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ABSTRACT	

Neural	implants	that	deliver	multi-site	electrical	stimulation	to	the	nervous	systems	are	

no	longer	the	last	resort	but	routine	treatment	options	for	various	neurological	disorders.	Multi-

site	electrical	stimulation	is	also	widely	used	to	study	nervous	system	function	and	neural	circuit	

transformations.	 These	 technologies	 increasingly	 demand	 dynamic	 electrical	 stimulation	 and	

closed-loop	 feedback	control	 for	 real-time	assessment	of	neural	 function,	which	 is	 technically	

challenging	since	stimulus-evoked	artifacts	overwhelm	the	small	neural	signals	of	interest.	We	

report	a	novel	and	versatile	artifact	removal	method	that	can	be	applied	in	a	variety	of	settings,	

from	single-	to	multi-site	stimulation	and	recording	and	for	current	waveforms	of	arbitrary	shape	

and	size.	The	method	capitalizes	on	linear	electrical	coupling	between	stimulating	currents	and	

recording	artifacts,	which	allows	us	to	estimate	a	multi-channel	linear	Wiener	filter	to	predict	and	

subsequently	remove	artifacts	via	subtraction.	We	confirm	and	verify	the	linearity	assumption	

and	demonstrate	feasibility	in	a	variety	of	recording	modalities,	including	in-vitro	sciatic	nerve	

stimulation,	bilateral	cochlear	implant	stimulation,	and	multi-channel	stimulation	and	recording	

between	 the	 auditory	 midbrain	 and	 cortex.	 We	 demonstrate	 a	 vast	 enhancement	 in	 the	

recording	quality	with	a	typical	artifact	reduction	of	25-40	dB.	The	method	is	efficient	and	can	be	

scaled	 to	arbitrary	number	of	 stimulus	and	 recording	 sites,	making	 it	 ideal	 for	applications	 in	

large-scale	 arrays,	 closed-loop	 implants,	 and	 high-resolution	 multi-channel	 brain-machine	

interfaces.		

	
INTRODUCTION	
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Advances	 in	 neural	 implant	 and	 electrical	 stimulation	 technologies,	 such	 as	 cochlear	

implants	(CIs)	and	vagal	nerve	stimulators,	increasingly	rely	on	concurrent	neural	stimulation	and	

recordings	to	either	assess	functional	transformations	between	connected	brain	regions	2-7	or	to	

optimize	 electrical	 stimulation	 via	 closed-loop	 feedback	 control	 8-14.	 In	 such	 applications,	

capacitive	 and	 inductive	 coupling	 between	 the	 stimulating	 and	 recording	 electrodes	 leads	 to	

stimulus-evoked	 artifacts	 in	 the	 extracellular	 recordings	 that	 are	 often	 several	 orders	 of	

magnitude	larger	(i.e.,	milli-volts)	than	the	extracellular	neural	signals	(typically	micro-volts).	Such	

artifacts	 obscure	 neural	 activity	 and	 make	 it	 difficult	 to	 interpret	 and	 quantify	 neural	 data.	

Electrical	 stimulation	artifacts	are	also	present	 in	surface	recordings	of	electroencephalogram	

(EEG)	 and	 electrocorticogram	 (ECoG)	 that	 are	 more	 widely	 used	 clinically	 with	 concurrent	

functional	neural	stimulations	in	recent	brain-machine	interfaces	and	prosthetic	devices	15-18.	In	

order	to	obtain	neural	responses	to	electrical	stimuli	in	the	above	recording	situations,	artifact	

removal	is	necessary	to	isolate	neural	signals	for	robust	and	high-fidelity	assessment	of	neural	

activity.	Such	artifact	removal	will	also	be	essential	for	real-time	closed-loop	stimulation	in	the	

next-generation	of	neural	implants,	brain	machine	interfaces,	and	prosthetic	devices.		

Existing	artifact	removal	algorithms	invariably	focus	on	the	recorded	artifact	waveforms	

without	 explicitly	 considering	 the	 stimulus	 currents	 and	 sources	 that	 are	 responsible	 for	

generating	 the	 artifacts.	 That	 is,	 most	 artifact	 removal	 algorithms	 do	 not	 explicitly	 use	 the	

electrical	stimulation	current	waveforms	to	either	predict	or	remove	artifacts	(although	see	19).	

