
40

Learning Graphs from Noisy Epidemic Cascades

JESSICA HOFFMANN, The University of Texas at Austin

CONSTANTINE CARAMANIS, The University of Texas at Austin

We consider the problem of learning the weighted edges of a graph by observing the noisy times of infection

for multiple epidemic cascades on this graph. Past work has considered this problem when the cascade

information, i.e., infection times, are known exactly. Though the noisy setting is well motivated by many

epidemic processes (e.g., most human epidemics), to the best of our knowledge, very little is known about

when it is solvable. Previous work on the no-noise setting critically uses the ordering information. If noise

can reverse this – a node’s reported (noisy) infection time comes after the reported infection time of some

node it infected – then we are unable to see how previous results can be extended. We therefore tackle two

versions of the noisy setting: the limited-noise setting, where we know noisy times of infections, and the

extreme-noise setting, in which we only know whether or not a node was infected. We provide a polynomial

time algorithm for recovering the structure of bidirectional trees in the extreme-noise setting, and show our

algorithm matches lower bounds established in the no-noise setting, and hence is optimal. We extend our

results for general degree-bounded graphs, where again we show that our (poly-time) algorithm can recover

the structure of the graph with optimal sample complexity. We also provide the first efficient algorithm to learn

the weights of the bidirectional tree in the limited-noise setting. Finally, we give a polynomial time algorithm

for learning the weights of general bounded-degree graphs in the limited-noise setting. This algorithm extends

to general graphs (at the price of exponential running time), proving the problem is solvable in the general

case. All our algorithms work for any noise distribution, without any restriction on the variance.

CCS Concepts: • Mathematics of computing → Graph theory; Graph algorithms; Probability and
statistics;Computingmost probable explanation; Combinatorics; •Networks→Network algorithms;
• Theory of computation→ Graph algorithms analysis; Sample complexity and generalization bounds;
Random walks and Markov chains; Social networks.

Additional Key Words and Phrases: Epidemics; SIR model; Contact process on graph; Noisy inverse problem;

Graph reconstruction; Robust graph algorithms.

ACM Reference Format:
Jessica Hoffmann and Constantine Caramanis. 2019. Learning Graphs from Noisy Epidemic Cascades. Proc.
ACM Meas. Anal. Comput. Syst. 3, 2, Article 40 (June 2019), 34 pages. https://doi.org/10.1145/3326155

1 INTRODUCTION
Epidemic models accurately represent (among other processes) the spread of diseases, information

(rumors, viral videos, news stories, etc.), the spread of malevolent agents in a network (computer

viruses, malicious apps, etc.), or even biological processes (pathways in cell signaling networks,

chains of activation in the gene regulatory network, etc.). We focus on epidemics that spread on an

underlying graph [31], as opposed to the fully mixed models introduced in the early literature [4].

Authors’ addresses: Jessica Hoffmann, The University of Texas at Austin, Austin, TX, 78712, hoffmann@cs.utexas.edu;

Constantine Caramanis, The University of Texas at Austin, Austin, TX, 78712, constantine@utexas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/6-ART40 $15.00

https://doi.org/10.1145/3326155

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

https://doi.org/10.1145/3326155
https://doi.org/10.1145/3326155

40:2 Jessica Hoffmann and Constantine Caramanis

Most settings assume we know the underlying graph and aim to study properties of the spread.

Much work has been done in detection [2, 3, 21, 25–28], where the goal is to decide whether or not

there is indeed an infection. This problem is of importance in deciding whether or not a computer

network is under attack, for instance, or whether a product gets sold through word-of-mouth or

thanks to the advertisement campaign (or both [29]). More specifically, the problem of source

detection [32–36] or obfuscation [11–13] has been extensively studied. On the other side of the

spectrum, both experimental and theoretical work has tackled the problem of modeling [7, 17, 37],

predicting the growth [6, 39], and controlling the spread of epidemics [9, 10, 14, 18].

In this work, we take the opposite approach: assuming we know some properties of the spread,

can we recover the underlying graph? The early works on this subject proposed a few heuristics

and experimentally proved their effectiveness [16, 19]. Netrapalli et al. [30] established the first

theoretical guarantees for this problem for discrete-time infections. They proved one can recover

the edges of any graph with correlation decay, with access to the times of infection for multiple

cascades spreading on the graph. They introduced a likelihood, proved it decouples into convex

subproblems, and demonstrated that the edges of the graph can therefore be obtained efficiently.

They also proved a sample complexity lower bound and showed their method is within a log factor

of it. Abrahao et al. [1] also introduced a method of solving this problem, this time for a more

realistic, continuous-time infection model, through learning only the first edge of each cascade.

Zarezade et al. [38] proposed a first experimental attempt to tackle the case of correlated cascades

using Hawkes processes. Khim et al. [22] extended the theoretical results to the case where the the

cascades spreading on the graph are not independent, which required completely new machinery

involving martingales and weighted Pólya urns.

All the results above assume we have perfect knowledge of the properties of the spread we use

to reconstruct the graph. For most of the literature, those are the times of infection for all nodes for

each cascade. This assumption may hold for online epidemics, as information is usually dated (for

instance, posts or retweets on social networks have time stamps). For human networks, however,

this assumption is often unrealistic: official diagnosis (and hence recording by any tracking entity

such as the CDC) may come days, weeks, or in important examples such as HIV, years after the
actual moment of infection. Moreover, this can be highly variable from person to person, hence

the infector is often diagnosed after the infectee. Similar issues arise with biological networks: we

only know the expression of a gene when a measure is taken, which can happen after a typically

arbitrary delay.

We therefore develop a method for learning the graph of epidemics with noisy times of infection.

We demonstrate that past approaches are unusable, due to the fact that even small levels of noise

are typically enough to cause order-of-diagnosis to differ from order-of-infection. We develop new

techniques to deal with this setting, and prove our algorithm can reliably learn the edges of a tree

in the limited-noise setting, for any noise distribution. We also show we can learn the structure

of any bounded degree graph from a very weak observation model, in a sample-optimal fashion.

We finally provide an algorithm which learns the weights of any bounded-degree graph in the

limited-noise setting.

1.1 Model
We observe epidemics spreading on a graph, and aim to reconstruct the graph structure from noisy

estimates of the times of infection. In this section, we specify the exact propagation model, the

noisy observation model, and the two learning tasks this work tackles.

Propagation model:We consider a particular variant of the independent cascade model, close to
the one-step model introduced by [15] and further studied by [20]. The epidemic spreads in discrete
time on aweighted directed graphG = (V ,E), where parents can infect their children with probability

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:3

Table 1. Notations

G = (V ,E) Graph G, V set of nodes, E set of edges.

N Number of nodes in the graph.

Tm
i Random variable for the actual time of infection of node i during cascadem.

nmi Noise of node i during cascadem.

T
′m
i = T

m
i + n

m
i Random variable for the noisy time of infection of node i during cascadem.

Imi Random boolean variable for infection status of the nodes during cascadem:

I
′m
i = True ⇔ node i was infected during cascadem.

pi j Weight of edge (i, j), corresponding to the probability that i infects j.
If (i, j) ∈ E, 0 < pmin ≤ pi j ≤ pmax < 1.

(a) At t=0, node 1 is the
source, in the infected
state. It can possibly in-
fect node 2, 3 and 4, all
in the susceptible state.

(b) At t=1, nodes 3 and
4 are infected. Node 3
can infect node 5, in
the susceptible state.
Node 4 can infect node
2, in the susceptible
state, but not node 1,
since node 1 is now re-
moved.

(c) At t=2, node 2 is
infected. All its neigh-
bors are in the removed
state, so new node can
be infected.

(d) At t=3, the cascade
stops, even if node 5 re-
mains in the suscepti-
ble state.

Fig. 1. A complete cascade.

equal to the weight of the edge between them, but children cannot infect their parents. We allow

bidirectional edges: it is possible that both (i, j) ∈ E and (j, i) ∈ E, possibly with different weights.

For each edge (i, j) ∈ E, the corresponding weight pi j is such that 0 < pmin ≤ pi j ≤ pmax < 1.

This process is an instance of a Susceptible → In f ected → Removed (SIR) process. Only

Susceptible nodes can become Infected. Infected nodes transition to the Removed state exactly one

time step after they have become Infected. Once a node is in the Removed state, it does not interact

with the epidemic anymore (the propagation of the epidemic proceeds as though this node were no

longer on the graph).

Each node starts out in the Susceptible state. As in [1], each cascadem starts at a positive time
1

on a unique Infected source node, picked uniformly among the nodes of the graph. Once a node

becomes infected, it is removed from the graph, and if it has children, each is infected at the next

time step independently according to a probability specified by the weight of the edge shared

between the infected parent node and its susceptible child. The process ends when there are no

1
Most of the literature considers the initial time of infection to be 0. This is because when we have access to the exact times

of infection, we can make this assumption without loss of generality. In our case, it would imply we know exactly when an

outbreak started, which is usually not the case.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:4 Jessica Hoffmann and Constantine Caramanis

newly infected nodes (either because no infection happened during the previous time step, in which

case some nodes may never be infected, or because all the nodes of the graph are removed). One

realization of this process from start to finish is called a cascade. The number of Removed nodes at

the end of a cascade is called the size of this cascade. If two nodes are infected during the same

cascade, we say that they are co-infected for this cascade. This process is illustrated in Figure 1.

Observation model: Let Tm
i be a random variable corresponding to the time of infection of

node i during cascade m, and let tmi be its realization (if i stays in the susceptible state during

cascadem, we have tmi = ∞). We introduce three observation models.

In the no-noise setting, we have access to the exact times of infection Tm
i .

In the limited-noise setting, we never get to observe the exact times of infection Tm
i , but only

a noisy version T
′m
i = T

m
i + n

m
i (with realization t

′m
i), where all the nmi are i.i.d., and represent the

noise added to the Tm
i . We assume nmi follows a known distribution D. The only restriction we put

on D is that it cannot have infinite value (i.e., t
′m
i = ∞⇔ tmi = ∞, and we know for a fact when

nodes have been infected or not).

In the extreme-noise setting, we take the previous setting to the extreme, and we assume that

instead of having access to the noisy times of infection T
′m
i , we only have access to the infection

status of the nodes Imi . We know Imi = True if i was infected during cascadem, and Imi = False

otherwise. Note thatT
′m
i < ∞⇔ Imi = True , so we can always deduce the infection status from the

noisy times of infection. However, we cannot guess the noisy times of infection from the infection

status: the (noisy) times of infections contain strictly more information than the infection status.

For these three settings, we call a sample the vector of all observations for the cascade m.

In the no-noise setting, this is the extended-integer vector {tmi }i ∈V . In the limited-noise setting,

this is the extended-integer vector {t
′m
i }i ∈V . In the extreme-noise setting, this is the boolean

vector corresponding to the realization of {Imi }i ∈V . We also use the notation T ′ = {T
′m
i }

m=1...M
i ∈V

(respectively t ′ = {t
′m
i }

m=1...M
i ∈V) for the matrix representing the random variable (respectively the

realizations) of all the samples.

Learning tasks:We focus on two different learning tasks. When we learn the structure of a
graph, it means that for any two nodes i and j, we can decide whether or not there exists an edge

between these two nodes (whatever its direction). When we learn the weights of the graph, it
means that for every two nodes i and j, we learn the exact value

2
of both pi j and pji up to any

given precision ϵ .

1.2 Why is it a hard problem?
1.2.1 Counting approaches. Most approaches in the no-noise setting relate to counting. In our

setting, for instance, a natural (and consistent) estimator for pi j is to count how often an infection

occurred along an edge, and divide it by how often such an infection could have happened:

ˆpi j =
Number of times j becomes infected one time step after i

Number of times i was infected before j
.

In the no-noise setting, j could only have been infected by a node signaling exactly one time

step before j. However, in the limited-noise setting, j signaling its infection one time step after i
could stem from a variety of scenarios:

• i could have indeed infected j: cases a), b) and c) of Figure 3 below.

• j could have infected i , but the noise flipped the order of signaling: cases d), e) and f).

• No infection happen between i and j, and the probability of infection depends mainly on

another node k : cases g), e) and f). This could happen for any other node k in the graph.

