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We study the volume growth of metric balls as a function of the radius in discrete

spaces and focus on the relationship between volume growth and discrete curvature. We

improve volume growth bounds under a lower bound on the so-called Ollivier curvature

and discuss similar results under other types of discrete Ricci curvature.

Following recentwork in the continuous setting of Riemannianmanifolds (by the

1st author), we then bound the eigenvalues of the Laplacian of a graph under bounds

on the volume growth. In particular, λ2 of the graph can be bounded using a weighted

discrete Hardy inequality and the higher eigenvalues of the graph can be bounded by

the eigenvalues of a tridiagonal matrix times a multiplicative factor, both of which

only depend on the volume growth of the graph. As a direct application, we relate the

eigenvalues to the Cheeger isoperimetric constant. Using these methods, we describe

classes of graphs for which the Cheeger inequality is tight on the 2nd eigenvalue (i.e.

the 1st nonzero eigenvalue). We also describe a method for proving Buser’s Inequality

in graphs, particularly under a lower bound assumption on curvature.
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2 B. Benson et al.

1 Introduction

1.1 History and motivation

In Riemannian geometry there is a large and celebrated body of literature relating the

Ricci curvature to various properties of the manifold, such as the Laplacian operator,

the volume, the diameter, and various isoperimetric properties [12, 17, 21]. There has

been much work in graphs and Markov chains studying the analogues of concepts that

arise in Riemannian geometry, for example the Laplacian, isoperimetric constant and

Cheeger inequalities [2, 3, 22]. These successes have motivated the problem of defining

the discrete Ricci curvature. There have so far been several proposed definitions of

discrete Ricci curvature [7, 10, 15, 23, 24, 37, 42, 43, 47]. It is generally unclear whether

or not any of these notions of curvature are equivalent, and in some instances examples

illustrate that they are not equivalent.

It is preferable that a notion of discrete Ricci curvature would allow for similar

results to those that hold for manifolds, such as relating global isoperimetric properties

to the discrete curvature. We should also hope that it is relatively easy to compute

the discrete curvature. In Riemannian geometry there are many results under the

hypothesis of positive (or non-negative) curvature; if we can find similar results for

graphs, we would like there to be large classes of interesting graphs that have positive

(or non-negative) curvature and be able to make use of it in refining or strengthening

various geometric and functional inequalities.

As mentioned above, there have been many distinct definitions of the discrete

Ricci curvature, each developed by taking a well-understood property of Ricci curvature

in Riemannian manifolds and adapting it to the setting of graphs and Markov chains.

In this work we will mainly focus on the Ollivier curvature, which is defined by the

solutions to minimum transport problems between balls of small radius. The so-called

Ollivier curvature was defined and developed significantly by Ollivier (although it was

introduced earlier, independently by Sammer) [42, 45].

To motivate this definition, we first briefly discuss the relationship between

optimal transport and curvature in manifolds. Let M be a Riemannian manifold with

points x, y, which are close enough to be connected via a unique distance minimizing

geodesic γ and let v be a direction at x. We denote by the direction w at y, the parallel

transport of v along γ to the point y using the manifold’s connection. Now consider

B(x, r) and B(y, r), the metric ball of small radius r > 0 centered at x and y, respectively.

We can move B(x, r) along a small distance α > 0 in the direction v by moving each

z ∈ B(x, r) in the following way: transport v from x to z along the distance minimizing
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Volume Growth and Buser-Type Inequalities 3

geodesic from x to z, call this direction vz. Then move a distance α from z in the direction

vz, corresponding to a point z′ in the manifold. We can use the same procedure with

the vector w at y to move each point in B(y, r) distance α in the direction of w. If the

Ricci curvature is positive, then the average of the distances between points in B(x, r)

and B(y, r) will be further than their counterparts under the parallel transport of these

metric balls. On the other hand, if the curvature is negative, on average, the distances

between points in B(x, r) and B(y, r) will be closer than their counterparts under the

parallel transport. Ollivier observed that the average distance can be replaced by the

L1-Wasserstein distance between uniform distributions on B(x, r) and B(y, r), and this

metric is used in definition of the so-called Ollivier curvature, which can be used to

recover the manifold’s Ricci curvature (up to a factor) [42].

Ollivier used this concept to help define the discrete Ricci curvature [42]. The

metric balls B(x, r) and B(y, r) can also be defined on a graph where r is a non-negative

integer and x and y are vertices of the graph. Then the L1-Wasserstein distance between

the balls B(x, r) and B(y, r) determines a notion of curvature on the graph.

While definitions of Ollivier curvature can be applied to any metric measure

space, arguably its most fruitful use has been to define curvature in graphs with the

graph distance and counting measure, for example [9, 16, 29]. That will also be our

focus in this work: a well-known fact due to Bishop is that a Riemannian manifold

with a lower bound on its Ricci curvature will have the volume growth of its metric

balls controlled by this lower bound [12]. Under many notions of discrete curvature it

is unclear whether such a volume growth bound exists. In this work we will present a

volume growth that is interesting for regular graphs with a negative lower bound on

Ollivier curvature.

We will also briefly discuss the CDE′ curvature, which was created by Bauer,

Jost, and Liu [10]. The CDE′ inequality is a modification of the CD inequality of Bakry–

Émery, which is a discrete generalization of the Bochner formula from Riemannian

geometry. Those authors demonstrated a version of the Li-Yau gradient estimate for

graphs under the CDE′ curvature. This is a result that does not have any known analogue

in the setting of Ollivier curvature.

Volume growth estimates for Riemannian manifolds can also be applied to

study the eigenvalues of the Laplace–Beltrami operator, denoted �g, on the manifold.

In fact, the relationship between the dimension, Ricci curvature, Cheeger constant,

and spectrum of the Laplace–Beltrami operator on a closed Riemannian n-manifold

has been well established. To remain consistent with the notation of the Laplace

eigenvalues on graphs, denote by λ2(M) the 1st nonzero eigenvalue of �g on M. In
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4 B. Benson et al.

geometry, the convention is to index the least positive eigenvalue by 1. However, we

adopt the convention used in graph theory throughout. Cheeger first showed that

λ2(M) ≥ h2(M)/4, independent of the curvature or volume growth of the manifold [20].

Buser then proved that if the Ricci curvature of M is bounded below by −(n − 1)δ2 with

δ ≥ 0, then

λ2(M) ≤ 2δ(n − 1)h(M) + 10h2(M).

Buser’s original proof of this inequality used work relating the volume growth to the

lower bound on the Ricci curvature due to Bishop [12] and Heintze and Karcher [26].

More recently, Agol proved a quantitative improvement of the estimate [1]. Soon after,

the 1st author proved an analogue giving upper bounds on every eigenvalue of �g using

only the dimension, a lower bound on Ricci curvature, and the Cheeger constant; the

same quantities used in Buser’s original inequality [11]. In each of these results, the

lower bound on the Ricci curvature is necessary to control the volume growth of

the level sets of the distance functions from the optimal Cheeger splitting. Further

details are discussed in greater detail in Section 3. It should also be noted here that

in [33], Ledoux provided a simpler analytic proof of Buser’s original result and also

followed up with a remarkable dimension-free improvement (see Theorem 5.2 in [34]),

where the constants are independent of the dimension of the manifold.

A problem of particular interest for graphs is the relationship between the

isoperimetric constants and the spectral gap (λ2) of the Laplacian of the graph. The

Cheeger and Buser inequalities have analogues for graphs. Such relationships are

frequently referred to in the literature as Cheeger-type inequalities and relates the

algebraic and geometric expansion properties of the graph. For the isoperimetric

constant hout, defined using the outer vertex boundary (also known as vertex expansion,

and reviewed in the next section), the Cheeger inequalities [13] are

(√
1 + hout − 1

)2

2d
≤ λ2 ≤ hout (1)

for any d-regular graph. A long-standing problem of general interest is to determine the

class of graphs for which the lower inequality λ2 ≈ h2
out is tight.

There is a previous proof of a discrete Buser’s inequality, which states that under

the condition of non-negative Ricci curvature (in the sense of the CD inequality of Bakry–

Émery), the lower Cheeger inequality is tight [30]. The proof method relies on decompos-

ing a candidate Cheeger-optimizing vertex set as a linear sum of eigenfunctions of the

Laplacian and analyzing the behavior of those functions under the heat flow operator
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Volume Growth and Buser-Type Inequalities 5

Pt, which can be seen as the evolution of the random walk on the graph. This proof was

recently extended to bound the higher eigenvalues of the Laplacian [36].

1.2 Summary of results

We prove specific results bounding the spectrum using only volume growth. To

summarize, let A be a subset of the vertex set of a graph G. In Theorem 5.2, we prove

that λ2(G) can be bounded from above by a weighted discrete Hardy inequality, which

depends only on bounds on the volume growth of A. Such Hardy inequalities are well

understood and we combine our work with results of Miclo [39] to give quantitative

estimates on the 1st eigenvalues in terms of volume growth and hout(G), which are stated

in Theorem 5.10. We also prove in Theorem 5.3 that higher eigenvalues λk(G) where k ≥ 2

can be bounded above by the eigenvalues of matrices, which depends only on volume

growth bounds.

As an application of the relationship between the spectrum and volume growth,

we suggest an alternate proof method of Buser’s inequality on graphs, which instead

uses a bound on volume growth around a set achieving the optimal Cheeger constant.

Such approach is inspired by the original proof of Buser [17], in the continuous setting

of manifolds, as well as subsequent improvements by Agol [1] and the 1st author [11]. In

particular, we can extend the proof of our Buser-type inequality on graphs to bound the

higher eigenvalues of the Laplacian. A similar result was demonstrated for manifolds

in previous work of the 1st author.

It is interesting to note that a bound on discrete curvature is only used

in our methods to find a suitable volume growth function. If a bound on volume

growth for a specific graph (or a family of graphs) exists under some other condition

unrelated to curvature, our theorems immediately admit upper bounds on eigenvalues.

In particular, we prove that any graph whose “shells”—sets of vertices a fixed distance

from a (Cheeger-optimal) isoperimetric cut-set—have volume bounded from above by

the volume of the cut-set satisfies

λ2 ≤ 27

2
h2

out.

Therefore, the lower Cheeger inequality is tight up to a multiplicative factor c = c(d)

depending only on degree d of a d-regular graph. This result appears in Example 4.

In Example 6, we show that when the volume growth is bounded by a constant, that

higher eigenvalues can be bounded by higher Cheeger constants. Specifically, the

higher Cheeger constant hout(n) (arising from splitting the graph into n subgraphs).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/doi/10.1093/im
rn/rnz305/5670702 by G

eorgia Institute of Technology user on 21 July 2020



6 B. Benson et al.

Specifically, under the same aforementioned volume growth assumptions, we have, for

any positive integers n and k,

λk ≤ k2
(
27π2

16
+ o(1)

)
hout(n)2.

2 Notation

A graph G = (V,E) has a vertex set V and an edge set E that contains 2-element subsets

of V. A finite graph is one where V is a finite set. If {x, y} ∈ E, we say that x and y are

neighbors, denoted x ∼ y. A common shorthand is that the edge {x, y} may be denoted

xy. The degree of a vertex x is the number of neighbors of x. A locally finite graph is

one where each vertex has a finite set of neighbors. For some integer d > 0, a d-regular

graph is one where each vertex has exactly d neighbors. Clearly, such a graph is also

locally finite.

A walk on G is a series of vertices v0, v1, . . . , vn so that vi−1vi is an edge for all

i = 1, . . .n. A graph is connected if every pair of vertices comprises the two ends of some

walk. For the rest of this work, we will only consider connected graphs.

Let G be a d-regular graph. The adjacency operator A on the space {f : V → R}
is defined by the equation

Af (x) = 1
d

∑
y:x∼y

f (y),

and the Laplacian operator � on the same space is

�f (x) = 1
d

∑
y:y∼x

f (x) − f (y).