Such	 techniques	 include	 artifact	 template	 subtraction	 19-22,	 local	 curve	 fitting	 23,	 sample-and-

interpolate	 technique	 24,	 and	 independent	 component	 analysis	 25-30.	 Such	 artifact	waveform-

based	algorithms	usually	estimate	artifacts	by	statistical	analysis	of	the	recorded	signals,	which	
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can	suppress	artifacts	in	certain	stimulation/recording	paradigms.	A	general	assumption	of	these	

algorithms	is	that	the	recorded	artifacts	arise	from	single	isolated	stimulation	sources	that	are	

reproducible	 and	non-overlapping	over	 time.	 This	 assumption	may	be	 valid	 for	 classic	 neural	

implants	like	the	cardiac	pacemaker	but	can	deviate	greatly	from	situations	in	advanced	neural	

devices	 that	 utilize	 multichannel	 stimulus	 electrodes	 (i.e.,	 multiple	 sources)	 and	 arbitrary	

stimulation	 waveforms	 with	 dynamically	 varying	 current	 amplitude,	 stimulation	 rate	 and/or	

pattern	 (e.g.,	 as	 for	 cochlear	 implants).	 Further,	 such	 artifact	 removal	 techniques	 are	 often	

difficult	 to	 implement	 in	 real-time	 especially	 with	 dynamically	 varying	 stimulus	 paradigms.	

Instead,	they	are	mostly	used	for	post-hoc	removal	of	artifacts.	To	address	the	challenge	of	multi-

site	stimulation	and	recording,	a	recent	method	used	advanced	statistical	modeling	to	improve	

spike-sorting	quality	from	extracellular	multi-channel	recordings	31.	Like	other	approaches,	this	

method	places	assumptions	on	the	statistical	structure	of	the	artifacts	and	neural	waveforms	that	

may	not	strictly	hold	and	likewise	does	not	directly	use	the	known	electrical	stimulation	signals	

to	remove	the	artifacts.	In	addition,	many	waveform-based	algorithms	fail	when	multiple	artifacts	

are	generated	in	close	succession	during	fast	current	stimulation.	For	example,	cochlear	implants	

(CIs)	generate	hundreds	to	thousands	of	stimulus	pulses	per	second	of	varying	amplitudes	across	

multiple	 stimulation	 electrodes	 that	 often	 overlap	 in	 time	 32,	 a	 situation	 that	 challenges	 all	

current	waveform-based	artifact	removal	algorithms.	One	solution	to	enhance	artifact	removal	

in	such	scenarios	is	to	decrease	the	rate	of	CI	stimulation	and	use	constant	current	amplitudes,	

which	 leads	 to	 abnormal	 stimulation	 scenarios	 that	 make	 it	 difficult	 to	 characterize	 normal	

stimulation	and	neural	processing	with	such	devices	32.	
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	 Here	we	develop	an	optimal	multichannel	artifact	removal	algorithm	that	can	be	applied	

during	high-throughput	multi-site	electrical	 stimulation	with	arbitrary	 stimulation	waveforms.	

Unlike	nearly	all	other	artifact	removal	algorithms,	which	are	blind	to	the	stimulation	currents	

(i.e.,	the	algorithm	does	not	explicitly	utilize	the	input	current	waveforms	to	predict	or	remove	

the	 artifacts),	 our	 method	 capitalizes	 on	 the	 fact	 that	 transformation	 between	 electrical	

stimulation	currents	and	artifacts	on	the	recording	arrays	arises	through	 linear	capacitive	and	

inductive	coupling	33	and	the	fact	that	stimulation	currents	are	actually	known	a	priori	in	most	

instances.	We	approach	the	artifact	removal	by	first	establishing	the	assumption	that	recorded	

artifacts	behave	linearly	with	respect	to	the	stimulation	currents.	This	allows	us	to	derive	optimal	

linear	filters	to	model	the	transformation	between	each	stimulating-recording	electrode	pair.	The	

linear	transfer	functions	for	each	stimulation	and	recording	site	are	estimated	as	a	digital	filter,	

i.e.,	the	Wiener	filter,	and	can	be	updated	as	required	during	the	recording	procedure	to	track	

the	adaptive	changes	 in	electrical	coupling	over	time	(due	to	 long-term	change	in	 impedance,	

electrode	movement	etc.).	The	procedure	is	versatile	and	can	be	applied	to	a	variety	of	neural	

recording	 modalities	 including	 single,	 multi-unit,	 and	 continuous	 field	 potential	 recordings.	