2
When (i, j) < E , we have pi j = 0.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:5

Fig. 2. Possible scenarios which could have led to T
′

i = 2, T
′

j = 3 and T
′

k = 4. In the no-noise setting, this
implies Ti = 2,Tj = 3,Tk = 4, and there is only one possible infection pattern.

The natural estimator introduced earlier is therefore not consistent anymore; instead, it tends to a

quantity which depends on pi j , but also pji , and pik ,pki ,pjk ,pk j as well, for all the other nodes k in

the graph. By counting the number of times j became infected one time step after i , we are not
counting the number of infections along the edge (i, j) anymore, but instead a mixture of all the

scenarios described above, which not only include the cases where j infected i , but also events in

which the cascade spread through another node k , and the edge (i, j) was irrelevant to the process.

Using this estimator, or any obvious (to us) extension of it, would not only imply learning the wrong

weights for the edges, but also learning edges when there are no edges. Our first contribution is

therefore to design a new set of estimators, from which we can deduce the value of pi j (Sections
2.3 and 3.2).

Adding noise in the time of infection not only reverses the cascade chronology, it also exponen-

tially increased the number of possible infection patterns that could have happened. Bounding the

realm of possibilities is therefore our second step towards solving the problem (Section 2.1).

1.2.2 Max-likelihood approaches. Another common approach is to use likelihood-based methods.

For instance, in [30], the authors develop a max-likelihood-based approach to learn the edges

of the graph. They prove the log-likelihood has desirable properties: it decouples into only one

local problem for each node, and this local problem is convex (up to the change of variable θi j =
− log(1 − pi j)):

L(t , Pi j) = log

©­­­­­­­­­­«
1

N
·

∏
1≤i≤N

©­«
∏

j ;tj<ti−1

(1 − pji)
ª®¬︸ ︷︷ ︸

Probability that i was not
infected before t ′i .

·
©­«1 −

∏
j ;tj=ti−1

(1 − pji)
ª®¬︸ ︷︷ ︸

Probability that i was
infected at t ′i .

ª®®®®®®®®®®¬
L(t , Pi j) = log

(
1

N

)
+

N∑
i=1

∑
j ;tj<ti−1

log(1 − pji) +
∑

j ;t ′j=t
′
i−1

log(1 − pji)

In our setting, the log-likelihood has none of these properties. It is not convex, and it is unclear

any method other than brute force could find its maximum. Moreover, it does not decouple anymore,

and even computing the log-likelihood itself takes exponential time.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:6 Jessica Hoffmann and Constantine Caramanis

(a)
T n

i 0 2

j 1 2

k 2 2

(b)
T n

i 0 2

j 1 2

k 1 3

(c)
T n

i 1 1

j 2 1

k 0 4

(d)
T n

i 1 1

j 0 3

k 2 2

(e)
T n

i 1 1

j 0 3

k 1 3

(f)
T n

i 2 0

j 1 2

k 0 4

(g)
T n

i 0 2

j 2 1

k 1 3

(h)
T n

i 1 1

j 1 2

k 0 4

(i)
T n

i 2 0

j 0 3

k 1 3

Fig. 3. Possible scenarios which could have led to T
′

i = 2, T
′

j = 3 and T
′

k = 4. We have T
′

l = Tl + nl . In the
limited-noise setting, there are nine possible infection patterns (many more scenarios with the same infection
pattern, but different noise values, are not shown).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:7

L(t ′, Pi j) = log

©­­­­­­­­­«
1

N
·

∑
(t1, ...,tN)≤(t ′

1
−1, ...,t ′N −1)︸ ︷︷ ︸

This is the root

of the difficulty.

·
∏

1≤i≤N

(
n(t ′i − ti)

)
︸ ︷︷ ︸
Noise at node

i is t ′i − ti .

·
©­«

∏
j ;tj<ti−1

(1 − pji)
ª®¬︸ ︷︷ ︸

Probability that i was not
infected before t ′i .

·
©­«1 −

∏
j ;tj=ti−1

(1 − pji)
ª®¬︸ ︷︷ ︸

Probability that i was
infected at t ′i .

ª®®®®®®®®®®¬
= log

(
1

N

)
+ log

©­­­­«
∑

(t1, ...,tN)≤
(t ′
1
−1, ...,t ′N −1)

∏
1≤i≤N

n(t ′i − ti)
©­«

∏
j ;tj<ti−1

(1 − pji)
ª®¬ · ©­«1 −

∏
j ;tj=ti−1

(1 − pji)
ª®¬
ª®®®®¬

When dealing with hidden variables, a common technique would be to use the Expectation-

Maximization algorithm [8]. However, in our setting, the number of hidden states is

N∏
i=1

t ′i , which

can be as large as (N − 1)N . This prohibits any realistic use of the Expectation-Maximization

algorithm for networks with more than twelve nodes. Moreover, except for the recent contributions

[24], very little is known about the theoretical convergence of the Expectation-Maximization

algorithm.

1.3 Contributions
The contributions of this article are multiple:

• To the best of our knowledge, we are the first to tackle the problem of learning the edges of a

graph from noisy times of infection, a simple but natural extension of a well-known problem.

• Weprovide the first efficient algorithm for learning the structure andweights of a bidirectional

tree in this setting. We also establish a tree-specific lower bound which shows that our

algorithm is sample-optimal for learning the structure of the tree (Section 2).

• We prove it is possible to learn the structure of any bounded-degree graph in the extreme

setting for which we only have access to the infection status (i.e., whether or not a node was
infected). Moreover, we can do so with optimal sample complexity, according to the bound

established in [30].

• We provide polynomial algorithms for learning the weights of bounded degree graphs.

• Finally, we extend the results from bounded-degree graphs to general graphs. This proves the

problem is solvable under any noise distribution, although the exponential sample complexity

and running time prohibits any use of this algorithm in practice (Section 3.2).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:8 Jessica Hoffmann and Constantine Caramanis

2 LEARNING BIDIRECTIONAL TREES
The bidirectional tree is the simplest example which illustrates some of the difficulties of the noisy

setting. Indeed, for a directed tree, the true sequence of infections can be reconstructed, and we

can use techniques from the no-noise setting. For a bidirectional tree, those techniques cannot

be extended. However, the uniqueness of paths in the bidirectional tree still makes this problem

considerably easier than the general setting. We therefore start by presenting a solution for the

bidirectional tree. The key ideas here generalize to the neighborhood-based decomposition we

introduce below, which forms our key conceptual approach for the general problem.

This section contains three contributions. First, we show how to learn the structure of a tree

using only the infection status, i.e., what we call the extreme-noise setting (Section 2.1). For each

cascade, we only know which nodes were infected. We show this contains enough information

to learn the structure of bidirectional tree. Second, we establish a lower bound for the no-noise

setting, and show our algorithm has the same dependency in the number of nodes N as this lower

bound. In other words, for the task of learning the structure of any tree, an optimal algorithm in

the no-noise setting would need as many cascades as our algorithm needs in the extreme-noise

setting (up to constants).

Finally, we show how we can leverage this learned structure to learn the weights of the tree, this

time when we have noisy access to the times of infection, i.e., the limited-noise setting (Section

2.3). We provide sample complexity for this task.

2.1 Tree structure
As illustrated in Section 1.2, the number of edges that could exist is much higher in the limited-noise

setting than the number of actual edges in the tree. Our first key contribution is therefore to

introduce a new estimator,
ˆhi j , which keeps track of the fraction of cascades for which i and j

were both infected. This estimator can therefore be computed in the extreme-noise setting, with

the information contained in the infection status alone. Using this estimator, we show that in the

specific case where the graph is a tree, we learn the structure of this tree, i .e . whether or not both
pi j = pi j = 0.

Our algorithm for learning the edges of the tree relies on one central observation: hi, j achieves a
kind of local maximum if there is an edge between i and j (Lemma 2.2). This observation relies

heavily on the fact that there is uniqueness of paths on a tree. Let us now dive into the proof.

Definition 2.1. Let ˆhi, j be the fraction of cascades in which both i and j became infected. We

have:

ˆhi, j →M→∞ P(I
m
i & Imj) := hi, j .

We now show that the limit hi, j of the estimator
ˆhi, j satisfies a local maximum property on the

edges of the tree:

Lemma 2.2. If i and j are not neighbors, let (u0,u1, . . . ,uL) be the path between them, with u0 = i ,
uL = j, and d > 1. Then:

∀r ∈ {0, . . . ,L − 1}, hi, j < hur ,ur+1 .

Proof. We consider the case in which both i and j have been infected. There is a unique source

of infection and a unique path between i and j. Therefore, all the nodes on the path from i to
j must have been infected as well. In particular, both ur and ur+1 were infected. This shows

Imi & Imj ⇒ Imur & Imur+1 , so P(I
m
i & Imj) ≤ P(I

m
ur & Imur+1), and therefore hi, j ≤ hur ,ur+1 .

What’s more, every time ur and ur+1 became infected, at least one more infection along an edge

must have occurred in order for j to become infected as well. This occurred with probability at

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:9

most pmax < 1. Therefore, hi, j = P(I
m
i & Imj) ≤ pmax ·P(I

m
ur & Imur+1) = pmax ·hur ,ur+1 . We conclude

hi, j < hur ,ur+1 .
□

This simple lemma allows us to design Algorithm 1. Indeed, suppose we have access to all the

limits hi, j . By ordering them in decreasing order, we can deduce the structure of the tree by greedily

adding every edge unless it forms a cycle
3
.

Algorithm 1 Learn the undirected edges of the tree.

1: procedure LearnTree({hi, j }i, j ∈V) ▷ hi, j limit of
ˆhi, j .

2: sorted_h ← Sort({hi, j }i, j ∈V) by decreasing order

3: edдes_tree ← []
4: for hi, j ∈ sorted_h do
5: if Adding corresponding edge (i, j) to edдes_tree does not create a cycle then
6: Add (i, j) to edдes_tree

return edдes_tree

We show that if we have access to the limits hi, j of the estimators
ˆhi, j , the algorithm above

correctly find the structure of the tree.

Lemma 2.3. Algorithm 1 correctly finds all the N − 1 pairs (i, j) such that there exists at least one
directed edge between i and j.

Proof. We show that in the for-loop at line 4, we add an edge to edдes_tree if and only if this

edge was a real edge in the original tree. We prove it by induction on the elements of the sorted list

pairs_h_edдe .
When no element has been selected, the proposition is trivially true.

Suppose now that t elements of pairs_h_edдe have been examined so far. Let (∼, (i, j)) be the t +1th

element. Two cases arise:

(1) i and j are not neighbors. Let (u0, . . . ,uL) be the path between them, with u0 = i and ud = j.
In this case, using Lemma 2.2, ∀r , hur ,ur+1 > hi, j . In other words, all the pairs (ur ,ur+1)
have already been considered by the algorithm. By induction, we have kept all of them

in edдes_tree . Therefore, adding the pair (i, j) would form a cycle. This pair is not kept in

edдes_tree , which is what we wanted since it is not an edge in the original tree.

(2) i and j are neighbors. Suppose that adding this pair forms a cycle. Then there is a sequence

(v0 = i, . . . ,vL′ = j) of nodes such that hvk ,vk+1 were all bigger than hi, j , and the pairs

(vk ,vk+1) were kept by the algorithm for all k . However, by uniqueness of paths in a tree,

there exists a pair (va ,va+1) such that the path connecting va and va+1 in the original tree

goes through (i, j). Using Lemma 2.2, this means hi, j > hva,va+1 , which is a contradiction.

Therefore, adding this pair in edдes_tree does not form a cycle. This pair is kept in edдes_tree .

Therefore, this algorithm keeps all the edges, and only the edges of the tree, so it recovers the tree

structure.

□

We next quantify how many cascadesM are needed for Algorithm 1 to be correct if we replace

the {hi, j }i, j ∈V by their estimates { ˆhi, j }i, j ∈V . We note that we do not require
ˆhi, j to be close to their

3
This algorithm is very similar in spirit to Kruskal’s algorithm for finding a maximum spanning tree [23].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:10 Jessica Hoffmann and Constantine Caramanis

limit, but only need the order of the
ˆhi, j to be the same as the order of the hi, j . We identify events

which guarantee that the order is the same (Corollary 2.6):

Definition 2.4. Let H3 := {(i, j,k) ∈ {1, . . . ,N }3,pi j + pji > 0 & pjk + pk j > 0} be the set of

triplets of nodes such that at least one directed edge exists between the first and the second node,

as well as between the second and the third node.

