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Abstract

Non-parametric and semi-parametric resampling procedures are widely used to perform support estimation in
computational biology and bioinformatics. Among the most widely used methods in this class is the standard
bootstrap method, which consists of random sampling with replacement. While not requiring assumptions about
any particular parametric model for resampling purposes, the bootstrap and related techniques assume that sites are
independent and identically distributed (i.i.d.). The i.i.d. assumption can be an over-simplification for many problems
in computational biology and bioinformatics. In particular, sequential dependence within biomolecular sequences is
often an essential biological feature due to biochemical function, evolutionary processes such as recombination, and
other factors. To relax the simplifying i.i.d. assumption, we propose a new non-parametric/semi-parametric sequential
resampling technique that generalizes “Heads-or-Tails” mirrored inputs, a simple but clever technique due to Landan
and Graur. The generalized procedure takes the form of random walks along either aligned or unaligned biomolecular
sequences. We refer to our new method as the SERES (or “SEquential RESampling”) method. To demonstrate the per-
formance of the new technique, we apply SERES to estimate support for the multiple sequence alignment problem.
Using simulated and empirical data, we show that SERES-based support estimation yields comparable or typically
better performance compared to state-of-the-art methods.

alignment, Random walk
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Introduction

Resampling methods are widely used throughout compu-
tational biology and bioinformatics as a means for assess-
ing statistical support. At a high level, resampling-based
support estimation procedures consist of a methodologi-
cal pipeline: resampled replicates are generated, infer-
ence/analysis is performed on each replicate, and results
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are then compared across replicates. Among the most
widely used resampling methods are non-parametric
approaches including the standard bootstrap method [6],
which consists of random sampling with replacement.
We will refer to the standard bootstrap method as the
bootstrap method for brevity. Unlike parametric meth-
ods, non-parametric approaches need not assume that
a particular parametric model is applicable to a problem
at hand. However, the bootstrap and other widely used
non-parametric approaches assume that observations are
independent and identically distributed (i.i.d.).
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In the context of biomolecular sequence analysis, there
are a variety of biological factors that conflict with this
assumption. These include evolutionary processes that
cause intra-sequence dependence (e.g., recombina-
tion) and functional dependence among biomolecular
sequence elements and motifs. Felsenstein presciently
noted these limitations when he proposed the application
of the bootstrap to phylogenetic inference: “A more seri-
ous difficulty is lack of independence of the evolutionary
processes in different characters. . .. For the purposes of
this paper, we will ignore these correlations and assume
that they cause no problems; in practice, they pose the
most serious challenge to the use of bootstrap methods”
(reproduced from p. 785 of [7]).

To relax the simplifying assumption of i.i.d. observa-
tions, Landan and Graur [11] introduced the Heads-
or-Tails (HoT) technique for the specific problem of
multiple sequence alignment (MSA) support estimation.
The idea behind HoT is simple but quite powerful: infer-
ence/analysis should be repeatable whether an MSA is
read either from left-to-right or from right-to-left—i.e.,
in either heads or tails direction, respectively. While HoT
resampling preserves intra-sequence dependence, it is
limited to two replicates, which is far fewer than typi-
cally needed for reasonable support estimation; often,
hundreds of resampled replicates or more are used in
practice. Subsequently developed support estimation
procedures increased the number of possible replicates
by augmenting HoT with bootstrapping, parametric resa-
mpling, and domain-specific techniques (e.g., progressive
MSA estimation) [12, 18, 20]. The combined procedures
were shown to yield comparable or improved support
estimates relative to the original HoT procedure [20] as
well as other state-of-the-art parametric and domain-
specific methods [10, 16], at the cost of some of the gen-
eralizability inherent to non-parametric approaches. In
this study, we revisit the central question that HoT par-
tially addressed: how can we resample many non-para-
metric replicates that account for dependence within a
sequence of observations, and how can such techniques
be used to derive improved support estimates for biomo-
lecular sequence analysis?

Methods

In our view, a more general statement of HoT’s main
insight is the following, which we refer to as the “neigh-
bor preservation property”: a neighboring observation is
still a neighbor, whether reading an observation sequence
from the left or the right. In other words, the key prop-
erty needed for non-parametric resampling is preserva-
tion of neighboring bases within the original sequences,
where any pair of bases that appear as neighbors in
a resampled sequence must also be neighbors in the
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corresponding original sequence. To obtain many resam-
pled replicates that account for intra-sequence depend-
ence while retaining the neighbor preservation property,
we propose a random walk procedure which generalizes
a combination of the bootstrap method and the HoT
method. We refer to the new resampling procedure as
SERES (“SEquential RESampling”). Note that the neigh-
bor preservation property is necessary but not sufficient
for statistical support estimation. Other important prop-
erties include computational efficiency of the resampling
procedure and unbiased sampling of observations within
the original observation sequence.

SERES walks can be performed on both aligned and
unaligned sequence inputs. We discuss the case of
aligned inputs first, since it is simpler than the case of
unaligned inputs.

SERES walks on aligned sequences

Detailed pseudocode for a non-parametric SERES walk
on a fixed MSA is shown in Additional file 1: Additional
methods section: Algorithm 1.

The random walk is performed on the sequence of
aligned characters (i.e., MSA sites). The starting point for
the walk is chosen uniformly at random from the align-
ment sites, and the starting direction is also chosen uni-
formly at random. The random walk then proceeds in
the chosen direction with non-deterministic reversals, or
direction changes, that occur with probability y; further-
more, reversals occur with certainty at the start and end
of the fixed MSA. Aligned characters are sampled during
each step of the walk. The random walk ends once the
number of sampled characters is equal to the fixed MSA
length.

The long-term behavior of an infinitely long SERES
random walk can be described by a second-order
Markov chain. Certain special cases (e.g., ¥ = 0.5) can be
described using a first-order Markov chain.

In theory, a finite-length SERES random walk can
exhibit biased sampling of sites since reversal occurs
with certainty at the start and end of the observation
sequence, whereas reversal occurs with probability y
elsewhere. However, for practical choices of walk length
and reversal probability y, sampling bias is expected to be
minimal.

