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Large-scale system design optimization is a numerical tool used in solving system design
problems that involve a large number of design variables. These systems are often multi-
disciplinary with many disciplines interacting with each other. The scale of these problems
demands a gradient-based approach for efficient solutions, and it is often implemented by cou-
pling an engineering model with an optimizer. The optimizer reads the outputs of the model
and generates design variable values at which the model is evaluated in the next iteration. This
iterative process continues until the optimizer converges to a specific design. A recently devel-
oped theory on multidisciplinary derivative computation and its implementation in a modular
framework have made it feasible to solve large-scale system design optimization problems in
only hundreds of model evaluations. This has led to an increase in the number of applications
for large-scale system design optimization with new applications still emerging. This paper
presents a new optimization formulation that can further reduce the required number of model
evaluations by unifying two widely used optimization architectures, namely, multidisciplinary
feasible and simultaneous analysis and design. Complex engineering systems that require so-
lution of large nonlinear systems can potentially benefit from this new formulation, and the
optimized solutions can be reached in just tens of model evaluations. We demonstrate this
order of magnitude improvement through the application of our new algorithm on a cantilever
beam design problem. The paper also provides details on practical implementation of this new
formulation in an equality-constrained optimization setting.

I. Nomenclature
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I1. Introduction
ULTIDISCIPLINARY design optimization (MDO) is a field of engineering that uses numerical optimization techniques
Min design problems that involve multiple engineering disciplines. An MDO problem usually takes the form of
a numerical optimization problem that minimizes an objective subject to constraints. In practice, such problems are
solved by coupling a general-purpose optimization algorithm, called the optimizer, with an engineering model that
computes the objective and constraints, as well as their derivatives. The optimizer evaluates the model at different
design variable values until convergence, reading the outputs of the model.

Large-scale system design optimization (LSDO) focuses on problems that are high-dimensional, defined as having
hundreds or more design variables, and that represent system-level design problems. High-dimensional design spaces
and coupled multidisciplinary models are characteristics of design problems involving large-scale complex engineered
systems as these systems have a large number of parts that interact with each other in unintuitive ways. For instance,
a modern commercial airliner has millions of parts, and its design involves a large number of disciplines such as
aerodynamics, structures, and propulsion that are coupled via feedback loops. In these complex design problems,
intuition and experience have their limits—when that is the case, LSDO provides an alternative, which is a rigorous and
automatic way to compute the best design given a sufficiently accurate model.

High-dimensional design spaces in large-scale systems necessitate the use of gradient-based optimizers in LSDO to
ensure efficient scalability. Applying large-scale optimization to system design is challenging, because of the conflicting
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requirements of efficient derivative computation (for scalability) and coupling multiple disciplines (for system-level
modeling). However, a recently developed theory [[1] that unifies different total derivative computation methods—such
as the chain rule, the coupled chain rule and the adjoint method—overcomes these challenges. OpenMDAO [2] is an
open-source software framework from NASA that implements this theory to automate total derivative computation,
following a modular approach in the construction of models.

These developments have enabled large-scale MDO to be accessible to a larger audience from different fields in the
scientific community. The number of LSDO applications implemented in OpenMDAO has grown rapidly in the past few
years. However, the current algorithms in LSDO still require hundreds of model evaluations to solve a problem and this
poses a significant barrier to its adoption into an industrial setting.

Computer-aided engineering (CAE) tools such as computational fluid dynamics (CFD) and finite element analysis
(FEA) have significantly impacted industrial design processes by permeating into day-to-day workflows of engineers.
For LSDO to have the same impact, the jump in computational cost from running a single simulation to solving an
optimization problem with the same model should be limited to only tens of times. This would allow a 1-hour simulation
to be optimized over a weekend rather than a few weeks, or a 1-minute simulation to be optimized in an hour rather than
a day. In practice, these differences are significant in assessing whether LSDO can be a vital, integrated part of practical
design cycles. This motivates the primary objective of this paper which is to accelerate the current LSDO algorithms
through a significant reduction in the number of model evaluations.

In the current paradigm for LSDO, the optimizer views the model as a black-box that outputs objective, constraints
and their gradients. This paper presents a new, intrusive paradigm where the internal components of the model are
exposed to the optimizer. An intrusive paradigm enables a novel optimization algorithm that could achieve the robustness
of a reduced-space formulation (also known as the MDF architecture) and the efficiency of a full-space formulation
(also known as the SAND architecture) if the two formulations can be unified. The difference between the two is that
full-space treats the model’s state variables as design variables and residual equations as constraints.