Furthermore,	because	the	algorithm	estimates	the	transfer	functions	between	every	stimulation	

and	neural	 recording	 electrode,	 the	procedure	 can	be	 applied	 irrespective	of	 the	 stimulation	

currents	used.	It	is	thus	compatible	with	single	and	multi-site	stimulation,	high-rate	stimulation,	

and	is	applicable	to	electrical	stimuli	with	arbitrary	pulse	amplitudes	and	shapes.	By	applying	the	

procedure	to	sample	neural	datasets	(single	and	multi-channel	stimulation),	we	demonstrate	a	

vast	signal-to-noise	ratio	improvement	of	~25-40	dB.	
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MATERIALS	AND	METHODS	

Artifact Prediction and Removal 

Multi-Input	 Multi-Output	 Artifact	 Prediction	 Wiener	 Filter:	We	 develop	 an	 optimal	

Wiener	filter	algorithm	to	predict	neural	recording	artifacts	upon	delivering	electrical	stimulation	

currents	 on	 a	 multi-channel	 stimulating	 electrode	 array.	 The	 predicted	 artifacts	 are	 then	

subtracted	from	the	actual	neural	recording	trace	to	yield	a	noise	reduced	estimate	of	the	neural	

activity.		

We	assume	a	generalized	multi-input	(stimulation)	multi-output	(recording)	framework	

for	 developing	 a	 linear	 filter	 approximation	 of	 the	 recording	 artifact.	 Given	 that	 electrical	

stimulation	 artifacts	 are	 the	 result	 of	 linear	 capacitive	 and	 inductive	 coupling	 between	 the	

stimulating	and	recording	electrodes	33,	we	model	the	transformations	between	the	electrical	

stimulus	 and	 recorded	 artifact	 as	 a	 linear	Wiener	 filter	 with	 unknown	 impulse	 response	 (or	

equivalently,	transfer	function).	Each	stimulating	and	neural	recording	electrode	pair	has	its	own	

characteristic	transfer	function	and	thus	a	unique	impulse	response,	which	can	be	determined	

based	on	the	input	and	output	data.	The	composite	multi-site	stimulation	artifact	is	modeled	as	

a	linear	sum	of	the	artifacts	generated	by	each	stimulation	channel	and	thus	we	have:	

	

𝑦"[𝑘] = 𝑥([𝑘] ∗ ℎ("[𝑘]																	𝑚 = 1,… ,𝑀		
1

(23

	
	
(1)	

	

where	𝑘	is	the	discrete	time	index,	*	is	the	discrete	convolution	operator,		𝑦"[𝑘]	is	the	predicted	

artifact	 for	channel	m	 (𝐲"	 in	vector	 form),	ℎ("[𝑘]	 is	 the	 impulse	 response	between	the	n-th	
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stimulation	channel	and	m-th	neural	recording	channel	(𝐡("	 in	vector	form),	and	𝑥( 𝑘 	is	the	

electrical	stimulation	signal	applied	to	stimulation	channel	n	(𝐱().	In	matrix	form	𝐲 = 𝐡𝐱	where	

𝐲 = [𝐲3 ⋯𝐲8]	 is	a	matrix	containing	the	predicted	outputs	for	the	M	recording	channels,	𝐱 =

[𝐱3 ⋯𝐱1]	 is	 a	matrix	 containing	 the	 input	 electrical	 stimulation	 signals	 across	N	 stimulation	

channels,	and		

𝐡 =
𝒉33 … 𝒉38
⋮ ⋱ ⋮
𝒉13 … 𝒉18

	
(2)	

	

is	an	NxM	matrix	containing	 the	 impulse	response	vectors	 (𝒉<=)	between	all	 stimulation	and	

recording	 channels.	 The	 impulse	 responses	 are	 represented	 as	 column	 vectors,	 𝐡(" =

[ℎ("[0] ⋯ ℎ("[𝐿 − 1]]A,	which	contain	the	impulse	response	time	coefficients	between	the	

n-th	 input	 and	m-th	 output,	where	 L	 represents	 the	 filter	 order.	 Since	 there	 are	 a	 total	 of	 L	

samples	 for	 each	 of	 the	 impulse	 response	 vectors,	 the	 matrix	 𝐡	 contains	 a	 total	 of	𝑁𝐿𝑥𝑀	

coefficients.	