SERES walks on unaligned sequences
Detailed pseudocode for SERES resampling of unaligned
sequences is shown in Additional file 1: Additional meth-
ods section: Algorithm 2. Figure 1 provides an illustrated
example.

The procedure begins with estimating a set of
anchors—sequence regions that exhibit high sequence
similarity—which enable resampling synchronization
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across unaligned sequences. A conservative approach for
identifying anchors would be to use highly similar regions
that appear in the strict consensus of multiple MSA esti-
mation methods. In practice, we found that highly similar
regions within a single guide MSA produced reasonable
anchors. We used the average normalized Hamming dis-
tance (ANHD) as our similarity measure, where indels
are treated as mismatches.

Unaligned sequence indices corresponding to the start
and end of each anchor serve as “barriers” in much the
same sense as in parallel computing: asynchronous
sequence reads occur between barrier pairs along a cur-
rent direction (left or right), and a random walk is con-
ducted on barrier space in a manner similar to a SERES
walk on a sequence of aligned characters. The set of bar-
riers also includes trivial barriers at the start and end of
the unaligned sequences. The random walk concludes
once the unaligned sequences in the resampled repli-
cate have sufficient length; our criterion requires that the
longest resampled sequence has minimum length that
is a multiple maxReplicateLengthFactor of the longest
input sequence length.

Technically, the anchors in our study make use of
parametric MSA estimation and the rest of the SERES
walk is non-parametric. The overall procedure is there-
fore semi-parametric (although see “Conclusions” for an
alternative).

Performance study

Our study evaluated the performance of SERES-based
support estimation in the context of MSA support esti-
mation. Of course, there are many other applications for
non-parametric/semi-parametric support estimation—
too many to investigate in one study. We focus on this
application since the multiple sequence alignment prob-
lem is considered to be a classical problem in computa-
tional biology and bioinformatics and MSAs are used as
inputs for a variety of important computational problems
throughout computational biology and bioinformat-
ics (e.g., phylogenetics and phylogenomics, proteomics,
comparative genomics, etc.). It is well known that MSA
quality has a major impact on downstream analysis [11,
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14, 15]. We also note that the need to quantify support
in the context of MSA estimation bears upon the critical
issues of scientific rigor and reproducibility.

Computational methods

We examined the problem of evaluating support in the
context of MSA estimation. The problem input consists
of an estimated MSA A which has a corresponding set of
unaligned sequences S. The problem output consists of
support estimates for each nucleotide-nucleotide homol-
ogy in A, where each support estimate is on the unit
interval. Note that this computational problem is distinct
from the full MSA estimation problem.

There are a variety of existing methods for MSA sup-
port estimation. The creators of HoT and their col-
laborators subsequently developed alignment-specific
parametric resampling techniques [12] and then com-
bined the two to obtain two new semi-parametric
approaches: GUIDANCE [18] (which we will refer to as
GUIDANCE1) and GUIDANCE?2 [20]. Other parametric
MSA support estimation methods include PSAR [10] and
T-Coffee [16].

We focus on GUIDANCE1 and GUIDANCE2, which
subsume HoT and have been demonstrated to have com-
parable or better performance relative to other state-of-
the-art methods [20]. We used MAFFT for re-estimation
on resampled replicates, since it has been shown to be
among the most accurate progressive MSA methods to
date [9, 15].

We then used SERES to perform resampling in place
of the standard bootstrap that is used in the first step of
GUIDANCE1/GUIDANCE2. Re-estimation was per-
formed on 100 SERES replicates—each consisting of a
set of unaligned sequences—using MAFFT with default
settings, which corresponds to the FFT-NS-2 algorithm
for progressive alignment. The SERES resampling proce-
dure used a reversal probability y = 0.5, which is equiva-
lent to selecting a direction uniformly at random (UAR)
at each step of the random walk; each SERES replicate
utilized a total of |_2k—oj anchors with anchor size of 5 bp
and a minimum distance between neighboring anchors
of 25 bp, where & is the length of the input alignment A.

(See figure on next page.)

Fig. 1 lllustrated example of SERES resampling random walk on unaligned sequences. Detailed pseudocode is provided in Additional file 1:
Additional methods section: Algorithm 2. a The resampling procedure begins with the estimation of a consensus alignment on the input set

of unaligned sequences. b A set of conservative anchors is then obtained using the consensus alignment, and anchor boundaries define a set

of barriers (including two trivial barriers—one at the start of the sequences and one at the end of the sequences). ¢ The SERES random walk is
conducted on the set of barriers. The walk begins at a random barrier and proceeds in a random direction to the neighboring barrier. The walk
reverses with certainty when the trivial start/end barriers are encountered; furthermore, the walk direction can randomly reverse with probability
y. As the walk proceeds from barrier to barrier, unaligned sequences are sampled between neighboring barrier pairs. d The resampling procedure
terminates when the resampled sequences meet a specified sequence length threshold
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a Estimate consensus alignment on input set of unaligned sequences.

sl AGTCTGGACTATAATGAAAGCCGA

s2 AGTCTGGTATAATGAAAGCTGGTACGA

s3 AGTCTGTACTATAATGGAAGTGGGGACACGTGGACAGCCGA
s4 AGTCTGTACTATAATGCGACACGTGGATAGCCGA

s5 AGTCTGTACTATAATGGGAGGAAAGCCGA

AGTCTGGACTATAAT
aAcTcTcGllltatanT

AGTCTGTACTATAATGC
AGTCTGTACTATAATGG

b Obtain anchors on consensus alignment. Barriers (dashed lines)
consist of anchor boundaries plus trivial start/end barriers.

Anchor Anchor Anchor Anchor Anchor
1 2 3 4 5

—] ]
AGTCTGGAC! "

actctccl: "

AGTCTGTAC! "TAATGGAAGTGGGGACACGTGGACAGC
AGTCTGTAC! "

AGTCTGTAC!"

| |

Barriers (dashed lines)

¢ Choose an initial barrier and walk direction at random.
Begin random walk (red arrow) from first barrier to neighboring barrier.
As walk proceeds from one barrier to neighboring barrier,
sample unaligned sequences between barrier pairs.