Such an intrusive paradigm is used in the field of PDE-constrained optimization. PDE-constrained optimization is a
field of research that deals with the optimization of partial differential equations (PDEs) involving large 3-D meshes with
up to billions of degrees of freedom. The feasibility of a reduction in the number of model evaluations is partly based
on the success of the Lagrange—Newton—Krylov—Schur (LNKS) algorithm in solving PDE-constrained optimization
problems with the cost of as low as five model evaluations [3| l4]. In this setting, the PDE solver, i.e., the model, and the
optimizer are often integrated in a single piece of software where the optimizer is tailored to the PDE.

In LSDO, the model is complex, heterogeneous, and multidisciplinary—three reasons why the black-box model has
been favored over the intrusive model, thus far. However, the proposed paradigm shift is timely because recent work in
LSDO is trending towards the construction of models within computational frameworks—as in OpenMDAO—in which
case the work required to expand the interface is entirely on the framework side.

This paper presents a new, hybrid architecture and provides numerical results that validate its efficacy. The paper
proceeds as follows. In Sec.[ITl} we provide some background for the unification algorithm with details on the unifying
derivative equation (UDE), the reduced-space formulation, and the full-space formulation. In Sec. we present a new
algorithm that can achieve our aggressive speed improvement target for an equality-constrained case. This section also
provides some details on the practical implementation of the algorithm. In Sec.[V] we solve a cantilever beam design
problem using the reduced-space approach and our novel approach and then compare the results.

II1. Background

A. Current Paradigm

In the current approach for LSDO, an engineering model is built within a software framework—such as OpenMDAO—
that couples an optimizer, from a library of optimizers, with the model. The coupled optimizer-model structure built in
the software framework solves a problem iteratively; the optimizer generates new design variable values based on the
model outputs from the previous iteration. The iterations proceed until optimality and feasibility criteria for the problem
are satisfied, where optimality is the reduced-gradient norm and feasibility is the norm of constraint violations.

With this approach, the computational cost of solving an optimization can be measured via the number of model
evaluations required. For simplicity, we can treat both computing the objective and constraints, and computing the
derivatives as a model evaluation because in efficient implementations, the computation times are similar. State-of-the-
art LSDO methods can solve problems with up to tens of thousands of design variables in only hundreds of model
evaluations.
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Fig.1 Current approach. The design variables are x. The objective and the constraints are respectively, F(x) and
C(x).

Fig.2 The state-of-the-art in LSDO [5] . Previous LSDO problems [[6H12] require hundreds of model evaluations.
Superbasic variables are the design variables that are not fixed due to bounds or constraints.

Given the current level of efficiency of LSDO, a paradigm shift is necessary to achieve further reductions in
computation time. The only way to reduce the optimization time further is to reduce the cost of each running of the
model which is possible by enabling partial model evaluations. Partial model evaluations are possible only with an
intrusive paradigm where the optimizer has access to the operations performed inside a model. This makes it necessary
to have computational frameworks that can facilitate such an intrusive environment. Therefore, an improvement over the
state-of-the-art in LSDO calls for the creation of new optimizers and computational frameworks that can handle an
intrusive paradigm.

B. MAUD: modular analysis and unified derivatives

LSDO is challenging because the difficult requirements for efficiency in large-scale problems are exacerbated by the
complex, multidisciplinary models in system-level design problems. The scalability aspect necessitates gradient-based
optimization and efficient, accurate derivative computation. The adjoint method is a critical technique because for a
problem with n, design variables, it can reduce the gradient computation time in each optimization iteration from the
cost of n,, model evaluations (in the finite-difference method) to less than one model evaluation.

The challenge is that the implementation of the adjoint method is time-intensive and it is specific to a particular
choice of the output (objective or constraints). Therefore, any change in the model or the optimization problem requires
deriving and implementing the new adjoint equations. This significantly reduces the usability of the adjoint method in a
practical design setting, where the model is modified, disciplines are added or temporarily removed, and the optimization
problem is tweaked frequently, within an iterative cycle. Moreover, the adjoint method only applies to a particular model
structure where there is a single set of state variables implicitly defined by residuals. If all states are explicitly defined,
or there are multiple disciplines, i.e., sub-models, with implicit states, or there is a combination of disciplines with
implicit and explicit states, the adjoint method cannot be applied, and a different method such as the chain rule or the
coupled adjoint method must be used. The MAUD architecture unifies all derivative computation methods using a
single equation so that regardless of the model structure, solving this equation is mathematically equivalent to using the
appropriate method: the adjoint method, chain rule, and so on.

