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ABSTRACT

Neural implants that deliver multi-site electrical stimulation to the nervous systems are
no longer the last resort but routine treatment options for various neurological disorders. Multi-
site electrical stimulation is also widely used to study nervous system function and neural circuit
transformations. These technologies increasingly demand dynamic electrical stimulation and
closed-loop feedback control for real-time assessment of neural function, which is technically
challenging since stimulus-evoked artifacts overwhelm the small neural signals of interest. We
report a novel and versatile artifact removal method that can be applied in a variety of settings,
from single- to multi-site stimulation and recording and for current waveforms of arbitrary shape
and size. The method capitalizes on linear electrical coupling between stimulating currents and
recording artifacts, which allows us to estimate a multi-channel linear Wiener filter to predict and
subsequently remove artifacts via subtraction. We confirm and verify the linearity assumption
and demonstrate feasibility in a variety of recording modalities, including in-vitro sciatic nerve
stimulation, bilateral cochlear implant stimulation, and multi-channel stimulation and recording
between the auditory midbrain and cortex. We demonstrate a vast enhancement in the
recording quality with a typical artifact reduction of 25-40 dB. The method is efficient and can be
scaled to arbitrary number of stimulus and recording sites, making it ideal for applications in
large-scale arrays, closed-loop implants, and high-resolution multi-channel brain-machine

interfaces.

INTRODUCTION



Advances in neural implant and electrical stimulation technologies, such as cochlear
implants (Cls) and vagal nerve stimulators, increasingly rely on concurrent neural stimulation and
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recordings to either assess functional transformations between connected brain regions “ or to

-1 . .
| 8% In such applications,

optimize electrical stimulation via closed-loop feedback contro
capacitive and inductive coupling between the stimulating and recording electrodes leads to
stimulus-evoked artifacts in the extracellular recordings that are often several orders of
magnitude larger (i.e., milli-volts) than the extracellular neural signals (typically micro-volts). Such
artifacts obscure neural activity and make it difficult to interpret and quantify neural data.
Electrical stimulation artifacts are also present in surface recordings of electroencephalogram
(EEG) and electrocorticogram (ECoG) that are more widely used clinically with concurrent
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functional neural stimulations in recent brain-machine interfaces and prosthetic devices *>*%. |

n
order to obtain neural responses to electrical stimuli in the above recording situations, artifact
removal is necessary to isolate neural signals for robust and high-fidelity assessment of neural
activity. Such artifact removal will also be essential for real-time closed-loop stimulation in the
next-generation of neural implants, brain machine interfaces, and prosthetic devices.

Existing artifact removal algorithms invariably focus on the recorded artifact waveforms
without explicitly considering the stimulus currents and sources that are responsible for
generating the artifacts. That is, most artifact removal algorithms do not explicitly use the
electrical stimulation current waveforms to either predict or remove artifacts (although see *°).
Such techniques include artifact template subtraction %2, local curve fitting 2, sample-and-
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interpolate technique 2%, and independent component analysis . Such artifact waveform-

based algorithms usually estimate artifacts by statistical analysis of the recorded signals, which



can suppress artifacts in certain stimulation/recording paradigms. A general assumption of these
algorithms is that the recorded artifacts arise from single isolated stimulation sources that are
reproducible and non-overlapping over time. This assumption may be valid for classic neural
implants like the cardiac pacemaker but can deviate greatly from situations in advanced neural
devices that utilize multichannel stimulus electrodes (i.e., multiple sources) and arbitrary
stimulation waveforms with dynamically varying current amplitude, stimulation rate and/or
pattern (e.g., as for cochlear implants). Further, such artifact removal techniques are often
difficult to implement in real-time especially with dynamically varying stimulus paradigms.
Instead, they are mostly used for post-hoc removal of artifacts. To address the challenge of multi-
site stimulation and recording, a recent method used advanced statistical modeling to improve
spike-sorting quality from extracellular multi-channel recordings *'. Like other approaches, this
method places assumptions on the statistical structure of the artifacts and neural waveforms that
may not strictly hold and likewise does not directly use the known electrical stimulation signals
to remove the artifacts. In addition, many waveform-based algorithms fail when multiple artifacts
are generated in close succession during fast current stimulation. For example, cochlear implants
(Cls) generate hundreds to thousands of stimulus pulses per second of varying amplitudes across
multiple stimulation electrodes that often overlap in time 3, a situation that challenges all
current waveform-based artifact removal algorithms. One solution to enhance artifact removal
in such scenarios is to decrease the rate of Cl stimulation and use constant current amplitudes,
which leads to abnormal stimulation scenarios that make it difficult to characterize normal

. . . . . 2
stimulation and neural processing with such devices *2.



Here we develop an optimal multichannel artifact removal algorithm that can be applied
during high-throughput multi-site electrical stimulation with arbitrary stimulation waveforms.
Unlike nearly all other artifact removal algorithms, which are blind to the stimulation currents
(i.e., the algorithm does not explicitly utilize the input current waveforms to predict or remove
the artifacts), our method capitalizes on the fact that transformation between electrical
stimulation currents and artifacts on the recording arrays arises through linear capacitive and
inductive coupling ** and the fact that stimulation currents are actually known a priori in most
instances. We approach the artifact removal by first establishing the assumption that recorded
artifacts behave linearly with respect to the stimulation currents. This allows us to derive optimal
linear filters to model the transformation between each stimulating-recording electrode pair. The
linear transfer functions for each stimulation and recording site are estimated as a digital filter,
i.e., the Wiener filter, and can be updated as required during the recording procedure to track
the adaptive changes in electrical coupling over time (due to long-term change in impedance,
electrode movement etc.). The procedure is versatile and can be applied to a variety of neural
recording modalities including single, multi-unit, and continuous field potential recordings.
Furthermore, because the algorithm estimates the transfer functions between every stimulation
and neural recording electrode, the procedure can be applied irrespective of the stimulation
currents used. It is thus compatible with single and multi-site stimulation, high-rate stimulation,
and is applicable to electrical stimuli with arbitrary pulse amplitudes and shapes. By applying the
procedure to sample neural datasets (single and multi-channel stimulation), we demonstrate a

vast signal-to-noise ratio improvement of ~25-40 dB.



MATERIALS AND METHODS

Artifact Prediction and Removal

Multi-Input Multi-Output Artifact Prediction Wiener Filter: We develop an optimal
Wiener filter algorithm to predict neural recording artifacts upon delivering electrical stimulation
currents on a multi-channel stimulating electrode array. The predicted artifacts are then
subtracted from the actual neural recording trace to yield a noise reduced estimate of the neural
activity.

We assume a generalized multi-input (stimulation) multi-output (recording) framework
for developing a linear filter approximation of the recording artifact. Given that electrical
stimulation artifacts are the result of linear capacitive and inductive coupling between the
stimulating and recording electrodes >3, we model the transformations between the electrical
stimulus and recorded artifact as a linear Wiener filter with unknown impulse response (or
equivalently, transfer function). Each stimulating and neural recording electrode pair has its own
characteristic transfer function and thus a unique impulse response, which can be determined
based on the input and output data. The composite multi-site stimulation artifact is modeled as

a linear sum of the artifacts generated by each stimulation channel and thus we have:

Yl = " K] * B[] m=1,.,M (1)

n=1

where k is the discrete time index, * is the discrete convolution operator, y,,[k] is the predicted

artifact for channel m (y,, in vector form), h,,,[k] is the impulse response between the n-th



stimulation channel and m-th neural recording channel (h,,,, in vector form), and x,,[k] is the
electrical stimulation signal applied to stimulation channel n (x,,). In matrix form y = hx where
y = [y1 =" Yu] is @ matrix containing the predicted outputs for the M recording channels, x =
[X1 - Xy] is @ matrix containing the input electrical stimulation signals across N stimulation
channels, and

h'11 - h%M] (2)

is an NxM matrix containing the impulse response vectors (h,,,) between all stimulation and
recording channels. The impulse responses are represented as column vectors, h,,, =
[Rnm[0] -+ hpm[L — 1]]7, which contain the impulse response time coefficients between the
n-th input and m-th output, where L represents the filter order. Since there are a total of L
samples for each of the impulse response vectors, the matrix h contains a total of NLxM
coefficients.