Proposition 2.5. If:
∀(i, j,k) ∈ H3, ˆhi, j > ˆhi,k and ˆhj,k > ˆhi,k ,

then for all paths (u0, . . . ,uL) in the tree, with L > 1, we have:

∀r ∈ {0, . . . ,L − 1}, ˆhur ,ur+1 > ˆhu0,uL .

Proof. For r ∈ {0, . . . ,L − 2}, we have by hypothesis
ˆhur ,ur+1 >

ˆhur ,ur+2 . Now, we recall that
ˆhu0,uL is the number of cascades for which both u0 and uL were infected. By uniqueness of paths in

the tree, every time both u0 and uL were infected, both ur and ur+2 must have been infected as well.

This shows that
ˆhu0,uL ≤

ˆhur ,ur+2 . Notice that this is a deterministic property, not an asymptotic

property. Therefore,
ˆhur ,ur+1 >

ˆhur ,ur+2 ≥
ˆhu0,uL .

For r = L − 1, we follow an identical reasoning, but with
ˆhur ,ur+1 >

ˆhur−1,ur+1 .

Corollary 2.6. If:
∀(i, j,k) ∈ H3, ˆhi, j > ˆhi,k and ˆhj,k > ˆhi,k ,

then the correctness of Algorithm 1 is preserved when given ˆh as input instead of h.

In other words, Algorithm 1 outputs a correct set of undirected edges with finite samples.

Proof. According to Proposition 2.5, for all paths (u0, . . . ,uL) in the tree, with L > 1, we have

that ∀r ∈ {0, . . . ,L − 1}, ˆhur ,ur+1 > ˆhu0,uL . As shown in the proof of Lemma 2.3, this is the only

property of the input needed in order to yield the correct output.

Proposition 2.7. WithM =
N (log(1δ)+2 log(N))

pmin (1−pmax)
cascades, with probability at least 1 − δ , we have:

∀(i, j,k) ∈ H3, ˆhi, j > ˆhi,k and ˆhj,k > ˆhi,k .

Proof. Let us consider one triplet (i, j,k) inH3. We recall that
ˆhi,k is the number of cascades

for which both i and k were infected. Since the only path from i to k is through j, we always have

that
ˆhi, j ≥ ˆhi,k and

ˆhj,k ≥ ˆhi,k . We notice that to obtain
ˆhi, j > ˆhi,k , we only need one cascade for

which both i and j got infected, but not k . We lower bound the probability Ptriplet identified of this
cascade happening. For each cascadem, we have:

Ptriplet identified = P(I
m
i & Imj & Not(Imk))

≥ P(i was a source, i infected j, j did not infect k)

+ P(j was a source, j infected i , j did not infect k)

≥
1

N
· pi j · (1 − pjk) +

1

N
· pji · (1 − pjk)

≥
1

N
pmin(1 − pmax).

The probability that this event never occurs during theM cascades is upper bounded by:

P(ˆhi, j = ˆhi,k) ≤

(
1 −

1

N
pmin(1 − pmax)

)M
Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:11

≤ e−
M
N pmin (1−pmax)

≤
δ

N 2
.

Now, there are N − 1 edges in a tree, therefore |H3 | ≤ (N − 1)
2 < N 2

. By union bound:

P
©­«

⋃
(i, j,k) ∈ H3

ˆhi, j = ˆhi,k
ª®¬ ≤

∑
(i, j,k) ∈ H3)

P(ˆhi, j = ˆhi,k)

< N 2 ·
δ

N 2

≤ δ .

Notice thatH3 contains both (i, j,k) and (k, j, i). We have therefore proven that with probability

at least 1 − δ , when considering M =
N (log(1δ)+2 log(N))

pmin (1−pmax)
cascades, we have ∀(i, j,k) ∈ H3, ˆhi, j >

ˆhi,k and
ˆhj,k > ˆhi,k .

Putting together Proposition 2.7 and Corollary 2.6, we obtain our first theorem for learning the

undirected edges with finite samples:

Theorem 2.8. WithM =
N (log(1δ)+2 log(N))

pmin (1−pmax)
cascades, with probability at least 1 − δ , we can learn

the structure of a any bidirectional tree in the extreme-noise setting, i.e., when we only have access to
the infection status of the nodes.

2.2 Lower bound
In this section, we prove an information-theoretical lower bound for trees in the no-noise setting.

With very minor adjustments, we adapt the lower bound of [30]. Since for a general tree, the

colorred maximum degree can be up to N − 1, we design a lower bound which is independent

from the max-degree. Let G be a tree drawn uniformly from G, the set of all possible trees on N
nodes, and Ĝ be the reconstructed graph from the times of infection. G ↔ T ↔ Ĝ therefore forms

a Markov chain. If we denote by H (A) the entropy of the random variable A, we have:

H (G) = I (G; Ĝ) + H (G |Ĝ)

(data processing inequality) ≤ I (G;T) + H (G |Ĝ)

(independent cascades) ≤ M · I (T 1
;T
′
1) + H (G |Ĝ)

(I (X ,Y) ≤ H (X)) ≤M ·
N∑
i=1

H (T 1

i) + H (G |Ĝ)

(Fano’s inequality) ≤ M ·
N∑
i=1

H (T 1

i) + (1 + Pe log(|G|))

SinceG is drawn uniformly fromG,H (G) = log(|G|). There areN N−2
trees onN nodes, according

to Cayley’s formula [5], so H (G) = (N − 2) · log(N).
In conclusion:

M ≥
(1 − Pe)(N − 2) log(N) − 1

N · H (T 1

i)
= Ω

(
log(N)

H (T 1

i)

)
Using the same kind of techniques as in [30], we can assume H (T 1

i) ∼
1

N . Therefore:

Theorem 2.9. In the no-noise setting, we needM = Ω (N log(N)) cascades to learn the tree structure.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:12 Jessica Hoffmann and Constantine Caramanis

In our extreme-noise setting, when we have only access to the infection status of the nodes, we

can learn the tree structure with the same sample complexity as the no-noise setting!

2.3 Tree weights
In this section, we assume we are in the limited-noise setting, and we have access to the times of

infection. We also assume we have already learned the structure of the tree.

Once we have reduced the set of possible edges by learning the structure of the bidirectional tree,

learning the weights of the edges is still non-trivial. Indeed, from T
′m
i and T

′m
j , it is still impossible

to know whether this sample is useful for estimating pi j (case when i infected j), or whether we
should use this sample for estimating pji instead (case when j infected i). What is more, we only get

one sample per node and per cascade, so it is impossible to know what really happened during that

cascade. However, knowing the distribution of the noise, it is possible to compute the probability

that the noise maintained the order of infections. Using this information and the reduced set of

known undirected edges, we can compute two sets of N (N − 1) estimators, from which it is possible

to infer the weights of all edges in the tree.

We introduce these two sets of N (N − 1) estimators, or, in other words, two estimators for each

directed edge. These estimators tend to multivariate polynomials of the weights of most edges

of the tree. Thus in general these polynomials have exponentially many terms; however, when i
and j are neighbors, it is possible to express them concisely using a quantity P

❈j
(→ i), which we

define formally below. This succinct representation is the key idea we exploit to solve the resulting

system of equations. Once we know the structure of the bidirectional tree, we can consider the four

estimators for each undirected edge (two estimators for each directed edge). They form a system of

four equations and four unknowns, which we solve to obtain the weights of the edges.

Definition 2.10. We define two new notations:

• P
❈i
(→ j) is the probability that j became infected before any node on the path from j to i ,

including i , became infected

• pi→j is the probability that there exists a path (u0, . . . ,uL), with u0 = i and uL = j, such that

for all r ∈ {0, . . . ,L − 1}, ur infected ur+1.

To simplify the following notations, let us introduce sk , which is the probability that the noise

on j has delay at least k relative to the noise on i . Since the noise is i.i.d., this value is independent
from i and j: sk = P(nj −ni ≥ k)4. For instance, if i infected j during cascadem, the probability that

the noise did not flip the order of infection (i.e. T
′m
i < Tm

j) is P(nj ≥ ni) = s0. In the reverse case,

the probability that the noise flipped the order of infection is P(Tm
j + nj < T

′m
i + ni) = P(1 + nj <

ni) = P(ni − nj ≥ 2) = s2.
We now introduce the estimators:

Definition 2.11. We introduce 2 sets of N (N − 1) estimators:

ˆfi<j = Fraction of infections for which i and j got infected,

and i reported before j.

д̂i, ❈j
= Fraction of infections for which i got infected,

4
For instance, for geometric noise of parameter q, we have: sk =

∞∑
tj=max(0,k)

tj−k∑
ti=0
(1 − q)ti+tj = (1 −

q)max(0,k)

(
1 −
(1 − q)1−min(0,k)

2 − q

)
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:13

but j did not.

By the law of large numbers, as the number of cascades scales,
ˆfi<j tends to fi<j and д̂i, ❈j

to дi, ❈j
,

where

fi<j := P(T
′m
i < T

′m
j < ∞),

дi, ❈j
:= P(T

′m
i < ∞,T

′m
j = ∞).

We now compute the exact values of these two quantities. Let us assume the (unique) path between

i and j has length L. We call (u0, . . . ,uL) the set of nodes on the path from i to j, with u0 = i and
uL = j. We then have:

Lemma 2.12. Recall fi<j and дi, ❈j
are the expectation of the estimators defined above. We have:

fi<j = P❈j
(→ i) · pi→j · s−L+1 + P❈i

(→ j) · pj→i · sL+1

+

L−1∑
l=1

P
❈i, ❈j
(→ ul) · pul→i · pul→j · s2l−L+1.

д̂i, ❈j
= P

❈j
(→ i) · (1 − pi→j) +

L−1∑
l=1

P
❈i, ❈j
(→ ul) · pul→i · (1 − pul→j).

What’s more, when i and j are neighbors (which implies d = 1), the expressions simplify to:

fi<j = P❈j
(→ i) · pi j · s0 + P❈i

(→ j) · pji · s2

дi, ❈j
= P

❈j
(→ i) · (1 − pi j).

Proof.

fi<j = P(T
′m
i < T

′m
j < ∞)

= P(i got infected before any nodes on the path from i to j,

then infected j, and the noise did not flip the times of infection)

+ P(j got infected before any nodes on the path from i to j,

then infected i , and the noise flipped the times of infection)

+ P(One node on the path from i to j got infected before i and j,

then infected both i and j, but i reported before j)

= P
❈j
(→ i) · pi→j · s−L+1

+ P
❈i
(→ j) · pj→i · sL+1

+

L−1∑
l=1

P
❈i, ❈j
(→ ul) · pul→i · pul→j · s2l−L+1.

This expression is involved in general. However, if i and j are neighbors, then there are no nodes

ul on the path between i and j, other than i and j themselves. What’s more, pi→j = pi j , and L = 1.

Therefore:

fi<j = P❈j
(→ i) · pi j · s0 + P❈i

(→ j) · pji · s2.

Let us now focus on дi, ❈j
:

дi, ❈j
= P(T

′m
i < ∞,T

′m
j = ∞)

= P(i got infected before any nodes on the path from i to j,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:14 Jessica Hoffmann and Constantine Caramanis

but j did not get infected)

+ P(One node on the path from i to j got infected before i and j,

then infected i but not j)

= P
❈j
(→ i) · (1 − pi→j)

+

L−1∑
l=1

P
❈i, ❈j
(→ ul) · pul→i · (1 − pul→j).

As before, this expression is complex in general, but simplifies if i and j are neighbors, in which

case:

дi, ❈j
= P

❈j
(→ i) · (1 − pi j).

□

Using the simplified expression only for when i and j are neighbors, we obtain:

Proposition 2.13. If we know (i, j) is an edge in the original tree, then the probability of infection
along this edge is given by:

pi j =
fi<j · s0 − fj<i · s2

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

.