We now present the equations underlying MAUD. A general optimization problem given a model with internal state
variables can be stated as



minimize F(x) R(x,Y(x)=0
with respectto  x >0 where F(x) = F(x,Y(x)) (1)
subjectto  C(x) =0, C(x) = (x,Y(x)),

where x € R” represent the design variables, F : R” — R and  : R" X R” — R represent the objective function,
C:R" - R™and: R" x R" — R™ represent the vector-valued constraint function, and Y : R" — R’ represents the
implicit solution of R(x,Y(x)) = 0 as an explicit function. Therefore, we have n design variables, m constraints and r
state variables. Moreover, we can define y € R" as the vector of state variables, f € R as the objective, and ¢ € R™ as
the vector of constraint variables.

The components in a complex model can be of many types—PDE solvers, surrogate models, closed-form expressions,
or algebraic systems of equations. In all cases, we can describe the model by concatenating all variables into a single
vector, u € RV, and define an appropriate residual function R : RV — R . Solving the system R(u) = 0 is then
equivalent to evaluating the model.

Under mild conditions, we can apply the inverse function theorem to R to obtain [} [13]

ORdu . OR" du” 5

Ou dr © Ou  dr @
where OR/du consists of partial derivatives of R, ¥, and du/dr contains the derivatives we need—df /dx and
dc/dx. Based on the model structure, the chain rule, the adjoint method, hybrid methods, and all other methods
for computing discrete derivatives can be derived from Eq. (Z). For example, we can derive the adjoint method by
choosing u = [x, y, f]7 and R(u) = [x — x*, R(x,y), f — F(x,y)]T (where x* is the design variable vector at which
we compute the adjoint), inserting into the right equality of Eq. (2)), and applying block back-substitution.

MAUD can be summarized as follows: the user can implement their model as a modular set of components within a
computational framework and provide partial derivatives of its outputs with respect to its inputs, where the combined set
of partial derivatives form dR/du. Then, regardless of the model structure, the framework only needs to solve Eq. () to
compute the model-level derivatives in the most efficient way (e.g., the adjoint method for a model with internal state
variables).

MAUD is implemented in NASA’s OpenMDAO (open-source multidisciplinary design, analysis, and optimization)
software framework, through which it has enabled LSDO problems in aircraft wing design [10} [T}, [14] [T5]], satellite
design [8[16], airline route allocation optimization [17-19], jet engine design [20-24]], and wind turbine design [25-29],
among others [9] [30-32].
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Fig.3 OpenMDAO framework. OpenMDAO couples the model with an optimizer and automatically computes the
model derivatives using MAUD architecture. Opt is the optimizer, C and D denote the internal components of the model
and their partial derivatives respectively.



C. Optimization Formulations

In MDO, ‘architecture’ or ‘problem formulation’ refers to the particular way in which a problem is defined and its
solution is reached. Given a design optimization problem (I)), there are multiple ways in which we can formulate it in
order to find its solution. In this paper, we consider two popular monolithic MDO architectures: (1) the reduced-space
(RS) architecture and (2) the full-space (FS) architecture. The full-space formulation treats the model’s state variables
as additional design variables and the reduced-space formulation solves for the state variables within the model. The
reduced-space architecture is also known as the multidisciplinary feasible (MDF) architecture or nested analysis
and design (NAND), and the full-space architecture is also known as the simultaneous analysis and design(SAND)
architecture.

In the reduced-space formulation, only x constitutes the optimization design variables, and y is computed implicitly
as Y (x) by solving R(x,Y(x)) = 0. In the full-space formulation, both x and y are treated as design variables, and
instead of evaluating Y(x), the responsibility of enforcing R(x,y) = 0 is handed to the optimizer by making these
constraints. The two formulations are so-named because full-space refers to the (n + r)-dimensional space of both x and
v, while reduced-space refers to the n-dimensional space of only x.
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Fig. 4 Reduced-space versus full-space formulation given a complex model with internal state variables.

The tradeoff is that the model evaluation for reduced-space is more costly because it requires the nonlinear solution
of R(x,y) = 0, but the optimization problem is smaller and simpler. The model evaluation for full-space is simpler and
less costly because it simply evaluates #, and R without solving any nonlinear systems, but the optimization problem is
larger and more difficult with additional constraints and design variables.