The goal is to derive the filter matrix h using experimental measurements. The estimated
filter matrix can then be used to predict the recorded artifacts. The optimal solution that
minimizes the mean squared error of the predicted artifact is obtained via the Wiener-Hopf
equation 34

B = (Cxx)_lRyx (3)

where h is the filter matrix solution that minimizes the mean squared error between the

predicted and real artifacts,



CX1X1 CX1XN (4)
Cx = : :

XNXN

represents the stimulation signal covariance matrix which contains correlation functions (cy ;)

between the n-th and [-th (I,n = 1, ..., N ) input channels, and

r}’1’(1 I‘)’1XN' (5)
Ryx = : . :
I'YMX1 rYMXN'

is @ matrix containing the cross-correlation functions between the m-th output and n-th input

channels (ry_y ).

Upon deriving the multi-site filters using Eqn. 3, h, the stimuli artifacts are then predicted
by convolving each of the estimated sub-filter impulse responses, ilnm, with the corresponding
input signals and applying Egn. 1. Finally, the predicted artifacts are subtracted from the recorded
data yielding the noise-reduced estimate of the neural traces. Although Eqn. 3 is derived for
multi-input multi-output (N > 1,M > 1) neural recording and stimulation scenarios, the
procedure is also compatible with multi-input single-output (N > 1, M = 1), single-input multi-
output (N = 1,M > 1) and single-input single-output (N = 1, M = 1) neural stimulation and
recording scenarios.

As a note, we point out that the form of the predictive Wiener filter used here differs from
blind deconvolutional Wiener filters used in previous reports by others for artifact removal which

35-37

assume that the artifact-generating signals are unknown . Deconvolutional filters use the



signal and noise spectrum statistics to optimally reject the artifact signal via deconvolution. In
general, because the signal and noise spectrums often overlap, such approaches tend to distort
the neural signals of interest upon removing the artifacts and are not intended to fully remove
the artifact. In our case, the wiener filter is instead used to predict the recorded artifact from
known inputs, which can then be removed from the neural recording by subtraction without

distorting the neural signal.

Linearity Assessment and Artifact Removal Quality

Linearity Assessment:. The principal underlying assumption required for the proposed

artifact prediction and removal method is the linear relationship between the stimulation current
and recorded artifact. Such a relationship is expected given the passive conduction properties of
the tissue and the capacitive or inductive coupling with the stimulation current at the recording

. 1
electrode interface 133

. However, it has been suggested that recording artifacts can behave in a
nonlinear fashion !, which would limit the general applicability of the proposed approach. Thus,
we quantified the extent of the linearity (or nonlinearity) of the stimulus current-artifact
relationship by explicitly testing the scaling and additivity properties, which are requisites for a
linear system . First, for each of the recording scenarios tested, we delivered currents of varying
amplitudes. This allowed us to explicitly test how artifact amplitudes scale with respect to the
input current amplitudes. We also performed a set of experiments in which we concurrently
delivered current pulses across multiple electrodes (see section below: Recording in the Rat

Auditory Midbrain and Cortex). This second set of recordings allowed to test how multiple

stimulus currents add together to generate a composite artifact.

10



Signal to Noise Ratio Estimation: We used a shuffled trial procedure to estimate the
artifact (noise) and neural signal power spectra which were then used to estimate the signal-to-
noise ratio (SNR) of the neural recording or the artifact reduction ratio (ARR). The procedure
requires that we deliver an identical electrical stimulation signal from two trials in order to

estimate the signal and noise power spectrum. Consider a recorded neural trace

Yy=VYanty, (6)

where y, represents the artifact-free neural trace (i.e., no artifact) and y, represents the

recorded artifact. If y’ represents the data recorded in the second trial of a repeated experiment
(i.e., same electrical stimulation signal) then the artifact should be identical between the two

trials ( y,) so that

y =y, +Va (7)

where here, y’n, is the neural response component for the second trial. This component differs

from the first trial response (y,) because of neural variability. Computing the cross-spectral

density (CSD) between the two trials yields

Pyyr(w) = By 1 (@) + Py y (@) + Py yr (W) + Py g, (©) (8)

Similarly, the power spectral density (PSD) of the first trial is

11



Dyy(w) = Dy y (W) + Dy (@) + Dy y, () + Py () (9)

Given that the artifact signal is reproducible across trials and typically much larger than the
recorded neural activity (e.g., as seen for the examples of Figs. 1-4), the artifact term in Egn. 8

dominates

Dy (@) = Dy .y (@) (10)

so that CSD between trials approximates the artifact noise spectrum. Furthermore, we note that

for sufficiently long recordings, CDyayn(w) and dDyayrn(w) yield identical spectrum estimates on
average and that dbynyn(a)) > Dy o (w) as a result of neural trial variability between trials.
n

Thus, the neural signal spectrum can be approximated by subtracting the PSD from the CSD

Dy, yn (@) = Pyy(w) = Dyyr () (11)

The signal to noise ratio is then approximated by

q)Signal(w) N cI)yy((‘)) - cI)yy’ (w) (12)

SNR(w) B q)Noise((‘)) - chy’ ((1))

In the above, all cross and power spectral density estimates were obtained using a Welch average
periodogram and a Kaiser window (5 =5, N = 256 time samples or 21 ms). To confirm the validity
of the approximations used to derive Eqn. 12, we also estimated the SNR using an artifact free

neural recording segment. dbsignal(w) was estimated by collecting a 15-second neural trace

12



without any electrical stimulation, which we then used to estimate the signal spectrum. We also
estimated the noise spectrum directly from the Wiener filter predicted artifacts by computing
the spectrum of the predicted artifact. Both procedures produce quantitatively similar results
when compared to the original estimates (within <3 dB) confirming the validity of the
approximations used to derive Egn. 12.

Artifact Reduction Ratio (ARR): In addition to defining the SNR, we also defined and
measured an artifact reduction ratio (ARR). This metric quantifies the reduction in artifact power
following artifact removal and thus provides a measure of the artifact removal quality. It is

defined as

SNRpost((‘)) _ q)Noise,pre (w) (13)

ARR(w) = =
SNRpre ((‘)) (DNoise,post (a))

where SNR ;.. (w) is the SNR prior to artifact removal and SNR ;5 (@) is the measured SNR after
applying the artifact removal algorithm. Since the neural signal spectrum is unchanged by the
artifact removal procedure, the above can also be estimated directly by taking the ratio of the
noise spectrum prior to (P y,;se pre (w)) and post removal of the artifact (Pypise pose (w)). For the
aperiodic stimulation used in inferior colliculus (described below), we note that the ARR metric
is well defined for all frequencies since, in that case, the signal and noise spectrum is continuous
at all frequencies. However, for periodic electrical stimulation such as in the cochlear implant
study (e.g., electrical stimulation periodically at 300 Hz, described below), the electrical

stimulation produced periodic artifacts with harmonic components in the signal spectrum at

13



multiples of the stimulation frequency. Thus, the signal spectrum and hence the ARR contains
signal components only at harmonics of the stimulation frequency and are thus well defined only
at these components.

Depending on the data that were available, the ARR was estimated in one of two ways.
For the sciatic nerve recordings (see section below: mouse sciatic nerve recordings), the isolated
artifacts were obtained during the treatment of lidocaine, which is a non-selective sodium
channel blocker that blocks virtually all neural activities in the sciatic nerve. Thus, for this
condition, there was no need to remove the neural signal spectrum numerically in order to isolate
the artifact spectrum prior to estimating the ARR (as in Eqn. 11). The spectrum prior to artifact
removal was obtained as the spectrum of the original lidocaine recording (pre-artifact removal),
while the spectrum post-artifact removal was obtained by subtracting the predicted artifact from
the original lidocaine recording (using the Wiener filter method) and subsequently computing
the power spectral density. For both, the cochlear implant stimulation and auditory midbrain
stimulation recordings, neural activity and artifacts were not isolated chemically using lidocaine.
Thus, we estimated the artifact and neural spectrums and the corresponding ARR numerically

using shuffled cross-spectral density procedure as described above (Egn. 6-12).