Proof. According to Lemma 2.12, we had four second-order equations, with 4 unknowns: pi j ,
pji , P❈j

(→ i) and P
❈i
(→ j). We solve it, and obtain the wanted result. See Appendix A for details.

□

Now that we have proven the problem is solvable, we establish the number of samples needed to

learn the weights with the method above.

Lemma 2.14. WithM = N 2

ϵ 2 log

(
6

δ

) ((s2
0
−s2

2
+s0+s2)pmax+s0+s2)

2

(s2
0
−s2

2
)2

samples, with probability at least 1−δ ,
we have:

|p̂i j − pi j | ≤ ϵ .

Proof. Using Hoeffding’s inequality:

P(| ˆfi<j − fi<j | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(| ˆfj<i − fj<i | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(|д̂i, ❈j
− дi, ❈j

| > ϵ1) ≤ 2e−2Mϵ 2
1 .

ChoosingM = 1

ϵ 2
1

log

(
6

δ

)
, we have that with probability at least 1 − δ , all the following hold:

| ˆfi<j − fi<j | ≤ ϵ1,

| ˆfj<i − fj<i | ≤ ϵ1,

|д̂i, ❈j
− дi, ❈j

| ≤ ϵ1.

Hence, with probability at least 1 − δ , we have (see Appendix A for details):

p̂i j − pi j ≤ ϵ1
(s2
0
− s2

2
+ s0 + s2)pmax

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

+ ϵ1
s0 + s2

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

+ o(ϵ1).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:15

We use the results from Lemma 2.12 to bound the denominator by

s2
0
−s2

2

N . In the end, we obtain:

|p̂i j − pi j | ≤ ϵ1N
(s2
0
− s2

2
+ s0 + s2)pmax + s0 + s2

s2
0
− s2

2

+ o(ϵ1).

We choose ϵ1 =
ϵ
N

s2
0
−s2

2

(s2
0
−s2

2
+s0+s2)pmax+s0+s2

.

Noticing ((s2
0
− s2

2
+ s0 + s2)pmax + s0 + s2) ≤ 3:

WithM = N 2

ϵ 2 log

(
12N 2

δ

)
9

(s2
0
−s2

2
)2
samples, with probability at least 1 − δ , we have |p̂i j − pi j | ≤ ϵ .

□

By a union bound on all the weights of the tree, knowing there are at most 2N (N − 1) < 2N 2

directed edges in a directed tree, we obtain the following sample complexity:

Theorem 2.15. WithM = N 2

ϵ 2 log

(
12N 2

δ

)
9

(s2
0
−s2

2
)2
cascades, with probability 1 − δ , we can learn all

the weights of the edges of a bidirectional tree within precision ϵ in the limited-noise setting, i.e., when
we only have access to the noisy times of infection.

Remarks:

• The sample complexity depends on the noise only through the quantities s0 and s2. This
means that if we do not know the distribution of the noise, but we do know it is i.i.d., and

know the two quantities s0 and s2, we can still compute all the weights of the tree with the

sample bound given above.

• For certain natural classes of distributions, the key quantity (s2
0
− s2

2
)2 (which appears in

the denominator of our bounds) decreases as variance grows, and hence the impact of the

variance is captured here. We note that in general, there is no monotonic relationship between

the variance of the noise and the quantity (s2
0
− s2

2
)2.5

• If we relax the i.i.d. assumption for the noise, there are cases for which our method might

not succeed. Specifically, if we can compute P(nj − ni ≥ 0) and P(nj − ni ≥ 2) for all pairs

of nodes (i, j), and there exists a pair such that P(nj − ni ≥ 0) ≤ P(ni − nj ≥ 2), our method

fails. If we can guarantee P(nj − ni ≥ 0) > P(ni − nj ≥ 2) for all pairs (i, j), then the i.i.d.

assumption is not needed, and we can get a similar (albeit slightly more complex) expression

as above for the sample complexity.

3 BOUNDED-DEGREE GRAPHS
In the previous section, the algorithm presented relies heavily on the uniqueness of paths. This

property implies that we can deduce the edges from the nodes which are co-infected the most often.

However, this is not true for a general bounded-degree graph. In Figure 4, we can see that the two

nodes i and j would be co-infected frequently despite not sharing an edge. This makes the task of

finding the structure much more challenging than for the bidirectional tree.

In this section, we show how the main ideas for learning the structure of the bidirectional tree

can be extended for learning the structure of general bounded-degree graphs, in the extreme-noise

setting, with optimal sample complexity. The framework for learning the weights of the edges in the

limited-noise setting is - to the best of our knowledge - not extendable to general bounded-degree

graphs; we therefore develop a new algorithm to learn the weights for general bounded-degree

graphs.

5
For instance, if the noise is Gaussian, increasing the variance will indeed decrease the quantity (s2

0
− s2

2
)2 and increase the

sample complexity. However, when the noise is Bernoulli, taking two values v1 and v2, increasing |v1 − v2 | increases the

variance, but decreases the value (s2
0
− s2

2
)2, so the sample complexity decreases.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:16 Jessica Hoffmann and Constantine Caramanis

Fig. 4. Two nodes can be co-infected frequently without sharing an edge.

3.1 Bounded-degree structure
In the previous section, we introduced the estimator

ˆhi, j , which records the fraction of cascades for

which both i and j are infected. From a local maximum property of this estimator, we deduced the

structure of the tree, in a sample efficient fashion. Indeed, if there exists a path between i and k ,
and the first edge on this path is (i, j), then if i and k are infected, j must have been infected as well.

We want to build on this idea for a bounded-degree graph of maximum degree d . However, for
such a graph, there may be multiple paths leading from i to j, and we cannot guarantee a single

node will be infected each time. However, if i is a node, Ni is its neighborhood, and k < Ni is

another node of the graph, we can guarantee that if both i and k are infected, there exists a node in

Ni which is infected. Moreover,Ni is the set of smallest size for which at least one node is infected

at the same time as i the most frequently. This leads us to a new set of estimators:

Definition 3.1. Let i be a node of the graph, and let S be a set such that |S | ≤ d and i < S . We

define a new set of estimators:

ˆhi,S = fraction of cascades for which i is infected,

and at least one node of S is infected.

Let us assume that for each pair (i, S), we have access to the limit hi,S of
ˆhi,S . We now introduce

an algorithm showing how to leverage these limits to learn the structure of any bounded-degree

graph.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:17

Algorithm 2 Learn the undirected edges of any graph of maximum degree d .

1: procedure LearnGraph({hi,S }
|S | ≤d
i ∈V)

2: edдes ← []
3: for i = 1 . . .nnodes do
4: S_max_i ← set such thathi,S_max_i is maximal, and such that Size(S_max_i) is minimal.

5: for nj in S_max_i do
6: Add edge (i,nj) to edдes

return edдes

We show this algorithm is correct.

Lemma 3.2. Algorithm 2 correctly finds the neighborhood of each node.

Proof. Let us recall that hi,S is the probability that node i and at least one node of S are co-

infected. To prove the correctness of this algorithm, it suffices to prove:

∀i ∈ V ,∀S s .t . |S | ≤ d, hi,S ≥ hi,Ni =⇒ Ni ⊆ S

Let pick a set S such that Ni \ S , ∅, and let k be a node in Ni \ S . We know hi,S∪{k } ≥ hi,S +
P(i and k are the only infected nodes). Since i andk are neighbors,P(i and k are the only infected nodes) >
0, and therefore hi,S∪{k } > hi,S . Following this line of reasoning, if Ni \ S , ∅, S we can always

increase the value of hi,S by adding a node of Ni .

However, it is impossible to increase the value of hi,Ni , because if i and any other node of the

graph are co-infected, we know one node ofNi is also infected. Therefore, the algorithm is correct.

□

Unfortunately, we do not have direct access to hi,S . We therefore study how many samples are

needed to replace hi,S by its estimate
ˆhi,S while preserving the correctness of the algorithm. Just

like in Section 2.1, we notice that we do not need the { ˆhi,S }
|S | ≤d
i ∈V to be close to their limit, we only

need the indexes of their ordering to be the same. We notice that the neighborhood Ni of i is one
of the sets which are the most often infected at the same time as i is (Ni ∈ argmax

|R | ≤d
hi,R). Therefore,

we must have that for every set S , ˆhi,S ≤ ˆhi,Ni . However, some other sets might achieve the same

value if we do not observe enough cascades. This could happen in two cases:

• Not all the nodes of the neighborhood were infected, and therefore a subset T1 ⊂ Ni of the

neighborhood is such that
ˆhi,T1 =

ˆhi,Ni . Since |T1 | < |Ni |, the algorithm would return T1 and
not Ni , which would be a failure case.

• Some other node k is always infected every time a specific node j ∈ Ni is infected. The set

T2 = Ni \ {j} ∪ {k} will therefore be such that
ˆhi,T2 =

ˆhi,Ni , and the algorithm would not

know which maximum to pick. This is a failure case as well.

We identify events which guarantee that the failure cases above cannot arise. Let Emi, j be the event

that i and j were the only infected nodes during cascadem. Ei, j =
⋃

1≤m≤M

Emi, j is therefore the event

that there exists a cascade for which only i and j were infected. If such a cascade exists, the set

Smax = argmax

|R | ≤d

ˆhi,R must contain j . If the event Ei, j happens for every node j in the neighborhood

of i , we can therefore guarantee Algorithm 2 is correct. We characterize the sample complexity

needed for this below.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:18 Jessica Hoffmann and Constantine Caramanis

Proposition 3.3. Let i be a node, and let j be one of its neighbors. Let S be a set of size |S | ≤ d ,

such that i < S and j < S . With probability at least 1 − δ
d ·N d+2 , among M =

(d+2)·N log(N)+N log(dδ)
pmin (1−pmax)2(d−1)

cascades, there exists a cascade in which i and j are infected, but no nodes of S are infected.

Proof. We notice that if, during cascadem, the only infected nodes are i and j, no nodes of S
are infected. This is exactly the event Emi, j defined above.

P(Emi, j) ≥
1

N
· pmin · (1 − pmax)

2(d−1).

The probability that this never happens duringM cascade is exactly the complement of the event

Ei, j defined above:

P(Not(Ei, j)) ≤

(
1 −

1

N
· pmin · (1 − pmax)

2(d−1)
)M

≤ e−M ·
pmin
N ·(1−pmax)

2(d−1)

≤
δ

d · N d+2
.

□

Lemma 3.4. With probability at least 1 − δ , if we observe M =
(d+2)·N log(N)+N log(dδ)

pmin (1−pmax)2(d−1)
cascades,

Algorithm 2 is correct, and has running time O(M · N d+2) = O(d · N d+3
log(N)).

Proof. Let S = {S ∈ P(V), |S | ≤ d} be the set of sets of nodes of size at most d , let S
❈i
=

{S ∈ S, i < S} be the set of sets of S which do not contain i , and let Ni = {j, (i, j) ∈ E} be the
neighborhood of i . We pick a set S ∈ S, such that S , Ni .

We first prove that
ˆhi,S ≤ ˆhi,Ni . Since the neighborhood of i separates i from the rest of the

graph, and infected nodes are connected, we can conclude that every time i and another node of S
are infected, one node in the neighborhoodNi of i is infected as well. Therefore, we cannot increase
ˆhi,S without also increasing

ˆhi,Ni . In particular, this means that even if |S | > |Ni | (for instance if

Ni ⊂ S), we have ˆhi,S ≤ ˆhi,Ni . We therefore know that Ni ∈ argmax

R∈S
❈i

ˆhi,R .

We now prove that with probability at least 1 − δ , Ni is the set of argmax

R∈S
❈i

ˆhi,R of minimal size.

To do so, we notice that if there exists a cascade such that i and j ∈ Ni are infected, but no node of

S is infected, then this implies
ˆhi,S < ˆhi,Ni . Indeed, as shown above, every time we increase

ˆhi,S ,

we also increase
ˆhi,Ni , and we know there exists one cascade for which we increased

ˆhi,Ni without

increasing
ˆhi,S . We now calculate the probability Pfailure that such a cascade does not exist for all

nodes i in the graph, all nodes j in their neighborhood, and all sets S which do not include i or j.

