.1 Bounding eigenvalues using volume growth

In this section, we will establish bounds for the spectrum of the graph Laplacian using
bounds on volume growth.

Our methods in this section for approximating A;, where k > 2, do not make
any assumption about the cut-set, but the bounds we obtain will only be in terms of
the generic volume growth bounds pu,v. Later, we will give a bound for 1, with the
assumption that ¥ is the outer vertex isoperimetric optimizing cut-set.

Let G = (V,E) be a graph. Let ¥ C V(G) be a cut-set that separates ¥V \  into
V' and V. Note that under this definition, it is possible that V* or V™~ is empty. The

signed distance function disty, : V — Z is defined so that |disty (V)| = min

rexdisto(x, V)

where dist is the graph distance, and the sign of disty. is positive on V* and negative
onV~.

We will assume that we have volume growth and decay bounds for the level sets
of disty,. Specifically, let v(k) denote a volume growth bound and x (k) denote a uniform

volume decay bound. Here, for k € Z, the bounds v(k) and (k) have the property that
1Tk < |distg! (k)] < |Z|v(k). (13)

Definition 5.1. Define T* € Z_, so that u(k) > Oforall0 < k < T* and define T~ € Z_,,
so that u(k) > Oforall T~ <k <O.
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We denote by UT the set of all functions f*: Vt - Rand U~ = {f~ : V~ — R}.
The inner products for Ut and U~ will be inherited from the inner product on V by
letting fT(v) = 0 for every v € V\ V' and f~(v) = 0 for every v € V \ V~, that is,
extending the functions on UT and U~ to all of V by zero, then taking the inner product
on all of V.

We also define a pair of corresponding spaces of functions on {0,...,T"} and
(T~, T~ +1,...,—1,0}: let W be the space of functions g* : {0,1,2,...,TT} — R such
that g™(0) = 0, and W~ be the space of functions g~ : {T~,T~ +1,...,—1,0} = R such

that g~ (0) = 0. Further, for u*,v™ € W™, define
T+

wh,vh, = Zu(i)v(i).
=0

Similarly, for u=, v~ € W—, define

0
(W™, v7)_ = > ulv().

=T

To estimate 1,(G), we will be interested in (the smallest positive) solutions

pt e RT" and p~ € RT™, which satisfy the respective equations:

T+ Tt - k 2

D @ @) +v@E—1) < 2p* Z[Zqﬁ(i)} - (k) (14)
=0 k=0"-i=0

0 0 0 2

D@ @ +vE-1) <207 D] [Zcﬁ(i)} (k) (15)
=T k=T-"-i=k

with ¢(0) = 0, ¢ # 0 and where v and p are the volume growth bounds defined in
Equation 13. Equations of this form are called weighted discrete Hardy inequalities.

For a fuller discussion of this topic, we refer to [39].

Theorem 5.2. Let pt and p~ be defined by Equations 14 and 15. Then A,(G) <

max{p™, p~}.

Before proving the theorem, we formulate the results for the higher eigenvalues.

To estimate the higher eigenvalues, we define a symmetric, tridiagonal matrix A™
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indexed by {1,...,T"} so that

20D +v(E—D4+v(E+l)  se s i +
o) , ifi=j1<i<T

U(T+)+U(T+—l) sos . mt

o ¢ I ifi=j=T

i ] —vd=v() il 11 <ii<TF
—, lf L— —_ ]-r 1 S ll S T
n@u) =]l I

0, otherwise.

Similarly, we define the symmetric, tridiagonal matrix A~ indexed by {T~,T~ +
1,...,—2,—-1}

0@ +vE=D4v@+l)  se: s m— -
e) , fi=5T <i<-1
»ITD)+v(T7+1) e e
_ T , ifi=j=T
A B iflijl=1;T <ij<-1
NGO oo
0, otherwise.

Theorem 5.3. For a graph G and any k,l e Nwith 1 <k, < min{|T_ ,TT} =: T, then

1 _
Aey1(G) < 2 max {,0;:_:,01 }, (16)

where ,o,': and p; are the k-th and I-th non-trivial eigenvalues of the respective equations
Atgt =ptgt withgt e Wrand A~g~ = p g~ withg e W~.

In particular, we have that

2(G) < 1 min  min  max{p] "), p; (1t7]}
2 j=k+lj<tt+|t~|<2T
tt—t=>1

where ,o,:' (tT) and p; (|t7]) are the eigenvalues of the symmetric, tridiagonal matrices
AT(tT) and A~ (t7) resulting from replacing T with ¢t* and T~ with ¢~ in the definitions
of AT and A, respectively.

Remark 5.4. Broadly speaking, we are using estimates of volume growth and decay,
which act as weights and linearize the graph Laplacian eigenvalue problem on the
graph. The main idea is to linearize the graph using the weights v and w. This can
be done in multiple ways, however, we choose to do it in a way which is based around

a minimizing vertex cut for h,,,(G), as we find it to be a natural way to produce Buser-
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Volume Growth and Buser-Type Inequalities 25

type inequalities for both A,(G) as well as the higher eigenvalues and higher Cheeger
constants. In this form, we show that the higher eigenvalues are bounded above by

eigenvalues of tridiagonal matrices, which in some cases, are known in closed form [31].