Mouse Sciatic Nerve Recordings

Surgical Procedures: All procedures were approved by the University of Connecticut
Institutional Animal Care and Use Committee. Sciatic nerves of male C57BL/6 mice (6—8 weeks,
Taconic, Germantown, NJ) were harvested for extracellular recordings from teased nerve

39,40

filaments as detailed previously . Mice were anesthetized by isoflurane inhalation, euthanized

14



by exsanguination from perforating the right atrium, and perfused through the left ventricle with
oxygenated Krebs solution (in mM: 117.9 NaCl, 4.7 KCl, 25 NaHCOs3, 1.3 NaH;P04, 1.2 MgSQq, 2.5
CaCl,, and 11.1 D-glucose). Bilateral sciatic nerves of ~¥~30 mm long were harvested from their
proximal projection to the L4 spinal cord to their distal branches innervating gastrocnemius
muscles and transferred to a custom-built chamber perfused with oxygenated Krebs solution at
30 °C. The distal end of the sciatic nerve (~5 mm) was gently pulled into a recording compartment
filled with mineral oil and carefully split (i.e., teased) into fine neural filaments (~25 um thick) for
extracellular recordings of action potentials.

Stimulation and Recording in the Sciatic Nerve Preparation: Action potentials were
evoked at the un-teased end of the sciatic nerve using a platinum-iridium electrode (FHC Inc.,
ME). Electrical currents were delivered using a sub- and supra-threshold stimulation protocol
consisting of a 120-s long low-frequency stimulations (0.5 Hz, 0.2 ms duration, cathodal current)
with six amplitudes delivered in pseudo random order (10, 20, 40, 80, 160, 320 pA; 10 stimulus
pulses per amplitude condition) as shown in Fig. 1A.

Extracellular recordings from multiple teased nerve filaments were conducted by a
custom-built 5-channel electrode array consisting of micro-wires deployed parallel to each other

3940 Recordings were digitized at 25 kHz, band-

with ~150 um clearance as described previously
pass filtered (300-3000 Hz) and stored on a PC using an integrated neural recording and
stimulating system (1Z2H stimulator, PZ5-32 neurodigitizer and RZ5D processor, TDT, Alchua,
Florida, US).

Application of Lidocaine for Acquiring Isolated Artifacts: To quantify the efficiency of

artifact removal via the Wiener filter artifact removal method, we used a non-selective sodium
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channel blocker (lidocaine) to remove most if not all neural activity, which allowed us to obtain
recordings of isolated artifacts. A bronze tube (4x4 mm cross section) was placed over the sciatic
nerve to isolate a small segment of the nerve trunk (~*4mm) for lidocaine application. On both
edges are small notch holes to allow nerve trunk to go through, which were lined with petrolatum
to prevent solution exchange between inside and outside the bronze tube. Krebs solution inside
the bronze tube was replaced with lidocaine (2% dissolved in saline, ~0.2 ml) for 5 mins, and then
the bronze tube was removed for bath washout. The same stimulation protocol mentioned above
was conducted immediately after lidocaine application to obtain isolated artifacts for the six-
amplitude stimulation current signal.

The benefits of applying lidocaine are as follows. First, lidocaine treatment prevents
action potential generation, which allows us to isolate the artifact signal in the absence of neural
activity. This is useful for validating the accuracy of the artifact prediction since there is no
confounding neural activity. Second, the prediction filters obtained during lidocaine treatment
were also used to predict and remove the artifacts obtained in the absence of lidocaine treatment
during supra-threshold stimulation. Thus, the approach allows us to cross validate our artifact
removal algorithm by comparing the Wiener filter artifact cancelation performance against the
pure artifact recordings under lidocaine treatment at supra-threshold stimulation levels.

Estimating Artifact Prediction Filters and ARR: Artifact prediction filters were estimated
using Eqgn. 3 for four different scenarios. First, we used the highest subthreshold current (without
evoking action potentials) to estimate the artifact prediction filters using Eqn. 3. For this
condition, there were only 10 pulses delivered so that the artifact prediction filter was estimated

using only 10 measurements. We refer to this condition as the subthreshold filter. This

16



subthreshold method of estimating the Wiener filter was only used for the sciatic nerve
recordings and was not used subsequently for the cochlear implant or auditory midbrain
stimulation. Next, we used lidocaine treated recordings, which lack neural activity, to derive the
artifact prediction filters using three approaches. For the first lidocaine condition, we used the
recordings containing currents between 10-160 YA to derive the Wiener filter using Egn. 3. Next,
we used the recordings containing stimulus currents between 10-160 pA along with the first five
trials of 320 pA artifacts to estimate the Wiener filters and then performed cross validation by
comparing the predicted artifacts with those from the remaining five trials at 320 pA stimulation.
Finally, we estimated the Wiener filers using all of the recorded data from both sub- and supra-
threshold stimulation under lidocaine (10-320 pA).

These four filters were then used to predict the stimulation artifacts during the 320 pA
current stimulation scenario, which were subtracted from the neurophysiological recordings to
isolate the supra-threshold nerve response evoked by 320 pA current stimulation. The artifact

removal quality was assessed with the ARR defined above (Egn. 13) for each scenario.

Bilateral Cochlear Implant Stimulation in Rats

Surgical Procedures: To illustrate the artifact removal during Cl stimulation, we use
example data from two female Wistar rats, one of which was normally hearing, the other
neonatally deafened by daily intraperitoneal (i.p.) injections of 400 mg/kg kanamycin from

postnatal day 9 to 20 **

. The animals were part of studies designed to determine factors
governing sensitivity to binaural cues delivered via direct, intracochlear stimulation similar to that

used in clinical Cl devices. These data were obtained at the City University of Hong Kong, using
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procedures licensed by the Department of Health of Hong Kong (license number 16-52
DH/HA&P/8/2/5) and approved by the Animal Research Ethics Subcommittee of City University..
All surgical procedures, including Cl implantation and craniotomy, were performed under
anesthesia, which was induced with an i.p. injection of ketamine (80 mg/kg) and xylazine (12
mg/kg) and maintained by continuous i.p. infusion of ketamine (17.8 mg/kg/h) and xylazine (2.7
mg/kg/h) in 0.9% saline solution at a rate of 3.1 ml/h, and the animal’s body temperature was
maintained at 38°C using a feedback-controlled heating pad (RWD Life Sciences, Shenzhen,
China). The cochlear implantation methods are described in detail in ***.

In short, four rings of an eight-channel intracochlear electrode carrier (ST08.45, Peira,
Beerse, Belgium) were inserted through a cochleostomy in the medio-dorsal direction into the
middle turn of both cochleae. The tip electrode ring of each intracochlear array was used to
deliver electrical stimuli, while the second, adjacent electrode served as ground. A craniotomy
was then performed bilaterally of the central cranial suture, just anterior to lambda, and a single-
shaft, 32-channel silicon array electrode (ATLAS Neuroengineering, E32-50-S1-L6) was inserted
stereotaxically into the inferior colliculus (IC) through the overlying occipital cortex using a
micromanipulator (RWD Life Sciences).

Electrophysiology: Electrical stimuli were generated using a Tucker Davis Technology
(TDT, Alachua, Florida, US) 1Z2MH programmable constant current stimulator (TDT, Alachua,
Florida, US) running at a sample rate of 24414 Hz. To verify that the cochlear implantation was
successful and yielded symmetric evoked responses at comparatively low thresholds (typically

less than 100 QA peak) in each ear, electrically evoked auditory brain stem response thresholds

were measured for each ear individually. This was done by recording scalp potentials with
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subcutaneous needle electrodes implanted over the vertex and each bulla, averaged over the
presentation of 400 individual biphasic electrical stimulus pulses.

Extracellular signals were recorded at a rate of 24414 Hz with a TDT RZ2 with a
NeuroDigitizer headstage and BrainWare software. Neural tuning to interaural time differences
(ITDs) of binaurally delivered pulse trains was then measured by recording extracellular
responses of IC neurons to 200 ms long trains of anode leading, biphasic electrical pulses (duty
cycle: 40.96 us positive, 40.96 us at zero, 40.96 ps negative), with peak pulse amplitudes
approximately 6 dB above neural response thresholds and a rate of 300 pulses per second. The
pulses were delivered bilaterally to both ears and the ITD between the left and right ear was
varied (ITD=-160, -80, -40, 0, +40, +80 and +160 ps). In one set of recordings, the amplitude of
the pulse sequences was modulated with a Hanning window. This allowed us to test for linearity
of the stimulus current to artifact relationship and ultimately allows us to determine whether the
Wiener filter artifact prediction method is able to generalize and predict dynamic time-varying
artifacts. The recordings typically exhibited short response latencies (= 3-5 ms), which indicates
that they probably come predominantly from the central region of IC.