The	goal	is	to	derive	the	filter	matrix	𝐡	using	experimental	measurements.	The	estimated	

filter	 matrix	 can	 then	 be	 used	 to	 predict	 the	 recorded	 artifacts.	 The	 optimal	 solution	 that	

minimizes	 the	mean	 squared	 error	 of	 the	 predicted	 artifact	 is	 obtained	 via	 the	Wiener-Hopf	

equation	34	

𝐡 = (𝐂𝐱𝐱)F3𝐑𝐲𝐱	 (3)	

	
where	 𝐡	 is	 the	 filter	 matrix	 solution	 that	 minimizes	 the	 mean	 squared	 error	 between	 the	

predicted	and	real	artifacts,		
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𝐂𝐱𝐱 =
𝐜𝐱I𝐱I … 𝐜𝐱I𝐱J
⋮ ⋱ ⋮

𝐜𝐱J𝐱I … 𝐜𝐱J𝐱J
	

(4)	

	
	

represents	the	stimulation	signal	covariance	matrix	which	contains	correlation	functions	(𝐜𝐱K𝐱L)	

between	the	𝑛-th	and	𝑙-th	(𝑙, 𝑛 = 1,… ,𝑁	)	input	channels,	and	

	

𝐑𝐲𝐱 =
𝐫𝐲I𝐱I	 … 𝐫𝐲I𝐱J.
⋮ ⋱ ⋮

𝐫𝐲Q𝐱I	 … 𝐫𝐲Q𝐱J.
	

(5)	

	

is	a	matrix	containing	the	cross-correlation	functions	between	the	𝑚-th	output	and	𝑛-th	input	

channels	(𝐫𝐲R𝐱K).		

Upon	deriving	the	multi-site	filters	using	Eqn.	3,	𝐡,	the	stimuli	artifacts	are	then	predicted	

by	convolving	each	of	the	estimated	sub-filter	impulse	responses,	𝐡(",	with	the	corresponding	

input	signals	and	applying	Eqn.	1.	Finally,	the	predicted	artifacts	are	subtracted	from	the	recorded	

data	 yielding	 the	noise-reduced	estimate	of	 the	neural	 traces.	Although	Eqn.	 3	 is	 derived	 for	

multi-input	 multi-output	 (𝑁 > 1,𝑀 > 1)	 neural	 recording	 and	 stimulation	 scenarios,	 the	

procedure	is	also	compatible	with	multi-input	single-output	(𝑁 > 1,𝑀 = 1),	single-input	multi-

output	 (𝑁 = 1,𝑀 > 1)	 and	 single-input	 single-output	 (𝑁 = 1,𝑀 = 1)	 neural	 stimulation	 and	

recording	scenarios.	

As	a	note,	we	point	out	that	the	form	of	the	predictive	Wiener	filter	used	here	differs	from	

blind	deconvolutional	Wiener	filters	used	in	previous	reports	by	others	for	artifact	removal	which	

assume	 that	 the	 artifact-generating	 signals	 are	unknown	 35-37.	Deconvolutional	 filters	 use	 the	
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signal	and	noise	spectrum	statistics	to	optimally	reject	the	artifact	signal	via	deconvolution.	In	

general,	because	the	signal	and	noise	spectrums	often	overlap,	such	approaches	tend	to	distort	

the	neural	signals	of	interest	upon	removing	the	artifacts	and	are	not	intended	to	fully	remove	

the	artifact.	 In	our	case,	the	wiener	filter	is	 instead	used	to	predict	the	recorded	artifact	from	

known	 inputs,	which	 can	 then	be	 removed	 from	 the	neural	 recording	by	 subtraction	without	

distorting	the	neural	signal.		