We will now prove both Theorems 5.2 and 5.3 simultaneously.

Proof of Theorems 5.2 and 5.3. Using the Poincaré minimax principle for characteri-

zation of eigenvalues, we see that

(17)

(fAf>
A (G) = inf
K@) =ipfsup = )

where U, is the set of k-dimensional subspaces of functions f € RV. Expanding these

inner products, we find that

(f, Af) = Zf(x) > Lfe@ -fy)

y~x

= D> @ -f)?

(xyhx~y

—szZ(ﬂX) f@)?, and
y~x

=D frm.

Define ¥ c V so that h,,;(G) = |X|/|A| where A C V, with ¥ = 9
|A| < |V|/2. Use the signed distance from X, with positive distance into A, to define the

A, and

out

following vertex subsets:

Vogi= |J dists'mandv_,:= [J distz' ().

neN:n>a neN:n<a

We wish to estimate the eigenvalue ;(G) of the Laplacian on G by the eigenvalues of the
Laplacian on the subgraphs on V., and V_,, wherein the test functions for the Rayleigh
quotients f* : V. — R satisfy f*(v) = 0 for every v e dist5'(0) = %, and £~ : Vo—R
satisfy f~(v) = 0 for every v € X. Denote the eigenvalues determined by the Rayleigh
quotients of these specific test functions by & (V. () and §(V_), respectively. Using the
Poincaré minimax principle it is possible to see that when 1 < k,I < min {|V_|, |V+|} , it

follows that

Mer1(G) < max {& (Vo) §(V)} - (18)
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26 B. Benson et al.

This can be seen by discretizing Theorem 8.2.1 found in [18] or Proposition 2.1 of [11].
Such an argument is given in detail by Balti for weighted directed graphs, where the
result is also extended in several ways, including to the special Laplacian operator on
these graphs [8, Section 5].

To give an upper bound for the eigenvalue, we restrict the test functions for

Equation 17 in RY to functions that

(1) vanish on either V., or V_,
(2) are constant on each set distg1 1),
(3) and are constant for values less than or equal to T~ and greater than or

equal to T+,

Recall the definitions of the spaces of functions UT, U™, and W™, W~ from Definition
5.1. We will first treat these test functions as functions in U™ or U™, respectively, and
then as functions in W+t or W~. Let U,': and U;" be, respectively, arbitrary sets of k- and
I-dimensional subspaces of real-valued functions of U* and U™, for values k,[ e Zg-
Similarly, Wg' and W, are k- and l-dimensional subspaces of W+ and W, respectively.

Combining Equation 18 with the Poincaré minimax characterization for the
Dirichlet eigenvalues & (V.o and &(V_,) while maintaining the assumption that
1 <k, I <min{|V™|,|VT|} we have that

+ Af) - Af-
Ap1(G) < max 1nf sup VATV a] ,inf sup U A7) (19)

Uk f+€U+ f f+ U f_eUf <f_rf_>

Now, for g defined on V.o with constant value g(i) on the i-shell, using the

volume growth estimates from Equation 13, we have the estimates

(9, Ag) = Z > Z—(g(z)—g(y))

i= OXEdISt L V~x

T+
1
<52 2 [(g(i)—g(i+1))2+(g(i)—g(i—1))2}

i=0 Xedistg1 Q)

T+
1
=3 > |distgl(i)|[<g(i) —gG+1)%+(g() — g(i — 1))2}
=0

A

1
<52 v(i)|2|[(g(i) — 9@+ 1)% + (g() — gli - 1))2}

=0
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Volume Growth and Buser-Type Inequalities 27
and

T+

(9.9) = >_Idistz' ()lg* (@)

=0
T+

> > u@ITIg* Q).

=0

Similar estimates hold for a function g defined on V_,.

We now use these bounds in Equation 19. Because we are restricting to functions
g with a constant value in each shell, it is equivalent to write the expression in terms of
W+ and W, rather than U™ and U™.

Zf:o[(g(i) — g9+ 1)*+ (g() — g(i — 1))2} -v(i)

Ak41(G) < max {inf sup

W gewt 2370 g23) - @) ’
(20)
> [(g(i) — g+ 1)*+ (g(i) — g(i — 1))2} -v(i)
inf sup 5 - -
Wi gew; 2> g% - n(@

Note that |¥|, a common factor appearing in the numerator and denominator, has been
eliminated in the resulting estimates in Equation 20.
For estimating A,(G), we take k = I = 1 and the Rayleigh quotient for W+ in

Equation 20 becomes

Z?io[(g(a — g +1)2+ (g) —g(i — 1))2} (i)

inf = (21)

gew+,g#0 2% 09%@) - 1@
Define ¢(j) := g(j) — g(j — 1) for the W quotient in Equation 20. Noting that
gy = Ji=0¢(i) and using the facts that g(0) = 0, #(0) = 0, and g(i) is constant for

alli > T* implies ¢(i) = 0 for all i > T+. As a result, Equation 21 becomes

Ce S+ D2 40 o S ¢ i = ]
5 = 2
W o i [Zhes ] w21 [Sh060)] )

In the rightmost equality, we have used that ¢(TT + 1) = g(TT + 1) — g(T™) = 0.
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28 B. Benson et al.