In general, full-space optimization has the potential to be more efficient but it is typically less robust. The larger
problem may cause optimization convergence issues or negate the benefits from the more inexpensive model because of
a greater increase in the number of evaluations. Reduced-space optimization is more robust, but it is inefficient because
it wastes computation time accurately solving R(x,y) = 0 to compute y in each optimization iteration even when x
is far from converged. Tight convergence is necessary, in reduced-space methods, to ensure accurate computation of
F(x,Y(x)) and (x, Y (x)) so that the objective and constraint values are consistent with their derivatives with respect to
x that are also provided by the model to the optimizer.

Next, we provide the optimality conditions and Karush-Kuhn-Tucker (KKT) systems for both formulations in the
equality-constrained setting.

Reduced-space equations. We start with Eq. (3) with the bounds on x dropped, and we define the Lagrangian
I = £(x,2) where L(x,2) = F(x,Y(x)) + AT (x,Y(x)). Applying the method of Lagrange multipliers, we obtain the
first order necessary optimality conditions:



dx 0y 0dy dx
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Using pi to denote the search direction, it then follows that the KKT system for reduced-space optimization is given by
Lex  Cx T p;(X) _ —lx (6)
e 0 [AY] [-0w Yow|

where I, = d?l/dx?, ¢y = dc/dx, and I, = dl/dx.

Full-space equations. We start with Eq. (@) with the bounds on x dropped, and we define the Lagrangian m =
M(x,y,p, A) where M(x,y,,1) = F(x,y) + ¢ T R(x,y) + AT (x,y). Once again, applying the method of Lagrange
multipliers, we obtain the first order necessary optimality conditions:

dm 0F oR 0 dm
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It then follows that the KKT system for full-space optimization is given by
Myx Mxy Rx d x 4 P;cx) —Myx
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where my, = d*m/dx?, Myy = d*m/dydx, My = d’m/dxdy, Myy = d’m/dy*, R, = OR/dx, Ry = 0R/dy,
x=0/0x, y =0/0y, my =dm/dx and m, = dm/dy.

IV. Methodology

Corrected full-space method. Before introducing the hybrid algorithm, we define a new optimization method, based
on the full-space formulation which we call the corrected full-space method (CFS). This method, as the name suggests,
is a modified version of the full-space method and has the ability to generate the same sequence of x and A iterates as
the reduced-space method, in an equality-constrained optimization setting. The feature that differentiates this method
from the FS method is that it modifies the state variable vector, y, and the vector of Lagrange multipliers, ¢, associated
with the residual equations before solving the full-space KKT system. If [xg, yx,¥x, Ax |7 are the values at the end of the
k-th iteration, this method corrects yi to y, by solving R(x,y) = 0 and then . to ¢, by setting dm/dy = 0. The FS
KKT system is then solved at the updated point [xk, y;, ¥, Ax]T to obtain the new set of values for the next iteration.

We now prove that the sequence of iterates generated by the corrected full-space method and the reduced-space
method are the same.

Theorem 1. Assume (xo, dg) are given. Then the sequence of iterates {(xx, Ax)} generated by the reduced-space method
and the corrected full-space method are identical in an equality-constrained optimization setting.

Proof. We prove this theorem by induction.

At k = 0, the theorem holds trivially. Assuming that the theorem holds true at k, we prove that it holds true at k + 1.
Let the k-th iterate be [xg, A¢]” in the RS method and [xg, yi, ¥, A7 in the corrected FS method.

In the (k + 1)-th iteration of the corrected FS method, we start at [xg, y, ¥k, A7 and solve R(x, ¥;) = 0to getan
updated y, . We note that y; = Y (xx) as R(xx,y;) = 0. Functions and gradients are now evaluated at [x, y,’(]T.

Setting dm/dy = 0, we solve for ¢, from Eq. (7):

dm o0F 0RO ,
_— = — _— ﬂ _— = O fr—t = - — _— _—— _— ﬂ .
dy ay +l,0k 6y + k 6y ‘/’k k (9)



This gives us the corrected values [xg, y;, ¥, Ac]T. We insert the expression for Y, into the expression for dm/dx in
Eq. (7) to obtain

-— — —- 1
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Comparing with Eq. (8), we can see that dm/dx = dl/dx.
We now solve the FS KKT system (§)) at the corrected point [xk,y,’c,c,lrlg,/lk]T where R(xx,y;) = 0, my = 0 and
my = l,. This gives us the following system:

Myxx mxy Rx T X T pf) _lx
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Substituting pﬁ(y ) and pgﬂ) from above, the first and fourth rows become the following system:
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Whenever m,, = 0, we can prove that
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using the identity

d2 2 27 4 dvT 82 dvT 82F d r d2v:
J:E+6Tl+l 67:+_y (3_7:_y+2(9_77 i (16)
dx?  9x*  dydxdx dx Oxdy dx 9y* dx & dy; dx?
on functions ¥, ; and R;.
Substituting Eq. (T3) in Eq. (T4), we get
lxx Cz; Pix) _ _lx
| = . 17
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This is exactly the RS KKT system (6) which means that (xg+1, A4x+1) from the (k + 1)-th iteration of reduced-space
and corrected full-space methods are identical. O

Corrected full-space method (CFS) is, in a way, a hybrid of the FS and RS methods and requires an intrusive
paradigm as the optimizer updates the state variable vector yi to y; with the help of the solvers inside the model.
However, CFS does not offer us any advantage in terms of computational efficiency as we still need to solve the nonlinear
system R(x, y) = 0, the same number of times as in the reduced-space method, before we reach the solution.

CFS is still a useful tool since it has the characteristics of both the full-space and reduced-space formulations. In
the next subsection, we use CFS to formulate a novel algorithm that has the ability to vary the extent to which it can



exhibit the properties of FS and RS algorithms. The new algorithm provides a complete unification of the full-space and
reduced-space formulations for equality-constrained optimization problems.

A comparison of the reduced-space, full-space and corrected full-space methods:

Algorithm 1 RS method Algorithm 2 FS method Algorithm 3 CFS method
1: loop 1: loop 1: loop
2: Run the model at x; solving 2: Run the model at (xg, yx) 2 Run the model at (xg, yx) solving
Rxg, Y(x)) =0 3: Assemble Ay, by R(xk, 1) =0
3: Assemble Ay, by, 4: Solve Agpi = by, 3: Compute wl’c by solving
4 Solve Axpy = br aer] [ A@%ﬁ; ;‘TyTb - Ak
) Xe+1| | Xk Vi+l Vi 4: ssemble Ay, by
5: Update = + . =
p Aot A Pk 5: Update et " + Dk 5. Solve Ay py = by -
6: end loop P LA Xke+1 le
Lex Cx 6: end loop 6 Update [2¥*!| = y’j + Pk
Ap = 0 T T Yk+1 ll/k
Cx Mxx Mxy Rx" x
1] LAk
T T
[ —lx ] Ay = r;yx ";;y R(y) yO 7: end loop
k = i
=(x, Y (x)) R 0 0 Mxx Mxy Rl T
7y : T T
A = myx Myy Ry "y
X Ry Ry 0 0
bp=| ™ x y 0 0
—R(xk, yi)
—(xk, Y& :)nx
b, =
k 0
_(xk’ y;()

A unification for the equality-constrained optimization setting. To demonstrate the feasibility of unifying the
reduced-space and full-space algorithms, we present the unification for an equality-constrained optimization setting. We
call the basic algorithm that achieves the unification, SURF—strong unification of reduced-space and full-space, where
’strong’ references the fact that LNKS only links the linear systems in the RS and FS methods while SURF provides a
complete unification of both the methods. SURF is presented in Alg.[] The loop that begins in line 1 marks the start of
each outer iteration. Line 4 updates the approximation to the Hessian of the full-space Lagrangian and lines 5 and 6
represent the assembly and solution of the KKT system for full-space optimization with a preconditioner. Lines 7 and 8
are standard steps for computing the step size and applying the step, respectively. Note that we assume iterative solution
of the KKT system, but to consider the SQP setting, we can simply ignore the preconditioner.

Without lines 1 and 2, Alg. ] is the Lagrange—Newton—Krylov—Schur (LNKS) algorithm (3| 4] developed for
PDE-constrained optimization. LNKS is so-called because the method of Lagrange multipliers yields the KKT
optimality conditions, which are solved with Newton’s method, which in turn constructs linear systems solved using a
Krylov subspace method with a Schur complement preconditioner. The defining characteristic of LNKS is the Schur
complement preconditioner that amounts to an inexact version of the reduced-space linear system—but LNKS is still
full-space.