=]
AGTCTGGACTA!AAT
AcTcTGGllrataar

AGTCTGTACTA!AATGC
AGTCTGTACTA! AATGG
|

sl TA
Resampled 52 T&
s3 TA
sequences <1 Ta
s5 TA

d Random walk terminates when resampled sequences reach required length.
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acTtctcGlllTaTaaT

AGTCTGTACTATAATGC
AGTCTGTACTATAATGG
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> = Ned
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1
'

s1 TATAATGAAAGCCGAGCCGAAAGCC
Resampled $2 TATAATGAAAGCTGGTACGAGCATGGTCGAAAGCTGGTAC

$3 TATAATGGAAGTGGGGACACGTGGACAGCCGAGCCGACAGCC
SequencCes s4 TATAATGCGACACGTGGATAGCCGAGCCGATAGCC

S5 TATAATGGGAGGAAAGCCGAGCCGAAAGCC
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Table 1 Medium-gap-length model conditions: parameter values and summary statistics

Model condition  Number of taxa Tree height Insertion/deletion NHD Gappiness True align length
probability
10.A 10 04 0.13 0.297 0474 1965.3
108 10 0.7 0.1 0.394 0.512 2165.1
10.C 10 1 0.06 0.514 0.526 2162.8
10.D 10 1.6 0.031 0.599 0.485 18744
10.E 10 43 0.013 0.693 0.465 1849.3
50.A 50 045 0.06 0.281 0516 20435
50.8 50 0.7 0.03 0.398 0475 19355
50.C 50 1 0.02 0.514 0.498 20476
50D 50 1.8 0.012 0.594 0471 1945.0
50.E 50 43 0.004 0.688 0459 1890.2

The main simulations in our study utilized the medium gap length distribution from the study of Liu et al. [15]. The model condition parameters consist of the number
of taxa, model tree height, and insertion/deletion probability. Each model condition corresponds to a distinct set of model parameter values. The 10-taxon model
conditions are named 10.A through 10.E in order of generally increasing sequence divergence; the 50-taxon model conditions are named 50.A through 50.E similarly.
The following table columns list average summary statistics for each model condition (n = 20)."NHD" is the average normalized Hamming distance of a pair of aligned
sequences in the true alignment. “Gappiness” is the percentage of true alignment cells which consists of indels. “True align length”is the length of the true alignment

All downstream steps of GUIDANCE1/GUIDANCE2
were then performed using the re-estimated alignments
as input.

To further explore the impact of our algorithmic design
choices, we included additional experiments which var-
ied the parameter settings used to perform SERES-based
support estimation. Each set of experiments manipulated
one parameter setting—either the number of anchors,
anchor length, or the method used for estimating the
input MSA—but otherwise used default settings for
SERES-based support estimation. The number of anchors
was selected from the set {3, 5, 20, 50, 100}. Anchor length
in bp was chosen from the set {3, 5, 10, 30, 50}. Three dif-
ferent methods were used for estimating an input MSA:
ClustalW [13], MAFFT [9], and FSA [2].

Simulated datasets

Model trees and sequences were simulated using INDEL-
ible [8]. First, non-ultrametric model trees with either 10
or 50 taxa were sampled using the following procedure.
Model trees were generated under a birth-death process
[21], branch lengths were chosen UAR from the interval
(0, 1), and the model tree height was re-scaled from its
original height /g to a desired height # by multiplying all
branch lengths by the factor /1/hg. Next, sequences were
evolved down each model tree under the General Time-
Reversible (GTR) model of substitution [19] and the indel
model of Fletcher and Yang [8], where the root sequence
had length of 1 kb. We used the substitution rates and
base frequencies from the study of Liu et al. [15], which
were based upon empirical analysis of the nematode Tree
of Life. Sequence insertions/deletions occurred at rate r;,

and we used the medium gap length distribution from
the study of Liu et al. [15].

The model parameter values used for simulation and
summary statistics computed on the simulated datasets
are shown in Table 1. Each combination of model param-
eter values constitutes a model condition. Model condi-
tions are enumerated in order of generally increasing
sequence divergence, as reflected by ANHD. For each
model condition, the simulation procedure was repeated
to generate twenty replicate datasets.

To explore the impact of gap length distribution, our
study also included 10-taxon model conditions which
utilized the long gap length distribution from the study
of Liu et al. [15] in place of the medium gap length distri-
bution that was used elsewhere in our simulation study.
Parameter values and summary statistics for the long-
gap-length model conditions are shown in Table 2.

The MSA support estimation problem under study
requires an MSA as input. Summary statistics for the
estimated alignments used as input are provided in
Table 3.

The performance of the MSA support estimation meth-
ods in our study was evaluated using receiver operating
characteristic (ROC) curves, precision-recall (PR) curves,
and area under ROC and PR curves (ROC-AUC and
PR-AUC, respectively). Consistent with other studies of
MSA support estimation techniques [18, 20], the MSA
support estimation problem in our study entails anno-
tation of nucleotide-nucleotide homologies in the esti-
mated alignment; thus, homologies that appear in the
true alignment but not the estimated alignment are not
considered. For this reason, the confusion matrix quan-
tities used for ROC and PR calculations are defined as
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Table 2 Long-gap-length model conditions: parameter values and summary statistics
Model condition Tree height Insertion/ NHD Gappiness True align length Est align length SP-FN SP-FP
deletion
probability
10long.A 0.4 0.13 0.276 0.440 1804.8 14337 0.272 0.315
10.long.B 0.7 0.1 0.363 0481 1926.7 1447.8 0.381 0.426
10.ong.C 1 0.06 0455 0.456 1853.5 1413.3 0.510 0.537
10.long.D 1.6 0.031 0.542 0432 17541 1403.1 0.725 0.729
10.long.E 43 0.013 0.660 0.445 1811.0 1560.1 0.899 0.897

Our simulation study included additional 10-taxon model conditions that utilized the long gap length distribution from the study of Liu et al. [15]. The model
parameters consisted of model tree height and insertion/deletion probability, and each model condition corresponds to a distinct set of model parameter values.