It follows from the definition of ¢ and a routine computation that the quotient
in Equation 21 is bounded from above by p* in Equation 15. A similar argument verifies
p~ in Equation 15. This establishes Theorem 5.2. a

Bounding the higher eigenvalues: We now continue the argument for higher
eigenvalues. Since the test function g can be thought of as a test function vanishing off

of V., we wish to find a symmetric matrix A" and a column vector w, so that

T+
W, atw,), = > [ — g +1)% + (9() - 96— 1)?] v
i=0
and
T+
(W, W)y = > g2 ud).
i=0
As a result, the quotient % is equal to the eigenvalue estimate for V., in

Equation 20.
Since g(0) = 0, we omit the i = 0 entry in constructing the column vector w_,
defining
g/ (1)
W, = : .
9(TH)/ (@)
In other words, we let the i-th entry of w, to be g(i)\/u (7). We now wish to construct a

symmetric matrix A* such that

T+
wiAtw, = (w, ATw,), =D (gl — g+ 1)*+ () —gi - 1)*v(),  (22)
i=0
where w]r is the transpose of w, when written as a column vector.

Now, the i-th term in the right-hand side of Equation 22 can be rewritten as
[29(D)% +g(i = D? + g +1)? = 29()(g(i — 1) + g(i + D) (). (23)

It follows from Equation 23 that the entries of A" are quotients where the numerator

can be expressed as linear combinations of the weights v and the denominator of A;J“. is
. - . + + . . .

equal to /(@) (j). Since Aij and Aﬁ correspond to the right-hand side of Equation 22,

the presence of terms of the form

—29()g(i — (@) = g()gi — 1)(=2v(D))
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+
i,i—1’

the factor of v(i) has been halved due to the fact that we require A;“_l ;= A;“i_l. For the

contribute an additive term —v (i) to the numerator of each entry A;r_ ,;and A where

same reason, terms of the form

—29()g@+ Dv(@) = g()g@ + 1)(=2v(D))

contribute an additive term —v(i) to the numerator of Aj’i ‘1 and A;jrl ;- This implies that

when |i —j| = 1, we have that

A+ _ _V(i) - V(])

VT up()

When 1 < i < TT, the terms
[29()% + g — 1)? + g(i + D ()

contribute 2v(i) to A} and v(i) to A;I, , and A;—l,i+1’ giving

i—

20@0) +vEi—1)+vE+1)
n (i) '

+
Aii_

In other words, the numerator of the entry A;T contains the multiple of g(i)? in the right-
hand side of Equation 22, while the numerator of the entry A;J“. contains one half of the
. . . _ - . . . + _ + . .
multiple of g(i)g(j) = g(j)g(i) in the sum, since Aij = Aﬁ. Finally, the T7-th term in the

sum on right-hand side of Equation 22 can be written as

[9(T")? = 29(TH)g(T* = 1) + g(T" — D*In(T™).

+

TH_1,T+—1" However, since

This contributes —v(T*) to the numerators of A;ﬁr r+ and A

g(T*) — g(T™ + 1) vanishes, we have that

" (T + (Tt = 1)
It u(T+) '

Thus, we conclude that the desired symmetric matrix A™ can be constructed as

f 2v(D)+v(I—1)+v(i+1) sp e . +
0 , ifi=51<i<T

v(TH)+v(TH-1) P

At — w(@™h fi=7=T

g | @—ve) e ey

——, ifli—jl=1;1<1i,j<T
A m@pQ) lt—Jl J
o, otherwise,

where 1 <i,j < TT.
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30 B. Benson et al.

Since the test functions corresponding to the eigenvalues &(V_,) also vanish for

vertices in ¥, the arguments for finding the matrix AZ; can be repeated to find that

[ 20@+v—D4vtD) e e
0 , fi=5T <i< -1
V(T +v(T~+1) i m—
I Erii ot ifi=j=T
A5 = 2vi—vg) ifli—jl=1T <ij<-1
NN o
o, otherwise.

We can now estimate Equation 20 from above using the matrices A* and A™:

1 w,, Atw .
*41(G) < - max yinf sup Wy AT )y +>+,1nf sup
2 WI:— W+€W]:— (W+,W+>+ Wf W7€Wf (W_I W_)_

(wW_,A"w_)
_ (24)

Since AT and A~ are symmetric, the spectral theorem implies that there exist
an orthonormal basis of T real eigenfunctions of AT in W+ with corresponding real
eigenvalues and an orthonormal basis of T~ real eigenfunctions of A~ in W~ having
real eigenvalues. It is easy to see that if w, € W™ is an eigenfunction of A* with
corresponding eigenvalue p,, we have

w,,Atw
M =p,. (25)
(W* ' W* >+
The same relationship holds for A~ and the eigenfunctions of W~. Since these bases of
eigenfunctions are orthonormal, the k-th eigenvalue of A* in W; and the [-th eigenvalue

of W;~, which we denote ,o,': and p;, respectively, satisfy the following:

(wy, Atw,), (W_,A"w_)

+

inJrf sup =p, and inf sup =p - (26)
wy ereW,:r (W+’W+>+ 1 w_eW; (w_,w_)_

Combining Equations 24 and 26, it follows that

1 _
den(@) = S max{pf, o}

This establishes Equation 16.
The eigenvalue estimate on 2;(G) holds by taking j = k + [ in Equation 16
while noting that the arguments above hold for any ¢t and ¢t~ with 1 < t* < Tt and

T~ <t~ < —1, where one must restrict k and [ such that k < t+ and [ < |t7|. [ |
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We remark that in the continuous case, one shows that analogue of the operator
A can be rewritten as a Sturm-Liouville problem depending on the same parameters of

the manifold as Buser’s inequality. The details can be found in Benson [11].