	

Linearity Assessment and Artifact Removal Quality 

Linearity	Assessment:	The	principal	 underlying	 assumption	 required	 for	 the	proposed	

artifact	prediction	and	removal	method	is	the	linear	relationship	between	the	stimulation	current	

and	recorded	artifact.	Such	a	relationship	is	expected	given	the	passive	conduction	properties	of	

the	tissue	and	the	capacitive	or	inductive	coupling	with	the	stimulation	current	at	the	recording	

electrode	interface	19,33.	However,	it	has	been	suggested	that	recording	artifacts	can	behave	in	a	

nonlinear	fashion	31,	which	would	limit	the	general	applicability	of	the	proposed	approach.	Thus,	

we	 quantified	 the	 extent	 of	 the	 linearity	 (or	 nonlinearity)	 of	 the	 stimulus	 current-artifact	

relationship	by	explicitly	testing	the	scaling	and	additivity	properties,	which	are	requisites	for	a	

linear	system	38.	First,	for	each	of	the	recording	scenarios	tested,	we	delivered	currents	of	varying	

amplitudes.	This	allowed	us	to	explicitly	test	how	artifact	amplitudes	scale	with	respect	to	the	

input	 current	 amplitudes.	We	also	performed	a	 set	of	 experiments	 in	which	we	 concurrently	

delivered	 current	 pulses	 across	multiple	 electrodes	 (see	 section	 below:	 Recording	 in	 the	 Rat	

Auditory	 Midbrain	 and	 Cortex).	 This	 second	 set	 of	 recordings	 allowed	 to	 test	 how	 multiple	

stimulus	currents	add	together	to	generate	a	composite	artifact.		
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Signal	 to	Noise	Ratio	 Estimation:	We	used	 a	 shuffled	 trial	 procedure	 to	estimate	 the	

artifact	(noise)	and	neural	signal	power	spectra	which	were	then	used	to	estimate	the	signal-to-

noise	 ratio	 (SNR)	of	 the	neural	 recording	or	 the	artifact	 reduction	 ratio	 (ARR).	The	procedure	

requires	 that	 we	 deliver	 an	 identical	 electrical	 stimulation	 signal	 from	 two	 trials	 in	 order	 to	

estimate	the	signal	and	noise	power	spectrum.	Consider	a	recorded	neural	trace	

	

y = 	y( + yV		 (6)	

	

where	 y(	 represents	 the	 artifact-free	 neural	 trace	 (i.e.,	 no	 artifact)	 and	 yV	 represents	 the	

recorded	artifact.	If	yW	represents	the	data	recorded	in	the	second	trial	of	a	repeated	experiment	

(i.e.,	 same	electrical	stimulation	signal)	 then	the	artifact	should	be	 identical	between	the	two	

trials	(	yV)	so	that	

yW = 	 yW( + yV		 (7)	

	

where	here,	yW(,	is	the	neural	response	component	for	the	second	trial.	This	component	differs	

from	 the	 first	 trial	 response	 (y()	 because	 of	 neural	 variability.	 Computing	 the	 cross-spectral	

density	(CSD)	between	the	two	trials	yields	

ΦYYZ(𝜔) = 	ΦYKYZK
(𝜔) + ΦYKY\(𝜔) + ΦY\YZK

(𝜔) + ΦY\Y\(𝜔)			 (8)	

	

Similarly,	the	power	spectral	density	(PSD)	of	the	first	trial	is	
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ΦYY 𝜔 = 	ΦYKYK 𝜔 + ΦYKY\ 𝜔 + ΦY\YK 𝜔 + ΦY\Y\ 𝜔 	 (9)	

	

Given	 that	 the	 artifact	 signal	 is	 reproducible	 across	 trials	 and	 typically	much	 larger	 than	 the	

recorded	neural	activity	(e.g.,	as	seen	for	the	examples	of	Figs.	1-4),	the	artifact	term	in	Eqn.	8	

dominates	

	

ΦYYZ 𝜔 ≈ 	ΦY\Y\(𝜔)	 (10)	

	

so	that	CSD	between	trials	approximates	the	artifact	noise	spectrum.	Furthermore,	we	note	that	

for	sufficiently	long	recordings,	ΦY\YK 𝜔 	and	ΦY\YZK
(𝜔)	yield	identical	spectrum	estimates	on	

average	and	 that	ΦYKYK 𝜔 ≫ ΦYKYZK
(𝜔)	 as	a	 result	of	neural	 trial	 variability	between	 trials.	