The long-gap-length model conditions are named 10.long.A through 10.long.E in order of generally increasing sequence divergence. The following table columns

list average summary statistics for each model condition (n = 20).“NHD” is the average normalized Hamming distance of a pair of aligned sequences in the true
alignment. “Gappiness”is the percentage of true alignment cells which consists of indels. “True align length”is the length of the true alignment. “Est align length”is the
length of the MAFFT-estimated alignment [9] which was provided as input to the support estimation methods. “SP-FN"and “SP-FP” are the proportion of homologies
that appear in the true alignment but not in the MAFFT-estimated alignment and vice versa, respectively

Table 3 Medium-gap-length model conditions: estimated
alignment statistics

Model condition Est align length SP-FN SP-FP
MAFFT

10.A 15523 0.294 0.341
108 1563.5 0483 0.533
10.C 1554.0 0.657 0.684
10D 1507.5 0.747 0.752
10.E 1612.8 0.945 0.943
50.A 1785.7 0.086 0.088
508 1714.2 0.105 0.102
50.C 1703.1 0.245 0.230
50D 17122 0455 0419
50.E 2319.2 0.963 0.948
Model condition Est align length SP-FN SP-FP
ClustalW

10.A 1208.5 0497 0.556
108 1186.2 0.624 0.684
10.C 1144.8 0.711 0.754
10D 1105.7 0.756 0.786
10.E 1060.1 0.896 0.906
Model condition Est align length SP-FN SP-FP
FSA

10.A 22893 0.334 0.124
108 34185 0.585 0.164
10.C 4506.6 0.729 0.211
10D 50009 0.800 0.223
10E 6657.1 0.907 0.531

The MSA support estimation problem requires an input MSA. MAFFT [9] was
used to estimate an input MSA for all model conditions in our study. Our study
also included ClustalW [13] and FSA [2] alignments to explore the impact of
input alignment quality on downstream support estimation. The following
table columns list average statistics for estimated alignments on each model
condition (n = 20)."Est align length”is the estimated alignment length.“SP-FN”
and “SP-FP" are the proportion of homologies that appear in the true alignment
but not in the estimated alignment and vice versa, respectively

follows. True positives (TP) are the set of nucleotide-
nucleotide homologies that appear in the true alignment
and the estimated alignment with support value greater
than or equal to a given threshold, false positives (FP) are
the set of nucleotide-nucleotide homologies that appear
in the estimated alignment with support value greater
than or equal to a given threshold but do not appear in
the true alignment, false negatives (FN) are the set of
nucleotide-nucleotide homologies that appear in the true
alignment but appear in the estimated alignment with
support value below a given threshold, and true nega-
tives (TN) are the set of nucleotide-nucleotide homolo-
gies that do not appear in the true alignment and appear
in the estimated alignment with support value below a
given threshold. The ROC curve plots the true positive
rate (TP|/(JTP|+ |FNJ)) versus the false positive rate
(IFP|/(JFP| 4+ |TN])). The PR curve plots the true posi-
tive rate versus precision (TP|/(|TP|+ |FP|)). Varying
the support threshold yields different points along these
curves. Custom scripts were used to perform confusion
matrix calculations. ROC curve, PR curve, and AUC cal-
culations were performed using the scikit-learn Python
library [17].

Empirical datasets

We downloaded empirical benchmarks from the Com-
parative RNA Web (CRW) Site database, which can be
found at http://www.rna.icmb.utexas.edu [3]. In brief, the
CRW database includes ribosomal RNA sequence data-
sets than span a range of dataset sizes and evolutionary
divergence. We focused on datasets where high-quality
reference alignments are available; the reference align-
ments were produced using intensive manual curation
and analysis of heterogeneous data, including secondary
structure information. We selected primary 16S rRNA,
primary 23S rRNA, primary intron, and seed alignments
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Table 4 Empirical dataset summary statistics

Dataset Number of taxa NHD Gappiness Ref align length Est align length SP-FN SP-FP
IGIA 110 0.606 0915 10,368 6675 0.734 0.784
IGIB 202 0579 0910 10,633 7379 0.825 0.864
IGIC2 32 0.533 0.700 4243 3514 0.689 0.715
IGID 21 0.719 0.782 5061 3023 0.874 0.904
IGIE 249 0451 0.838 2751 2775 0.393 0.376
IGIIA 174 0.668 0.814 6406 7005 0816 0.800
PA23 142 0.293 0.267 3991 3552 0.078 0.077
PE23 117 0.300 0612 9436 10,083 0.202 0.213
PM23 102 0.361 0.797 10,999 8803 0.262 0.288
SA16 132 0212 0.205 1866 1673 0.031 0.028
SA23 144 0304 0460 4048 3678 0.077 0.081

The empirical study made use of reference alignments (“Ref align”) from the CRW database [3]. The reference alignments were curated using heterogeneous data
including secondary structure information. The column description is identical to Table 2, where the empirical study made use of reference alignments in lieu of the

simulation study’s true alignments

with at most 250 sequences. Aligned sequences with 99%
or more missing data and/or indels were omitted from
analysis. Summary statistics for the empirical bench-
marks are shown in Table 4.

Computational resources used and software/data
availability

All computational analyses were run on computing
facilities in Michigan State University’s High Perfor-
mance Computing Center. We used compute nodes
in the intel16-k80 cluster, each of which had a 2.4 GHz
14-core Intel Xeon E5-2680v4 processor with 256 GiB of
main memory. Open-source software and open data can
be found at https://gitlab.msu.edu/liulab/SERES-Scrip
ts-Data.