5.2 Applying volume growth bounds

In this section, we use v(k) to denote a volume growth bound around ¥; that is, a
function with the property that, given a fixed ¥ c V, all choices of sets V*, V™,
and all k > 0, we have that |dist§1(k)| < |Z|v(k). The function v may depend on
as well as the curvature, though previously we have only presented volume growth
bounds that are independent of the choice of X. For convenience, we often denote
¥, = disty' (k).

Remark 5.5. In this section our results are in terms of the outer vertex isoperimetric

constant h,,,. This is most natural because we use the counting measure on the vertex

out*
set. As stated before, there are simple bounds relating h,,, to the edge isoperimetric

constant h:

where d is the degree of the graph. Using these inequalities, it is possible to rewrite our

results in terms of h.

Lemma 5.6. Let A C V be the set that achieves the outer vertex isoperimetric constant
hyy: and let © = 9,,,A. Set either V* = Aor V* = V\ (AU %), and let V™ be the other.

Use this choice of VT and V™ to define the signs (positive and negative, respectively)

out

of the signed distance function disty. Let kK > 0, for X, = distgl(k), it follows
that

k
D |2|(1 - houth(i)).
=0

Proof. Observe that the case k = 0 is trivial. Assume k > 0.
Define C~ = J;_; dist3' (i) and C* = |J,_ dist5' (i). We will split the proof into
two cases.
(1) Inthe 1stcase, suppose |C™| < %|V|. Since k > 0, we have that (V- UX) C C~,
therefore |V~ UX| < Z|V|. By assumption |V| < [V\A| = [(V\ (AU X)) U X
so V™ £V \ (AU X). It follows that ¥~ = A.

’
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32 B. Benson et al.

Because |A|= V7| < |CT| < %|V|, we have that

1= |2
_ = S
lA] — oM T e

and so |Z;| > h,,/C”| > h,,;|A| = |Z| and the result follows.
(2) In the other case, we have |C™| > %|V|. Because C~ and C* are disjoint, we

have that |CT| < %|V|. Therefore,

out out

k
|2 > hyylCT = hout(lv+| - Z |dist§1(i)|).

i=1
Observe that since |A| < |V|/2, we have that
V¥ = min{|V \ (AU Z)|, 1A]}
> min{|V \ A| — |Z|, |Al}
> min{|]A| — ||, |A[}

= |A] = %]

Applying the previous bound gives us

k k
2| > hout(wﬂ -> |distgl(i>|) > hout(|A| —-1z->] |z|v<i>)
i=1 i=1

k k
= hout(|A| - Z |E|V(i)) = |2|(1 - houth(i)),
i=0

i=0

where the 1st equality relies on the (always reasonable) assumption that

v(0) > 1. This proves the result. m

By this conclusion of Lemma 5.6, one can think of the lower weights for vertex

expansion (k) as

k
k) =1—=hyy > v().
i=0

As a result, we have

k
1Zlv(k) > |dists (k)| > |2|(1 - homZv(i))

i=0
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and from the Rayleigh quotient in Equation 20, we obtain

PO I v(k)[(g(k) — gk +1)% + (gk) — glk — 1))2}

Ay < inf sup

Wi ge, >0 920 (1= oy T v(D)

where T is the largest integer for which 1 > h,,, >} ,v(i). Here, by assumption we
have the same volume growth bounds on V* and V', so (unlike the previous section) the

Rayleigh quotients are identical on both sides of the cut-set.

5.3 Boundson Xy

Of particular interest is the problem of bounding X,. Indeed, the original proofs
of Buser's inequality only bound A, and not the higher eigenvalues A : kK > 3[17, 33, 34].
First, we will give a short proof of a bound on 1, that is independent of the

Cheeger cut-set.

Theorem 5.7. Let ¥ C V be a set (not necessarily the Cheeger-achieving cut set)
that cuts V into V™ and V~, and define the one-sided shells distgl(k) as before. Let
« = |2|/|V|. Assume that o < 1/4. If | 2| > |dist;! (k)| for all k € Z, then A, < 8a? + 0(a?).

The proof loosely follows the method of the original proof of Buser’s inequality

for graphs.