Lines 1 and 2 are what enable SURF to unify the reduced- and full-space formulations. Before solving the full-space
KKT system in lines 4, 5, and 6, we inexactly solve the nonlinear system representing the model to update yx to y, at x.
Subsequently, we compute i, using an equation that comes from setting dm/dy to zero in Eq. (@. If lines I and 2 are
skipped, SURF becomes a full-space algorithm; if the two systems in lines 1 and 2 are exactly solved, SURF becomes a
reduced-space algorithm; and if lines 1 and 2 uses inexact solvers, SURF becomes a hybrid. This follows directly from
the property of the corrected full-space method discussed in the previous section. A similar algorithm where a subset of
variables are inexactly solved within a Newton iteration was proposed previously by Yang et al. [33]]. However, they
apply this approach to field variables in a PDE, whereas we apply it to the state and adjoint variables.

The preconditioner M} corresponds to a Schur complement decomposition of the full-space matrix, following the



Algorithm 4 SURF (strong unification of reduced-space and full-space)
SUREF unifies the reduced- and full-space methods for an equality-constrained optimization setting.

: loop
: Run the model at (xg, yi) inexactly solving R(x, y];) =0
Compute ; by inexactly solving ng,i = —7:yT —)T, A

Assemble A, by, Mk_l
Solve Mk_lAkpk = Mk_lbk

1
2
3
4: Update the approximation to the Lagrangian Hessian, Hy, at [xg, ., ¥, A7
5
6
7 Compute oy via a line search

T T
8 Update [xk+l,yk+l,¢’k+l,/lk+l] = [xksy;{,l/’,}/lk] +agp
9: end loop
Note:

m m
D He=| " is the Hessian of the Lagrangian, py, is the search direction and ¢ is the step size.
Myx  Myy
2) Appr = by is the FS KKT system (), and Mk_1 and Mk_l are exact and approximate preconditioners for Ay such that
My = M M3 ;M3 x My, and
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00 x—y RyIR, 0 00071

LNKS approach [3]]. In My, M; and M, are permutation matrices, and they are easily inverted. The Schur complement
is the (3,3) block of M3 x, and the lower-right 2 X 2 block of M3 is exactly the KKT matrix of the reduced-space
algorithm when we set m,, = 0 in the full-space algorithm. A single matrix-vector product of this 2 X 2 block can be
computed with two model Jacobian linear solutions, one of R, and one of ‘R§ .

The significance of this unification is twofold. First, switching between reduced- and full-space is simple—we only
have to change the inexact solver tolerances. Second, the SURF algorithm allows easy access to a continuous spectrum
of hybrid methods. We note that the choice on this spectrum can be made on a variable-by-variable basis. Since the
model is implemented as a collection of modular components, certain components can be more tightly converged than
others. We know that SURF (Alg. ) without lines 1 and 2 is just the full-space algorithm, and we can easily see that
SURF with lines 1 and 2 performed with exact solvers is the corrected full-space algorithm and it produces the same
(xg, Ay ) iterates as the reduced-space algorithm.

In summary, SURF unifies the reduced-space and full-space algorithms, and it enables effortlessly selecting one of
the two or a hybrid, simply by changing the solver tolerances in lines 1 and 2 of Alg.

Some implementation details. In practice, equality-constrained optimization problems are solved using sequential
quadratic programming (SQP) where the search directions are obtained from a sequence of quadratic programming
(QP) subproblems. Each QP subproblem minimizes a quadratic problem subject to linearized constraints and under
certain conditions, it is equivalent to solving the KKT system. The directions derived from the QP subproblem is then
used in a line search to find the step towards the next iterate.

Although our algorithm is theoretically well-founded, we address some aspects of implementation for completeness.
Two key aspects in the implementation of a gradient-based optimization algorithm are: (1) approximating Hessians
and (2) a line search that guarantees global convergence. The following subsections give recommendations on using
Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm for Hessian approximation and using a line search method that
ensures global convergence, in the purview of SURF.



Positive definite BFGS approximation of the Hessian of the full-space Lagrangian. Within a single iteration of
SURF, we take two steps as opposed to a single step taken in any conventional algorithm. The first step updates just y
and ¢, which we call the ‘correction step’ as it corrects the value of y and ¢ from the previous iteration . The second
step is the solution of the KKT system which we name as the ‘QP step’ as it is the conventional step taken in a direction
given by the QP subproblem.