Results

Simulation study

On the medium-gap-length model conditions, SERES-
based resampling and re-estimation yielded improved
MSA support estimates compared to GUIDANCE1 and
GUIDANCE2, two state-of-the-art methods, where
performance was measured by PR-AUC or ROC-AUC
(Table 5). In all cases, PR-AUC or ROC-AUC improve-
ments were statistically significant (corrected pairwise
t-test or DeLong et al. [5] test, respectively; n = 20 and
a = 0.05). The observed performance improvement
was robust to several experimental factors: dataset size,
increasing sequence divergence due to increasing num-
bers of substitutions, insertions, and deletions, and the
choice of alignment-specific parametric support estima-
tion techniques (i.e., the parametric approaches used by
either GUIDANCEI1 or GUIDANCE2) that were used in
combination with SERES-based support estimation.

Compared to dataset size, sequence divergence had a
relatively greater quantitative impact on each method’s
performance. For each dataset size (10 or 50 taxa), PR-
AUC differed by at most 3% on the least divergent model
condition. The SERES-based method’s performance
advantage grew as sequence divergence increased—to as
much as 28%—and the largest performance advantages
were seen on the most divergent datasets in our study.
The most divergent datasets were also the most chal-
lenging. For each method, PR-AUC generally degraded
as sequence divergence increased; however, the SERES-
based method’s PR-AUC degraded more slowly com-
pared to the non-SERES-based method. Consistent
with the study of Sela et al. [20], GUIDANCE2 consist-
ently outperformed GUIDANCELI on each model condi-
tions and using either AUC measure. The performance
improvement of SERES + GUIDANCE1 over GUID-
ANCE1 was generally greater than that seen when
comparing SERES 4+ GUIDANCE2 and GUIDANCE2;
furthermore, the PR-AUC-based corrected g-values were
more significant for the former compared to the latter in
all cases except for the 10.D model condition, where the
corrected g-values were comparable. Finally, while the
SERES-based method consistently yielded performance
improvements over the corresponding non-SERES-based
method regardless of the choice of performance measure
(either PR-AUC or ROC-AUC), the PR-AUC difference
was generally larger than the ROC-AUC difference, espe-
cially on more divergent model conditions.

In terms of average runtime on the 10-taxon and
50-taxon model conditions, SERES 4+ GUIDANCE2
added overhead of at most 1.4 min and 6.5 min relative to
GUIDANCE?2, respectively (Additional file 1: Figure S1).
The average runtime overhead of SERES + GUIDANCE1
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Table 5 Support estimation method performance on main model conditions

Model PR-AUC (%) Pairwise t-test ROC-AUC (%) Delong et al. test
condition corrected g-value corrected g-value
GUIDANCE1 SERES + GUIDANCE1 SERES +
GUIDANCE1 GUIDANCE1
10A 88.74 91.17 54 x 1077 80.22 8557 < 10710
108 8221 86.26 15 % 1070 84.83 88.66 <1010
10.C 76.23 83.49 19 %10~ 86.98 91.23 <10°10
10D 74.65 85.81 19 %1074 88.55 93.72 <1010
10E 4261 59.20 3.1 %x 107 82.24 87.40 < 10710
50.A 98.22 98.92 53 % 10~10 83.09 90.64 < 10710
508 97.84 98.69 28 x 1072 82.85 90.39 <1010
50.C 95.08 96.80 56 x 1078 85.54 90.64 < 10710
50.D 90.79 95.75 53 % 1070 88.89 94.56 <1010
50.E 6247 79.14 80 x 10710 91.02 9323 < 10710
Model PR-AUC (%) Pairwise t-test ROC-AUC (%) Delong et al. test
condition corrected g-value corrected g-value
GUIDANCE2 SERES + GUIDANCE2 SERES +
GUIDANCE2 GUIDANCE2
T0.A 9255 93.33 74 % 1076 87.17 88.34 <10°10
108 88.08 89.31 84 x 1074 89.45 90.56 < 10710
10.C 8428 86.86 3.1 x 107 91.36 92.88 < 10710
10.D 86.03 88.75 19 %10~ 93.34 94.69 <1010
10.E 51.17 62.30 13 % 1073 86.00 88.28 <10°10
50.A 0898 99.14 53 % 1076 91.17 92.50 < 10710
508 98.79 98.96 15 % 1070 91.24 92.44 < 10710
50.C 96.86 97.45 32 % 10~/ 90.81 92.31 <10-10
50D 94.04 96.23 15 % 1077 92.67 95.09 < 10710
50.E 7261 81.47 15x% 108 92.94 94.22 <1010

Results are shown for five 10-taxon model conditions (named 10.A through 10.E in order of generally increasing sequence divergence) and five 50-taxon model
conditions (similarly named 50.A through 50.E). We evaluated the performance of two state-of-the-art methods for MSA support estimation—GUIDANCE1 [18] and
GUIDANCE?2 [20]—versus re-estimation on SERES and parametrically resampled replicates (using parametric techniques from either GUIDANCE1 or GUIDANCE?2) (see
“Methods” section for details.) We calculated each method’s precision-recall (PR) and receiver operating characteristic (ROC) curves. Performance is evaluated based
upon aggregate area under curve (AUC) across all replicates for a model condition (n = 20). The top rows show AUC comparisons of GUIDANCE1 (“GUIDANCE1") vs.
SERES combined with parametric techniques from GUIDANCE1 (“SERES + GUIDANCE1"), and the bottom rows show AUC comparisons of GUIDANCE2 (“"GUIDANCE2")
vs. SERES combined with parametric techniques from GUIDANCE2 (“SERES + GUIDANCE2"); for each model condition and pairwise comparison, the best AUC is shown
in italics. Statistical significance of PR-AUC or ROC-AUC differences was assessed using a one-tailed pairwise t-test or DeLong et al. [5] test, respectively, and multiple
test correction was performed using the method of Benjamini and Hochberg [1]. Corrected g-values are reported (n = 20) and all were significant (& = 0.05)

relative to GUIDANCE] was at most 1 min and 5 min
on the 10-taxon and 50-taxon model conditions, respec-
tively. In terms of average memory usage on 10-taxon
and 50-taxon model conditions, SERES + GUIDANCE2
adds at most 0.034 GiB and 0.871 GiB overhead relative
to GUIDANCE?2, respectively (Additional file 1: Figure
S2). A similar outcome was observed when comparing
SERES + GUIDANCEI] and GUIDANCE]. On average,
all methods in the simulation study completed analysis of
each replicate dataset in less than half an hour and with
less than 1 GiB of main memory usage.