Proof. Recall the Rayleigh quotient

o D Sy FX) = f(1))?
> f(x)?2 '

Ay (G) = ir;f

Without loss of generality assume that |[VT| > |[V7|. Let t = Lﬁj Because o < 1/4 and
t > 0, we can construct the following test-function in the Rayleigh quotient to bound
A, (G):

Oifx e distg1 (i) where i <0,
fx) = 1iif x e dist5' (i) where 0 < i < t,

tifx e distg1 (i) where i > t.
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For a vertex x,

% ifx e distgl(i) where0 <i <t

2 2 Fx) —fy)® <

y~x 0 otherwise,
and
t2 if x e dist=! (i) where i > t,
f@? > =@ -
0 otherwise.
Using these bounds, we see that
! (t+1)
D 2a 2. (F0 —f)? < 3 X Mdists ()] < =1
X y~x =0
and

D F? = 2 |distg ()] = 2 (VT —t2)) > ¢ (F1V] - V) = ;| V.
X

>t
Combining the previous two inequalities, we find the result

2(t+ 1)|=|
2= T2 = (2/t+o(1/t)) a = 8a? + o(a?). .

Now we attempt to bound A, in terms of the Cheeger cut-set in order to achieve
a Buser-type result. Observe that the Rayleigh minimizing function for A, must have

certain properties.

Lemma 5.8. The function g(k) corresponding to the non-constant minimizer of the

Rayleigh quotient in Equation 27 is monotone in k.

Proof of Lemma 5.8. We will induct on k. The base case is trivial since g(0) = 0 by the
Dirichlet boundary condition on f~!(0). Without loss of generality, assume that g(1) > 0,
else replace g(1) with —g(1) and proceed to the induction step.

Assume for contradiction that g is monotone increasing up to some k in its
domain, but that g(k+1) < g(k). Then replacing g(k+1) by 2g(k)—g(k+1), the numerator
of R(g) is unchanged as

[9(k) — (29(k) — g(k + 1))]* = (9(k) — g(k + 1))*.
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At the same time, the denominator of R(g) increases since (Zg(k —-1) —g(k))2 > g(k—1)?,
therefore the quotient R(g) decreases, contradicting the assumption that g is a non-

constant minimizer of R(g). |

We are now able to bound the Rayleigh quotient within a constant factor. To

bound %,, we apply Equation 27 giving the Rayleigh quotient

3 Siov(l) [(f(k) —fk+ 1)+ (fk) — f(k — 1))2}
Ay <R = inf p , (28)
! ShaF20) (1= hou X v()

where the infimum is taken over all functions f : Z — R with f(0) =0, f(1) #0, f(i) =0
ifi <0and f(i) =f(T)ifi > T.

Theorem 5.9. The bounds on R(g) are SLB <R < 55, where
T k n 1
B=-su (1—-nh V(7)) _ .

Proof. To apply a result of Miclo [39], we write Equation 28 in a different form: set
g(k) = f(k) — f(k—1) for k € Z. Observe that f(k) = Zle g(i). Also observe that g(k) =0
ifk <0ork > T. We have

SR — inf k=0 V(O Lo+ 1)* +9(07]
g
211;:1 (Z?:l g(l)) (1 - hout Z{F:O U(l))

— inf Y1 9B (k) + vk — 1)
N 2
! S (2 9®) (1= how o v®)

’

taken over all functions g : N — R.

To simplify, we write the volume growth and decay bounds as w(k) = 1 —
oy 3K v(@) and ¢(k) = v(k) + vk —1)if 1 < k < T, and u(k) = ¢(k) = 0if k > T.
We have

T 2
oR — inf — 2k=19%) g(lzc) .
! S (ZE90) k)

The result follows from Proposition 1 in [39]. |
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An immediate corollary is a bound on the spectral gap, obtained by combining
Theorem 5.9 with the bound A, < R.

Theorem 5.10. The inequality

1
2(G) < 2B
holds, where
T k n 1
B = 1-nh 3 .
(2 (17w 20)) (B )

A case of particular interest is when ¥ = max;_; |d5'(i)|. In this case we may set

Corollary 5.11.  If the vertex-isoperimetric cut-set X satisfies ¥ = max;_, |d§1 ()], then

27
5 < 7hf;ut(l +o(1)).

The proof is found in Example 4. Under these hypotheses the Cheeger lower
bound %, > ¢ * hZ,,/d is tight up to a linear factor of d.

Observe that this is a related result to Theorem 5.7. WLOG assume h
|Z|/|VT]|, this behaves similarly to the term o = |X|/|V| in that theorem.

out —

5.4 Results for the higher Cheeger constants

We define the higher order, outer vertex Cheeger constant to be

. 1900t Vil
h, .n) = min max{—2& L1
out(") V1 i I |Vl

where V,,V,,...,V,, C V are non-empty, pairwise disjoint and have the property that
U, V; = V. Our main focus in this subsection is to develop enough of the properties of

h,,:(n) to give the following analogue of Corollary 5.11 for the higher eigenvalues:

Theorem 5.12. Assume that v(i) = 1forallie [T, T"]. If n > 2 and h,,(n) < 1, then

we have

2772

16

1 (G) < k?hy,(n)? ( + 0(1)) :
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The proof of Theorem 5.12 is found in Example 6 and the remaining portion of
this section is devoted to developing the properties of h,,,(n) enough to support the
proof of this result.