We can define the different points in iteration (k + 1) as: & = [xx, Yx. ¥k, Ax]” (at the start of the iteration),
& = [xk,y,’c,w,;,/lk]T (at the corrected point) and &1 = [Xkr1, ks 1, Wk+1, Ak+1]7 (at the end of the iteration). This
gives us the correction step p; and the QP step axpy as given below:

Xk — Xx 0 Xk+1 — Xk akpﬁj‘)
”(y) ’ )
P R/ AD Py Y+l = Yy, axp;
p = , = and akpk = =
S I Pllc(w) Yir1 — Yy, @ ng)
A — A 0 Ake+1 — A Olkpgj)

We can denote the design variable vector as v that includes both x and y such that v = [x, yx]”, v =[x, y,’(]T and
Vsl = [*+1, Vie1]T. This gives

a’kl’i Y

apy’|’

20— 0 W) _
Py [ «y)l and py

General-purpose optimization algorithms based on SQP use a positive definite BFGS approximation for the
Lagrangian Hessian when solving a QP subproblem. In SURF, we approximate the Hessian of the Lagrangian H at the
corrected point v; using a modified BFGS algorithm. Let us denote the positive definite BFGS approximation of Hy as

Hk Hk can be estnnated from Hk 1 using the BFGS update formula

~ o 1 1
Hy = Hy_| — —Hk ldkd Hk 1+ — WkW]{ (19)
dk k—1dy Wi dk

where
di =vi —vi_, and wg = VM, ¥, ) — VM _ 7, Ak)

The gradients of M are taken with respect to v and we note here that i/, and 4, are our best available estimates for the
Lagrange multipliers.

Given Hj_; is positive definite, the updated BFGS approximation Hy remains positive definite if and only if
WZ dy > 0. The approximate curvature wZ d; may not be positive always since we are trying to approximate a Hessian
that is, in general, indefinite. With SQP using quasi-Newton methods, Powell [34] states that the iterates converge
towards a solution along a path that lies in the null space of the constraint Jacobian. Since Hy is positive definite along
the constraint surface near the solution, the approximate curvature w, T di becomes positive as the iterates converge closer
to a minimizer of the problem.

When the iterates are far from the solution, this generally doesn’t hold. However, in cases where w]{ dy is negative
but the curvature along the constraint surface is positive, we can use a new scheme to find a positive approximate
curvature. We compute a new step d;' that lies in the null space of the Jacobian of the constraints J; at v;. We note that
the constraints now refer to both the constralnts and the residuals, and the constraint Jacobian J; is the lower left2 x 2
block of the matrix Ay in the SURF KKT system (T8).

Under the assumption that J; has full row rank, we find d' = (I — J"[J; J;717J)dj. as the projection of dy on the
null space of J;. With the new step, we define a new point, v;" | = v; — d}, which is the projection of v; _, on the null
space of J;. We also define a new update pair (d;', w}) with respect to the points v;" , and v; as

di =vp =v, and wy = VMO LY, Ak) = VMO0, ).
When (w”)T d}! is positive, we update the Hessian using the new update pair (d;, w}!). However, when the curvature along
the constraint surface is negative, (W} )Td" is also negative and in such cases, we skip the update and set Hk = Hk 1.
We should note the following about the above algorithm for Hessian approximation. Whenever the approximate
curvature is not positive, we need to make an additional model evaluation at the new point v;" | but this evaluation is not
expensive as it does not invoke the nonlinear solvers for R(x, y) = 0. Also, similar modlﬁcatlons are rarely needed more

than a few times in conventional SQP algorithms [34]] and therefore, we assume the same applies for SURF. In essence,
with our new scheme, positive definite Hessian updates can be made without incurring significant computational costs.
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Line search guaranteeing global convergence. Line searches use merit functions as tools to estimate how far an
iterate is from the solution. Any standard merit function—such as the /; or /-penalty function—can be used in a line
search to find the step length a; € (0, 1] that satisfies the sufficient decrease condition. However, in order to make use of
fast line search methods that enforce the strong Wolfe conditions, we need smooth merit functions. The augmented
Lagrangian merit function is one such smooth merit function used in many state-of-the-art gradient-based optimizers.
We provide an outline on how to use an augmented Lagrangian merit function in a line search algorithm that enforces
the strong Wolfe conditions.
The augmented Lagrangian for SURF can be written as

La(xy, 0, ;p) = F(x,y) + o' Rx,y) + A7 (1) + %p((x, W (x,y) + R(x, ) R(x, y)) (20)

where p is the penalty parameter that penalizes the constraint violations and the residuals. The merit function for the
(k + 1)-th iteration of SURF based on the Augmented Lagrangian is

k(@i p) = LaCx +apl”, yi +apl’, wi +ap, i+ apVip). 21)
For a given p, ;(«a; p) represents the augmented Lagrangian as a function of the step length, @. In order to guarantee a

sufficient decrease along the direction py, p is updated, if required, before starting the line search in each iteration. With
,’((a; )= %(01 ; p), the step length, ax, is found by enforcing the strong Wolfe conditions,

k(@; p) <k (0; p) + 140 (0; p) and  [;(@; p)| < Ml (0; p)] (22)

where 71, and n,, are pre-assigned constants such that 0 < n, < n,, < 1 and 5, < 0.5. Practical implementations use
Ne =107 and ,, = 0.5.