In other words, one has � = I − A, where I is the identity operator satisfying

If = f . (In other parts of the literature, these operators are sometimes referred to as

the normalized adjacency operator and normalized Laplacian.)

Observe that for a finite graph � is a symmetric and positive semi-definite

matrix; as such, the eigenvalues of � are all real and non-negative. By convention we

write the eigenvalues of � (counting multiplicities) as λ1(�), λ2(�), . . . with λ1(�) ≤
λ2(�) ≤ . . . . It is well-known that λ1(�) is achieved by the eigenfunction f ≡ 1 with

λ1 = 0. The spectral gap of G is the difference between the two least eigenvalues of �,

which is λ2(�) since λ1(�) = 0. Often we write these values as λ1(G), λ2(G), . . . , even

suppressing the graph G when clear.
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Volume Growth and Buser-Type Inequalities 7

Let G be a d-regular, finite graph. For a vertex subset A ⊂ V, define the edge

boundary ∂A to be {x, y} ∈ E : x ∈ A; y /∈ A. The (Cheeger) edge isoperimetric constant is

defined as h(G) = minA
|∂A|
d|A| , where the minimization is over all sets A with 0 < |A| ≤ |V|

2 .

Cheeger-type inequalities relate edge and vertex isoperimetric constants to the

spectral gap of the Laplacian of the graph. In particular, classical results (e.g., [3, 4, 48],

to cite just a few) show that h2

2 ≤ λ2 ≤ 2h .

In addition to the edge boundary of a set A ⊂ V, one can define two different

vertex boundaries: the inner vertex boundary is ∂inA = {x ∈ A : ∃y ∼ x; y /∈ A}, and the

outer vertex boundary is ∂outA = {y /∈ A : ∃x ∼ y; x ∈ A}.
Following [13], one has the (Cheeger) vertex isoperimetric constants using the

vertex boundaries:

hin(G) = min
|∂inA|
|A| and hout(G) = min

|∂outA|
|A| .

In all cases, the minimization is over non-empty vertex sets with |A| ≤ 1
2 |V(G)|. Observe

the trivial bounds h(G) ≤ hin(G) ≤ d · h(G) and h(G) ≤ hout(G) ≤ d · h(G), so bounds on

the vertex constants imply bounds on the edge constants and vice versa.

There are also a pair of Cheeger-type inequalities for each of these isoperimetric

constants [2, 13]; in particular, for the outer vertex boundary, the inequalities are as

follows: (√
1 + hout − 1

)2

2d2 ≤ λ2 ≤ hout

d
,

where the additional factors of d in the denominators as compared to the edge Cheeger

inequalities arise from the need to normalize hout.

We now define the Ollivier curvature, which relies on concepts of optimal or

minimum transport. Let X be a measurable metric space with metric dist(·, ·), and let

μ, ν be two probability measures on X. The L1 Wasserstein (also known as minimum-

transport or earth-mover) distance [6] is

W1(μ, ν) = inf
m

∫
X×X

dist (x, y) m(x, y),

where the minimum is taken over all joint distributions (couplings) m on X × X with left

marginal μ and right marginal ν. Qualitatively, we wish to transport the distribution μ

to ν. Here m is a movement plan that moves probability mass m(x, y) from x to y, and

we choose m to minimize the average distance moved by the mass.
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8 B. Benson et al.

There is a well-known dual to the minimization problem [5]:

W1(μ, ν) = sup
f ∈Lip(1)

∫
X

f ν −
∫

X
f μ, (2)

where Lip(1) is the space of functions with Lipschitz constant equal to one. A

maximizing function for this equation is sometimes known as a Kantorovich potential.

Observe that if the probability measures μx and μy (on X) have finite support,

both the primal and dual characterizations of W1(μx, μy) are linear programs on a finite

set of variables. All the probability distributions we will consider in our discussion of

Ollivier curvature will be of this type. For these distributions we will use the notation of

finite sums indexed by vertices rather than integrals over the measure space of vertices.

Let G be a locally finite connected graph and x ∈ V(G) a vertex with degree dx.

Define a probability measure μx on V so that

μx(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 if v = x

1
2dx

if v ∼ x

0 otherwise.

Here, think of taking one step of a random walk starting at x and with laziness

parameter 1/2.

Definition 2.1. If x, y ∈ V, the Ollivier curvature with is

κ(x, y) = 1 − W1(μx, μy)

d(x, y)
. (3)

The choice of laziness parameter is to some extent not important: suppose we

vary the value p = μx(x) = μy(y). When p ≥ max
(

1
dx+1 , 1

dy+1

)
, the optimal transport

plans and the value κ(x, y) vary linearly with 1 − p [16].

For later sections, we need some basic and well-known facts about Ollivier

curvature, which we now briefly review.

Theorem 2.1 (Neighbors minimizing curvature (Y. Ollivier [42])). Suppose that

κ(u, v) ≥ k whenever u, v ∈ V are neighboring vertices. Then, also for any x, y ∈ V

(not necessarily neighbors), we have κ(x, y) ≥ k.

In other words, it is equivalent to say that k is a global lower bound on curvature

and that k is a lower bound on the curvature between each pair of neighbors. We give a

quick proof due to Ollivier [42].
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Volume Growth and Buser-Type Inequalities 9

Proof. Observe that if u ∼ v, then W1(μu, μv) = 1 − κ(u, v) ≤ 1 − k.

Let x = x0, x1, . . . , xl = y be a geodesic path in G. Because W1 is a metric, it

follows that

W1(μx, μy) ≤
l∑

i=1

Wi(μxi−1
, μxi

) ≤ (1 − k)d(x, y)

and κ(x, y) ≥ 1 − (1−k)d(x,y)
d(x,y)

= k. �

Ollivier also provided a result for estimating curvature on product graphs. Later,

we will use the following result to apply our techniques to the discrete hypercube. In

our notation, the graph product G�H has vertex set V(G)×V(H), and edges (x, y) ∼ (w, z)

if (x, y) and (w, z) are adjacent in one component and identical in other other.

Theorem 2.2 (Ollivier curvature tensorization (Y. Ollivier [42])). Let G be a d-regular

graph and denote G�G� · · ·�G with r terms in the product by Gr. Suppose that for

every x, y ∈ V(G), it holds that κ(x, y) ≥ k. Then for every x′, y′ ∈ V(Gr), we have that

κ(x′, y′) ≥ k
r .

Again, we provide a short proof from Ollivier’s original work [42].

Proof. Let x and y be neighbors in Gr. By Theorem 2.1, it suffices to show κ(x, y) > r.

Without loss of generality we may assume x = (x1, x2, . . . xr) and y = (y1, x2, . . . xr). Let

f1 be the Kantorovich potential satisfying

∑
v

f1(v)μy1
(v) −

∑
v

f1(v)μx1
(v) = 1 − κ(x1, y1) ≤ 1 − k.

Define f (z1, . . . , zr) = f1(z1), then we see that

∑
w

f (w)μy(w) −
∑
w

f (w)μx(w)

=1

r

(∑
v

f1(v)μy1
(v) −

∑
v

f1(v)μx1
(v)

)
+ r − 1

r

(
f1(y1) − f1(x1)

)

≤1

r
(1 − k) + r − 1

r
= 1 − k

r
.

In other words, we have κ(x, y) ≥ k
r . �
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10 B. Benson et al.

3 Volume Growth and Spectral Gap in Manifolds

In this section we will outline the proof of Buser-type results on manifolds, particularly

following the work of Buser [17], of Agol [1], and of the 1st author [11]. In the following

sections we will develop analogous methods to bound the spectral gap and higher

eigenvalues in graphs.

Let M be an n-dimensional manifold and let A and B be a Cheeger-minimizing

partition of M, so that their common boundary � = ∂A = ∂B satisfies

h(M) = Vol(�)

min (Vol(A), Vol(B))
.

The minimax principle tells us that λ2(M) ≤ max λ1(A), λ1(B) where eigenfunc-

tions f of A (similarly B) corresponding to eigenvalue μ satisfy the Dirichlet boundary

conditions ⎧⎨
⎩�f = μf on A

f (�) = 0.

Here, λ1(A) (similarly λ1(B)) is the least non-zero value μ for which an eigenfunction

exists. Without loss of generality assume that λ1(A) ≥ λ1(B). The Rayleigh principle

tells us that λ1(A) of a manifold is achieved by minimizing the Rayleigh quotient∫
A |∇f | 2/

∫
A f 2 over functions satisfying the boundary condition f (�) = 0. For more

details, see [19, 28, 32].

Buser’s idea is to use a test-function for this Rayleigh quotient that depends

linearly on the distance from �, which we denote dist�(p). Specifically, one constructs

f (p) =
⎧⎨
⎩dist�(p) if dist�(p) ≤ t

t if dist�(p) ≥ t.

Define A(t) = {p ∈ A : dist�(p) ≤ t}. Buser observes that

∫
A

|∇f | 2 ≤
∫

A(t)
1 = Vol(A(t)) and

∫
A

f 2 ≥
∫

A−A(t)
t2 = t2 (Vol(A) − Vol(A(t)) .

Now, for any t > 0 satisfying Vol(A) > Vol(A(t)), one sees that

λ2(M) ≤ Vol(A(t))

t2 (Vol(A) − Vol(A(t))
.
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Volume Growth and Buser-Type Inequalities 11

What remains is to bound Vol(A(t)). In this step, Buser uses a global lower

bound on Ricci curvature and the crucial assumption that � is a Cheeger-optimal cut-

set. Suppose N is a compact hypersurface (codimension-1 submanifold) of M. Further,

assume that the planes of M containing a tangent vector of a geodesic segment, which

minimizes the distance to N, have sectional curvatures are bounded below by δ. A

consequence of the Heintze–Karcher comparison theorem [26] is the following volume

growth bound: there exists νδ ∈ C∞[0, ∞) such that for all τ ≥ 0, we have

Voln−1

(
dist−1(τ )

) ≤ Voln−1(�)νδ(τ ).

Now, the volume growth bound Vol(A(t)) ≤ ∫ t
0 ν(s)Vol(�) ds can be applied (when

clear we will suppress the δ in νδ). Specifically, Buser finds the bound

λ2(M) ≤
∫ t

0 ν(s)Vol(�)ds

t2Vol(A) − t2
∫ t

0 ν(s)Vol(�)ds

≤ h
∫ t

0 ν(s)ds

t2(1 − h
∫ t

0 ν(s)ds)

for λ2(M) in terms of the curvature (again, because the volume growth function ν

depends on curvature), the Cheeger cut-set A and boundary �. We will not reproduce

the remainder of Buser’s proof [17], which is somewhat technical, except to state the

result:

Theorem 3.1 (Buser’s Inequality (P. Buser, 1982)). If M is an n-dimensional manifold

with −(δ2)(n − 1) as a lower bound on curvature (for some δ ≥ 0), then

λ2(M) ≤ c(δh(M) + h(M)2),

where c is a universal constant.

More recently, Agol observed that the constant in Buser’s proof can be improved

by optimizing over all possible test-functions that depend on the distance from �, not

just those that grow linearly up to some critical distance t [1]. While reformulating

Agol’s result using Sturm–Liouville theory, the 1st author showed that the method can be

extended to give bounds on the higher eigenvalues [11]. One begins with the observation

that

λ2k(M) ≤ max
(
λk(A), λk(B)

)
, (4)
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12 B. Benson et al.

where λ1(M), λ2(M), . . . are the eigenvalues of M in increasing order and A and B have

the properties that

• B = A�,

• Vol(A) ≤ Vol(B),

• A ∩ B = ∂A = ∂B =: �,

• h(M) = Vol(�)
Vol(A)

.