The concept of the higher Cheeger constant of graphs, as well as the 1st Cheeger-
type and Buser-type inequalities for the higher Cheeger constants (in various forms)

have been studied by many authors; see for instance [35, 38, 40]. We will assume that

hyu:(n) = , max

=1,4,...,

||aoutvi|] A
n |Vl IVl

For convenience and without loss of generality, we assume that

PoutVil _ PoucVal _ _ 10gucVul

out

il = Vol = 7 Wl

Further, we may also construct the V; such that if

Iaouth—1| o |aouth|

Vi1l Vil

’

then |Vk—1| > IVk|
To prove bounds on A,(G) with respect to h,,(n), there are two plausible

approaches:

1. Prove a monotonicity-type estimate bounding h,,,(n) from below by h,,;(2).
Then apply these estimates directly to Lemma 5.6.

2. Prove an analog to Lemma 5.6 for h,,;(n) in place of h,,;(2).

While we take approach 1 for convenience, we mention approach 2, since we would be
interested in any work in this direction that might produce better bounds. The fact that

h,,:(m) > h,,,(2) follows immediately from the following result.

Proposition 5.13.  With h,,,(n) defined as above, for n > 3, we have
hout(n -1=< hout(n)'

Proof. Using the notation established in this section, we remind that reader that

ad...V. d...V
hout(n) — max I out lI — | out TlI
1<i<sn V3] [Vl
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Consider the sets Vy, ..., V, that optimize h,,;(n). We form a collection of n —1 sets that
will be a candidate to optimize h,, ,(n — 1) by merging V; and V, to make V* = V; UV,
and by retaining the other n — 2 sets.

Observe that

190 VI 1 _ 100ue Vil + 180ueVal _ maX[I Yout Vil 19ou¢ V2l
v - V11 + V5] - 1V [V
where the 1st inequality relies on the fact that [9,,,(V; U V)| < [9,,: V1| + 105, V2l The
2nd inequality uses the rule “Ig < max{g, 9} when a,b,c,d > 0.
Combining this bound with the monotonicity of '3"‘”V ' , we find that
|aoutV*| | outV| — |aoutVn|
VT isizn |V IVl
that is, the maximum ratio on these n — 1 sets that partition V is outVnl - Because

[Vnl
h,,:(n —1) is the minimum value of the maximum ratio taken over any choice of n — 1

sets that partition V, we find that

[0

out n|

-1

out(n)
|

Remark 5.14. Recall that the terms h,,,;(n) and Zi‘c:o v(i) are both positive. Using these
facts, the following bound is immediate from combining Proposition 5.13 with Lemma

5.6. So, with the same notation and assumptions as in Lemma 5.6, we have

k
12l > |Z|(1 - houtm)Zv(i)).
i=0
In the next section, we will cite this remark in the analysis of some examples.

6 Examples of Spectral Gap Bounds Using Volume Growth

In this section, we use Theorem 5.10 to bound the 2nd eigenvalue by the volume growth.
First, we obtain several general bounds depending only on the growth function v(k).
Second, we use these results to bound %, for specific graphs where the growth function
is known. In each example where a bound on 1,(G) is computed, we compute B from the

statement of Theorem 5.10.
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6.1 Examples of volume growth functions
Example 2. If v(i) is exponential, that is, v(i) = ¢! for some value ¢ > 1, then T satisfies

cTH—1 1 Tt

<
c—1 ~— h

out c—1

As such, we have

c—1
< — .
out — cT+l _1

h

Note that it is trivial that v(i) = d - (d — 1)*"! < d! is a volume growth bound for
all d-regular graphs. This bound is achieved by a tree where |X| is a single vertex. So we
only need to consider the case ¢ < d.

If T > n > 1, it follows that

k+1_1

T k
Z(l—houtgv(i)) (T — n+1)_zhoutc c—1

k=n k=n

-1
s ronen-3 S

1 cT+2 _ ontl
=(T - D1 - .
@m0 (14 ) - oo

We also have that

n n

1 1 1-c
kz‘ v(k) +vk—1) - Z (c+ 1)ck-1! -

k=1 ¢c-

—n

1
c

Combining the previous two equations, we have
B~ (T N 1) ) N 1 CT+2 _ CYL-‘rl c— Cl—n
su -n — .
= o T 1) " c-nd -1 21
Taking n = 1, we find
5> (14 T cT+2 — ¢? c—1
- cTtl1—1 (c—=1)(c™1—-1))\c? -1

> (14 T c 1
- cT+1—-1 c¢c—1)\c+1)
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On the other hand, for any value n satisfying 1 < n < T, we have that

T k
2(1 _ houth(i)) <7,
k=n =0
and, as a result, it follows that
Z”: 1 “ 1 1—c™ 1 c
— 1y k—1 1 = I 2_71°
Py v(k) +v(k—1) = (c+ D c—¢ c-1 -1

So, combining all parts, we see that

T4 T c 1 <B<T c
cT+1—1 ¢—1)\c+1) "~ " ¢2-1"

In particular, if ¢ > 1 + ¢, for a fixed ¢ > 0, then B= ©(T/c) and 1, = O(c/T).