Using the suprathreshold recording traces, we applied Eqn. 3 and derived the Wiener
artifact prediction filters for each recording. The estimated filters were then used to predict and
subsequently subtract the recording artifacts from the recorded traces. Eqn. 3 was applied in a
variety of ways in order to demonstrate the flexibility of the Wiener filter method. For the first
recording, we treated each ITD condition separately, and derived one artifact prediction filter per
condition (Fig. 3, shown for 0 ms ITD). For this example, the artifacts associated with each ITD

condition are highly reproducible because the pulse amplitude and ITD of the left and right ear
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pulse was not varied for each individual condition. This allows us to measure a single composite
artifact filter for each individual ITD condition. For the second example (Fig. 3), we used pulses
that varied dynamically over time and we included all ITD conditions during the filter estimation.
For this example, each ITD produces a unique artifact waveforms and the goal was to derive filters
that could generalize across all of the recorded conditions. We did so by treating the pulse
sequences of the left and right ear as distinct inputs (2 input Wiener filter). Thus, for each
recording channel, we obtained two separate filters, one for the left and the other for the right
channel. These filters were then individually convolved with the left and right ear pulse sequence
(with the appropriate ITD) and subsequently summed to derive the final predicted artifact (Egn.
1 for N=2). Finally, we tested the quality of the artifact prediction achieved either by applying
Egn. 3 one recording channel at a time or by considering all recording channels simultaneously
(in matrix form, multi-output scenario). Regardless of which approach we used to estimate the
artifact prediction filters, the results were identical and within the machine precision (e.g., RMS

error for example of Fig. 3 is 1.4x1072° %).

Electrical Stimulation and Recording in the Rat Auditory Midbrain and Cortex
Surgical Procedures: All procedures were approved by the Institutional Animal Care and
Use Committee of the University of Connecticut. Recordings were obtained from right cerebral
hemisphere of adult male Brown Norway rats. Anesthesia was induced with ketamine and
xylazine and maintained throughout the surgery and recording procedures. Depth of anesthesia
was monitored using pedal reflex, heart rate, and blood oxygen saturation (SpO2) measured by

a pulse oximeter. A heating pad was also used to maintain the animal’s body temperature at 37.0
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+ 1.0 °C. Craniotomies were performed over the temporal cortex to make both cortex and IC
regions accessible. Dexamethasone and atropine sulfate were administered to reduce cerebral
edema and secretions in the airway.

Electrophysiology: 16-channel acute neural recording probes (NeuroNexus 5 mm probe;
16-linear spaced sites with 150 um separation; site impedance ~100 K(}) were used to record
neural activity and also to deliver electrical stimulation to the IC. Stimulating and recording
probes were grounded to the animal’s neck muscle and the eye bars holding the animal in place,
respectively **. The probes were inserted with a high precision LS6000 microdrive (Burleigh
EXFO). A 4-channel acute single-shank recording tetrode (Qtrode, NeuroNexus Inc; 5 mm shank
length, tetrode with 25 um site separation; site impedance ~1-3 M(}) was simultaneously inserted
into auditory cortex (AC). Penetration sites were chosen within the depth range of cortical layer
IV where AC receives its inputs from auditory thalamus. A sequence of pure tones with varying
frequency and attenuation was initially played to the animal’s left ear (contralateral to the brain
opening) and brain responses were recorded to generate frequency response areas (FRA) to
verify probes placements in the central nucleus of IC and AC.

Neural activity was recorded digitally at a sampling rate of 12 kHz using a PZ2 preamplifier
and RZ2 real time processor (TDT, Alchua, Florida, US). Electrical stimuli were delivered to the IC
electrode via the 1Z2 stimulation module (TDT, Alchua, Florida, US). Electrical pulse sequences
with amplitudes of either 40 puA or 10 pA were transmitted to a single electrode (Fig. 4) or
independently across multiple electrode channels (Fig. 5 and 6), respectively (see below for
details). Neural activity was then recorded from the auditory cortical probe for the duration of

each stimulus.
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Single-Channel and Multi-Channel Electrical Stimulation: We first delivered Poisson-
distributed biphasic pulse sequence during single channel electrical stimulation. A random sparse
sequence of impulses with arrival time following Poisson point process and impulse rate of 16 Hz
was first generated (86 sec duration; delivered twice). The impulse sequence was convolved with
a biphasic pulse (164 ps duration and 40 pA current amplitude) to produce the current waveform
used for electrical stimulation.

For multi-site electrical stimulation, we delivered a random quad-pulse train sequence
(RQP; 86 sec duration; delivered twice). The RQP sequence is generated by delivering biphasic
pulses (164 us duration and 10 pA amplitude) concurrently across 4 randomly chosen electrode
channels every 40 ms yielding an average pulse rate of 100 pulses/s as illustrated in Fig. 5. This
multi-site sequence produces a random spatio-temporal patterned set of pulses that are
delivered across the 16-channel electrode array. We also delivered an RQP sequence in which
the amplitude of the pulses was varied dynamically over time (Fig. 6). Pulse amplitudes for this
sequence varied between 0.1 and 10 pA in logarithmic steps (11 steps total). Because the pulse
amplitudes scale over two orders of magnitude and the pulses summate across channels, this

multi-channel sequence allows us to test for linearity of the current-artifact relationship.

RESULTS

We demonstrate the Wiener filter effectiveness for predicting and removing neural
recording artifacts during single and multi-channel electrical stimulation for both high-frequency
spiking activity and low-frequency local field potentials (LFP) in a variety of recording modalities.

The success of the artifact removal method is evaluated by comparing the residual artifacts
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across repeated stimulation trials and estimating neural recording SNR as well as the ARR before

and after removing artifacts.

Single-Channel Electrical Stimulation of Sciatic Nerve

Monopolar stimulus pulses (0.2 ms duration, cathodal current, 0.5 Hz stimulation rate)
with 6 current amplitudes (10-320 A, octave increments, both sub- and supra-threshold) were
delivered in pseudo random order to one end of sciatic nerve with a platinum iridium electrode
(Fig. 1A). Evoked action potentials along with stimulation artifacts were recorded from 40 teased
sciatic nerve filaments and the quality of artifact removal using the proposed linear Wiener filter
was assessed under various conditions.

The artifact prediction filter accurately predicts the recorded artifacts regardless of the
current amplitude delivered, as shown in Fig. 1B, where a representative recording of the
lidocaine treated artifacts is superimposed with the Wiener filter predicted artifact (Wiener filter
estimated using currents between 10-320 pA under lidocaine). The prediction filter was obtained
by correlating the input stimulation current with the recorded artifacts using the Wiener-Hopf
Equation (Egn. 3). This filter is subsequently used to filter the input current in order to predict
the artifacts. As seen for the entire session, the recorded artifacts under lidocaine treatment
(purple) are highly overlapped with and indistinguishable from the predicted artifacts (red).
Likewise, magnified views of the recorded artifacts from different stimulating amplitudes are
indistinguishable from the predicted artifacts as displayed in Fig. 1C. The overlapping waveforms
between the actual and the linear Wiener-filter predicted artifact verify the hypothesis that

recording artifacts follow a linear relationship with respect to the input current signals. We
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explicitly tested for linearity by first plotting the relationship between input current amplitude
and the peak-to-peak amplitude of recorded artifact which showed an exceptionally high
correlation coefficient across all recordings (Fig. 1D; % = 0.9997 + 0.0004, Mean+SD, N=40).
Similarly, the relationship between the peak-to-peak amplitude of the recorded (with lidocaine)
and the linear filter predicted artifacts was likewise highly correlated (Fig. 1E; % = 0.9997 +
0.0004, Mean+SD, N=40). These results suggest that, for this experimental preparation, the
recorded artifacts scale linearly with respect to the current input, such that the linear Wiener
filter accurately predicts the recorded artifacts regardless of the amplitude of the stimulating
current.