Pfailure ≤ P(∃i ∈ V ,∃j ∈ Ni ,∃S ∈ S❈i, ❈j , every time i and j are

infected, a node of S is also infected)

≤
∑
i ∈V

∑
j ∈Ni

∑
S ∈S

❈i,❈j

P(every time i and j are infected,

a node of S is also infected).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:19

We use Proposition 3.3 to bound this quantity:

Pfailure ≤
∑
i ∈V

∑
j ∈Ni

∑
S ∈S

❈i,❈j

δ

d · N d+2

≤ N · d · N d+1 ·
δ

d · N d+2

≤ δ

We now know that with probability at least 1 − δ :

∀R ∈
⋃
j ∈Ni

S
❈i, ❈j
, ˆhi,R < ˆhi,Ni .

This implies that no set of

⋃
j ∈Ni S❈i, ❈j

can belong in argmax

R∈S
❈i

ˆhi,R . However, we have:

S
❈i
\

⋃
j ∈Ni

S
❈i, ❈j
= {S ∈ S,Ni ⊆ S}

In particular, this means that Ni is the only set of S
❈i
\
⋃

j ∈Ni S❈i, ❈j
of minimal size. This shows

that with probability at least 1 − δ , Ni is the set of argmax

R∈S
❈i

ˆhi,R of minimal size. This proves

Algorithm 2 is correct, and that we can learn the structure of any graph of maximum degree d with

M =
(d+2)·N log(N)+N log(dδ)

pmin (1−pmax)2(d−1)
cascades.

Since we do at most one operation by pair of (node, set) and by cascade, the running time is

O(N · N d+1 ·M), which is what we wanted to prove.

□

This leads to our theorem for learning the structure of any bounded-degree graph.

Theorem 3.5. With probability at least 1−δ , in the extreme-noise setting, we can learn the structure

of any graph of maximum degree d withM = O
(

d ·N log(Nδ)
pmin (1−pmax)2d

)
cascades in polynomial time.

Let us now assume that pmax ∼
1

d . This assumption is reasonable when you expect a constant

number of infections by time step. For instance, it makes sense for real diseases, for which carriers

have to meet to transmit it (we can only meet a constant number of people each day). It would not

make sense for social networks, in which it is possible to reach many followers with each post.

Corollary 3.6. With probability at least 1 − δ , in the extreme-noise setting, if we assume pmax ∼
1

d and pmin constant, we can learn the structure of any graph of maximum degree d with M =

O
(
d · N log

(N
δ

))
. This sample complexity is optimal, and matches the lower bound established in the

no-noise setting.

Proof. We need at least O (d · N log (N)) samples to learn the structure of a bounded-degree

graph with maximum degree d , according to the lower bound in [30].

3.2 Bounded-degree weights
For the remainder of this paper, we state results in the limited-noise setting.

If we consider cascades of size k , the exact probability of infection between two nodes is a

multivariate polynomial of degree N on N (N −1) variables (the variables here would be the weights

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:20 Jessica Hoffmann and Constantine Caramanis

of the graph), with a sum of up to 2 ·

k∑
l=1

(N − 2)!

(N − k)!
terms. If the graph has more than five nodes, the

resulting polynomial is of degree more than five.

For our algorithm, we therefore only use cascades of size 1 or 2. This is a waste of the data, since

we simply discard cascades of larger size. However, we are not aware of techniques on how to

utilize larger cascades in the limited-noise setting. Cascades of size 1 or 2 are simple enough that

we can write explicitly their probability. This allows use to:

(1) Design estimators for which we can calculate the exact limit.

(2) Combine these estimators to transform a polynomial system of degree N to a polynomial

system of degree 2.

(3) Solve this system exactly and obtain the probabilities of infection.

3.3 Estimators
We start by designing a few estimators:

Definition 3.7. We introduce two sets of N (N − 1) estimators and one set of N estimators. These

estimators can be computed even if we only have access to the noisy times of infection.

ˆh2i, j = Fraction of cascades for which only i and j are infected.

ˆf 2i<j = Fraction of cascades for which only i and j are infected,

and t ′i < t ′j .

ê1i = Fraction of cascades for which only i is infected.

Using the definition of sk from Section 2.3, we now compute the limits of those estimators.

Proposition 3.8. As the number of cascadesM goes to infinity, the estimators introduced above
tend to the following limit:

ˆh2i, j →M→∞
1

N
(pi j + pji)

∏
k,i, j

(1 − pik)(1 − pjk)

ˆf 2i<j →M→∞
1

N
(pi j · s0 + pji · s2)

∏
k,i, j

(1 − pik)(1 − pjk)

ê1i →M→∞
1

N
(1 − pi j)

∏
k,i, j

(1 − pik)

Proof. The proof is very similar to 2.12. See details in Appendix B.2.

□

3.4 Solving the system
The limit of these estimators, as seen as a function of the probabilities of infection, is a complex

polynomial on up to 2(N − 1) variables. The crux of our algorithm is to combine those estimators

in order to cancel out most of these variables, and create N − 1 systems of two equations of degree

2 and two unknowns, which we then solve.

Proposition 3.9. Let V̂i j =
ˆf 2i< j

ˆh2

i, j+N ·ê
1

i ·ê
1

j
. Then the limit of V̂i j as the number of cascadesM goes to

infinity only depends on the variables pi j and pji :

V̂i j →M→∞
pi j · s0 + pji · s2

1 + pi j · pji
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:21

Proof. Since all the estimators converge towards a constant, we can use Slutsky’s lemma to find

the limit of V̂i j . LetVi j be the limit of V̂i j asM goes to infinity. We notice that the

∏
k,i, j

(1−pik)(1−pjk)

parts cancel each other out:

Vi j =
f 2i<j

h2i, j + N · e
1

i · e
1

j

=

1

N (pi j · s0 + pji · s2)


∏
k,i, j

(1 − pik)(1 − pjk)

(
1

N (pi j + pji) + N
(1−pi j)(1−pji)

N 2

) 
∏
k,i, j

(1 − pjk)(1 − pjk)


=
(pi j · s0 + pji · s2)

1 + pi j · pji
.

□

We can therefore use this equality to deduce the weights of all the edges of the graph:

Theorem 3.10. For any graph, for any noise distribution having finite values, we can learn the
weights of all the edges of the graph. In particular, we can compute a quantity which converges to the
true weight of each edge:

p̂i j =
2(V̂jis2 − V̂i js0)(

s2
0
− s2

2

)
+

√(
s2
0
− s2

2

)
2

− 4(V̂jis2 − V̂i js0)(V̂i js2 − V̂jis0)

.

Proof. We present a sketch of the proof here. The details can be found in Appendix B.1. We

know V̂i j tends to Vi j =
pi j ·s0+pji ·s2
1+pi j ·pji

. Using both Vi j and Vji , we can establish this second-degree

equation:

Vjis2 −Vi js0 +
(
s2
0
− s2

2

)
pi j +

(
Vi js2 −Vjis0

)
p2i j = 0

We recall that by definition, s0 ≥ s2. We also notice that if pi j = q1 and pji = q2 is a pair of solutions
of this system, then pi j =

1

q2
and pji =

1

q1
forms the other pair of solution, which implies there is

uniqueness of solutions in [0,pmax]. Since the real probabilities of infection satisfy this system, we

also know the solution exists. Let ∆ =
(
s2
0
− s2

2

)
2

− 4(Vjis2 −Vi js0)(Vi js2 −Vjis0). The only solution

of this system in [0,pmax] is then:

pi j =
2(Vjis2 −Vi js0)(
s2
0
− s2

2

)
+
√
∆
.

□

3.5 Sample complexity
We establish the sample complexity needed to estimate pi j with precision ϵ . To do so, we start by

estimating Vi j . Note that we only consider the pair of nodes i and j if, among theM samples, there

exists a cascade of size 2 in which i and j are the only infected nodes (i.e. h2i, j > 0). Otherwise, we

set p̂i j = p̂ji = 0 as our estimate for pi j .

Proposition 3.11. With probability 1 − δ
N 2

, with

M = 1

ϵ 2V
16N 2

p2mins
2

2
(1−pmax)4d

2 log(3N)−log(δ)
2

samples, we can estimate Vi j with precision ϵV .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:22 Jessica Hoffmann and Constantine Caramanis

Proof. We present a sketch of the proof; the details can be found in Appendix B.2. As in

Proposition 2.14, we use Hoeffding’s inequality:

P(| ˆf 2i<j − f 2i<j | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(| ˆh2i, j − h
2

i, j | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(|ê1i − e
1

i | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(|ê1j − e
1

j | > ϵ1) ≤ 2e−2Mϵ 2
1 .

We use this to bound above Vi j :

V̂i j ≤ Vi j

[
1 +

ϵ1

f 2i<j
+ ϵ1

1 + N (e1i + e
1

j)

h2i, j + Ne1i e
1

j
+ o(ϵ1)

]
By bounding below the denominators and bounding above the numerator, we finally obtain:

|V̂i j −Vi j | ≤ ϵ1
4N

pmins2(1 − pmax)2d
+ o(ϵ1).

Therefore, by union bound, and by choosing ϵ1
4N

pmins2(1−pmax)2d
= ϵV , and setting 2e−2Mϵ 2

1 = δ
3N 2

,

we obtain:

WithM = 1

ϵ 2V
16N 2

p2mins
2

2
(1−pmax)4d

2 log(3N)−log(δ)
2

samples, we can guarantee |V̂i j −Vi j | ≤ ϵV with proba-

bility at least 1 − δ
N 2

.

□

Once we have estimated Vi j with precision ϵV , estimating pi j is unfortunately still not an easy

task. Indeed, let ∆ =
(
s2
0
− s2

2

)
2

− 4(Vjis2 −Vi js0)(Vi js2 −Vjis0). We have pi j =
−(s2

0
−s2

2
)+
√
∆

2(Vi j s2−Vji s0)
, which

means that ∆ has to be positive for this quantity to be defined. However, for general values of Vi j
and Vji , ∆ can be negative. We therefore use the framework of constrained optimization to bound

∆ away from 0.

Lemma 3.12. Let ∆ =
(
s2
0
− s2

2

)
2

− 4(Vjis2 −Vi js0)(Vi js2 −Vjis0). We have:

∆ ≥ (s2
0
− s2

2
)2
(1 − pmax)

2

1 + p2max
.

Proof. Wefind the lower bound on∆ by reformulating the problem as a constrained optimization

problem, and introducing the corresponding Lagrangian multipliers. The details can be found in

Appendix B.1.

□

Now that we have established this bound on ∆, we can give the sample complexity needed to

estimate pi j .

Proposition 3.13. Assuming we can estimate Vi j within precision ϵV , then we can estimate pi j
within precision ϵ = 6ϵV (1+p2max)

(s2
0
−s2

2
)2(1−pmax)2

.

Proof. This is a simple derivation which can be found in Appendix B.2.

□

We finally piece everything together, and use a union bound on all the pi j to obtain the final

sample complexity of our algorithm for learning the weights of general bounded-degree graphs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:23

Theorem 3.14. In the limited-noise setting, with probability at least 1 − δ , with
M = O

(
e4pmax (d+1)

p2mins
2

2
(s2
0
−s2

2
)4

N 2

ϵ 2 log

(N
δ

))
samples, we can learn the weights of any bounded-degree graph up

to precision ϵ .

Proof. We obtain the desired bound by combining Proposition 3.11 and Proposition 3.13. See

details in Appendix B.2.

□

Once again, if we assume pmax ∼
1

d and pmin constant, we obtain the following sample complex-

ity:

Corollary 3.15. In the limited-noise setting, with probability at least 1 − δ , if pmax ∼
1

d and
pmin constant, we can learn the weights of any bounded-degree graph up to precision epsilon with
M = O

(
1

s2
2
(s2
0
−s2

2
)4

N 2

ϵ 2 log

(N
δ

))
samples.

4 GENERAL GRAPHS
In the limited-noise setting, we notice that nothing prevents us from using the algorithm for

learning bounded-degree weights for general graph. This proves this problem is solvable for any
graph, and any noise distribution. As explained in Section 1.2, this is not an obvious result. However,

if we do not assume pmax ∼
1

N , the sample complexity is now exponential.