Example 3. Of particular interest is the case that v(0) =1, v(i) = dci—lif i > 1, where
d is the common degree of vertices in the graph and ¢ > 1. This is the form of Theorem
4.6. Proceeding in the same way as the previous example, we see that T satisfies

T cT+l 1

ct —1
< <1+d

1
1+d — —_—
c—1 7 hyy, c—1

It follows that

h - c—1
out = ¢ _1+4+dcf-1)

In the case where T > n > 1, we have

T k r ~ .
Z(l—houtzv(i))z(T_n_,_l)_zhoutc 1-2?(10 1)
=0

k=n k=n
T
c—1+4dc*-1)
T — 1) —
z ( n+ D) kzz:‘lc—l—i—d(CT—l)

:(T—n+1)(1+ d+l-c )

c—14+dT-1)
d(CT+1 _Cn)
(c—Dc—-1+dcT-1)"
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In addition, we find that

n

1 1 I

; vk +vk—1 1+d kz d(c+ l)ck 2
L1
d

1
d

1—cl

C —

Q=

1 1 c—c*™m

T1d d -1

Combining the previous two equations, we have

B > su ((T—n+1)(1+ d+1-c )_ d(CT+1_Cn) )
> Tznlz)l c—14+dcf-1) (c—1(c—-1+d(T -1))

1 +1 c—c*™m
1+4d d c?-1)°

Taking n = 1, we find
d+1-c d(c™! —¢)

B Ti1 -
2( ( +c—1+d(cT—1)) (c—l)(c—1+d(cT—1)))

( 1 +1 c—c)

1+d d c¢?-1

Td+1-oc) c 1

Z(T+c—l+d(CT—l)_C—l)(l—i—d)'

On the other hand, if 1 < n < T, we have

T k
> (1 — Ry Zv(i)) <T
i=0

k=n

and

n

Z 1 1 +1 c—cz_”< 1 +1 c
kzlv(k)—}—v(k—l)_l—i—d d c¢2—-1 ~14d d c2-1"

Thus, combining all parts, we see that

(T—i— Td+1-¢ ¢ )( 1 )<B<T( 1 +l c )
c—14+dcT-1) c-1)J\1+d) " — 1+4d d c2-1)°

If ¢ > 1 + ¢ for a fixed value ¢ > 0, then B = ©(T/d) and », = O(d/T).
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Example 4. Ifv(i) =1 foralli > 0, then T satisfies T+ 1 < ﬁ < T+ 2.

B — sup (ZT: (1= gk + 1)))(Zn: %)

nzl \j_pn k=1

= i‘iﬁ’ ((T— n+1)—hyy, [(T; 1) - (Z)D (%)

1 T24+T—-n%+n\ n
T+1 2 2

v

sup(T+1 -n

n>1

T2
= E(l + 0(1))

1
= — (1 £0(1)).
oz (10

out

Here the supremum for B is achieved when 7 is roughly equal to T/3. It follows
that 1, < Z’h2,,(1 + o(1)). In this case the Cheeger lower bound 4, > ¢ * h2,,/d is tight
up to a linear factor of d. Note that this is a case of Theorem 5.7 in which the Cheeger
cut-set is also the largest set. This follows because for all i, |X;| < v(1)|Zy| = |Zy|, where

|2yl is by assumption the Cheeger cut-set.

Example 5. If b > 1 is a constant so that v(i) =1+ i for all i > 0, then T satisfies

For the computation of B, we use the inequality

k b+1
1 -1
i=1

k
i=0

The 1st inequality follows from

k k
. . k(k+1) _ k+1
b _

So then 2 Zle i?>k+1andso

k

k k
D <k+D+D P <3 > "
=1 i=1

i=0
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The 2nd inequality in (29) follows from
k k b+1
kP —1
Z ib < / xPdx = b71'
i=1 1 +
since b > 1.

Thus, we have

T k n
1
1-h 1+
(X (-re 20+ 0))(Esrwiain)
T kb+l -1
(20 ()

T kb+1_1
T — 1) —3h ——}))ea
itg) ( n+1) out b1 (1)

k=n

o]
I

Y

v

Tb+2 _nb+2
- i‘i‘f(”)((T ~rED =S g 0(1”)

v

b+2 _ pb+2
el (T - 1)-3-————(1 1
ilipl) ( n+1) Tb+1(b+2)( + o(1))

= O(T).

So we conclude that A, = O(1/T) = O(hé{ﬁ“).

This example represents polynomial volume growth. Recall that in the setting of
Ollivier curvature, every graph with positive curvature has polynomial volume growth
with some positive integer b. But the Buser bound we hoped to achieve is 1, = O(hZ,,).
The reason for the difference may be that Paeng's polynomial volume growth bound
is a correct bound for the volume growth around any initial set. In this section we
are only concerned with bounding volume growth around the Cheeger-achieving cut-
set. For that set, a tighter bound may apply. Our next examples are instances of this
phenomenon, where the volume growth is much slower around the Cheeger cut-set than

around general vertex sets.

We will now provide an application of Theorem 5.3 to Buser-type inequalities

for combinations of higher eigenvalues and the higher Cheeger constants.

Example 6. Assume thatv(i) = 1foralli e [T~,T*]and h,,(n) < 1 for somen > 2. Due

to the symmetry of this example, we abuse notation slightly to simplify the presentation,
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defining B* to be the T* x T* Toeplitz, tridiagonal matrix defined by

4, ifi=j

+ e
Bi=1-2 ifli—-jl=1
0, otherwise.