The artifact prediction and removal procedure accurately isolated neural responses for a
range of filter estimation conditions. The artifact prediction filters were estimated using artifact
recordings either from subthreshold stimulation or under lidocaine treatment (see Methods).
The estimated filters were then used to predict and cancel out the recording artifact during
suprathreshold stimulation (pre-lidocaine at 320 pA). Fig. 1F shows a representative
suprathreshold recording (320 pA current stimulation; black curves) along with the predicted
artifacts derived from each of the estimated Wiener filters (gray box). As a control, we also
obtained artifact recordings following the application of lidocaine which blocks action potential
generation so that the recorded signals consisted of pure stimulus artifacts as shown in Fig. 1F
(purple, top left). This post-lidocaine artifact signal was subtracted from the original recordings
(pre-lidocaine at 320 pA, black) which allows us to isolate the neural response component (Fig.
1F, purple, bottom left). For the Wiener filter cancelation method, we first used the artifacts

evoked from highest measured subthreshold current to derive the artifact prediction filters.
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Using this filter, we subsequently predicted (Fig. 1F, blue, top) and subtracted the predicted
artifacts from the suprathreshold stimulation recordings (Fig. 1F, blue, bottom). The Wiener filter
obtained using subthreshold stimulation accurately predicts the recorded artifacts during
suprathreshold stimulation and is able to isolate the neural activity (Fig. 1F, bottom). An
advantage of this approach is that, unlike lidocaine treatment, it does not require a
pharmacological treatment to block neural activity in order to isolate and remove the artifact
signals. Next, we estimated the artifact prediction filters using the lidocaine treated artifacts from
the lowest five current intensities (10-160 pA) and predicted the artifacts at 320 pA stimulation
(green, top). Since the currents used for the filter estimation and subsequent prediction are not
the same, this test serves as a cross-validation as well as assessment of linearity. As can be seen
in Fig. 1F (green, bottom), subtracting the predicted artifact from the recorded waveform
substantially reduces the artifact size and successfully isolates the action potential. Next, we
carried out the same procedure but estimated the Wiener filters using the lowest five current
intensities along with the first five trials of the 320 uA lidocaine session (10-320 pA, 55 trials used,
cross-validated condition, brown) or the entire lidocaine recording session (10-320 pA, all 60
trials used, red). As exemplified for each of these cancelation examples, the isolated neural
signals obtained from artifact removal by the Wiener filter method (gray box, bottom) are nearly
identical to the experimentally isolated artifact signals using lidocaine treatment (purple,
bottom).

We next quantified the artifact cancellation performance for each of the above scenarios.
The cancellation performance depended on the data used to estimate the artifact prediction

filter, particularly the number of artifacts and the signal-to-noise ratio of the artifacts used for
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filter estimation. The artifact reduction ratio (ARR, see Methods) quantifies the attenuation of
the artifact spectrum (in dB) following cancellation and is shown in Fig. 1G for each of the
conditions tested. The lowest ARR (measured between 300-3000 Hz) was observed for the
subthreshold condition (22.8+4.4 dB, Mean+SD; N=40 fibers) which is as expected due to fewer
artifacts used (N=10) for the estimation of prediction filter and the fact that the measured
artifacts are relatively low amplitude and thus susceptible to background noise (i.e., low signal-
to-noise ratio). The ARR improved to 28.1+3.5 dB (Mean+SD; N=40 fibers; cross validated) when
lidocaine treated artifacts from 10-160 pA stimulation were used to estimate the Wiener filter.
The ARR was 29.9+4.7 dB (Mean+SD; N=40 fibers) which was calculated using the predicted
artifact built from 55 trials of lidocaine data (10-320 pA) against the remaining 5 trials of 320 A
lidocaine treated artifacts (also cross-validated). The ARR increased to 39.9+3.3 dB (Mean+SD;
N=40 fibers) when lidocaine artifacts from all of 60 trials were used to estimate the artifact
prediction filter (10-320 pA). As a reference control, we used the recorded artifacts from each
trial of the lidocaine treated signals at 320 pA current stimulation to cancel the artifacts for all of
the remaining trails (e.g., trial 1 artifact was used to predict trials 2-10; 2 was used to predict 1,
3-10; etc.). This control artifact removal serves as a way of assessing the inherent noise in single
trials of the recorded data and also serves as a way of canceling artifacts without requiring the
need to assume linearity as for the Wiener filter method. The ARR for this procedure (30.7 + 6.8
dB; Mean+SD; N=40 fibers) is comparable to our cross-validated artifact removal performance
(29.914.7 dB, MeanSD; N=40 fibers). This suggests that the Wiener filter artifact removal

performance is comparable to the performance obtained using real recorded artifacts for
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removal. Thus, the Wiener filter cancelation performance for this example is largely limited by
the intrinsic noise in the recording.

Collectively, these examples demonstrate that the Wiener filter cancellation method can
achieve exceptional cancelation performance and is able to generalize by predicting and

cancelling artifacts across multiple amplitude conditions.

Bilateral Cochlear Implant Stimulation

The artifact removal procedure was also tested with high-rate bilateral cochlear implant
stimulation in rat while concurrently recording from a silicon array electrode implanted in the IC.
In the first example, constant amplitude biphasic electrical pulse sequences were delivered at a
pulse rate of 300 Hz synchronously to both ears, at different interaural delays (ranging between
-160 us to +160 us, 40 us steps; see Methods). An example raw recorded waveform from one IC
electrode channel is shown in Fig. 2A (black), along with the predicted artifact waveform (blue).
For this example, the artifact prediction filters were estimated separately for each ITD condition
using half of the response trials from each particular ITD. The remaining trials at a given ITD are
used to test artifact removal quality (cross-validation). As can be seen for a recording segment
(ITD=0 ms), the predicted artifact signals are largely superimposed and are visually
indistinguishable from the recorded artifacts on the neural recordings. Synchronized action
potentials are observed immediately following the delivery of electrical stimulus current pulses.
Upon subtracting the predicted artifact (blue) from the neural trace (black), the cleaned neural
trace is exceptionally clean with no evident sign of stimulation artifacts and no evident sign of

waveform distortions (Fig. 2A & B, red). Spectral analysis of the recorded signal prior to (Fig. 2C,
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black) and after artifact removal (Fig. 2C, red) confirms a substantial reduction in the artifact size.
The artifact spectrum has harmonic components with a 300 Hz fundamental (blue) which
dominates the original recording (black). Upon removal of the predicted artifact, there is a
substantial reduction in the artifact components (red). Overall, the average artifact reduction at
harmonics of the stimulation frequency is 27.2 dB (between 300-6000 Hz; averaged across all ITD
conditions; Fig. 2D).

We also delivered bilateral electrical stimulation sequences containing pulse amplitudes
that varied dynamically over time (see Methods) as shown in Fig. 3. We used time-varying
amplitudes and different ITDs in order to determine whether the stimulus current-artifact
relationship is linear and to determine whether the Wiener filter prediction method can
generalize to dynamic stimulation scenarios. For this example, the pulse train amplitudes were
ramped on-and-off with a smooth window and the pulses were delivered at multiple ITDs
(between -160 to +160 us in 40 us; pulse rate of 300 Hz; see Methods). The artifact prediction
filters were estimated using all of the ITD and amplitude conditions (1/2 of the data for estimation
and the remaining half for validation; validation data is shown) using Eqn. 3 and two artifact
prediction filters were derived, one for the left ear and the other for the right ear (64 filters total;
32 recording channels x 2 filters / recording channel). These filters were then used to predict the
artifact waveforms for all of the ITD conditions. As can be seen from Fig. 3A for a representative
recording channel, the predicted artifacts (red) derived with the two-channel Wiener filter largely
overlap the recorded artifacts in the original neural recordings (black; shown at three different
scales). The peak-to-peak voltage amplitudes of these artifacts are highly correlated with the

delivered peak-to-peak current amplitudes (Fig. 3C, 2 = 0.9981 + 0.0001; Mean+SEM) as well
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as the peak-to-peak voltages of the predicted artifacts (Fig. 3D, r? = 0.9981 + 0.0001;
Mean+SEM), indicating that the stimulation current and artifact follow a linear relationship. By
subtracting the predicted artifacts from the original recordings, we were able to isolate action
potentials from a single neuron (Fig. 3B). Although there are still some artifacts visible in the
cleaned recording (Fig. 3B, arrows), the artifact size has been dramatically reduced (cross

validated ARR=25.0 dB, between 300-6000 Hz) making isolation of this single neuron possible.