Corollary 4.1. In the limited-noise setting, with probability at least 1 − δ , it is possible to learn
all the weights of any graph within any given precision, for any noise distribution, with finite (but
potentially exponential) sample complexity.

5 DISCUSSION AND FUTURE WORK
In this paper, we presented the first results to learn the edges of a graph from noisy times of

infection. We showed we learn the structure of any bidirectional tree or any bounded-degree graph

(note that not all trees are bounded-degree graphs) with optimal sample complexity.

However, our results are not tight for learning the weights of bidirectional trees or bounded-

degree graphs. In the no-noise setting, [30] proves this can be achieved with O(d2N log(N))
for graphs of maximum degree d with correlation decay. Our results have sample complexity

O(N 2
log(N)) without any assumption of correlation decay. It is an open problem to understand

whether it is possible to achieve a sample complexity of O(d2N log(N)) in the limited-noise setting,

and whether assuming correlation decay is necessary to obtain such a result.

Moreover, for learning the weights of a general bounded-degree graph, we only use cascades

of size 1 or 2. If we are given an infinite number of cascades of size bigger than 2, our current

algorithm cannot learn the weights of the graph. Future work could develop an algorithm without

such a weakness.

All our results for learning the weights of the edges are in the limited-noise setting. Whether or

not it is possible to learn the noise in the extreme-noise setting is an other question of interest for

future work.

Finally, we have made no restriction on the distribution of the noise we add, other than it is

finite. It would be interesting to study whether stronger restrictions on the noise (for instance

Gaussian noise) would lead to stronger results. It would also be interesting to allow infinite noise,

and develop algorithms which are robust to errors in the infection status of a node (our current

algorithms can return wrong graph structure with only one adversarially chosen false positive).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:24 Jessica Hoffmann and Constantine Caramanis

REFERENCES
[1] Bruno Abrahao, Flavio Chierichetti, Robert Kleinberg, and Alessandro Panconesi. 2013. Trace complexity of network

inference. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining -
KDD ’13 (2013), 491. https://doi.org/10.1145/2487575.2487664 arXiv:arXiv:1308.2954v1

[2] Ery Arias-castro, Emmanuel J Candès, and Arnaud Durand. 2011. Detection of an anomalous cluster in a network. The
Annals of Statistics 39, 1 (2011), 278–304. https://doi.org/10.1214/10-AOS839 arXiv:arXiv:1001.3209v2

[3] Ery Arias-castro and S T Nov. [n. d.]. Detecting a Path of Correlations in a Network. ([n. d.]), 1–12.

arXiv:arXiv:1511.01009v1

[4] Daniel Bernoulli and Sally Blower. 2004. An attempt at a new analysis of the mortality caused by smallpox and of the

advantages of inoculation to prevent it. Reviews in medical virology 14 (2004), 275–288. https://doi.org/10.1002/rmv.443

[5] A. Cayley. 1897. A theorem on trees. In Collected Mathematical Papers Vol. 13. Cambridge University Press, 26–28.

[6] Justin Cheng, Lada A. Adamic, P. Alex Dow, Jon Kleinberg, and Jure Leskovec. 2014. Can Cascades be Predicted?. In

Proceedings of the 23rd international conference on World wide web (WWW’ 14). https://doi.org/10.1145/2566486.2567997

arXiv:1403.4608

[7] Michela Del Vicario, Alessandro Bessi, Fabiana Zollo, Fabio Petroni, Antonio Scala, Guido Caldarelli, H. Eugene Stanley,

and Walter Quattrociocchi. 2016. The spreading of misinformation online. Proceedings of the National Academy of
Sciences (2016), 201517441. https://doi.org/10.1073/pnas.1517441113

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm.

Journal ofthe Royal Statistical Society 39, 1 (1977), 1–38.

[9] Kimon Drakopoulos, Asuman Ozdaglar, and John N. Tsitsiklis. 2014. An efficient curing policy for epidemics

on graphs. arXiv preprint arXiv:1407.2241 December (2014), 1–10. https://doi.org/10.1109/TNSE.2015.2393291

arXiv:arXiv:1407.2241v1

[10] Kimon Drakopoulos, Asuman Ozdaglar, and John N. Tsitsiklis. 2015. A lower bound on the performance of dy-

namic curing policies for epidemics on graphs. 978 (2015), 3560–3567. https://doi.org/10.1109/CDC.2015.7402770

arXiv:1510.06055

[11] Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan Ramchandran, and Pramod Viswanath. 2016. Rumor source

obfuscation on irregular trees. In Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Science (SIGMETRICS’ 16). ACM, 153–164.

[12] Giulia Fanti, Peter Kairouz, Sewoong Oh, Kannan Ramchandran, and Pramod Viswanath. 2017. Hiding the Rumor

Source. IEEE Transactions on Information Theory 63, 10 (2017), 6679–6713. https://doi.org/10.1109/TIT.2017.2696960

arXiv:1509.02849

[13] Giulia Fanti, Peter Kairouz, Sewoong Oh, and Pramod Viswanath. 2015. Spy vs. Spy: Rumor Source Obfuscation.

Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’ 14) (2015), 271–284. https://doi.org/10.1145/2745844.2745866 arXiv:1412.8439

[14] Mehrdad Farajtabar, Jiachen Yang, Xiaojing Ye, Huan Xu, Rakshit Trivedi, Elias Khalil, Shuang Li, Le Song, and

Hongyuan Zha. 2017. Fake NewsMitigation via Point Process Based Intervention. In Proceedings of the 34th International
Conference on Machine Learning (ICML’ 17). arXiv:1703.07823 http://arxiv.org/abs/1703.07823

[15] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. 2001. Eigentaste: A Constant Time Collaborative Filter-

ing Algorithm. Information Retrieval 4, 2 (2001), 133–151. https://doi.org/10.1023/A:1011419012209 arXiv:arXiv:astro-

ph/0005074v1

[16] Manuel Gomez-rodriguez, Jure Leskovec, and Andreas Krause. 2012. Inferring Networks of Diffusion and Influence. In

ACM Transactions on Knowledge Discovery from Data (TKDD’ 12), Vol. 5. https://doi.org/10.1145/2086737.2086741

[17] Manuel Gomez-Rodriguez, Jure Leskovec, and Bernhard Schölkopf. 2013. Structure and Dynamics of Information

Pathways in Online Media. In 6th International Conference on Web Search and Data Mining (WSDM 2013).
[18] Jessica Hoffmann and Constantine Caramanis. 2018. The Cost of Uncertainty in Curing Epidemics. Proceedings of the

ACM on Measurement and Analysis of Computing Systems (SIGMETRICS’ 18) 2, 2 (2018), 11–13. https://doi.org/10.1145/

3219617.3219622

[19] Tomoharu Iwata, Amar Shah, and Zoubin Ghahramani. 2013. Discovering Latent Influence in Online Social Activities

via Shared Cascade Poisson Processes. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD’ 13).

[20] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social network.

In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’03.
https://doi.org/10.1145/956755.956769 arXiv:0806.2034v2

[21] Justin Khim and Po-Ling Loh. 2017. Permutation Tests for Infection Graphs. (2017), 1–28. arXiv:1705.07997 http:

//arxiv.org/abs/1705.07997

[22] Justin Khim and Po-Ling Loh. 2018. A theory of maximum likelihood for weighted infection graphs. (2018), 1–47.

arXiv:arXiv:1806.05273v1 https://arxiv.org/pdf/1806.05273.pdf

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

https://doi.org/10.1145/2487575.2487664
http://arxiv.org/abs/arXiv:1308.2954v1
https://doi.org/10.1214/10-AOS839
http://arxiv.org/abs/arXiv:1001.3209v2
http://arxiv.org/abs/arXiv:1511.01009v1
https://doi.org/10.1002/rmv.443
https://doi.org/10.1145/2566486.2567997
http://arxiv.org/abs/1403.4608
https://doi.org/10.1073/pnas.1517441113
https://doi.org/10.1109/TNSE.2015.2393291
http://arxiv.org/abs/arXiv:1407.2241v1
https://doi.org/10.1109/CDC.2015.7402770
http://arxiv.org/abs/1510.06055
https://doi.org/10.1109/TIT.2017.2696960
http://arxiv.org/abs/1509.02849
https://doi.org/10.1145/2745844.2745866
http://arxiv.org/abs/1412.8439
http://arxiv.org/abs/1703.07823
http://arxiv.org/abs/1703.07823
https://doi.org/10.1023/A:1011419012209
http://arxiv.org/abs/arXiv:astro-ph/0005074v1
http://arxiv.org/abs/arXiv:astro-ph/0005074v1
https://doi.org/10.1145/2086737.2086741
https://doi.org/10.1145/3219617.3219622
https://doi.org/10.1145/3219617.3219622
https://doi.org/10.1145/956755.956769
http://arxiv.org/abs/0806.2034v2
http://arxiv.org/abs/1705.07997
http://arxiv.org/abs/1705.07997
http://arxiv.org/abs/1705.07997
http://arxiv.org/abs/arXiv:1806.05273v1
https://arxiv.org/pdf/1806.05273.pdf

Learning Graphs from Noisy Epidemic Cascades 40:25

[23] Joseph B. Kruskal. 1956. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proc.
Amer. Math. Soc. 7, 1 (1956), 48–50. http://www.jstor.org/stable/2033241

[24] Jeongyeol Kwon, Wei Qian, Constantine Caramanis, Yudong Chen, and Damek Davis. 2019. Global Convergence of

the EM Algorithm for Mixtures of Two Component Linear Regression. XX (2019), 1–57. arXiv:arXiv:1810.05752v3

[25] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie Glance. 2007.

Cost-effective Outbreak Detection in Networks. Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’07) (2007), 420. https://doi.org/10.1145/1281192.1281239

[26] Eli A. Meirom, Chris Milling, Constantine Caramanis, Shie Mannor, Ariel Orda, and Sanjay Shakkottai. 2014. Localized

epidemic detection in networks with overwhelming noise. (2014), 1–27. arXiv:1402.1263 http://arxiv.org/abs/1402.1263

[27] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkottai. 2012. Network Forensics : Random

Infection vs Spreading Epidemic. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer Systems (SIGMETRICS’ 12).

[28] Chris Milling, Constantine Caramanis, Shie Mannor, and Sanjay Shakkottai. 2015. Local detection of infections in

heterogeneous networks. Proceedings - IEEE INFOCOM 26 (2015), 1517–1525. https://doi.org/10.1109/INFOCOM.2015.

7218530

[29] Seth Myers, Chenguang Zhu, and Jure Leskovec. 2012. Information Diffusion and External Influence in Networks.

In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’ 12).
33–41.

[30] Praneeth Netrapalli and Sujay Sanghavi. 2012. Learning the Graph of Epidemic Cascades. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’ 12). 211–222. https://doi.org/10.1145/2318857.2254783 arXiv:1202.1779

[31] M. E. J. Newman. 2014. Networks: An Introduction. Vol. 23. 73–75 pages. https://doi.org/10.1017/S0963180113000479

[32] Devavrat Shah and Tauhid Zaman. 2010. Detecting sources of computer viruses in networks: theory and experiment.

In ACM SIGMETRICS Performance Evaluation Review, Vol. 38. ACM, 203–214.

[33] Devavrat Shah and Tauhid Zaman. 2010. Rumors in a Network : Who ’ s the Culprit ? IEEE Transactions on information
theory 57, 8 (2010), 1–43. https://doi.org/10.1109/TIT.2011.2158885 arXiv:0909.4370

[34] Devavrat Shah and Tauhid Zaman. 2012. Rumor centrality: a universal source detector. InACMSIGMETRICS Performance
Evaluation Review, Vol. 40. ACM, 199–210.

[35] Sam Spencer and R Srikant. 2015. On the impossibility of localizing multiple rumor sources in a line graph. ACM
SIGMETRICS Performance Evaluation Review 43, 2 (2015), 66–68.

[36] Zhaoxu Wang, Wenxiang Dong, Wenyi Zhang, and Chee Wei Tan. 2014. Rumor source detection with multiple

observations: Fundamental limits and algorithms. In ACM SIGMETRICS Performance Evaluation Review, Vol. 42. ACM,

1–13.