Performance comparisons on the long-gap-length
model conditions (Table 6) were largely similar to the

medium-gap-length model conditions. SERES + GUID-
ANCE2 consistently returned significant improvements
in PR-AUC and ROC-AUC relative to GUIDANCE2
(corrected pairwise t-test or DeLong et al. [5] test,
respectively; # = 20 and « = 0.05). Furthermore, SERES
+ GUIDANCE2’s PR-AUC advantage relative to GUID-
ANCE2 tended to improve on more divergent model
conditions. With a single exception, PR-AUC improve-
ment of SERES + GUIDANCE2 over GUIDANCE?2 was
similar (within a single percentage point) when compar-
ing medium-gap-length/long-gap-length model condi-
tion pairs that were otherwise equivalent (e.g., 10.A and
10.long.A); a similar finding was observed for ROC-AUC
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Table 6 Support estimation method performance on long-gap-length model conditions

Model condition PR-AUC (%)

GUIDANCE2 SERES + GUIDANCE2 Pairwise t-test
corrected g-value
10.Jong.A 9232 92.94 97 x 107
10.Jong.B 9062 91.64 33x107¢
10.Jong.C 85.10 87.93 97 x 107
10long.D 79.22 86.18 97 x 107
10long.E 67.63 78.48 97 x 107

Model condition ROC-AUC (%)

GUIDANCE2 SERES + GUIDANCE2 Delong et al. test

corrected g-value
10.long.A 89.99 90.99 < 10710
10.long.B 91.84 93.02 <1010
10.Jong.C 93.14 94.59 < 10710
10.long.D 93.89 96.13 <1010
10.long.E 9262 94.38 < 10710

The performance of GUIDANCE2 and SERES + GUIDANCE2 is compared across model conditions 10.long.A through 10.long.E (named in order of generally increasing
sequence divergence). Aggregate PR-AUC and ROC-AUC are reported across all replicate datasets in a model condition (n = 20), and the best AUC for each pairwise
method comparison on a model condition is shown in italics. Statistical significance of PR-AUC or ROC-AUC differences was assessed using a one-tailed pairwise t-test
or DeLong et al. [5] test, respectively, and multiple test correction was performed using the method of Benjamini and Hochberg [1]. Corrected g-values are reported

(n = 20) and all were significant (¢ = 0.05)

measurements. The single exception occurred on the
10.D and 10.long.D model conditions, where a larger PR-
AUC performance improvement by the SERES-based
method was seen on the 10.Jong.D model condition ver-
sus the 10.D model condition.

We also conducted additional experiments to study
the impact of three algorithmic design choices. Table 7
shows performance results for SERES + GUIDANCE?2
using alternative methods for estimating an input MSA.
Note that the three MSA methods in our study returned
varying input alignment quality; relative to the other
two MSA methods, FSA returned lower average SP-FP
and was best or close to best in terms of average SP-FN
(Table 3). Downstream support estimation PR-AUC
tended to reflect input alignment quality. While PR-
AUC tended to degrade as model conditions became
more divergent, smaller PR-AUC reductions were seen
when using FSA as input alignment versus MAFFT or
ClustalW. SERES + GUIDANCE2’s PR-AUC and ROC-
AUC performance advantage over GUIDANCE2 was
robust to input alignment quality: it returned PR-AUC
and ROC-AUC improvements when annotating more
accurate input alignments (i.e., FSA alignments) as well
as less accurate input alignments (i.e., the MAFFT and
ClustalW alignments). Results for algorithmic design
experiments using differing choices for anchor length and
numbers of anchors are shown in Figs. 2 and 3, respec-
tively. SERES + GUIDANCE2 returned comparable

PR-AUC and ROC-AUC regardless of anchor length used
for SERES resampling. The average ROC-AUC difference
for different choices of anchor length was less than 0.01
for all model conditions. The largest PR-AUC difference
was 0.058 on the 10.E model condition; in comparison,
SERES + GUIDANCE?2’s PR-AUC improvement over
GUIDANCE2 was 0.28 on the 10.E model condition.
A similar outcome was seen on experiments involving
different choices for the number of anchors, with one
exception: on the most divergent 10.E model condition,
an intermediate number of anchors (about 20) yielded
the best PR-AUC.

Empirical study

Relative to GUIDANCE1 or GUIDANCE2, SERES-
based support estimates consistently returned higher
AUC on all datasets—primary, seed, and intronic—
with a single exception: the comparison of SERES +
GUIDANCE2 and GUIDANCE?2 on the intronic IGIC2
dataset, where the PR-AUC and ROC-AUC differences
were 1.17% and 2.12%, respectively (Table 8). For each
pairwise comparison of methods (i.e., SERES + GUID-
ANCE1 vs. GUIDANCEI or SERES + GUIDANCE?2 vs.
GUIDANCE2), the SERES-based method returned rel-
atively larger PR-AUC improvements on datasets with
greater sequence divergence, as measured by ANHD
and gappiness. In particular, PR-AUC improvements
were less than 1% on seed and primary non-intronic
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Table 7 SERES + GUIDANCE2 performance using alternative methods for estimating an input MSA