Single- and Multi-Channel Electrical Stimulation in Auditory Midbrain

We also tested the artifact removal procedure by delivering random biphasic electrical
pulse sequences (Poisson distributed pulse intervals, 164 us pulse duration, and 40 pA current
amplitude, Fig. 3A) to an auditory midbrain electrode while neural activity was concurrently
recorded from rat auditory cortex. As can be seen in Fig. 3B and C, the extracellular neural activity
(Fig. 3B, highpass filtered above 300 Hz) and the corresponding unfiltered recordings (Fig. 3C,
unfiltered) both contain stimulation artifacts that are substantially larger than the target neural
signals.

We numerically estimated a digital single channel Wiener filter (N=40 order; 1 stimulation
x 1 recording channel) to predict and subsequently remove the electrical stimulation artifacts
(see Methods). Fig. 4B and C show the raw cortical recordings (top panels), the predicted artifacts
(middle panel) and cleaned neural traces obtained by subtracting the predicted artifacts from the
raw recordings. The artifact prediction algorithm accurately predicts the timing and amplitude
waveform of the electrical artifacts and, upon subtraction, the procedure successfully isolates

either the extracellular waveforms or low-frequency local field potentials in the neural signal.
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Magnified traces of the extracellular recordings (marked by * and **) are presented in Fig. 4D to
show the cleaned neural recordings at a higher resolution. Notably, the algorithm is able to
subtract the artifacts that occur in the vicinity of neural spiking with no visible signs of neural
waveform distortions.

Performance metrics of the artifact prediction and subtraction algorithm for this
recording is shown in Fig. 3E (applied to the broadband unfiltered signal). The signal-to-noise
ratio of the original recorded waveform varies with frequency but is generally in the order of -10
to -20 dB. Upon subtracting the predicted artifact, the cleaned SNR is ~20 dB with an average
SNR enhancement ranging between 30 to 45 dB (average = 39 dB between 300-6000 Hz). Thus,
there is a marked reduction in the artifact size and, as seen in the zoomed neural recordings,
there are no visible distortions created by the subtraction algorithm.

We also successfully used the artifact removal during high throughput multi-channel
electrical stimulation (16 stimulation channels) of the auditory midbrain while concurrently
recording with a tetrode array (4 channels; see Methods). In this instance, the Wiener filter was
applied in matrix form (Eqn. 3), which allowed us to predict the artifacts generated by all of the
stimulating channels on each individual neural recording channel (16 stimulation x 4 recording
channels). Random pulse sequences (100 pulses/s) were delivered to the 16-channel auditory
midbrain array (Fig. 5A; 10 pA pulses delivered across four randomly chosen electrode channels
simultaneously) while recording from auditory cortex electrodes. For this multi-stimulation site
configuration, we numerically estimated the digital filters that predict the artifacts generated by
each of the electrical stimulation channel. Filtered and unfiltered neural recordings, predicted

artifacts, and the cleaned neural traces are depicted for both the filtered (Fig. 5B) and unfiltered
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(Fig. 5C) data. As for the single channel electrical stimulation, the artifact prediction filter is able
to accurately predict the measured artifacts during multi-channel electrical stimulation, resulting
in minimal distortion of the extracellular signals or the local field potentials. Prior to removing
the artifact, the SNR for this recording dips to approximately -15 dB at ~3 kHz (Fig. 5E). Following
artifact removal, the SNR hovers around ~20 dB with an overall improvement in the range of 30-
45 dB across the frequency range (average artifact reduction ratio=33.5 dB from 300-6000 Hz;
Fig. 5E).

Finally, we assessed the linearity of the artifact-current relationship by delivering multi-
channel pulse sequences of time-varying amplitude (Fig. 6). In this example, the amplitude of
random spatio-temporal pulses was modulated over time between 0.1-10 pA as illustrated in
panel Fig. 6A (11 logarithmic steps; color designates the current amplitude). By considering pulse
sequences that contain multiple concurrent pulses of time-varying amplitude we are able to
assess linearity, which requires that artifacts scale in amplitude and summate linearly with the
respect to the input current signals. The multi-channel artifact prediction filters were derived for
this example using the recorded data by applying Egn. 3 and the predicted artifacts were then
derived. As can be seen for two of the four recorded channels (Fig. 6B and C), the procedure
accurately predicts the recorded artifacts and the resulting cleaned neural traces show no
evident signs of artifacts (Fig. 6B and C, bottom; D and E, magnified view). Linearity was assessed
by plotting the recorded versus the predicted peak-to-peak amplitudes of the artifacts (Fig. 6F).
As can be seen from the scatter plot there is clustering along the diagonal. Variability along the
diagonal for each cluster reflects amplitude variability created by the summation of randomly

selected stimulating channels (4 out of 16 channels are stimulated concurrently). Each
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stimulating channel has a distinct impedance (transfer function) and hence a distinct artifact on
the recorded channel with unique amplitude. Consequently, there are 16! /(12!-4!) =1820
possible channel combinations (4 choose 16) and a total of 10920 unique artifacts (1820
artifacts/amplitude x 6 amplitudes). By comparison, variability orthogonal to the diagonal reflects
the variability in the neural signal of interest, which is present in the original recorded trace. As
can be seen, for very small input currents (<500 pA) the artifact peak-to-peak amplitudes are
smaller than the detected peak-to-peak amplitudes from artifact free neural signal segments (0.5
ms window used to detect the peak-to-peak voltage; Mean peak-to-peak voltage of artifact free
segments = 100 pV, dotted blue line Fig. 6D). Thus, for such small stimulation currents, the
detected peak-to-peak amplitudes within the artifact measurement window are actually
corrupted by the peak-to-peak amplitude of the neural signal. This neural signal variability
represents measurement noise and creates a slight curvature in the scatter plot for currents
below ~ 500 pA. Despite this, the accounted artifact variance with a linear model was
exceptionally high (r? = 0.9981 + 0.0001, Mean+SEM) suggesting that the artifacts follow a
linear relationship with the current input.

Overall, these examples demonstrate that a multi-channel linear prediction filter is able
to account for the recorded artifacts generated via spatio-temporal summation from multiple

dynamically changing current inputs.

The Impact of Data Length on Artifact Removal Quality
As seen from different examples, there are some discrepancies in the artifact reduction

ratio between the different recordings which varied between ~25 to 40 dB for the different
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examples tested. This discrepancy is in part accounted by the quality of the estimated artifact
prediction filters, which is expected to depend on the length of the recorded data and the
number of pulses delivered. For instance, the artifact prediction filter obtained for the
subthreshold sciatic nerve stimulation were derived from slow rate pulse sequences (0.5
pulses/s) of relatively short duration (10 sec total) and thus relatively few artifact measurements
(10 pulses total), which likely resulted in the low ARR (~20 dB). This contrast the auditory
midbrain and cortical recordings reported in Fig. 4 and 5, where longer sequences were used and
pulses were delivered at a much higher rate (Fig. 2, 300 pulses/s; Fig. 3, 16 pulses/s; Fig. 4, 100
pulses/s), resulting in a much higher number of artifact measurements for the filter estimation
and consequently a higher ARR (~30-40 dB). The impact of the estimation data length (or
equivalently number of artifact pulses used to estimate the filters) on the quality of the algorithm
are shown in Fig. 7 for the auditory cortex recording of Fig. 5. The recorded data was portioned
into segments of a fixed duration (2.7-172 s; corresponding to ~270-17,200 artifacts) and the
filters were re-estimated using the partitioned data followed by the artifact prediction and
removal procedure. As expected, the ARR improves with increasing estimation data length, or
equivalently the number of artifacts used to estimate the filters, with an average improvement

of ~2.5 dB per doubling of the data length.

DISCUSSION

We have developed an optimal multi-channel artifact removal procedure that accurately
predicts electrical stimulation artifacts using both the stimulating current signal and the

estimated linear transfer function between each stimulating and neural recording electrode. The
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procedure is flexible and can be implemented in a wide range of applications and recording
modalities, including high rate and multi-channel electrical stimulation. The procedure was
validated in three different neural stimulation settings: single-channel stimulation of sciatic nerve
axons, bilateral (two-channel) cochlear implant stimulation and multi-channel stimulation of the
auditory midbrain, where we demonstrate a net reduction in the artifact size of 25-40 dB.