Fast line search algorithms use safeguarded polynomial interpolation to find a Wolfe step ay that satisfies both the
above conditions. Such algorithms are implemented in two stages: the first stage locates an interval (ajow, @nigr) that
contains a Wolfe step, and the second stage explores this interval using safeguarded polynomial interpolation to find the
Wolfe step ak.

V. Numerical results
The basic SURF algorithm was applied to a notional engineering optimization problem. We optimize the thickness
distribution of a cantilever beam modeled with a variable number of elements with nonlinear stress-strain behavior. The
nonlinear, equality-constrained optimization problem is

min FTd
X

with K(x,d)d - F =0, (23)
st. V(x)=W

where d is the displacement vector, F is the force vector, V() is the volume function, Vj is the allowable volume, and K
is the function that computes the stiffness matrix.

Fig.5 Preliminary results. On a scalable beam thickness optimization problem, the SURF algorithm is, on average,
an order of magnitude more efficient than reduced-space optimization.
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The problem is solved using reduced-space and SURF optimizers. Both algorithms use a backtracking line search
enforcing the strong Wolfe conditions and a direct solver for the KKT system. For SURF, we use pre-selected inexact
solver tolerances. Fig.[5] shows that SURF with a hybrid formulation is, on average, an order of magnitude more
efficient than the RS formulation in time and number of model Jacobian linear solutions across various numbers of
beam elements.
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VI. Conclusion and future work

In this paper, we presented a new, hybrid architecture for formulating large-scale system design optimization
(LSDO) problems. The primary objective is to overcome the limits on computational efficiency that can be realized in
conventional architectures. The best optimization algorithms implemented in popular architectures take hundreds of
model evaluations to converge to a solution. The algorithm presented in this paper utilizes an intrusive paradigm to
break the barriers on efficiency set by conventional architectures.

A review of the state-of-the-art in LSDO is presented in Sec[ITI} which includes details on the unifying derivative
equation (UDE) and popular architectures for large-scale system design optimization—the reduced-space architecture
and the full-space architecture. The reduced-space approach is inefficient but robust while the full-space approach has
the potential to be efficient but is not always robust.

In Sec[IV] we introduced the corrected full-space method (CFS) which is the first step in the unification of the
full-space (FS) and the reduced-space (RS) methods, in an equality-constrained optimization setting. Although the
underlying KKT system in the corrected full-space method is the same as that in the full-space method, the corrected
full-space method generates the same iterates as in the reduced-space method. SURF (strong unification of full-space
and reduced-space) is a hybrid algorithm based on the corrected full-space method that can generate all possible hybrids
of the full-space and the reduced-space methods. Depending on the tolerances on the inexact solvers, SURF can exhibit
the behaviour of its parent algorithms to varying degrees. This property of SURF can be exploited, by deriving the best
from both the parent methods, to obtain the maximum computational efficiency without compromising on robustness
of the algorithm. Some implementation-specific details of SURF is discussed at the end of Sec[IV]which includes a
scheme for the BFGS approximation of the Lagrangian Hessian, and a line search method based on an augmented
Lagrangian merit function.

Sec[V]provides results of SURF applied to a cantilever beam optimization problem. The numerical results suggest
that SURF has the potential to improve the efficiency of the current LSDO algorithms by up to an order of magnitude. It
is worthy to note that these results were based on pre-selected constant solver tolerances and an even better efficiency
could be achieved if we can compute optimal tolerances for each iteration.

SUREF provides a way to generate any hybrid of the full-space and reduced-space methods but currently there
is no mechanism for identifying the precise hybrid that offers the best computational efficiency. We need strategies
to compute optimal tolerances and we also need to select it adaptively from one iteration to the next for extracting
the maximum efficiency. Although the unification is complete for an equality-constrained setting, most problems in
LSDO are inequality-constrained problems. Future work will focus on extending the present algorithm for general
inequality-constrained optimization problems and formulating a strategy for adaptive hybrid selection.
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