We denote D to be the set A or B that achieves the maximum in Equation 4. Here, the

Rayleigh quotient is

λk(A) = inf
U

sup
f ∈U

∫
D ‖∇( f )‖2 dVol∫

D f 2 dVol
,

where U is the set of k-dimensional subspaces of the Sobolev space H1
0 (D) on which

f (�) = 0. Limiting to only those functions f that depend on the distance from �, the

co-area formula implies that

λk(D) ≤ inf
V

sup
f ∈V

∫ ∞
0 f ′(s)2Vol

(
dist−1

� (s)
)

ds∫ ∞
0 f (s)2Vol

(
dist−1

� (s)
)

ds
, (5)

where dist−1
� (s) is the set {p ∈ D : dist( p, �) = s} and V is the set of all k-dimensional

subspaces of H1
0 [0, ∞) on which f (0) = 0.

Given a Heintze–Karcher-type growth bound Vol(dist−1
� (s)) ≤ ν(s)Vol(�), observe

that

Vol(A(s)) =
∫ s

0
Vol

(
dist−1

� (τ)
)

dτ ≤ Vol(�)

∫ s

0
ν(τ )dτ .

Because � is the Cheeger-achieving boundary and dist−1
� (s) is the boundary for

some other non-Cheeger-achieving partition of M, we have

h(M) = Vol(�)

min (Vol(A), Vol(B))

and also

h(M) ≤ Vol(dist−1
� (s))

min (Vol(A \ A(s)), Vol(B ∪ A(s)))
.

In the case that Vol(B ∪ A(s)) ≥ Vol(A \ A(s)), we have

h(M) ≤ Vol(dist−1
� (s))

Vol(A \ A(s))
,
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Volume Growth and Buser-Type Inequalities 13

and so

Vol(dist−1
� (s)) ≥ h(M)Vol(A) − h(M)Vol(A(s))

≥ Vol(�) − h(M)Vol(�)

∫ s

0
ν(τ )dτ

= Vol(�)

(
1 − h(M)

∫ s

0
ν(τ )dτ

)
.

In the other case, we have that Vol(B ∪ A(s)) ≤ Vol(A − A(s)). As such, it follows

that Vol(B) ≤ Vol(A), in other words, the set B is the Cheeger minimizing set. We find

that

Vol(dist−1
� (s)) ≥ h(M)Vol(B ∪ A(s)) ≥ h(M)Vol(B) = Vol(�),

with the last equality following from the definition of �.

Combining both cases, the 1st author achieves the lower bound

Vol(dist−1
� (s)) ≥ Vol(�)

(
1 − h(M)

∫ s

0
ν(τ )dτ

)
.

Observe that this bound is only meaningful for values of s where

h(M)

∫ s

0
ν(τ )dτ ≤ 1.

Because the parameter s is continuous, one can always apply such values. This is one of

several ways in which the discrete formulation on graphs presents a challenge, which

does not appear in the related continuous result on Riemannian manifolds.

Define now T to be the value for which h(M)
∫ T

0 ν(τ )dτ = 1. With both an upper

and lower bound for Vol(dist−1
� (s)), it is possible to plug those bounds into Equation 5,

truncating the integrals at T, to obtain the bound

λk(A) ≤ inf
W

sup
f ∈W

∫ T
0 f ′(s)2ν(s) ds∫ T

0 f (s)2
(
1 − h

∫ s
0 ν(τ ) dτ

)
ds

, (6)

where W is the set of k-dimensional subspaces of H1
0 [0, T] in which f (0) = 0.

What remains is the technical problem of finding the function f that mini-

mizes the Rayleigh quotient in Equation 6. Such a function is an eigenfunction of a

Sturm–Liouville problem, which leads to an eigenvalue comparison. Specifically, the
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14 B. Benson et al.

eigenvalues of the Laplacian on the manifold are bounded above by the eigenvalues of

a Sturm–Liouville (ODE) problem, which depends only on the same data as in Buser’s

original inequality: namely, the Cheeger constant, dimension, and Ricci curvature lower

bound. For more details, see [11].

We will see in Section 5 that in the discrete case, higher eigenvalues of the graph

λk(G) can be bounded by the eigenvalues of a tridiagonal matrix times a multiplicative

factor. The entries of the matrix only depend on the bounds on volume growth,

which can be given in terms of several notions of the graph’s curvature. Further, the

multiplicative factor can be interpreted using the upper bound on the volume growth

of the graph and the outer vertex Cheeger constant or its analogues corresponding to

splitting the graph into more than two subgraphs.

4 The Relationship Between Volume Growth and Curvature

In Section 5, we develop the relationship between the spectrum of the Laplace operator

on a graph and the volume growth of subsets of the graph. Our goal is to also develop

the connection between the spectrum, notions of curvature, and the Cheeger constant of

the graph in the form of Buser-type inequalities. To allow us to make these connections

in Section 5, in this section we discuss volume growth in graphs under several notions

of a curvature lower bound.

4.1 Bounds under CDE′ curvature

We first present a volume growth bound under the so-called CDE′ inequality. This notion

of discrete curvature is a variant of the CD inequality, which was introduced by Bakry–

Émery in [7]. The CDE′ inequality was introduced by Bauer et al. [10]. We present only

the definition of CDE′(K, N) herein, for a full discussion the reader can consult the paper

of Bauer et al.

Let f , g : V(G) → R be functions and x ∈ V(G). The field-squared operator


( f , g)(x) is defined by


( f , g)(x) = 1

2dx

∑
y:y∼x

( f (x) − f (y)) (g(x) − g(y)) .

A graph G is said to satisfy the CDE′(K, N) inequality at x if for every function

f : V(G) → R
+,

f 2 (1
2�
(log f , log f ) − 
(log f , � log f )

) ≥ 1

N
(� log f )2 + K
( f , f ).
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Volume Growth and Buser-Type Inequalities 15

In this case, we say that K is a lower bound on the CDE′ curvature of G at x with

dimension N.

In a follow-up work [27], a volume growth bound was discovered under a lower

bound on CDE′ curvature:

Theorem 4.1. (Horn, Lin, Liu & Yau [27]) Let G be a locally finite graph satisfying

CDE′(n, 0). Then there exists a constant C depending on n such that for all x ∈ V and

any integers r, s with r ≥ s:

|dist−1
x (r)| ≤ C

(r

s

) log(C)
log(2) |dist−1

x (s)|. (7)

Note that a similar volume growth bound (albeit with a multiplicative factor√
d in the base of the exponent) is implicit in the recent article [41] under the CD(n, 0)

inequality, and a similar corollary can be obtained by the following method. We use this

bound on ball volumes to prove the following bound on shell volumes:

Corollary 4.2. Let G be a graph satisfying CDE′(n, 0) at all vertices x ∈ V(G). Let � ⊂ V,

and let C = C(G) be the constant from Theorem 4.1, let r > 0. Then

|dist−1
� (r)| ≤ d|�|C(r − 1)

log(C)
log(2)

⎡
⎣C

(
r

r − 1

) log(C)
log(2) − 1

⎤
⎦ .

Proof. Letting s = r − 1 in Equation 7, the estimate becomes

|dist−1
x (r)| ≤ C

(
r

r − 1

) log(C)

log(2) |dist−1
x (r − 1)|.

Since we are interested in counting vertices with distance exactly r from x, we wish to

consider |dist−1
x (r)| − |dist−1

x (r − 1)|, so we subtract |dist−1
x (r − 1)| from both sides of the

previous inequality to give

|dist−1
x (r)| − |dist−1

x (r − 1)| ≤
⎡
⎣C

(
r

r − 1

) log(C)

log(2) − 1

⎤
⎦ |dist−1

x (r − 1)|.

In fact, we want to consider the set of vertices with distance exactly r from �. We can

sum over all x ∈ � on both sides of the previous equation to give

|dist−1
� (r)| ≤

∑
x∈�

|dist−1
x (r)| − |dist−1

x (r − 1)| ≤
∑
x∈�

⎡
⎣C

(
r

r − 1

) log(C)

log(2) − 1

⎤
⎦ |dist−1

x (r − 1)|.
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16 B. Benson et al.

Simplifying, we find

|dist−1
� (r)| ≤ |�|

⎡
⎣C

(
r

r − 1

) log(C)
log(2) − 1

⎤
⎦ max

x∈�
|dist−1

� (r − 1)|.

Now we wish to estimate the term maxx∈� |dist−1
� (r − 1)| and we will again apply

Equation 7, this time we replace r with r − 1 in the formula and take s = 1. As a result,

our estimate becomes

|dist−1
� (r)| ≤ d|�|C(r − 1)

log(C)

log(2)

⎡
⎣C

(
r

r − 1

) log(C)

log(2) − 1

⎤
⎦ ,

observing that |dist−1
x (1)| = d. �

4.2 Bounds under Ollivier curvature

Next, we will find upper bounds on the shell volume |dist−1
x (i)| in terms of a lower bound

on Ollivier curvature. It is simple to convert such bounds into bounds on the ball volume

(analogous to the Bishop–Gromov Volume Comparison Theorem [12]) with the equation

|Bx(r)| =
r∑

i=0

|dist−1
x (i)|.

In this area, there is a previous result due to Paeng [44].

Theorem 4.3 (Paeng [44]). Let G be a graph with maximum degree D. Let r be an integer

with 0 ≤ r ≤ diam(G). Assume that κ(x, y) ≥ k for all x, y ∈ V.

|d−1
x (r)| ≤ Dr

r−1∏
m=0

(
1 − k

2
m

)
. (8)

These bounds are only useful in the case that k > 0: if we set k = 0 above, we see

only the trivial result that |f −1(r)| ≤ Dr. In the case k > 0, we see that |dist−1
x (�2/k+1�)| ≤

0; that is, G has �2/k� ≤ diam(G). Because G is finite, G has polynomial volume growth

with |dist−1
x (r)| ≤ |V(G)|r0 (depending on G, a much tighter bound may be possible.)

We develop results that are useful in the case that G has a negative lower bound on

curvature. We find that such graphs do not necessarily have polynomial volume growth.

We remark here that it remains an open question whether or not a bound of κ(x, y) ≥ 0,

for all x, y ∈ V, implies polynomial volume growth.
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Volume Growth and Buser-Type Inequalities 17

Theorem 4.4. Let G be a d-regular graph with κ(v1, v2) ≥ k, for every pair of vertices

v1, v2. Fix x ∈ V, define Si = dist−1
x (i). Then for i ≥ 1,

|Si+1| ≤ d + 1 − 2dk

2
|Si|.

Proof. First, we bound e(Si, Si+1), the number of edges between Si and Si+1. Let z ∈ Si,

z is adjacent to some vertex y(z) ∈ Si−1. (If z is adjacent to multiple vertices in Si−1,

choose y(z) arbitrarily from them.) Let T(z) be the set of common neighbors of z and

y(z). Neither y nor a neighbor of y can be in Si+1, so e(z, Si+1) ≤ d− 1− |T(z)|. (Note that

we frequently suppress y(z) to y.) Let T∗ = ∑
z∈Si |T(z)|, so e(Si, Si+1) ≤ (d − 1)|Si| − T∗.

Next, for each z we wish to use the Kantorovich characterization of W1(µy,µz).

Define the following test-function f :

• f (y) = 0.

• f (z) = 1.

• f |T(z) = 0.

• For any other neighbor v of y, f (v) = −1.

• Let W(z) be the set of neighbors of z (besides y) that are not in T(z) and

are adjacent to a neighbor of y (besides z) that is not in T(z). We may set

f |W(z) = 0.

• Let U(z) = N(z) \ ({y} ∪ T(z) ∪ W(z)), set f |U(z) = 1. Here we use N(z) to denote

the set of neighbors of z.

• f can be made 1-Lipschitz by setting f = 0 on every other vertex.