Compared with other artifact removal methods, the novelty of our approach is two-fold.
First, it requires establishing linear filter coefficients that account for the transfer functions of
each stimulus-recording interface, a process that needs only a modest amount of recording data
(10-100 s). An added benefit is that the filter coefficients can be easily updated as needed to
account for the temporal drifting of the stimulus-recording coupling, thus potentially allowing for
adaptive artifact removal over a long recording periods (e.g., days to months). Second, the
procedure utilizes the information of the stimulus signals that are the source of artifact and
readily available in most instances, but are neglected by conventional artifact removal
procedures. This allows our method to remove artifacts in neural recordings evoked by arbitrary
stimulus waveforms (e.g., variable amplitudes, multiple channels etc.), which is not possible with
conventional artifact removal algorithms.

Our novel artifact removal procedure capitalizes on passive linear electrical coupling of
stimulus signals through tissue and air (resistive, capacitive, and/or inductive) that gives rise to
the artifacts in the records >. Artifacts, in this regard, correspond to electrical signals that are not
neural in origin and are directly dependent on the presence of the recording electrodes and their
electrical characteristics. We confirmed the underlying linearity assumption by delivering current

pulses of different amplitudes and demonstrating that the artifact peak-to-peak amplitudes
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exhibit an exceptionally high correlation with the delivered current amplitude and/or the
predicted artifacts (Fig. 1D and E, Fig. 3C and D, and Fig. 6F; r2 > 0.998). Furthermore, the multi-
site stimulation experiments, which successfully removed the electrical artifacts using multi-
channel linear Wiener filters (Figs. 3, 5, and 6), suggest that electrical artifacts summate linearly
thus further supporting the linearity assumption. Several prior studies have demonstrated that
electrical stimulation artifacts can follow complex and nonlinear relationship with the input

1
currents 3143

, which would invalidate the use of a linear predictive filter approach as used here.
One plausible explanation for this difference is that these prior studies carried out neural
recordings within relatively close proximity to the stimulating electrodes. In such instances, it is
highly probable that short-latency nonlinear neural activity (e.g. sub-threshold pre- or post-
synaptic activity) and other extracellular field potentials interfere and summate with the
electrical artifacts, which likewise exhibit short latency. Such short-latency neural signals could
be interpreted as artifacts even though technically they correspond to propagating activity
through the neural circuitry. Although such a scenario is not evident for the recordings performed
here, such short-latency neural activity could make it difficult to detect specific types of neural
activity (e.g., action potentials) and could potentially limit the ability to accurately estimate the
artifact prediction filters. Stimulation artifacts can also potentially exhibit a nonlinear relationship
if the artifact amplitudes saturate the recording amplifiers or if they exceed the voltage limits of
the digital-to-analog converter. This in itself is not a limitation of our technique and could be
circumvented through the use of appropriately selected neural recording hardware.

As demonstrated, the Wiener filter approach can accurately predict and remove

recording artifacts in a variety of stimulation settings including single- and multi-channel
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stimulation, high rate stimulation, as well as stimulation with time-varying amplitude and/or
shape. Conventional procedures based on template subtraction are often not able to eliminate
artifacts in these settings because finding a template that matches the shape of all artifact

. . 20-22
waveforms is not always possible %

. This is especially true when the electrical stimulation
currents consist of variable amplitudes and shapes or when multiple current pulses from a single
or multiple channels summate over time. However, we note that for simple stimulation scenarios
with temporally isolated non-overlapping artifacts, template cancelation should produce similar
results as our method because templates are derived using event triggered averaging, which for
such scenarios is equivalent to generating a Wiener filter *°. Other established artifact removal

e . . 25-
procedures utilizing independent component analysis >>>°

assume independence between
neural activity and artifact sources, which is not always satisfied at suprathreshold stimulation
condition that evokes synchronized neural activity. Thus, some of the estimated artifact
components can contain both neural activity and artifacts, which can distort and eliminate
relevant neural signals. Recently, a statistical model-based artifact cancelation procedure was
developed to successfully remove artifacts from multiple sources to enhance spike sorting of
recorded neural data 3. This statistical model-based approach is advantageous when the current
inputs are not known, however, the procedure assumes that artifacts on a given channel are
relatively stable and the procedure is not designed to account for dynamically varying artifacts.
By numerically estimating the linear transformation between each stimulation and
recording channel and accounting for the input current waveforms, our procedure is able to

generalize and accurately predict artifacts that dynamically vary over time. Linear models have

been previously applied successfully to predict and remove artifacts from cortical recordings *°.
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The linear removal procedure assumed that the artifact transfer function can be accurately
described by a first-order capacitive and resistive circuit. Our method extends on such an
approach by providing a more general framework that is applicable across vastly more complex
stimulation scenarios. First, although the use of a circuit based model provides a first order
approximation of the artifact transformation, it cannot account for multiple signal transmission
paths that may be present, such as simultaneous conduction through the neural tissue and
through air medium (inductive coupling). The use of Wiener filters allows us to empirically
measure the transfer function of each stimulating-recording pair which can theoretically account
for such scenarios. Furthermore, as shown for various examples, our procedures is also able to
generalize across a variety of complex stimulation conditions including multiple inputs, multiple
outputs, variable current amplitudes, and multiple stimulation delays such as for the cochlear
implant and auditory midbrain stimulation examples. The flexibility of our approach is
exemplified in the dynamic multi-channel stimulation example (Fig. 6), where randomly selected
inputs of different amplitudes were activated creating a total of 10920 possible distinct artifacts.
Despite this, the linear Wiener filter accurately predicts and cancels the incoming artifacts even
for this complex scenario. As far as we are aware of, there are presently no artifact cancelation
procedures available that can handle this high variability since all the available procedures
require relatively stable artifacts over time.

The artifact reduction ratio varied between ~25-40 dB for different recording modalities
tested. Differences between the different modalities are due to the available data used for
deriving the filter coefficients and the intrinsic SNR of the data itself. As demonstrated for the

sciatic nerve recordings, the quality of the artifact removal is limited both by the data length and
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number of artifacts in the training data. The ARR for the sciatic nerve recoding is ~22 dB when
the filters are estimated using subthreshold activity which only contains 10 artifacts and the
artifacts themselves are relatively small in relationship to the neural activity (low SNR for
estimating the artifact). Prediction quality and hence the artifact removal effectiveness improves
dramatically when artifacts from higher current amplitudes are used to estimate the filter
coefficients. This improvement occurs, in part, because substantially more artifacts are used to
estimate the filter coefficients (increase in data size) and because the measured artifacts for high
current amplitudes have a higher SNR. Similar results are observed for the multi-site stimulation
scenario, where the quality of the artifact removal improves upon adding more data to the filter
estimates (Fig. 7). For this scenario, we note that the increase of SNR for every doubling of the
data is ~2.5 dB, which is close to the theoretically expected value under the assumption that
measurement noise is independent *’ (3 dB improvement per doubling of the data length; i.e.,
estimation error variance decreases inversely proportional to data length).

Because of the computational efficiency of the linear Wiener filter algorithm, the
proposed artifact removal procedure has potential applications for real-time assessment of

| 8% On the one hand, the artifact removal filters

neural function and real-time feedback contro
can be estimated with a dedicated segment of recorded data. During such a period artifacts
cannot be removed and the acquired data is strictly used for training the artifact removal filters.
The speed of the subsequent artifact removal will be limited by the recording hardware delays
which can be less than a few milliseconds with appropriately selected hardware and which are

sufficiently short for most feedback applications. Alternately, Wiener filter coefficients can be

estimated and implemented iteratively using solutions that update the coefficients as needed 3*,
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however, this approach would require additional computing resources to iteratively estimate the
filters with the incoming data. Such an adaptive approach can potentially account for the drifting
of the stimulus-recording that will be investigated in a future study. In theory, it allows the filter
to be updated and optimized at any time by introducing new training data or by continuously
using the recorded data itself to estimate the filter coefficients in real-time. Such iterative
implementations would also allow for quantitative estimation of the stimulus-recording
conditions over time, which may exhibit nonstationary behaviors for chronic recordings (e.g., due
to changing electrode impedance over days or movement of electrodes etc.).