Model PR-AUC (%)
condition
ClustalW FSA
GUIDANCE2 SERES + Pairwise t-test GUIDANCE2 SERES + Pairwise t-test
GUIDANCE2 corrected g-value GUIDANCE2 corrected g-value
10A 9537 95.78 28 x 1073 96.36 96.55 86 x 1073
108 92.30 92.95 82 x 107* 95.40 95.87 49 x 1073
10.C 89.36 91.23 17 %1074 95.32 96.06 27 %1073
10.D 88.53 90.45 88 x 107> 96.21 96.87 21 %1073
10.E 73.96 76.50 82 x 107 90.23 92.51 86 x 1073
Model ROC-AUC (%)
condition
ClustalW FSA
GUIDANCE2 SERES + Delong et al. test GUIDANCE2 SERES + Delong et al. test
GUIDANCE2 corrected g-value GUIDANCE2 corrected g-value
10A 96.99 97.23 < 10710 80.85 81.61 < 10710
108 96.64 96.94 < 10710 81.31 82.89 <1010
10.C 96.27 9.88 < 10710 84.48 86.56 < 10710
10.D 95.78 96.65 < 10710 88.63 90.37 <1010
10E 89.84 90.80 <1070 89.10 90.83 < 10710

Input MSAs in these experiments were estimated using either ClustalW [13] or FSA [2] (MAFFT was used to estimate input MSAs throughout the rest of our study.)
Results are shown for model conditions 10.A through 10.E (named in order of generally increasing sequence divergence). The best AUC for each pairwise method
comparison on a model condition is shown in italics. Otherwise, table layout and description are identical to Table 6

datasets. Intronic datasets yielded PR-AUC improve-
ments of as much as 13.87%. Observed AUC improve-
ments of SERES + GUIDANCE1 over GUIDANCE1
were relatively greater than those seen for SERES +
GUIDANCE?2 in comparison to GUIDANCE?2. Finally,
GUIDANCE?2 consistently returned higher AUC rela-
tive to GUIDANCEL, regardless of whether PR or ROC
curves were the basis for AUC comparison.

The runtime overhead of SERES + GUIDANCE2
versus GUIDANCE?2 was larger on the empirical data-
sets compared to the simulation study—at most 2.6 h
on the largest empirical datasets, which have 100-200
taxa or so (Additional file 1: Figure S1). The runtime
difference between the two methods also varied to a
greater degree. Unlike the simulation study, GUID-
ANCE2’s main memory usage was not consistently
better than SERES + GUIDANCE2 on the empirical
datasets (Additional file 1: Figure S2). Rather, the two
methods had comparable memory usage across the
empirical datasets, with a maximum difference of 0.06
GiB. Similar runtime and memory usage comparisons
were observed for SERES + GUIDANCEL1 and GUID-
ANCE], with the former having maximum overhead
relative to the latter of 4.2 h and 0.07 GiB.

Discussion

Re-estimation using SERES resampling resulted in com-
parable or typically improved support estimates for the
application in our study. We believe that this perfor-
mance advantage is due to the ability to generate many
distinct replicates while enforcing the neighbor preserva-
tion principle. The latter is critical for retaining sequence
dependence which is inherent to the application in our
study.

On all model conditions, SERES + GUIDANCE]1 sup-
port estimation resulted in significant improvements in
PR-AUC and ROC-AUC compared to GUIDANCEI.
A similar outcome was observed when comparing
SERES + GUIDANCE2 and GUIDANCE2. The main
difference in each comparison is the resampling tech-
nique—either SERES or standard bootstrap. Our
findings clearly demonstrate the performance advan-
tage of the former over the latter. SERES accounts for
intra-sequence dependence due to insertion and dele-
tion processes, while the bootstrap method assumes
that sites are independent and identically distributed.
Regarding comparisons involving GUIDANCE2 ver-
sus GUIDANCEL], a contributing factor may have been
the greater AUC of GUIDANCE2 over GUIDANCEI.
We used SERES to perform semi-parametric sup-
port estimation in conjunction with the parametric
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Fig. 2 SERES + GUIDANCE?2 performance using different choices for anchor length. Results are shown for five 10-taxon medium-gap-length model
conditions (named 10.A through 10.E in order of generally increasing sequence divergence). We evaluated the performance of SERES + GUIDANCE?2
where anchor length in bp was either 3, 5, 10, 30, or 50. We calculated each method’s precision-recall (PR) and receiver operating characteristic
(ROC) curves. Performance is evaluated based upon aggregate area under curve (AUC) across all replicates for a model condition (n = 20)

support techniques of GUIDANCE1 or GUIDANCE2.
The latter method’s relatively greater AUC may be
more challenging to improve upon. Finally, the perfor-
mance of SERES-based support estimation was largely
robust to input MSA accuracy as well as algorithmic
design choices concerning anchor length and number
of anchors. We attribute the latter to the conservative
anchors used in the SERES framework, which suffice
for the purpose of random walk synchronization and
are otherwise not used.

The performance comparisons on empirical bench-
marks were consistent with the simulation study. In
terms of ANHD and gappiness, the non-intronic data-
sets in our empirical study were more like the low diver-
gence model conditions in our simulation study, and the
intronic datasets were more like the higher divergence
model conditions. Across all empirical datasets, SERES-
based support estimation consistently yielded compara-
ble or better AUC versus GUIDANCE1 or GUIDANCE2
alone. The SERES-based method’s AUC advantage
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Fig. 3 SERES + GUIDANCE2 performance using different choices for the number of anchors. We evaluated the performance of SERES +
GUIDANCE2 where the number of anchors used was either 3, 5, 20, 50, or 100. Otherwise, figure layout and description are identical to Fig. 2

generally increased as datasets became more divergent
and challenging to align—particularly when comparing
performance on non-intronic versus intronic datasets.
We found that the support estimation methods returned
comparable AUC (within a few percentage points) on
datasets with 1-2 dozen sequences and low sequence
divergence relative to other datasets. In particular, IGIC2
was the only dataset where SERES + GUIDANCE2 did
not return an improved AUC relative to GUIDANCEZ2.
IGIC2 was the second-smallest dataset—about an order
of magnitude smaller than all other datasets except the
IGID dataset—and IGIC2 also had the second-lowest

ANHD and lowest gappiness among intronic datasets.
IGID was the smallest dataset, but had higher ANHD
and gappiness compared to the IGIC2 dataset. Compared
to the other empirical datasets, SERES + GUIDANCE2
returned a small AUC improvement over GUIDANCE2
on the IGID dataset—at most 3.2%.