We have:

∑
x

f (x)µz(x) = 1 + |U(z)| − d

2d
and

∑
x

f (x)µy(x) = |T(z)| + 2 − d

2d
.

Combining the two, we get

(1 − k) ≥
∑
x

f (x)(µz(x) − µy(x)) ≥ 1 + |U(z)| − 2 − |T(z)|
2d

,

and rearranging gives

|T(z)| + 2 − 2dk ≥ |U(z)| .

If a neighbor of z is not in U(z), the neighbor must be either y, adjacent to y (and

thus in T(z)), or adjacent to more than one neighbor of y, and hence in W(z).
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18 B. Benson et al.

Any vertex in Si+1 for which z is the only neighbor in Si must be in U(z). The

total number U∗ of vertices in Si+1 that are adjacent to only one vertex in Si is at most

U∗ ≤
∑
z

|U(z)| ≤
∑
z

(|T(z)| + 2 − 2dk) = T∗ + |Si|(2 − 2dk).

We can now see that the number of vertices in Si+1 that are adjacent to more

than one vertex in Si is bounded above by

(d − 1)|Si| − T∗ − U∗

2
.

This is because the total number of possible edges from Si to these vertices is at most

e(Si, Si+1) ≤ (d − 1)|Si| − T∗ less the U∗ edges that are accounted for by vertices in Si+1

with only one neighbor in Si. Every other vertex must be incident to at least 2 of those

(d − 1)|Si| − T∗ − U∗ edges, so we divide by 2.

Now, we add the other U∗ vertices in Si+1 to achieve the desired result:

|Si+1| ≤ U∗ + (d − 1)|Si| − T∗ − U∗

2
= (d − 1)|Si| − T∗ + U∗

2

≤ (d − 1)|Si| − T∗ + (2 − 2dk)|Si| + T∗

2
= d + 1 − 2dk

2
|Si|.

�

Following the same proof outline, we obtain a better bound for bipartite graphs.

Theorem 4.5. Let G be a d-regular bipartite graph with κ(v1, v2) ≥ k for every pair of

vertices v1, v2. Fix x ∈ V, define Si = dist−1
x (i). For i ≥ 1,

‖Si+1| ≤ d − dk

2
|Si|.

Proof. First, we bound e(Si, Si+1), the number of edges between Si and Si+1. Let z ∈ Si,

z is adjacent to some vertex y(z) ∈ Si−1. Because y /∈ Si+1, e(z, Si+1) ≤ d − 1. Clearly,

e(Si, Si+1) ≤ (d − 1)|Si|.
Next, for each z we wish to use the Kantorovich characterization of W1(µy,µz).

Define a test-function f :

• f (y) = 0.

• f (z) = 1.

• For any other neighbor v of y, f (v) = −1.
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Volume Growth and Buser-Type Inequalities 19

• Let W(z) be the set of neighbors of z (besides y) that are adjacent to a

neighbor of y other than z. Set f |W(z) = 0.

• Let U(z) = N(z) \ ({y} ∪ W(z)), set f |U(z) = 2.

• f can be made 1-Lipschitz by setting f = 1 on any other vertex in the same

set of the bipartition as z and f = 0 on any other vertex in the same set as y.

We have ∑
x

f (x)µz(x) = 1 + 2|U(z)| − d

2d
and

∑
x

f (x)µy(x) = 2 − d

2d
.

Combining

(1 − k) ≥
∑
x

f (x)(µz(x) − µy(x)) ≥ 1 + 2|U(z)| − 2

2d
,

resulting in

|U(z)| ≤ 1 − dk .

If a neighbor of z is not in U(z), it must be either y or adjacent to more than one

neighbor of y, and thus in W(z).

Any vertex in Si+1 for which z is the only neighbor in Si must be in U(z). The

total number U∗ of vertices in Si+1 that are adjacent to only one vertex in Si is at most

U∗ ≤
∑
z

|U(z)| ≤ |Si|(1 − dk).

We can now bound the number of vertices in Si+1 that are adjacent to more than

one vertex in Si from above by

(d − 1)|Si| − U∗

2
.

This is because the total number of possible edges from Si to these vertices is at most

e(Si, Si+1) ≤ (d − 1)|Si| less the U∗ edges that are accounted for by vertices in Si+1 with

only one neighbor in Si. Each counted vertex must be incident to at least 2 of those

(d − 1)|Si| − U∗ edges, so we divide by 2.

Now, we add the other U∗ vertices to achieve the desired bound on |Si+1|:

|Si+1| ≤ U∗ + (d − 1)|Si| − U∗

2
= (d − 1)|Si| + U∗

2

≤ (d − 1)|Si| + (1 − dk)|Si|
2

= d(1 − k)

2
|Si|.

�
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20 B. Benson et al.

We continue to denote Si = distx(i) and summarize the results of Theorems 4.4

and 4.5 as follows.

Theorem 4.6. For any d-regular graph, for i ≥ 1, we have

|Si| ≤ di
(

1 + 1
d − 2k

2

)i−1

.

For any d-regular bipartite graph, for i ≥ 1, we also have

|Si| ≤ di
(

1 − k

2

)i−1

.

Proof. Observe S0 = 1 and S1 = d for every graph. Repeated application of Theorems

4.4 and 4.5 gives the desired bounds for Si when i ≥ 2. This can be made formal using

induction, which is left to the reader. �

As far as we are aware, these are the 1st non-trivial bounds on volume growth

under a negative bound on Ollivier curvature. A weakness in the proof method is that

vertices in Si+1 are counted either as having exactly one neighbor in Si (i.e., in some

set U(x)), or as having several neighbors (W(x)), but the upper bound on |Si+1)| assumes

the worst case—that there are a large number of vertices of type W, each having only

2 neighbors in Si. For graphs where that assumption is correct (or close), our bound is

somewhat tight. In other graphs, the average number of neighbors in Si for any vertex

in Si+1 can be O(d). For those graphs the bound is not tight. Below we give an example

illustrating this issue.

Example 1. Let Tp be the infinite p-regular tree and Tq
p be the Cartesian product graph

Tp�Tp� · · ·�Tp, with the product taken q times. Note that Tq
p is pq-regular. It is easy to

compute that Tp has k(x, y) = 2−p
p if x ∼ y. By tensorization of curvature (see for instance

[30]), we know that Tq
p has k(x, y) ≥ 2−p

pq whenever x ∼ y.

Because Tq
p is bipartite, we apply the 2nd statement of Theorem 4.6 to find the

bound

|d−1
x (i)| ≤ (pq)i

⎛
⎝1 − 2−p

pq

2

⎞
⎠

i−1

= pq

(
p(q + 1)

2
− 1

)i−1

, (9)
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Volume Growth and Buser-Type Inequalities 21

so that

log(|d−1
x (i)|) ≤ i log

(
p(q + 1)

2
− 1

)
+ O(1). (10)

A vertex y ∈ dist−1
x (i) is characterized by the distance from x parallel to each of

the q copies of Tp in the product graph, and, given those distances, by the path taken in

Tp of that distance.

There are
(i+q−1

q

)
choices of what distance is traveled along each copy of Tp. At

each step of any path taken along some copy of Tp, there are either p possibilities (for

the 1st step) or p − 1 possibilities (for any subsequent step). As such, we have

(
i + q − 1

q

)
(p − 1)i ≤ |dist−1

x (i)| ≤
(

i + q − 1

q

)
pq(p − 1)i−q. (11)

It follows that

log(|dist−1
x (i)|) = i log(p − 1) + O(1). (12)

Observe that q is the maximum number of neighbors that y ∈ dist−1
x (i) has in

dist−1
x (i − 1). The difference between the bound from Theorem 4.6 of i log

(
p(q+1)

2 − 1
)

and the actual value i log(p) results from the value of q. As discussed before, the reason

for this is that in the proof of Theorem 4.6, the upper bound assumes as a worst-case

scenario that every vertex in dist−1
x (i) has either 1 or 2 neighbors in dist−1

x (i − 1). But in

fact, as i grows almost every vertex in the i-shell of Tq
p has q neighbors in the (i−1)-shell.

We conjecture here that Tq
p actually experiences the maximum volume growth

for their curvature and regularity.

Conjecture 4.1. Let G be a pq-regular graph so that if u, v ∈ V(G), then κ(u, v) ≥ 2−p
pq .

Let x ∈ V(G) and y ∈ V(Tq
p). Then for any i ≥ 0, one has

|dist−1
x (i)| ≤ |dist−1

y (i)|.

Qualitatively, the graph Tq
p is conjectured to fill the same role that the space

of constant curvature does in the Bishop Volume Comparison Theorem. A case of this

conjecture is that the d-dimensional lattice Td
2 is conjectured to have the fastest volume

growth for any 2d-regular graph with curvature lower bound 0. If correct, this would

prove that any such graph has polynomial volume growth.
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5 Volume Growth and Spectral Estimates in Graphs

In this section we follow the methods from the continuous setting that were developed

by Benson [11] and discussed in Section 3. First, we demonstrate an upper bound for an

eigenvalue λk(G) by taking the Rayleigh quotient of a function based only on distance

from a cut-set �. Next, we optimize that quotient by treating it as a discrete Hardy-type

inequality.

Remark 5.1. In applying our results using volume growth to bound the spectrum, we

will use the relationship between notions of curvature of the graph and volume growth,

as introduced and referenced in the previous section. The bounds that illustrate this

relationship are the only point in our analysis that relies on the discrete curvature.

Given another volume growth result (either based on another notion of discrete

curvature or unrelated to curvature), it will be possible to repeat the analysis we present

here and achieve similar results.

5.1 Bounding eigenvalues using volume growth

In this section, we will establish bounds for the spectrum of the graph Laplacian using

bounds on volume growth.

Our methods in this section for approximating λk, where k ≥ 2, do not make

any assumption about the cut-set, but the bounds we obtain will only be in terms of

the generic volume growth bounds μ, ν. Later, we will give a bound for λ2 with the

assumption that � is the outer vertex isoperimetric optimizing cut-set.

Let G = (V, E) be a graph. Let � ⊂ V(G) be a cut-set that separates V \ � into

V+ and V−. Note that under this definition, it is possible that V+ or V− is empty. The

signed distance function dist� : V → Z is defined so that |dist�(v)| = minx∈�distG(x, v)

where distG is the graph distance, and the sign of dist� is positive on V+ and negative

on V−.

We will assume that we have volume growth and decay bounds for the level sets

of dist�. Specifically, let ν(k) denote a volume growth bound and μ(k) denote a uniform

volume decay bound. Here, for k ∈ Z, the bounds ν(k) and μ(k) have the property that

|�|μ(k) ≤ |dist−1
� (k)| ≤ |�|ν(k). (13)

Definition 5.1. Define T+ ∈ Z>0 so that μ(k) > 0 for all 0 ≤ k ≤ T+ and define T− ∈ Z<0

so that μ(k) > 0 for all T− ≤ k ≤ 0.
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Volume Growth and Buser-Type Inequalities 23

We denote by U+ the set of all functions f + : V+ → R and U− = {f − : V− → R}.
The inner products for U+ and U− will be inherited from the inner product on V by

letting f +(v) = 0 for every v ∈ V \ V+ and f −(v) = 0 for every v ∈ V \ V−, that is,

extending the functions on U+ and U− to all of V by zero, then taking the inner product

on all of V.

We also define a pair of corresponding spaces of functions on {0, . . . , T+} and

{T−, T− + 1, . . . , −1, 0}: let W+ be the space of functions g+ : {0, 1, 2, . . . , T+} → R such

that g+(0) = 0, and W− be the space of functions g− : {T−, T− + 1, . . . , −1, 0} → R such

that g−(0) = 0. Further, for u+, v+ ∈ W+, define

〈u+, v+〉+ =
T+∑
i=0

u(i)v(i).

Similarly, for u−, v− ∈ W−, define

〈u−, v−〉− =
0∑

i=T−
u(i)v(i).