[37] Liang Wu and Huan Liu. 2018. Tracing Fake-News Footprints: Characterizing Social Media Messages by How

They Propagate. In (WSDM 2018) The 11th ACM International Conference on Web Search and Data Mining. https:

//doi.org/10.1145/3159652.3159677

[38] Ali Zarezade, Ali Khodadadi, Mehrdad Farajtabar, Hamid R Rabiee, and Hongyuan Zha. 2017. Correlated Cascades :

Compete or Cooperate. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17). 238–244.
[39] Qingyuan Zhao, Murat A. Erdogdu, Hera Y. He, Anand Rajaraman, and Jure Leskovec. 2015. SEISMIC: A Self-Exciting

Point Process Model for Predicting Tweet Popularity. Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’15) (2015). https://doi.org/10.1145/2783258.2783401 arXiv:1506.02594

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

http://www.jstor.org/stable/2033241
http://arxiv.org/abs/arXiv:1810.05752v3
https://doi.org/10.1145/1281192.1281239
http://arxiv.org/abs/1402.1263
http://arxiv.org/abs/1402.1263
https://doi.org/10.1109/INFOCOM.2015.7218530
https://doi.org/10.1109/INFOCOM.2015.7218530
https://doi.org/10.1145/2318857.2254783
http://arxiv.org/abs/1202.1779
https://doi.org/10.1017/S0963180113000479
https://doi.org/10.1109/TIT.2011.2158885
http://arxiv.org/abs/0909.4370
https://doi.org/10.1145/3159652.3159677
https://doi.org/10.1145/3159652.3159677
https://doi.org/10.1145/2783258.2783401
http://arxiv.org/abs/1506.02594

40:26 Jessica Hoffmann and Constantine Caramanis

A BIDIRECTIONAL TREE
We include here the full calculations for learning the weights of the bidirectional tree.

Proposition A.1. If we know (i, j) is an edge in the original tree, then the probability of infection
along this edge is given by:

pi j =
fi<j · s0 − fj<i · s2

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

.

Proof. According to Lemma 2.12, we have:

fi<j = P❈j
(→ i) · pi j · s0 + P❈i

(→ j) · pji · s2

дi, ❈j
= P

❈j
(→ i) · (1 − pi j)

fj<i = P❈i
(→ j) · pji · s0 + P❈j

(→ i) · pi j · s2

дj, ❈i
= P

❈i
(→ j) · (1 − pji).

We have 4 second-order equations, with 4 unknowns: pi j , pji , P❈j
(→ i) and P

❈i
(→ j). We solve it:

fi<j + fj<i = (P❈j
(→ i) · pi j + P❈i

(→ j) · pji) · (s0 + s2)

fi<j − fj<i = (P❈j
(→ i) · pi j − P❈i

(→ j) · pji) · (s0 − s2)

=⇒ P
❈j
(→ i) · pi j =

1

2

(
fi<j + fj<i

s0 + s2
+

fi<j − fj<i

s0 − s2

)
=

fi<j · s0 − fj<i · s2

s2
0
− s2

2

P
❈j
(→ i) = дi, ❈j

+ P
❈j
(→ i) · pi j

= дi, ❈j
+

fi<j · s0 − fj<i · s2

s2
0
− s2

2

=⇒ pi j =
P
❈j
(→ i) · pi j

P
❈j
(→ i)

pi j =
fi<j · s0 − fj<i · s2

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

.

□

Lemma A.2. WithM = N 2

ϵ 2 log

(
6

δ

) ((s2
0
−s2

2
+s0+s2)pmax+s0+s2)

2

(s2
0
−s2

2
)2

samples, with probability at least 1−δ ,
we have:

|p̂i j − pi j | ≤ ϵ .

Proof. Using Hoeffding’s inequality:

P(| ˆfi<j − fi<j | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(| ˆfj<i − fj<i | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(|д̂i, ❈j
− дi, ❈j

| > ϵ1) ≤ 2e−2Mϵ 2
1 .

ChoosingM = 1

ϵ 2
1

log

(
6

δ

)
, we have that with probability at least 1 − δ , all the following hold:

| ˆfi<j − fi<j | ≤ ϵ1,

| ˆfj<i − fj<i | ≤ ϵ1,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:27

|д̂i, ❈j
− дi, ❈j

| ≤ ϵ1.

Hence, with probability at least 1 − δ , we have:

p̂i j =
ˆfi<j · s0 − ˆfj<i · s2

д̂i, ❈j
· (s2

0
− s2

2
) + ˆfi<j · s0 − ˆfj<i · s2

≤
(fi<j + ϵ1) · s0 − (fj<i − ϵ1) · s2

(дi, ❈j
− ϵ1) · (s

2

0
− s2

2
) + (fi<j − ϵ1) · s0 − (fj<i + ϵ1) · s2

=
fi<j · s0 − fj<i · s2 + ϵ1(s0 + s2)

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2 − ϵ1(s

2

0
− s2

2
+ s0 + s2)

= pi j
1

1 −
ϵ1(s2

0
−s2

2
+s0+s2)

д
i,❈j
·(s2

0
−s2

2
)+fi< j ·s0−fj<i ·s2

+ ϵ1
s0 + s2

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

+ o(ϵ1)

= pi j

(
1 +

ϵ1(s
2

0
− s2

2
+ s0 + s2)

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

)
+ ϵ1

s0 + s2

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

+ o(ϵ1)

p̂i j − pi j ≤ ϵ1
(s2
0
− s2

2
+ s0 + s2)pmax

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

+ ϵ1
s0 + s2

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

+ o(ϵ1).

Using the results from Lemma 2.12, we have:

fi<j = P❈j
(→ i) · pi j · s0 + P❈i

(→ j) · pji · s2,

дi, ❈j
= P

❈j
(→ i) · (1 − pi j).

We use it to simplify the denominator:

denominator = дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

=
(
P
❈j
(→ i) · (1 − pi j)

)
· (s2

0
− s2

2
)

+
(
P
❈j
(→ i) · pi j · s0 + P❈i

(→ j) · pji · s2
)
· s0

−

(
P
❈i
(→ j) · pji · s0 + P❈j

(→ i) · pi j · s2
)
s2

= P
❈j
(→ i) · (s2

0
− s2

2
)

≥
s2
0
− s2

2

N
.

Plugging back above:

p̂i j − pi j ≤ ϵ1
(s2
0
− s2

2
+ s0 + s2)pmax

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

+ ϵ1
s0 + s2

дi, ❈j
· (s2

0
− s2

2
) + fi<j · s0 − fj<i · s2

+ o(ϵ1)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:28 Jessica Hoffmann and Constantine Caramanis

≤ ϵ1N
(s2
0
− s2

2
+ s0 + s2)pmax

s2
0
− s2

2

+ ϵ1N
s0 + s2

s2
0
− s2

2

+ o(ϵ1).

By symmetry, we obtain:

|p̂i j − pi j | ≤ ϵ1N
(s2
0
− s2

2
+ s0 + s2)pmax + s0 + s2

s2
0
− s2

2

+ o(ϵ1).

By choosing ϵ1 =
ϵ
N

s2
0
−s2

2

(s2
0
−s2

2
+s0+s2)pmax+s0+s2

, we therefore have:

With M = N 2

ϵ 2 log

(
6

δ

) ((s2
0
−s2

2
+s0+s2)pmax+s0+s2)

2

(s2
0
−s2

2
)2

samples, with probability at least 1 − δ , we have

|p̂i j − pi j | ≤ ϵ .
□

B BOUNDED-DEGREE GRAPHS
B.1 Solving the system

Lemma B.1. Let ∆ =
(
s2
0
− s2

2

)
2

− 4(Vjis2 −Vi js0)(Vi js2 −Vjis0). We have:

∆ ≥ (s2
0
− s2

2
)2
(1 − pmax)

2

1 + p2max
.

Proof. Finding a lower bound for ∆ can be achieved through minimizing ∆, or maximizing

(Vjis2 −Vi js0)(Vi js2 −Vjis0). We want to solve:

maximize

Vi j ,Vji
(Vjis2 −Vi js0)(Vi js2 −Vjis0)

subject to Vi j =
pi js0 + pjis2

1 + pi jpji
,

Vji =
pjis0 + pi js2

1 + pi jpji
,

pi j ≥ 0,

pmax − pi j ≥ 0,

pji ≥ 0,

pmax − pji ≥ 0.

To do so, we introduce Lagrangian multipliers. By replacing Vi j and Vji with their actual value,

the optimization problem above only has affine constraints, so it satisfies the linearity constraint

qualification for the Karush-Kuhn-Tucker conditions. In other words, all the partial derivatives of

the Lagrangian are equal to 0 for an optimal point.

L = L(Vi j ,Vji ,pi j ,pji , λ1, λ2, µ1, µ2, µ3, µ4)

= (Vjis2 −Vi js0)(Vi js2 −Vjis0)

− λ1(vi j (1 + pi jpji) − pi js0 + pjis2)

− λ2(vji (1 + pi jpji) − pjis0 + pi js2)

− µ1pi j − µ2(pmax − pi j)

− µ3pji − µ4(pmax − pji).

We calculate the gradients of L.

∂L

∂Vi j
= Vji (s

2

0
+ s2

2
) − 2Vi js0s2 − λ1(1 + pi jpji),

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:29

∂L

∂Vji
= Vi j (s

2

0
+ s2

2
) − 2Vjis0s2 − λ2(1 + pi jpji),

∂L

∂pi j
= −λ1(Vi jpji − s0) − λ2(Vjipji − s2) − µ1 + µ2,

∂L

∂pji
= −λ1(Vi jpi j − s2) − λ2(Vjipi j − s0) − µ3 + µ4.

From now on, we find the setX 0
of points for which all the partial derivatives are null. We know the

solution of the maximization problem is the point of X 0
which maximizes the objective function.

Let us assume an interior point solution exists. For this point, all the gradients of L are equal to

0. Since it is an interior point, we also have µ1 = µ2 = µ3 = µ4 = 0 by complementary slackness.

Solving this system, we obtain:

λ1 = (s
2

0
− s2

2
)
pjis0 − pi js2

(1 + pi jpji)2
,

λ2 = (s
2

0
− s2

2
)
pi js0 − pjis2

(1 + pi jpji)2
.

Plugging this in above, the condition
∂L
∂pi j
= 0 becomespi jpji (1−pji) = 0. However, this is impossible

for an interior point, since 0 < pi j ,pji < pmax < 1. Therefore, the extrema of ∆ are attained when

at least one constraint is active.

We notice that if the conditions pi j = 0 or pji = 0 are active, then (Vjis2 −Vi js0)(Vi js2 −Vjis0) = 0.

Let us suppose (without loss of generality, by symmetry of the problem) that we have pi j = pmax .

The objective function is then increasing in pji . Therefore, ∆ is minimized when pi j = pji = pmax ,

which implies vi j = Vji =
pmax (s0+s2)
1+p2max

. In this case:

∆ ≥ (s2
0
− s2

2
)2 − 4V 2

i j (s0 − s2)
2

≥ (s2
0
− s2

2
)2 − 4

(
pmax (s0 + s2)

1 + p2max

)
2

(s0 − s2)
2

≥ (s2
0
− s2

2
)2

[
1 − 4

pmax

1 + p2max

]
≥ (s2

0
− s2

2
)2
(1 − pmax)

2

1 + p2max
.

This expression is always positive, which is what we wanted.

□

Theorem B.2. For any graph, for any noise distribution having finite values, we can learn the
weights of all the edges of the graph. In particular, we can compute a quantity which converges to the
true weight of each edge:

p̂i j =
2(V̂jis2 − V̂i js0)(

s2
0
− s2

2

)
+

√(
s2
0
− s2

2

)
2

− 4(V̂jis2 − V̂i js0)(V̂i js2 − V̂jis0)

.

Proof.