On simulated and empirical datasets, greater sequence
divergence generally resulted in a degradation of method
performance. However, the SERES-based method’s per-
formance tended to degrade more slowly than the cor-
responding non-SERES-based method as sequence
divergence increased, and the greatest performance
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Dataset PR-AUC (%) ROC-AUC (%)
GUIDANCE1 SERES + GUIDANCE1 GUIDANCET1 SERES +
GUIDANCE1
IGIA 62.67 69.28 89.50 91.62
IGIB 73.60 87.47 94.49 97.39
IGIC2 72.67 75.36 82.25 83.87
IGID 63.74 76.30 95.10 96.73
IGIE 93.56 95.42 90.08 93.30
IGIIA 73.03 83.06 86.49 96.45
PA23 98.54 9941 82.59 93.63
PE23 98.44 99.27 94.75 9741
PM23 97.53 98.48 94.20 96.44
SA16 99.72 99.86 91.07 95.57
SA23 98.35 99.24 81.76 92.18
Dataset PR-AUC (%) ROC-AUC (%)
GUIDANCE2 SERES + GUIDANCE2 GUIDANCE2 SERES +
GUIDANCE2

IGIA 67.4 68.49 91.38 91.94
IGIB 80.66 86.72 96.47 97.38
IGIC2 74.44 73.27 84.63 82.51
IGID 75.15 78.38 96.44 97.09
IGIE 94.6 95.44 91.84 93.49
IGIIA 78.16 85.09 94.50 96.82
PA23 99.24 99.53 9148 94.88
PE23 99.07 99.34 96.72 97.63
PM23 98.68 98.85 96.93 97.28
SA16 99.88 99.91 96.22 97.22
SA23 99.04 99.33 89.93 93.18

The empirical study made use of benchmark RNA datasets and curated reference alignments from the CRW database [3]. Results are shown for intronic (“IG" prefix)
and non-intronic datasets (“P” prefix and “S” prefix, following “primary” and “seed” nomenclature from the CRW database). For each dataset, we report each method’s
PR-AUC and ROC-AUC. For each dataset and pairwise method comparison, the best AUC is shown in italics. Methods, performance measures, table layout, and table

description are otherwise identical to Table 5

advantage was seen on the most divergent model condi-
tions and empirical datasets.

Augmenting GUIDANCE1 and GUIDANCE2 with
SERES-based resampling and re-estimation generally
increased computational runtime in our study. The
added overhead amounted to a few minutes on the
10-taxon and 50-taxon simulated datasets, and grew to
a few hours on larger empirical datasets with around
100-200 taxa. In the simulation study, the SERES-
based methods also required more main memory than
GUIDANCE1 and GUIDANCE2. The gap between the
SERES-based methods and standalone GUIDANCE1/
GUIDANCE?2 appeared to narrow on the larger empiri-
cal datasets with a few hundred taxa. Compared to
standalone GUIDANCE1/GUIDANCE2, the SERES-
based methods perform an additional MSA re-esti-
mation step which occurs after SERES random walk

resampling. This difference is likely the primary expla-
nation for the observed computational overhead. We
note that the resampling and re-estimation pipelines
in our study do not explicitly address scalability, but
existing scalability-enhancing techniques can be read-
ily applied to help mitigate added overhead. One option
would be to utilize parallelism in the form of pleasantly
parallel computation or more sophisticated alternatives
(e.g., coordinated and distributed re-estimations that
are conditionally independent given a common model
instance, parallelized divide-and-conquer algorithms,
etc.).

Finally, we note that non-parametric/semi-paramet-
ric resampling techniques are orthogonal to parametric
alternatives. Consistent with previous studies [18, 20], we
found that combining two different classes of methods
yielded better performance than either by itself.
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Conclusions

This study introduced SERES, which consists of new
non-parametric and semi-parametric techniques for
resampling biomolecular sequence data. Using simulated
and empirical data, we explored the use of SERES resam-
pling for support estimation involving a classical problem
in computational biology and bioinformatics. We found
that SERES-based support estimation yields comparable
or typically better performance compared to state-of-the-
art approaches.

We conclude with possible directions for future work.
First, the SERES algorithm in our study made use of a
semi-parametric resampling procedure on unaligned
inputs, since anchors were constructed using progres-
sive multiple sequence alignment. While this approach
worked well in our experiments, non-parametric alter-
natives could be substituted (e.g., unsupervised k-mer
clustering using alignment-free distances [4]) to obtain
a purely non-parametric resampling procedure. Second,
the unaligned input application focused on nucleotide-
nucleotide homologies to enable direct comparison
against existing MSA support estimation procedures (i.e.,
GUIDANCE1 and GUIDANCE?2). The SERES framework
can be extended in a straightforward manner to estimate
support for nucleotide-indel pairs. Third, SERES resam-
pling can be used to perform full MSA inference. One
approach would be to analyze homologies that appeared
in re-estimated inferences across resampled replicates,
without regard to any input alignment. Fourth, in the
case where biomolecular sequences evolved under inser-
tion/deletion processes, we consider the distinction
between aligned and unaligned inputs to be an unneces-
sary dichotomy. In theory, the latter subsumes the former.
We can apply this insight using a two-phase approach:
(1) perform SERES-based re-estimation on unaligned
sequences to estimate support for aligned homologies
(from either an input MSA or the de novo procedure
proposed above), and (2) perform support-weighted
SERES walks on the annotated MSA from the previous
stage to obtain support estimates on downstream infer-
ence. Alternatively, we can simultaneously address both
problems using co-estimation. Fifth, MSA estimation
and MSA support estimation are computationally chal-
lenging problems. Applications of the SERES framework
to large-scale datasets requires further investigation
as part of future algorithmic design studies. Finally, we
envision many other SERES applications. Examples in
computational biology and bioinformatics include pro-
tein structure prediction, detecting genomic patterns of
natural selection, and read mapping and assembly. Non-
parametric resampling for support estimation is widely
used throughout science and engineering, and SERES
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resampling may similarly prove useful in research areas
outside of computational biology and bioinformatics.
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