To estimate λ2(G), we will be interested in (the smallest positive) solutions

ρ+ ∈ R
T+

and ρ− ∈ R
T−

, which satisfy the respective equations:

T+∑
i=0

φ(i)2 · (ν(i) + ν(i − 1)) ≤ 2ρ+
T+∑
k=0

[ k∑
i=0

φ(i)

]2

· μ(k), (14)

0∑
i=T−

φ(i)2 · (ν(i) + ν(i − 1)) ≤ 2ρ−
0∑

k=T−

[ 0∑
i=k

φ(i)

]2

· μ(k) (15)

with φ(0) = 0, φ �≡ 0 and where ν and μ are the volume growth bounds defined in

Equation 13. Equations of this form are called weighted discrete Hardy inequalities.

For a fuller discussion of this topic, we refer to [39].

Theorem 5.2. Let ρ+ and ρ− be defined by Equations 14 and 15. Then λ2(G) ≤
max{ρ+, ρ−}.

Before proving the theorem, we formulate the results for the higher eigenvalues.

To estimate the higher eigenvalues, we define a symmetric, tridiagonal matrix A+
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24 B. Benson et al.

indexed by {1, . . . ,T+} so that

A+
ij =




2ν(i)+ν(i−1)+ν(i+1)
µ(i) , if i = j; 1 ≤ i < T+

ν(T+)+ν(T+−1)
µ(T+)

, if i = j = T+

−ν(i)−ν(j)√
µ(i)µ(j)

, if |i − j| = 1; 1 ≤ i, j ≤ T+

0, otherwise.

Similarly, we define the symmetric, tridiagonal matrix A− indexed by {T−,T− +
1, . . . ,−2,−1}:

A−
ij =




2ν(i)+ν(i−1)+ν(i+1)
µ(i) , if i = j;T− < i ≤ −1

ν(T−)+ν(T−+1)
µ(T−)

, if i = j = T−

−ν(i)−ν(j)√
µ(i)µ(j)

, if |i − j| = 1;T− ≤ i, j ≤ −1

0, otherwise.

Theorem 5.3. For a graph G and any k, l ∈ N with 1 ≤ k, l ≤ min{∣∣T−∣∣ ,T+} =: T, then

λk+l(G) ≤ 1

2
max

{
ρ+
k , ρ

−
l

}
, (16)

where ρ+
k and ρ−

l are the k-th and l-th non-trivial eigenvalues of the respective equations

A+g+ = ρ+g+ with g+ ∈ W+ and A−g− = ρ−g− with g− ∈ W−.
In particular, we have that

λj(G) ≤ 1

2
min
j=k+l

min
j≤t++|t−|≤2T

t+,−t−≥1

max
{
ρ+
k (t+), ρ−

l (|t−|)}

where ρ+
k (t+) and ρ−

l (|t−|) are the eigenvalues of the symmetric, tridiagonal matrices

A+(t+) and A−(t−) resulting from replacing T+ with t+ and T− with t− in the definitions

of A+ and A−, respectively.

Remark 5.4. Broadly speaking, we are using estimates of volume growth and decay,

which act as weights and linearize the graph Laplacian eigenvalue problem on the

graph. The main idea is to linearize the graph using the weights ν and µ. This can

be done in multiple ways, however, we choose to do it in a way which is based around

a minimizing vertex cut for hout(G), as we find it to be a natural way to produce Buser-
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Volume Growth and Buser-Type Inequalities 25

type inequalities for both λ2(G) as well as the higher eigenvalues and higher Cheeger

constants. In this form, we show that the higher eigenvalues are bounded above by

eigenvalues of tridiagonal matrices, which in some cases, are known in closed form [31].

We will now prove both Theorems 5.2 and 5.3 simultaneously.

Proof of Theorems 5.2 and 5.3. Using the Poincaré minimax principle for characteri-

zation of eigenvalues, we see that

λk(G) = inf
Uk

sup
f ∈Uk

〈 f , �f 〉
〈 f , f 〉 , (17)

where Uk is the set of k-dimensional subspaces of functions f ∈ R
V . Expanding these

inner products, we find that

〈 f , �f 〉 =
∑

x

f (x)
∑
y∼x

1
d ( f (x) − f (y))

=
∑

{x,y}:x∼y

1
d (f (x) − f (y))2

=
∑

x

1
2d

∑
y∼x

(f (x) − f (y))2 , and

〈 f , f 〉 =
∑

x

f 2(x).

Define � ⊂ V so that hout(G) = |�|/|A| where A ⊂ V, with � = ∂outA, and

|A| ≤ |V|/2. Use the signed distance from �, with positive distance into A, to define the

following vertex subsets:

V≥a :=
⋃

n∈N:n≥a

dist−1
� (n) and V≤a :=

⋃
n∈N:n≤a

dist−1
� (n).

We wish to estimate the eigenvalue λj(G) of the Laplacian on G by the eigenvalues of the

Laplacian on the subgraphs on V≥0 and V≤0, wherein the test functions for the Rayleigh

quotients f + : V≥ → R satisfy f +(v) = 0 for every v ∈ dist−1
� (0) = �, and f − : V≤0 → R

satisfy f −(v) = 0 for every v ∈ �. Denote the eigenvalues determined by the Rayleigh

quotients of these specific test functions by ξk(V≥0) and ξl(V≤0), respectively. Using the

Poincaré minimax principle it is possible to see that when 1 ≤ k, l ≤ min
{|V−|, |V+|} , it

follows that

λk+l(G) ≤ max
{
ξk(V≥0), ξl(V≤0)

}
. (18)
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26 B. Benson et al.

This can be seen by discretizing Theorem 8.2.1 found in [18] or Proposition 2.1 of [11].

Such an argument is given in detail by Balti for weighted directed graphs, where the

result is also extended in several ways, including to the special Laplacian operator on

these graphs [8, Section 5].

To give an upper bound for the eigenvalue, we restrict the test functions for

Equation 17 in R
V to functions that

(1) vanish on either V≥0 or V≤0,

(2) are constant on each set dist−1
� (i),

(3) and are constant for values less than or equal to T− and greater than or

equal to T+.

Recall the definitions of the spaces of functions U+, U−, and W+, W− from Definition

5.1. We will first treat these test functions as functions in U+ or U−, respectively, and

then as functions in W+ or W−. Let U+
k and U−

l be, respectively, arbitrary sets of k- and

l-dimensional subspaces of real-valued functions of U+ and U−, for values k, l ∈ Z≥0.

Similarly, W+
k and W−

l are k- and l-dimensional subspaces of W+ and W−, respectively.

Combining Equation 18 with the Poincaré minimax characterization for the

Dirichlet eigenvalues ξk(V≥0) and ξl(V≤0) while maintaining the assumption that

1 ≤ k, l ≤ min{|V−|, |V+|} we have that

λk+l(G) ≤ max

⎧⎨
⎩inf

U+
k

sup
f +∈U+

k

〈 f +, �f +〉
〈 f +, f +〉 , inf

U−
l

sup
f −∈U−

l

〈 f −, �f −〉
〈 f −, f −〉

⎫⎬
⎭ . (19)

Now, for g defined on V≥0, with constant value g(i) on the i-shell, using the

volume growth estimates from Equation 13, we have the estimates

〈g, �g〉 =
T+∑
i=0

∑
x∈dist−1

� (i)

∑
y∼x

1

2d
(g(i) − g(y))2

≤ 1

2

T+∑
i=0

∑
x∈dist−1

� (i)

[
(g(i) − g(i + 1))2 + (g(i) − g(i − 1))2

]

= 1

2

T+∑
i=0

|dist−1
� (i)|

[
(g(i) − g(i + 1))2 + (g(i) − g(i − 1))2

]

≤ 1

2

T+∑
i=0

ν(i)|�|
[
(g(i) − g(i + 1))2 + (g(i) − g(i − 1))2

]
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Volume Growth and Buser-Type Inequalities 27

and

〈g, g〉 =
T+∑
i=0

|dist−1
� (i)|g2(i)

≥
T+∑
i=0

μ(i)|�|g2(i).

Similar estimates hold for a function g defined on V≤0.

We now use these bounds in Equation 19. Because we are restricting to functions

g with a constant value in each shell, it is equivalent to write the expression in terms of

W+ and W−, rather than U+ and U−.

λk+l(G) ≤ max

⎧⎪⎪⎨
⎪⎪⎩inf

W+
k

sup
g∈W+

k

∑T+
i=0

[
(g(i) − g(i + 1))2 + (g(i) − g(i − 1))2

]
· ν(i)

2
∑T+

i=0 g2(i) · μ(i)
,

inf
W−

l

sup
g∈W−

l

∑0
i=T−

[
(g(i) − g(i + 1))2 + (g(i) − g(i − 1))2

]
· ν(i)

2
∑0

i=T− g2(i) · μ(i)

⎫⎪⎪⎬
⎪⎪⎭ .

(20)

Note that |�|, a common factor appearing in the numerator and denominator, has been

eliminated in the resulting estimates in Equation 20.

For estimating λ2(G), we take k = l = 1 and the Rayleigh quotient for W+ in

Equation 20 becomes

inf
g∈W+,g�≡0

∑T+
i=0

[
(g(i) − g(i + 1))2 + (g(i) − g(i − 1))2

]
· ν(i)

2
∑T+

i=0 g2(i) · μ(i)
. (21)

Define φ(j) := g(j) − g(j − 1) for the W+ quotient in Equation 20. Noting that

g(j) = ∑j
i=0 φ(i) and using the facts that g(0) = 0, φ(0) = 0, and g(i) is constant for

all i ≥ T+ implies φ(i) = 0 for all i > T+. As a result, Equation 21 becomes

inf
g∈W+,g�≡0

∑T+
i=0[φ(i + 1)2 + φ(i)2]ν(i)

2
∑T+

k=0

[∑k
i=0 φ(i)

]2
μ(i)

= inf
g∈W+,g�≡0

∑T+
i=0 φ(i)2[ν(i) + ν(i − 1)]

2
∑T+

k=0

[∑k
i=0 φ(i)

]2
μ(i)

In the rightmost equality, we have used that φ(T+ + 1) = g(T+ + 1) − g(T+) = 0.
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28 B. Benson et al.

It follows from the definition of φ and a routine computation that the quotient

in Equation 21 is bounded from above by ρ+ in Equation 15. A similar argument verifies

ρ− in Equation 15. This establishes Theorem 5.2. �
Bounding the higher eigenvalues: We now continue the argument for higher

eigenvalues. Since the test function g can be thought of as a test function vanishing off

of V≥1, we wish to find a symmetric matrix A+ and a column vector w+ so that

〈w+, A+w+〉+ =
T+∑
i=0

[
(g(i) − g(i + 1))2 + (g(i) − g(i − 1))2

]
ν(i)

and

〈w+, w+〉+ =
T+∑
i=0

g(i)2μ(i).

As a result, the quotient 〈w+,A+w+〉+
2〈w+,w+〉+ is equal to the eigenvalue estimate for V≥0 in

Equation 20.

Since g(0) = 0, we omit the i = 0 entry in constructing the column vector w+,

defining

w+ =

⎡
⎢⎢⎣

g(1)
√

μ(1)

...

g(T+)
√

μ(i)

⎤
⎥⎥⎦ .

In other words, we let the i-th entry of w+ to be g(i)
√

μ(i). We now wish to construct a

symmetric matrix A+ such that

wᵀ
+A+w+ = 〈w+, A+w+〉+ =

T+∑
i=0

[(g(i) − g(i + 1))2 + (g(i) − g(i − 1))2]ν(i), (22)

where wᵀ
+ is the transpose of w+ when written as a column vector.