V̂i j →M→∞ Vi j

:=
pi j · s0 + pji · s2

1 + pi j · pji

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:30 Jessica Hoffmann and Constantine Caramanis

pji =
Vi j − pi j · s0

s2 −Vi j · pi j

We can plug this in Vji :

Vji =
pji · s0 + pi j · s2

1 + pi j · pji

Vji

[
1 + pi j ·

Vi j − pi j · s0

s2 −Vi j · pi j

]
=
Vi j − pi j · s0

s2 −Vi j · pi j
· s0 + pi j · s2

After some shuffling around, we obtain the second-degree equation:

Vjis2 −Vi js0 +
(
s2
0
− s2

2

)
pi j +

(
Vi js2 −Vjis0

)
p2i j = 0

We recall that by definition, s0 ≥ s2. We also notice that if pi j = q1 and pji = q2 is a pair of solutions
of this system, then pi j =

1

q2
and pji =

1

q1
forms the other pair of solution, which implies there is

uniqueness of solutions in [0,pmax]. Since the real probabilities of infection satisfy this system, we

also know the solution exists. Let ∆ =
(
s2
0
− s2

2

)
2

− 4(Vjis2 −Vi js0)(Vi js2 −Vjis0). The only solution

of this system in [0,pmax] is:

pi j =
−

(
s2
0
− s2

2

)
+
√
∆

2(Vi js2 −Vjis0)

=

(
s2
0
− s2

2

)
2

−
(
s2
0
− s2

2

)
2

− 4(Vjis2 −Vi js0)(Vi js2 −Vjis0)

2(Vjis0 −Vi js2)
((
s2
0
− s2

2

)
+
√
∆
)

=
2(Vjis2 −Vi js0)(
s2
0
− s2

2

)
+
√
∆

□

B.2 Sample complexity
Proposition B.3. As the number of cascadesM goes to infinity, the estimators below tend to the

following limit:

ˆh2i, j →M→∞
1

N
(pi j + pji)

∏
k,i, j

(1 − pik)(1 − pjk)

ˆf 2i<j →M→∞
1

N
(pi j · s0 + pji · s2)

∏
k,i, j

(1 − pik)(1 − pjk)

ê1i →M→∞
1

N
(1 − pi j)

∏
k,i, j

(1 − pik)

Proof. Using the law of large numbers:

ˆf 2i<j →M→∞ E[ˆf
2

i<j]

= P(i source, infects j, no other infections, delay 0)

+ P(j source, infects i , no other infections, delay 2)

=
1

N
pi j

∏
k,i, j

(1 − pik)
∏
k,i, j

(1 − pjk) · s0

+
1

N
pji

∏
k,i, j

(1 − pjk)
∏
k,i, j

(1 − pik) · s2

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:31

=
1

N
(pi j · s0 + pji · s2)

∏
k,i, j

(1 − pik)(1 − pjk).

In the same vein, we have:

ˆh2i, j →M→∞ E[ˆh
2

i, j]

= P(i source, infects j, no other infections)

+ P(j source, infects i , no other infections)

=
1

N
(pi j + pji)

∏
k,i, j

(1 − pik)(1 − pjk)

ê1i →M→∞ E[ê
1

i]

= P(i source, no other infections)

=
1

N

∏
k,i

(1 − pik)

=
1

N
(1 − pi j)

∏
k,i, j

(1 − pik).

□

Proposition B.4. With probability 1 − δ
N 2

, withM = samples, we can estimate Vi j with precision
ϵV .

Proof. As in Proposition 2.14, we use Hoeffding’s inequality:

P(| ˆf 2i<j − f 2i<j | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(| ˆh2i, j − h
2

i, j | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(|ê1i − e
1

i | > ϵ1) ≤ 2e−2Mϵ 2
1 ,

P(|ê1j − e
1

j | > ϵ1) ≤ 2e−2Mϵ 2
1 .

We use this to bound above Vi j :

V̂i j =
ˆf 2i<j

ˆh2i, j + N · ê
1

i · ê
1

j

≤
f 2i<j + ϵ1

h2i, j + ϵ1 + N · (e
1

i + ϵ1) · (e
1

j + ϵ1)

= Vi j

1 +
ϵ1
f 2i< j

1 +
ϵ1+N ϵ1(e1i +e

1

j)

h2

i, j+Ne1i e
1

j

= Vi j

[
1 +

ϵ1

f 2i<j
+ ϵ1

1 + N (e1i + e
1

j)

h2i, j + Ne1i e
1

j
+ o(ϵ1)

]
We bound below the denominators:

f 2i<j ≥
1

N
(pi js0 + pjis2)(1 − pmax)

2d

≥
pmins2
N
(1 − pmax)

2d

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:32 Jessica Hoffmann and Constantine Caramanis

h2i, j + Ne1i e
1

j ≥
1

N
(1 + pi jpji)(1 − pmax)

2d

≥
1

N
(1 − pmax)

2d

We bound above the numerator:

N (e1i + e
1

i) = N
©­« 1

N

∏
k,i

(1 − pik) +
1

N

∏
k,j

(1 − pjk)
ª®¬

≤ N

(
1

N
+

1

N

)
≤ 2.

Plugging in above:

V̂i j = Vi j

[
1 +

ϵ1

f 2i<j
+ ϵ1

1 + N (e1i + e
1

j)

h2i, j + Ne1i e
1

j
+ o(ϵ1)

]
≤ Vi j

[
1 +

ϵ1
pmins2

N (1 − pmax)2d
+

ϵ1(1 + 2)
1

N (1 − pmax)2d
+ o(ϵ1)

]
.

Using Vi j ≤ 1, and by symmetry:

|V̂i j −Vi j | = ϵ1
N

(1 − pmax)2d

[
1

pmins2
+ 3

]
+ o(ϵ1)

=≤ ϵ1
N

(1 − pmax)2d

[
1 + 3pmins2
pmins2

]
+ o(ϵ1)

≤ ϵ1
4N

pmins2(1 − pmax)2d
+ o(ϵ1).

Therefore, by union bound, and by choosing ϵ1
4N

pmins2(1−pmax)2d
= ϵV , and setting 2e−2Mϵ 2

1 = δ
3N 2

,

we obtain:

WithM = 1

ϵ 2V
16N 2

p2mins
2

2
(1−pmax)4d

2 log(3N)−log(δ)
2

samples, we can guarantee |V̂i j −Vi j | ≤ ϵV with proba-

bility at least 1 − δ
N 2

. □

Proposition B.5. Assuming we can estimate Vi j within precision ϵV , then we can estimate pi j
within precision ϵ = 6ϵV (1+p2max)

(s2
0
−s2

2
)2(1−pmax)2

.

Proof. If we know |V̂i j −Vi j | < ϵV and |V̂ji −Vji | < ϵV :

p̂i j =
2(V̂jis2 − V̂i js0)(

s2
0
− s2

2

)
+

√(
s2
0
− s2

2

)
2

− 4(V̂jis2 − V̂i js0)(V̂i js2 − V̂jis0)

≤
2(Vjis2 −Vi js0) + 2ϵV (s0 + s2)(

s2
0
− s2

2

)
2

+
√
∆ − 4ϵV (s0 + s2)2(Vi j +Vji)

.

We recall s0 + s2 ≤ 1, Vi j ≤ 1, pi j ≤ 1, and 1 + p2max ≤ ∆ ≤ 1 (Lemma 3.12). Hence:

p̂i j ≤
2(Vjis2 −Vi js0) + 2ϵV(
s2
0
− s2

2

)
2

+
√
∆
√
1 − 8

ϵV
∆

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

Learning Graphs from Noisy Epidemic Cascades 40:33

≤ pi j
©­­«1 +

4ϵV
√
∆

((
s2
0
− s2

2

)
2

+
√
∆
) ª®®¬ +

2ϵV(
s2
0
− s2

2

)
2

+
√
∆
+ o(ϵV)

≤ pi j +
6ϵV
∆
.

By symmetry, and using the bound on ∆ stated above, we conclude that if we know Vi j and Vji up

to precision ϵV , we know pi j up to precision ϵ =
6ϵV (1+p2max)

(s2
0
−s2

2
)2(1−pmax)2

.

□

Theorem B.6. In the limited-noise setting, with probability at least 1 − δ , with
M = O

(
e4pmax (d+1)

p2mins
2

2
(s2
0
−s2

2
)4

N 2

ϵ 2 log

(N
δ

))
samples, we can learn the weights of any bounded-degree graph up

to precision epsilon.

Proof. With probability at least 1 − δ
N 2

, using

M = 1

ϵ 2V
16N 2

p2mins
2

2
(1−pmax)4d

2 log(3N)−log(δ)
2

samples, we can guarantee |V̂i j −Vi j | ≤ ϵV with probability

at least 1 − δ
N 2

samples, knowing
1

ϵV
=

6(1+p2max)

ϵ (s2
0
−s2

2
)2(1−pmax)2

. This gives us a sample complexity of:

M ≥
18

ϵ2(s2
0
− s2

2
)4(1 − pmax)4(d+1)

N 2

[
4

pmins2

]
2

log

(
9N 2

δ

)
≥

1152 · e4pmax (d+1)

p2mins
2

2
(s2
0
− s2

2
)4

N 2

ϵ2
log

(
9N 2

δ

)
= O

(
e4pmax (d+1)

p2mins
2

2
(s2
0
− s2

2
)4

N 2

ϵ2
log

(
N

δ

))
.

□

C NUMERICAL EXPERIMENTS
In this section, we provide some numerical experiments on simulated data to investigate the sample

complexity of the method introduced in Section 3.2. While Theorem 3.14 guarantees polynomial

dependence on the key scaling parameters of the problem (except for the dependence on the degree,

which in many settings may be counteracted by the small value of pmax, as indicated by Corollary

2.6), the number of cascades required can still scale to numbers that would not be feasible in practice.

Our experiments here show two things. First, they indicate that our algorithm in fact outperforms

the theoretical guarantees of Theorem 3.14. Specifically illustrating this, we consider the following

setting: a graph of max-degree 10 on 1000 nodes, with Bernoulli noise taking values 0 or 2 with

probability
1

2
. Then, if we want to learn the weights within precision ϵ = 0.1, our bound guarantees

that 10
20
cascades, are sufficient. Our simulations show, however, that this is likely to be achieved

with about 10
8
cascades.

Next, we consider the impact of considering a different objective. Our results provide guarantees

on the maximum error. It may, however, be enough for practical applications, to have control of

the average absolute error. While our theoretical bounds do not give sample complexity bounds for

guarantees on this objective, our simulations demonstrate that it is possible to achieve control of

the average absolute error with far fewer samples. Figure 5 gives a plot of average absolute error

versus sample complexity, for the same numbers mentioned above. We see, in particular, that 0.1
average absolute error is achieved in about 3 ∗ 105 cascades, thus representing a very significant

decrease.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

40:34 Jessica Hoffmann and Constantine Caramanis

Fig. 5. Average absolute error for a random graph of max-degree d on 1000 nodes, with Bernoulli noise taking
values 0 or 2 with probability 1

2
. The average is taken only on the existing edges to demonstrate the efficiency

of the procedure.

We note that individually, the terms in our bound do not have much room for improvement in

theory. As we have speculated, it may be possible to improve N 2
to N logN . However, the message

from these experiments is that in order to transition these theoretical results to a practical setting,

it is in fact important to consider the specific dependence on each parameter. Moreover, it may be

important to consider obtaining guarantees for objectives like average absolute error, for which far

better results may be possible.

ACKNOWLEDGMENTS
The authors would like to thank Taylor Kessler Faulkner and Surbhi Goel for bouncing ideas, and

their pointers on making this paper more enjoyable to read.

The work is partially supported by the National Science Foundation under Grants No.: 1302435,

No.: 1609279 and No.: 1704778.

Received February 2019; revised March 2019; accepted April 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 40. Publication date: June 2019.

	Abstract
	1 Introduction
	1.1 Model
	1.2 Why is it a hard problem?
	1.3 Contributions

	2 Learning bidirectional trees
	2.1 Tree structure
	2.2 Lower bound
	2.3 Tree weights

	3 Bounded-degree graphs
	3.1 Bounded-degree structure
	3.2 Bounded-degree weights
	3.3 Estimators
	3.4 Solving the system
	3.5 Sample complexity

	4 General graphs
	5 Discussion and Future work
	References
	A Bidirectional tree
	B Bounded-degree graphs
	B.1 Solving the system
	B.2 Sample complexity

	C Numerical Experiments
	Acknowledgments