Because B* differs from A* in only the (T*, T%) entry, we have that
(9.B*g)s — (9, A*g)s = Bps 1o g(TH)? = ALy 1. g(T)? = 29(T*)? > 0.

Note that the eigenvalues of the matrix B*, denote them v, are given in closed form by

kn
lﬁk =4 (1 — COS (W)) , (30)

see, for instance, Theorem 2.2 in [31], wherein a new approach was proposed (with
extensions to Toeplitz-like matrices), while [46] details the classical treatment.

Now we combine Equation 30 with Theorem 5.3 which implies that

- (Un)

M(G) <2 min (31)

[ <t<mingr+,r—y 1= Rour(M)(E+ 1)

where the denominator follows from Remark 5.14. In particular, the weight w(k) from

Theorem 5.3 is given by

k
(k) =1 —=hou(m) D v(@) =1 = hyy,(n)(k+ 1).
i=0

It remains to minimize the right-hand side of Equation 31. We will use the
simple bound that if 0 < x < 7, with HZ—ZXZ < 1-cos(x) < £x°.

From Equation 31, we obtain

k 2 x2
A (G) < 2 min {ﬂ 2 (32)
T 4] ctmingrr 1y L= BoweM)(E+ DIE+ D

21>

Observe that in this step of our estimate, we use a bound that is tight up to a
constant factor 72/4. One might be tempted to use a better approximation for cos(x),

but this factor gives an upper bound on the potential improvement from that method.
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Elementary calculus reveals that the minimum is achieved when (t+1) = ﬁz(n)
Of course this may be not an integer: we will set
2 k 2
t+1= ’77—‘ if = < ———— <min{T", T7}.
3h,,: (M) 2 7 3h,u,(n)
In this case, we find that
K)* )
" (G) < 2 21 2 K2h, . (n)? (27” n 0(1))
k =>4 2 2 = out :
(1 = ot () iy N By 12 16
For this problem we have 1/h,,;(n) < 2 + min{T", T7}, and so m <

min{T*, T~} as long as min{T*, T~} > 4
We will not analyze the case that m < k/2 or that min{T+, T~} < 4. It is
easy to check that both cases give (trivial) bounds of the form A, < C for a universal

constant C.

6.2 Examples of specific graphs

We will now test our methods on several concrete examples. For these examples,

information about the spectrum is already known, allowing us to compare the results.

Example 7 (Hypercube). The hypercube @, is commonly expressed as the graph with
vertex set {0,1}¢ and x ~ y if and only if x and y disagree in exactly one coordinate.
With this notation, we define the k-slice A; C V to be the set of vertices that are 1 in
exactly k coordinates. It is clear that ('Aj}:).

It is known that h,,, is achieved by the |d/2]-slice ¥, with h,,, = ©(1/+/d) [25].

With this choice of ¥, we see that dist™ (i) = A\dj2)+ir and

|dist_1(i)|=( d ) s( d )=|EI-
|d/2] +1 Ld/2]

As such, we may set v(i) = 1, and we have

T = {hi - 1J = OWd).

out

By the results of Example 4, 1, < 277izf,m(l + o(1)), thus », = 0(1/d). It is well-
known that the actual value of A, is indeed ©(1/4).
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Example 8 (Discrete torus). If C, is the n-cycle for n > 3, the discrete torus Cg is
the 2d-regular graph C,[IC,0J---0C,. It is understood that h,,; is achieved by the ball
B(x, (%1 — 1) with ¥ = S(x, (‘%1), where x is an arbitrary (fixed) vertex [14]. The level
sets are distgl(i) = S(x,i+ [%"1) with |dist§1(i)| < |Z|. We will give a brief argument
that -2, (1 +o(1) < kg, < 2(1 —o(1)).

First note that |£| < 2n%~!, as the latter is achieved by the boundary of the
candidate cut-set bounded by two parallel d — 1-planes separated by a distance |n/2].
It follows that hy,, < n9~1/(3n(1 + o(1)) = 4/n(1 + o(1).

Next, consider the set A C C,‘f_l defined to contain those a for which there is
an element of ¥ whose 1st d — 1 entries are a. Let X be the 1st d — 1 entries of x,
A= UIL;/OZ J S(x, [%” — k7). Inductively, we know that A contains the disjoint union of the
n/2—0(1) largest shells around x in Cﬁ‘l; as there are nd/2+ O(1) shells in total and we
take the largest fraction 1/d—o(1) to form 4, |A| > (§ — o(1)) [C471| = (n?~1/d)(1 - 0(1)).

Clearly |A| < |Z|, it follows that h,,, > (n971/d)/(3n (1 — 0(1)) = ;51 — o(1)).

1

And so we have determined that h,,;, = n

is tight within a factor linear in d.
Proceeding similarly to the hypercube, we may use v(i) = 1 as in Example 4 to see that
Ay < Zh2,,(1+0(1)), thus

Ay < Og4(37) .

It is well-known that the actual value is 1, = @(#), so our estimate is tight up to a

factor depending on d.
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