Now, the i-th term in the right-hand side of Equation 22 can be rewritten as

[2g(i)2 + g(i − 1)2 + g(i + 1)2 − 2g(i)(g(i − 1) + g(i + 1))]ν(i). (23)

It follows from Equation 23 that the entries of A+ are quotients where the numerator

can be expressed as linear combinations of the weights ν and the denominator of A+
ij is

equal to
√

μ(i)μ(j). Since A+
ij and A+

ji correspond to the right-hand side of Equation 22,

the presence of terms of the form

−2g(i)g(i − 1)ν(i) = g(i)g(i − 1)(−2ν(i))
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Volume Growth and Buser-Type Inequalities 29

contribute an additive term −ν(i) to the numerator of each entry A+
i−1,i and A+

i,i−1, where

the factor of ν(i) has been halved due to the fact that we require A+
i−1,i = A+

i,i−1. For the

same reason, terms of the form

−2g(i)g(i + 1)ν(i) = g(i)g(i + 1)(−2ν(i))

contribute an additive term −ν(i) to the numerator of A+
i,i+1 and A+

i+1,i. This implies that

when |i − j| = 1, we have that

A+
ij = −ν(i) − ν(j)√

μ(i)μ(j)
.

When 1 ≤ i < T+, the terms

[2g(i)2 + g(i − 1)2 + g(i + 1)2]ν(i)

contribute 2ν(i) to A+
ii and ν(i) to A+

i−1,i−1 and A+
i+1,i+1, giving

A+
ii = 2ν(i) + ν(i − 1) + ν(i + 1)

μ(i)
.

In other words, the numerator of the entry A+
ii contains the multiple of g(i)2 in the right-

hand side of Equation 22, while the numerator of the entry A+
ij contains one half of the

multiple of g(i)g(j) = g(j)g(i) in the sum, since A+
ij = A+

ji . Finally, the T+-th term in the

sum on right-hand side of Equation 22 can be written as

[g(T+)2 − 2g(T+)g(T+ − 1) + g(T+ − 1)2]ν(T+).

This contributes −ν(T+) to the numerators of A+
T+,T+ and A+

T+−1,T+−1. However, since

g(T+) − g(T+ + 1) vanishes, we have that

A+
T+,T+ = ν(T+) + ν(T+ − 1)

μ(T+)
.

Thus, we conclude that the desired symmetric matrix A+ can be constructed as

A+
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2ν(i)+ν(i−1)+ν(i+1)
μ(i) , if i = j; 1 ≤ i < T+

ν(T+)+ν(T+−1)
μ(T+)

, if i = j = T+

−ν(i)−ν(j)√
μ(i)μ(j)

, if |i − j| = 1; 1 ≤ i, j ≤ T+

0, otherwise,

where 1 ≤ i, j ≤ T+.
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30 B. Benson et al.

Since the test functions corresponding to the eigenvalues ξl(V≤0) also vanish for

vertices in �, the arguments for finding the matrix A+
ij can be repeated to find that

A−
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2ν(i)+ν(i−1)+ν(i+1)
μ(i) , if i = j; T− < i ≤ −1

ν(T−)+ν(T−+1)
μ(T−)

, if i = j = T−

−ν(i)−ν(j)√
μ(i)μ(j)

, if |i − j| = 1; T− ≤ i, j ≤ −1

0, otherwise.

We can now estimate Equation 20 from above using the matrices A+ and A−:

λk+l(G) ≤ 1

2
max

⎧⎨
⎩inf

W+
k

sup
w+∈W+

k

〈w+, A+w+〉+
〈w+, w+〉+

, inf
W−

l

sup
w−∈W−

l

〈w−, A−w−〉−
〈w−, w−〉−

⎫⎬
⎭ . (24)

Since A+ and A− are symmetric, the spectral theorem implies that there exist

an orthonormal basis of T+ real eigenfunctions of A+ in W+ with corresponding real

eigenvalues and an orthonormal basis of T− real eigenfunctions of A− in W− having

real eigenvalues. It is easy to see that if w∗ ∈ W+ is an eigenfunction of A+ with

corresponding eigenvalue ρ∗, we have

〈w∗, A+w∗〉+
〈w∗, w∗〉+

= ρ∗. (25)

The same relationship holds for A− and the eigenfunctions of W−. Since these bases of

eigenfunctions are orthonormal, the k-th eigenvalue of A+ in W+
k and the l-th eigenvalue

of W−
l , which we denote ρ+

k and ρ−
l , respectively, satisfy the following:

inf
W+

k

sup
w+∈W+

k

〈w+, A+w+〉+
〈w+, w+〉+

= ρ+
k and inf

W−
l

sup
w−∈W−

l

〈w−, A−w−〉−
〈w−, w−〉−

= ρ−
l . (26)

Combining Equations 24 and 26, it follows that

λk+l(G) ≤ 1

2
max

{
ρ+

k , ρ−
l

}
.

This establishes Equation 16.

The eigenvalue estimate on λj(G) holds by taking j = k + l in Equation 16

while noting that the arguments above hold for any t+ and t− with 1 ≤ t+ ≤ T+ and

T− ≤ t− ≤ −1, where one must restrict k and l such that k ≤ t+ and l ≤ |t−|. �
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Volume Growth and Buser-Type Inequalities 31

We remark that in the continuous case, one shows that analogue of the operator

A can be rewritten as a Sturm–Liouville problem depending on the same parameters of

the manifold as Buser’s inequality. The details can be found in Benson [11].

5.2 Applying volume growth bounds

In this section, we use ν(k) to denote a volume growth bound around �; that is, a

function with the property that, given a fixed � ⊂ V, all choices of sets V+, V−,

and all k ≥ 0, we have that |dist−1
� (k)| ≤ |�|ν(k). The function ν may depend on �

as well as the curvature, though previously we have only presented volume growth

bounds that are independent of the choice of �. For convenience, we often denote

�k = dist−1
� (k).

Remark 5.5. In this section our results are in terms of the outer vertex isoperimetric

constant hout. This is most natural because we use the counting measure on the vertex

set. As stated before, there are simple bounds relating hout to the edge isoperimetric

constant h:

h ≤ hout ≤ hd ,

where d is the degree of the graph. Using these inequalities, it is possible to rewrite our

results in terms of h.

Lemma 5.6. Let A ⊂ V be the set that achieves the outer vertex isoperimetric constant

hout and let � = ∂outA. Set either V+ = A or V+ = V \ (A ∪ �), and let V− be the other.

Use this choice of V+ and V− to define the signs (positive and negative, respectively)

of the signed distance function dist�. Let k ≥ 0, for �k = dist−1
� (k), it follows

that

|�k| ≥ |�|
(

1 − hout

k∑
i=0

ν(i)

)
.

Proof. Observe that the case k = 0 is trivial. Assume k > 0.

Define C− = ⋃
i<k dist−1

� (i) and C+ = ⋃
i>k dist−1

� (i). We will split the proof into

two cases.

(1) In the 1st case, suppose |C−| < 1
2 |V|. Since k > 0, we have that (V− ∪�) ⊆ C−,

therefore |V− ∪�| < 1
2 |V|. By assumption 1

2 |V| ≤ |V \A| = ∣∣(V \ (A ∪ �)
) ∪ �

∣∣ ,

so V− �= V \ (A ∪ �). It follows that V− = A.
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32 B. Benson et al.

Because |A| = |V−| < |C−| < 1
2 |V|, we have that

|�|
|A| = hout ≤ |�k|

|C−|
and so |�k| ≥ hout|C−| ≥ hout|A| = |�| and the result follows.

(2) In the other case, we have |C−| ≥ 1
2 |V|. Because C− and C+ are disjoint, we

have that |C+| ≤ 1
2 |V|. Therefore,

|�k| ≥ hout|C+| = hout

(
|V+| −

k∑
i=1

|dist−1
� (i)|

)
.

Observe that since |A| ≤ |V|/2, we have that

|V+| ≥ min{|V \ (A ∪ �)|, |A|}
≥ min{|V \ A| − |�|, |A|}
≥ min{|A| − |�|, |A|}
= |A| − |�|.

Applying the previous bound gives us

|�k| ≥ hout

(
|V+| −

k∑
i=1

|dist−1
� (i)|

)
≥ hout

(
|A| − |�| −

k∑
i=1

|�|ν(i)
)

= hout

(
|A| −

k∑
i=0

|�|ν(i)

)
= |�|

(
1 − hout

k∑
i=0

ν(i)

)
,

where the 1st equality relies on the (always reasonable) assumption that

ν(0) ≥ 1. This proves the result. �

By this conclusion of Lemma 5.6, one can think of the lower weights for vertex

expansion μ(k) as

μ(k) = 1 − hout

k∑
i=0

ν(i).

As a result, we have

|�|ν(k) ≥ |dist−1
� (k)| ≥ |�|

(
1 − hout

k∑
i=0

ν(i)

)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/doi/10.1093/im
rn/rnz305/5670702 by G

eorgia Institute of Technology user on 21 July 2020



Volume Growth and Buser-Type Inequalities 33

and from the Rayleigh quotient in Equation 20, we obtain

λ2 ≤ inf
W1

sup
g∈W1

1
2

∑T
k=0 ν(k)

[
(g(k) − g(k + 1))2 + (g(k) − g(k − 1))2

]
∑T

k=0 g2(k)
(
1 − hout

∑k
i=0 ν(i)

) , (27)

where T is the largest integer for which 1 > hout
∑T

i=0 ν(i). Here, by assumption we

have the same volume growth bounds on V+ and V−, so (unlike the previous section) the

Rayleigh quotients are identical on both sides of the cut-set.

5.3 Bounds on λ2

Of particular interest is the problem of bounding λ2. Indeed, the original proofs

of Buser’s inequality only bound λ2 and not the higher eigenvalues λk : k ≥ 3 [17, 33, 34].

First, we will give a short proof of a bound on λ2 that is independent of the

Cheeger cut-set.

Theorem 5.7. Let � ⊂ V be a set (not necessarily the Cheeger-achieving cut set)

that cuts V into V+ and V−, and define the one-sided shells dist−1
� (k) as before. Let

α = |�|/|V|. Assume that α < 1/4. If |�| ≥ |dist−1
� (k)| for all k ∈ Z, then λ2 ≤ 8α2 + o(α2).

The proof loosely follows the method of the original proof of Buser’s inequality

for graphs.

Proof. Recall the Rayleigh quotient

λ2(G) = inf
f

1
2d

∑
x
∑

y∼x (f (x) − f (y))2∑
x f (x)2 .

Without loss of generality assume that |V+| ≥ |V−|. Let t = � 1
4α

� Because α < 1/4 and

t > 0, we can construct the following test-function in the Rayleigh quotient to bound

λ2(G):

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ∈ dist−1
� (i) where i ≤ 0,

i if x ∈ dist−1
� (i) where 0 ≤ i ≤ t,

t if x ∈ dist−1
� (i) where i ≥ t.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/doi/10.1093/im
rn/rnz305/5670702 by G

eorgia Institute of Technology user on 21 July 2020



34 B. Benson et al.

For a vertex x,

1
2d

∑
y∼x

(f (x) − f (y))2 ≤
⎧⎨
⎩

1
2 if x ∈ dist−1

� (i) where 0 ≤ i ≤ t,

0 otherwise,

and

f (x)2 ≥
⎧⎨
⎩t2 if x ∈ dist−1

� (i) where i ≥ t,

0 otherwise.

Using these bounds, we see that

∑
x

1
2d

∑
y∼x

( f (x) − f (y))2 ≤ 1
2

t∑
i=0

|dist−1
� (i)| ≤ (t + 1)

2
|�|

and

∑
x

f (x)2 ≥ t2
∑
i≥t

|dist−1
� (i)| ≥ t2 (|V+| − t|�|) ≥ t2 (1

2 |V| − 1
4 |V|) = 1

4 t2|V|.