Overall, the proposed Wiener filter artifact prediction and removal procedure has the
potential for a broad range of applications requiring concurrent neural stimulation and neural
recording from multiple channels. Wiener filter estimation and prediction approaches have a
long history and are well established ***®. They are computationally efficient requiring little data
to estimate the filter coefficients (10-100 sec to achieve 25-40 dB ARR in our examples) and do
not require specialized hardware. Hence, the approach can be easily adapted for real-time

applications and applications requiring real-time assessment of neural function and behavior.
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Figure 1: Artifact removal from neural recordings in mouse sciatic nerve. (A) Electrical stimulation
current signal (120-s duration, 0.5 Hz, 0.2 ms duration, cathodic current) with six amplitudes (10,
20, 40, 80, 160, 320 pA; 10 stimuli per amplitude condition) delivered in pseudo random order.
(B) Experimentally recorded artifacts after lidocaine treatment (purple) overlapped with the
Wiener filter-predicted artifact (red). (C) Magnified views of the recorded artifacts (lidocaine,
purple) superimposed with predicted artifacts (Wiener filter, red) from different stimulating
amplitudes. (D) Input current amplitudes and the peak-to-peak amplitudes of the recorded post-
lidocaine artifacts follow a linear relationship (r? = 0.9997 + 0.0004, Mean+SD, N=40). (E) The
peak-to-peak amplitudes of the recorded (lidocaine) and predicted (Wiener filter) artifacts follow
a linear relationship (r? = 0.9997 + 0.0004, Mean+SD, N=40). (F) The suprathreshold
recordings (pre-lidocaine treatment, 320 pA; black curves) are superimposed with the post-
lidocaine artifact (purple, left). The predicted (Wiener filter) artifacts of four estimation scenarios
(colored, in gray box) are shown along with the isolated action potentials after artifact removal.
Purple: lidocaine treated artifact (top); Blue: predicted artifact using the strongest subthreshold
current estimation (10 trials); Green: predicted artifact using the lowest five current estimation
(10-160 pA, 50 trials); Brown: predicted artifact using the lowest five current (10-160 pA) along
with 5 trials of 320 pA current estimation (55 trials). Red: predicted artifact using all the six-
current estimation (10-320 pA, 60 trials). The isolated action potentials (obtained by subtracting
the predicted artifacts from suprathreshold responses) are displayed in the bottom row (same
color scheme). Arrow head indicates the artifact residue after the subtraction; double arrow
indicates nerve activity evoked from A fiber. (G) The artifact reduction ratio for the four

estimation scenarios are shown with shaded error bar (MeanSD; N=40 fibers). The ARR achieved

40



using the highest subthreshold current estimation method is 22.8+4.4 dB (blue), using the lowest
five current estimation method is 28.1+3.5 dB (green), using the lowest five current along with 5
trials of 320 pA current estimation method is 29.9+4.7 dB (brown), using all the six-current

estimation is 39.9+3.3 dB (red). The average ARR are calculated within 300-3000 Hz.

Figure 2: Artifact removal during bilateral cochlear implant stimulation and concurrent
extracellular recordings in rat inferior colliculus. (A) Sequences of binaural biphasic pulses were
delivered at 300 Hz stimulation rate (0 ms interaural time delay shown; 10 sequences delivered;
each sequence lasting 200 ms duration; the segment shown is between 10-50 ms post onset).
Example segment containing a raw neural recordings (black) and predicted artifacts (blue)
demonstrates that both are highly overlapped. The cleaned neural recording trace obtained by
subtracting the predicted artifact from the original recording (red, superimposed) show no visible
signs of artifact signals. (B) Zoomed version of the cleaned neural recording signal (red). Dashed
lines indicate the time instances of the recorded artifacts. (C) Power spectrum of the neural
recording before (black) and after (red) artifact removal. The artifact spectrum contains energy
at harmonics of the 300 Hz fundamental frequency of the stimulus. The predicted artifact
spectrum (obtained as the cross spectrum between recording trials, see Methods) is shown in
blue and largely overlaps the recorded spectrum prior to artifact removal (black). (D) Shows the
artifact reduction ratio. Artifacts are reduced by an average of 27.2 dB (measured at harmonics

of 300 Hz).
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Figure 3: Predicting and removing time-varying artifacts and testing for linearity during bilateral
cochlear implant stimulation. (A) Neural recordings were obtained at multiple interaural time
differences (-160 to +160 us; 40 us steps) using 300 Hz pulse trains modulated with a Hanning
window (see Methods). The predicted artifacts (red) are shown at multiple magnifications and
closely match the recorded artifacts (black). (B) Cleaned recordings obtained by subtracting the
Wiener filter predicted artifacts from the original recordings are shown at two different time
scales (ITD=-40 ms, left; ITD=0 ms, right). (C) The input current peak-to-peak amplitude and the
recorded peak-to-peak voltage of the artifacts exhibit an exceptionally high correlation (r? =
0.9981 + 0.0001; Mean+SEM), indicative of a linear relationship. (D) The predicted and
recorded artifact peak-to-peak amplitudes are likewise highly correlated and consistent with a
linear input-output relationship. The data shown in (C) and (D) are for the 0 ms ITD condition.

Error bars designate SD.

Figure 4: Artifact removal during a single channel electrical stimulation of the auditory midbrain
and concurrent recording in auditory cortex. (A) Random Poisson distributed pulse sequence
(average pulse rate of 16 Hz) were delivered to an electrode in auditory midbrain of a rat.
Highpass filtered (B) and raw (C) neural recordings from a cortical electrode are dominated by
the electrical artifacts (top). The estimated Wiener filters are used to predict the recorded
artifacts (middle panels). Subtracting the artifacts from the neural recordings yields noise
reduced estimates of the neural activity (bottom). (D) Zoomed sample waveforms showing the

filtered extracellular signals after artifact subtraction (* and ** from panel B, bottom). (E) Signal

42



to noise ratio prior to and after subtraction of the predicted artifacts (blue and black curve,

respectively). The artifact reduction ratio is superimposed on the same panel (green curve).

Figure 5: Artifact removal during high throughput multi-site electrical stimulation. (A) Spatio-
temporal pulse sequence applied to a 16-channel probe placed in the auditory midbrain of a rat.
Highpass filtered (B) and raw (C) neural recordings from a cortical electrode are dominated by
the electrical artifacts (top). The estimated multi-channel Wiener filters are used to predict the
recorded artifacts (middle panels). Subtracting the artifacts from the neural recordings yields
noise reduced estimates of the neural activity (bottom). (D) Zoomed sample waveforms showing
the filtered extracellular signals after artifact subtraction (* and ** from panel B, bottom). (E)
Signal to noise ratio prior to and after subtraction of the predicted artifact is superimposed on
the same panel (gray and black curve, respectively). The artifact reduction ratio obtained using
the whole data segment and the cross-validated ARR obtained using half of the data are

superimposed on the same panel (dark and light green curves, respectively).

Figure 6: Removing artifacts during dynamic multi-site electrical stimulation and testing for
linearity. (A) Dynamically time-varying current pulse sequences were delivered across 16-channel
recording probe in the rat auditory midbrain. Stimulation sequences consist of concurrent
activated channels (4 randomly selected channels; every 40 ms) with pulse amplitudes that vary
dynamically and randomly (between 0.1 and 10 pA, color indicates current strength; log-steps;
see METHODS). (B) The recorded neural traces and predicted artifacts are shown for two of four

recording channels along with the cleaned neural traces. The multi-channel Wiener filter
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accurately predicts the recorded artifacts and there no evident signs of residual artifacts upon
removal (C) The magnified cleaned neural traces from B shown no visible artifact distortions. The
gray dashed lines indicate time instants that contained visible artifacts before removal. (D) The
predicted and actual recorded artifact peak-to-peak amplitudes exhibit a high correlation (r? =
0.9981 + 0.0001, Mean+SEM) suggesting that the artifacts are linearly related to the input

currents.

Figure 7: Dependence of artifact reduction quality on data length. The artifact reduction ratio
(ARR, measured between 300-6000 Hz) is shown as a function of the data length (varied between
2.7-171.8 s in octave steps) used to estimate the Wiener prediction filter for the example of Fig.
5. The cross-validated ARR increases with increasing data length with a net improvement of ~2.5

dB per doubling of the data length.
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