Combining the previous two inequalities, we find the result

λ2 ≤ 2(t + 1)|�|
t2|V| = (2/t + o(1/t)) α = 8α2 + o(α2).

�

Now we attempt to bound λ2 in terms of the Cheeger cut-set in order to achieve

a Buser-type result. Observe that the Rayleigh minimizing function for λ2 must have

certain properties.

Lemma 5.8. The function g(k) corresponding to the non-constant minimizer of the

Rayleigh quotient in Equation 27 is monotone in k.

Proof of Lemma 5.8. We will induct on k. The base case is trivial since g(0) = 0 by the

Dirichlet boundary condition on f −1(0). Without loss of generality, assume that g(1) ≥ 0,

else replace g(1) with −g(1) and proceed to the induction step.

Assume for contradiction that g is monotone increasing up to some k in its

domain, but that g(k+1) < g(k). Then replacing g(k+1) by 2g(k)−g(k+1), the numerator

of R(g) is unchanged as

[
g(k) − (

2g(k) − g(k + 1)
)]2 = (

g(k) − g(k + 1)
)2

.
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At the same time, the denominator of R(g) increases since
(
2g(k − 1)− g(k)

)2
> g(k − 1)2,

therefore the quotient R(g) decreases, contradicting the assumption that g is a non-

constant minimizer of R(g). �

We are now able to bound the Rayleigh quotient within a constant factor. To

bound λ2, we apply Equation 27 giving the Rayleigh quotient

λ2 ≤ R := inf
f

1
2

∑T
k=0 ν(k)

[
(f (k) − f (k + 1))2 + (f (k) − f (k − 1))2

]
∑T

k=1 f 2(k)
(
1 − hout

∑k
i=0 ν(i)

) , (28)

where the infimum is taken over all functions f : Z → R with f (0) = 0, f (1) �= 0, f (i) = 0

if i < 0 and f (i) = f (T) if i > T.

Theorem 5.9. The bounds on R(g) are 1
8B ≤ R ≤ 1

2B , where

B = sup
n≥1

(
T∑

k=n

(1 − hout

k∑
i=0

ν(i))

)(
n∑

k=1

1

ν(k) + ν(k − 1)

)
.

Proof. To apply a result of Miclo [39], we write Equation 28 in a different form: set

g(k) = f (k) − f (k − 1) for k ∈ Z. Observe that f (k) = ∑k
i=1 g(i). Also observe that g(k) = 0

if k ≤ 0 or k > T. We have

2R = inf
g

∑T
k=0 ν(k)

[
g(k + 1)2 + g(k)2

]
∑T

k=1

(∑k
i=1 g(i)

)2 (
1 − hout

∑k
i=0 ν(i)

)

= inf
g

∑T
k=1 g(k)2 (ν(k) + ν(k − 1))∑T

k=1

(∑k
i=1 g(i)

)2 (
1 − hout

∑k
i=0 ν(i)

) ,

taken over all functions g : N → R.

To simplify, we write the volume growth and decay bounds as μ(k) = 1 −
hout

∑k
i=0 ν(i) and ζ(k) = ν(k) + ν(k − 1) if 1 ≤ k ≤ T, and μ(k) = ζ(k) = 0 if k ≥ T.

We have

2R = inf
g

∑T
k=1 g(k)2ζ(k)∑T

k=1

(∑k
i=1 g(i)

)2
μ(k)

.

The result follows from Proposition 1 in [39]. �
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An immediate corollary is a bound on the spectral gap, obtained by combining

Theorem 5.9 with the bound λ2 ≤ R.

Theorem 5.10. The inequality

λ2(G) ≤ 1

2B

holds, where

B = sup
n≥1

(
T∑

k=n

(
1 − hout

k∑
i=0

ν(i)

))(
n∑

k=1

1

ν(k) + ν(k − 1)

)
.

A case of particular interest is when � = maxi∈Z |d−1
� (i)|. In this case we may set

ν ≡ 1.

Corollary 5.11. If the vertex-isoperimetric cut-set � satisfies � = maxi∈Z |d−1
� (i)|, then

λ2 ≤ 27

2
h2

out(1 + o(1)).

The proof is found in Example 4. Under these hypotheses the Cheeger lower

bound λ2 ≥ c ∗ h2
out/d is tight up to a linear factor of d.

Observe that this is a related result to Theorem 5.7. WLOG assume hout =
|�|/|V+|, this behaves similarly to the term α = |�|/|V| in that theorem.

5.4 Results for the higher Cheeger constants

We define the higher order, outer vertex Cheeger constant to be

hout(n) = min
V1,...,Vn

max
i

{ |∂outVi|
|Vi|

}
,

where V1, V2, . . . , Vn ⊂ V are non-empty, pairwise disjoint and have the property that

∪n
i=1Vi = V. Our main focus in this subsection is to develop enough of the properties of

hout(n) to give the following analogue of Corollary 5.11 for the higher eigenvalues:

Theorem 5.12. Assume that ν(i) = 1 for all i ∈ [T−, T+]. If n ≥ 2 and hout(n) < 1, then

we have

λk(G) ≤ k2hout(n)2
(

27π2

16
+ o(1)

)
.
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The proof of Theorem 5.12 is found in Example 6 and the remaining portion of

this section is devoted to developing the properties of hout(n) enough to support the

proof of this result.

The concept of the higher Cheeger constant of graphs, as well as the 1st Cheeger-

type and Buser-type inequalities for the higher Cheeger constants (in various forms)

have been studied by many authors; see for instance [35, 38, 40]. We will assume that

hout(n) = max
i=1,2,...,n

{ |∂outVi|
|Vi|

}
= |∂outVn|

|Vn| .

For convenience and without loss of generality, we assume that

|∂outV1|
|V1| ≤ |∂outV2|

|V2| ≤ · · · ≤ |∂outVn|
|Vn| .

Further, we may also construct the Vi such that if

|∂outVk−1|
|Vk−1| = |∂outVk|

|Vk| ,

then |Vk−1| ≥ |Vk|.
To prove bounds on λn(G) with respect to hout(n), there are two plausible

approaches:

1. Prove a monotonicity-type estimate bounding hout(n) from below by hout(2).

Then apply these estimates directly to Lemma 5.6.

2. Prove an analog to Lemma 5.6 for hout(n) in place of hout(2).

While we take approach 1 for convenience, we mention approach 2, since we would be

interested in any work in this direction that might produce better bounds. The fact that

hout(n) ≥ hout(2) follows immediately from the following result.

Proposition 5.13. With hout(n) defined as above, for n ≥ 3, we have

hout(n − 1) ≤ hout(n).

Proof. Using the notation established in this section, we remind that reader that

hout(n) = max
1≤i≤n

|∂outVi|
|Vi|

= |∂outVn|
|Vn| .
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Consider the sets V1, . . . , Vn that optimize hout(n). We form a collection of n−1 sets that

will be a candidate to optimize hout(n − 1) by merging V1 and V2 to make V∗ = V1 ∪ V2

and by retaining the other n − 2 sets.

Observe that

|∂outV
∗|

|V∗| ≤ |∂outV1| + |∂outV2|
|V1| + |V2| ≤ max

{ |∂outV1|
|V1| ,

|∂outV2|
|V2|

}
,

where the 1st inequality relies on the fact that |∂out(V1 ∪ V2)| ≤ |∂outV1| + |∂outV2|. The

2nd inequality uses the rule a+b
c+d ≤ max{a

c , b
d } when a, b, c, d > 0.

Combining this bound with the monotonicity of |∂outVi||Vi| , we find that

|∂outV
∗|

|V∗| ≤ max
1≤i≤n

|∂outVi|
|Vi|

= |∂outVn|
|Vn| ;

that is, the maximum ratio on these n − 1 sets that partition V is |∂outVn|
|Vn| . Because

hout(n − 1) is the minimum value of the maximum ratio taken over any choice of n − 1

sets that partition V, we find that

hout(n − 1) ≤ |∂outVn|
|Vn| = hout(n).

�

Remark 5.14. Recall that the terms hout(n) and
∑k

i=0 ν(i) are both positive. Using these

facts, the following bound is immediate from combining Proposition 5.13 with Lemma

5.6. So, with the same notation and assumptions as in Lemma 5.6, we have

|�k| ≥ |�|
(

1 − hout(n)

k∑
i=0

ν(i)

)
.

In the next section, we will cite this remark in the analysis of some examples.

6 Examples of Spectral Gap Bounds Using Volume Growth

In this section, we use Theorem 5.10 to bound the 2nd eigenvalue by the volume growth.

First, we obtain several general bounds depending only on the growth function ν(k).

Second, we use these results to bound λ2 for specific graphs where the growth function

is known. In each example where a bound on λ2(G) is computed, we compute B from the

statement of Theorem 5.10.
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6.1 Examples of volume growth functions

Example 2. If ν(i) is exponential, that is, ν(i) = ci for some value c > 1, then T satisfies

cT+1 − 1

c − 1
≤ 1

hout
≤ cT+2 − 1

c − 1
.

As such, we have

hout ≤ c − 1

cT+1 − 1
.

Note that it is trivial that ν(i) = d · (d − 1)i−1 < di is a volume growth bound for

all d-regular graphs. This bound is achieved by a tree where |�| is a single vertex. So we

only need to consider the case c ≤ d.

If T ≥ n ≥ 1, it follows that

T∑
k=n

(
1 − hout

k∑
i=0

ν(i)

)
= (T − n + 1) −

T∑
k=n

hout
ck+1 − 1

c − 1

≥ (T − n + 1) −
T∑

k=n

ck+1 − 1

cT+1 + 1

= (T − n + 1)

(
1 + 1

cT+1 − 1

)
− cT+2 − cn+1

(c − 1)(cT+1 − 1)
.

We also have that

n∑
k=1

1

ν(k) + ν(k − 1)
=

n∑
k=1

1

(c + 1)ck−1
= 1 − c−n

c − 1
c

= c − c1−n

c2 − 1
.

Combining the previous two equations, we have

B ≥ sup
T≥n≥1

(
(T − n + 1)

(
1 + 1

cT+1 − 1

)
− cT+2 − cn+1

(c − 1)(cT+1 − 1)

)(
c − c1−n

c2 − 1

)
.

Taking n = 1, we find

B ≥
(
T + T

cT+1 − 1
− cT+2 − c2

(c − 1)(cT+1 − 1)

)(
c − 1

c2 − 1

)

≥
(
T + T

cT+1 − 1
− c

c − 1

)(
1

c + 1

)
.
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On the other hand, for any value n satisfying 1 ≤ n ≤ T, we have that

T∑
k=n

(
1 − hout

k∑
i=0

ν(i)

)
≤ T ,

and, as a result, it follows that

n∑
k=1

1

ν(k) + ν(k − 1)
=

n∑
k=1

1

(c + 1)ck−1
= 1 − c−n

c − 1
c

≤ 1

c − 1
c

= c

c2 − 1
.

So, combining all parts, we see that

(
T + T

cT+1 − 1
− c

c − 1

)(
1

c + 1

)
≤ B ≤ T

c

c2 − 1
.

In particular, if c ≥ 1 + ε, for a fixed ε > 0, then B = �(T/c) and λ2 = O(c/T).

Example 3. Of particular interest is the case that ν(0) = 1, ν(i) = dci−1 if i ≥ 1, where

d is the common degree of vertices in the graph and c > 1. This is the form of Theorem

4.6. Proceeding in the same way as the previous example, we see that T satisfies

1 + d
cT − 1

c − 1
≤ 1

hout
≤ 1 + d

cT+1 − 1

c − 1
.

It follows that

hout ≤ c − 1

c − 1 + d(cT − 1)
.

In the case where T ≥ n ≥ 1, we have

T∑
k=n

(
1 − hout

k∑
i=0

ν(i)

)
= (T − n + 1) −

T∑
k=n

hout
c − 1 + d(ck − 1)

c − 1

≥ (T − n + 1) −
T∑

k=n

c − 1 + d(ck − 1)

c − 1 + d(cT − 1)

= (T − n + 1)

(
1 + d + 1 − c

c − 1 + d(cT − 1)

)

− d(cT+1 − cn)

(c − 1)(c − 1 + d(cT − 1))
.
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In addition, we find that

n∑
k=1

1

ν(k) + ν(k − 1)
= 1

1 + d
+

n∑
k=2

1

d(c + 1)ck−2

= 1

1 + d
+ 1

d
· 1 − c1−n

c − 1
c

= 1

1 + d
+ 1

d
· c − c2−n

c2 − 1
.

Combining the previous two equations, we have

B ≥ sup
T≥n≥1

(
(T − n + 1)

(
1 + d + 1 − c

c − 1 + d(cT − 1)

)
− d(cT+1 − cn)

(c − 1)(c − 1 + d(cT − 1))

)

·
(

1

1 + d
+ 1

d
· c − c2−n

c2 − 1

)
.

Taking n = 1, we find

B ≥
(
T
(
1 + d + 1 − c

c − 1 + d(cT − 1)

)
− d(cT+1 − c)

(c − 1)(c − 1 + d(cT − 1))

)

·
(

1

1 + d
+ 1

d
· c − c

c2 − 1

)

≥
(
T + T(d + 1 − c)

c − 1 + d(cT − 1)
− c

c − 1

)(
1

1 + d

)
.

On the other hand, if 1 ≤ n ≤ T, we have

T∑
k=n

(
1 − hout

k∑
i=0

ν(i)

)
≤ T

and

n∑
k=1

1

ν(k) + ν(k − 1)
= 1

1 + d
+ 1

d
· c − c2−n

c2 − 1
≤ 1

1 + d
+ 1

d
· c

c2 − 1
.

Thus, combining all parts, we see that

(
T + T(d + 1 − c)

c − 1 + d(cT − 1)
− c

c − 1

)(
1

1 + d

)
≤ B ≤ T

(
1

1 + d
+ 1

d
· c

c2 − 1

)
.

If c ≥ 1 + ε for a fixed value ε > 0, then B = �(T/d) and λ2 = O(d/T).
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Example 4. If ν(i) = 1 for all i ≥ 0, then T satisfies T + 1 ≤ 1
hout

≤ T + 2.

B = sup
n≥1

(
T∑

k=n

(
1 − hout(k + 1)

))(
n∑

k=1

1

2

)

= sup
n≥1

(
(T − n + 1) − hout

[(
T + 1

2

)
−

(
n

2

)]) (n

2

)

≥ sup
n≥1

(
T + 1 − n − 1

T + 1

T2 + T − n2 + n

2

)
· n

2

= T2

27
(1 ± o(1))

= 1

27h2
out

(1 ± o(1)).

Here the supremum for B is achieved when n is roughly equal to T/3. It follows

that λ2 ≤ 27
2 h2

out(1 + o(1)). In this case the Cheeger lower bound λ2 ≥ c ∗ h2
out/d is tight

up to a linear factor of d. Note that this is a case of Theorem 5.7 in which the Cheeger

cut-set is also the largest set. This follows because for all i, |�i| ≤ ν(i)|�0| = |�0|, where

|�0| is by assumption the Cheeger cut-set.

Example 5. If b ≥ 1 is a constant so that ν(i) = 1 + ib for all i ≥ 0, then T satisfies

1

hout
≥

T∑
i=0

(1 + ib) ≥
∫ T

0
xb dx = Tb+1

b + 1
.

For the computation of B, we use the inequality

k∑
i=0

(
1 + ib

)
≤ 3 ·

k∑
i=1

ib ≤ 3 · (k + 1)b+1 − 1

b + 1
. (29)

The 1st inequality follows from

k∑
i=1

ib ≥
k∑

i=1

i = k(k + 1)

2
≥ k + 1

2
.

So then 2
∑k

i=1 ib ≥ k + 1 and so

k∑
i=0

ib ≤ (k + 1) +
k∑

i=1

ib ≤ 3 ·
k∑

i=1

ib.
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The 2nd inequality in (29) follows from

k∑
i=1

ib ≤
∫ k

1
xb dx = kb+1 − 1

b + 1
,

since b ≥ 1.

Thus, we have

B = sup
n≥1

(
T∑

k=n

(
1 − hout

(
k∑

i=0

(1 + ib)

))) (
n∑

k=1

1

2 + kb + (k − 1)b

)

≥ sup
n≥1

(
T∑

k=n

(
1 − 3hout

(
kb+1 − 1

b + 1

)))
�(1)

≥ sup
n≥1

(
(T − n + 1) − 3hout

(
T∑

k=n

kb+1 − 1

b + 1

))
�(1)

= sup
n≥1

�

(
(T − n + 1) − 3hout

Tb+2 − nb+2

(b + 1)(b + 2)
(1 + o(1))

)

≥ sup
n≥1

�

(
(T − n + 1) − 3 · Tb+2 − nb+2

Tb+1(b + 2)
(1 + o(1))

)

= �(T).

So we conclude that λ2 = O(1/T) = O(h1/b+1
out ).

This example represents polynomial volume growth. Recall that in the setting of

Ollivier curvature, every graph with positive curvature has polynomial volume growth

with some positive integer b. But the Buser bound we hoped to achieve is λ2 = O(h2
out).

The reason for the difference may be that Paeng’s polynomial volume growth bound

is a correct bound for the volume growth around any initial set. In this section we

are only concerned with bounding volume growth around the Cheeger-achieving cut-

set. For that set, a tighter bound may apply. Our next examples are instances of this

phenomenon, where the volume growth is much slower around the Cheeger cut-set than

around general vertex sets.

We will now provide an application of Theorem 5.3 to Buser-type inequalities

for combinations of higher eigenvalues and the higher Cheeger constants.

Example 6. Assume that ν(i) = 1 for all i ∈ [T−, T+] and hout(n) < 1 for some n ≥ 2. Due

to the symmetry of this example, we abuse notation slightly to simplify the presentation,
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defining B± to be the T± × T± Toeplitz, tridiagonal matrix defined by

B±
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4, if i = j

−2, if |i − j| = 1

0, otherwise.

Because B± differs from A± in only the (T±, T±) entry, we have that

〈g, B±g〉± − 〈g, A±g〉± = B±
T±,T±g(T±)2 − A±

T±,T±g(T±)2 = 2g(T±)2 ≥ 0.

Note that the eigenvalues of the matrix B±, denote them ψk, are given in closed form by

ψk = 4

(
1 − cos

(
kπ

T+ − T−

))
, (30)

see, for instance, Theorem 2.2 in [31], wherein a new approach was proposed (with

extensions to Toeplitz-like matrices), while [46] details the classical treatment.

Now we combine Equation 30 with Theorem 5.3 which implies that

λk(G) ≤ 2 · min⌈
k
2

⌉
≤t≤min{T+,T−}

1 − cos

(⌈
k
2

⌉
t+1 π

)

1 − hout(n)(t + 1)
, (31)

where the denominator follows from Remark 5.14. In particular, the weight μ(k) from

Theorem 5.3 is given by

μ(k) = 1 − hout(n)

k∑
i=0

ν(i) = 1 − hout(n)(k + 1).

It remains to minimize the right-hand side of Equation 31. We will use the

simple bound that if 0 ≤ x ≤ π , with 2
π2 x2 ≤ 1 − cos(x) ≤ 1

2x2.

From Equation 31, we obtain

λk(G) ≤ 2 · min⌈
k
2

⌉
≤t≤min{T+,T−}

⌈
k
2

⌉2
π2

2

[1 − hout(n)(t + 1)](t + 1)2 . (32)

Observe that in this step of our estimate, we use a bound that is tight up to a

constant factor π2/4. One might be tempted to use a better approximation for cos(x),

but this factor gives an upper bound on the potential improvement from that method.
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Elementary calculus reveals that the minimum is achieved when (t+1) = 2
3hout(n)

.

Of course this may be not an integer: we will set

t + 1 =
⌈

2

3hout(n)

⌉
if

k

2
≤ 2

3hout(n)
≤ min{T+, T−}.

In this case, we find that

λk(G) ≤ 2 ·
⌈

k
2

⌉2
π2

2

[1 − hout(n)� 2
3hout(n)

�](� 2
3hout(n)

�)2
= k2hout(n)2

(
27π2

16
+ o(1)

)
.

For this problem we have 1/hout(n) < 2 + min{T+, T−}, and so 2
3hout(n)

≤
min{T+, T−} as long as min{T+, T−} ≥ 4

We will not analyze the case that 2
3hout(n)

< k/2 or that min{T+, T−} < 4. It is

easy to check that both cases give (trivial) bounds of the form λk ≤ C for a universal

constant C.

6.2 Examples of specific graphs

We will now test our methods on several concrete examples. For these examples,

information about the spectrum is already known, allowing us to compare the results.

Example 7 (Hypercube). The hypercube �d is commonly expressed as the graph with

vertex set {0, 1}d and x ∼ y if and only if x and y disagree in exactly one coordinate.

With this notation, we define the k-slice Ak ⊂ V to be the set of vertices that are 1 in

exactly k coordinates. It is clear that
(|Ak|=

dk

)
.

It is known that hout is achieved by the �d/2�-slice �, with hout = �(1/
√

d) [25].

With this choice of �, we see that dist−1(i) = A�d/2�+i, and

|dist−1(i)| =
(

d

�d/2� + i

)
≤

(
d

�d/2�
)

= |�|.

As such, we may set ν(i) = 1, and we have

T =
⌊

1

hout
− 1

⌋
= �(

√
d).

By the results of Example 4, λ2 ≤ 27
2 h2

out(1 + o(1)), thus λ2 = O(1/d). It is well-

known that the actual value of λ2 is indeed �(1/d).
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Example 8 (Discrete torus). If Cn is the n-cycle for n ≥ 3, the discrete torus Cd
n is

the 2d-regular graph Cn�Cn� · · ·�Cn. It is understood that hout is achieved by the ball

B(x, �dn
4 � − 1) with � = S(x, �dn

4 �), where x is an arbitrary (fixed) vertex [14]. The level

sets are dist−1
� (i) = S(x, i + �dn

4 �) with |dist−1
� (i)| ≤ |�|. We will give a brief argument

that 2
nd (1 + o(1) < hout < 4

n (1 − o(1)).

First note that |�| < 2nd−1, as the latter is achieved by the boundary of the

candidate cut-set bounded by two parallel d − 1-planes separated by a distance �n/2�.

It follows that hout < nd−1/(1
2nd(1 + o(1)) = 4/n(1 + o(1).

Next, consider the set A ⊂ Cd−1
n defined to contain those a for which there is

an element of � whose 1st d − 1 entries are a. Let x be the 1st d − 1 entries of x,

A = ⋃�n/2�
k=0 S(x, �dn

4 − k�). Inductively, we know that A contains the disjoint union of the

n/2−O(1) largest shells around x in Cd−1
n ; as there are nd/2+O(1) shells in total and we

take the largest fraction 1/d−o(1) to form A, |A| ≥ ( 1
d − o(1)

) |Cd−1
n | = (nd−1/d)(1−o(1)).

Clearly |A| ≤ |�|, it follows that hout > (nd−1/d)/(1
2 nd)(1 − o(1)) = 2

nd (1 − o(1)).

And so we have determined that hout = 1
n is tight within a factor linear in d.

Proceeding similarly to the hypercube, we may use ν(i) = 1 as in Example 4 to see that

λ2 ≤ 27
2 h2

out(1 + o(1)), thus

λ2 ≤ �d( 1
n2 ) .

It is well-known that the actual value is λ2 = �( 1
n2 ), so our estimate is tight up to a

factor depending on d.
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