Thus,	the	neural	signal	spectrum	can	be	approximated	by	subtracting	the	PSD	from	the	CSD		

ΦYKYK 𝜔 ≈ ΦYY(𝜔) − ΦYYZ	(𝜔)	 (11)	

	

The	signal	to	noise	ratio	is	then	approximated	by	

SNR 𝜔 =
Φbcd(Ve 𝜔
Φ1fcgh 𝜔

≈
ΦYY(𝜔) − ΦYYZ	(𝜔)

ΦYYZ	(𝜔)
	

(12)	

	

In	the	above,	all	cross	and	power	spectral	density	estimates	were	obtained	using	a	Welch	average	

periodogram	and	a	Kaiser	window	(𝛽	=	5,	N	=	256	time	samples	or	21	ms).	To	confirm	the	validity	

of	the	approximations	used	to	derive	Eqn.	12,	we	also	estimated	the	SNR	using	an	artifact	free	

neural	 recording	 segment.	Φbcd(Ve 𝜔 	 was	 estimated	 by	 collecting	 a	 15-second	 neural	 trace	
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without	any	electrical	stimulation,	which	we	then	used	to	estimate	the	signal	spectrum.	We	also	

estimated	the	noise	spectrum	directly	from	the	Wiener	filter	predicted	artifacts	by	computing	

the	spectrum	of	the	predicted	artifact.	Both	procedures	produce	quantitatively	similar	results	

when	 compared	 to	 the	 original	 estimates	 (within	 <3	 dB)	 confirming	 the	 validity	 of	 the	

approximations	used	to	derive	Eqn.	12.	

Artifact	 Reduction	 Ratio	 (ARR):	 In	 addition	 to	 defining	 the	 SNR,	we	 also	 defined	 and	

measured	an	artifact	reduction	ratio	(ARR).	This	metric	quantifies	the	reduction	in	artifact	power	

following	 artifact	 removal	 and	 thus	 provides	 a	measure	 of	 the	 artifact	 removal	 quality.	 It	 is	

defined	as	

	

ARR 𝜔 =
SNRkfgl 𝜔
SNRkmh 𝜔

=
Φ1fcgh,kmh 𝜔
Φ1fcgh,kfgl 𝜔

	
(13)	

	

where	SNRkmh 𝜔 	is	the	SNR	prior	to	artifact	removal	and	SNRkfgl 𝜔 	is	the	measured	SNR	after	

applying	the	artifact	removal	algorithm.	Since	the	neural	signal	spectrum	is	unchanged	by	the	

artifact	removal	procedure,	the	above	can	also	be	estimated	directly	by	taking	the	ratio	of	the	

noise	spectrum	prior	to	(Φ1fcgh,kmh 𝜔 )	and	post	removal	of	the	artifact	(Φ1fcgh,kfgl 𝜔 ).	For	the	

aperiodic	stimulation	used	in	inferior	colliculus	(described	below),	we	note	that	the	ARR	metric	

is	well	defined	for	all	frequencies	since,	in	that	case,	the	signal	and	noise	spectrum	is	continuous	

at	all	 frequencies.	However,	 for	periodic	electrical	stimulation	such	as	 in	the	cochlear	 implant	

study	 (e.g.,	 electrical	 stimulation	 periodically	 at	 300	 Hz,	 described	 below),	 the	 electrical	

stimulation	 produced	 periodic	 artifacts	with	 harmonic	 components	 in	 the	 signal	 spectrum	 at	
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multiples	of	the	stimulation	frequency.	Thus,	the	signal	spectrum	and	hence	the	ARR	contains	

signal	components	only	at	harmonics	of	the	stimulation	frequency	and	are	thus	well	defined	only	

at	these	components.	

	 Depending	on	the	data	that	were	available,	the	ARR	was	estimated	in	one	of	two	ways.	

For	the	sciatic	nerve	recordings	(see	section	below:	mouse	sciatic	nerve	recordings),	the	isolated	

artifacts	 were	 obtained	 during	 the	 treatment	 of	 lidocaine,	 which	 is	 a	 non-selective	 sodium	

channel	 blocker	 that	 blocks	 virtually	 all	 neural	 activities	 in	 the	 sciatic	 nerve.	 Thus,	 for	 this	

condition,	there	was	no	need	to	remove	the	neural	signal	spectrum	numerically	in	order	to	isolate	

the	artifact	spectrum	prior	to	estimating	the	ARR	(as	in	Eqn.	11).	The	spectrum	prior	to	artifact	

removal	was	obtained	as	the	spectrum	of	the	original	lidocaine	recording	(pre-artifact	removal),	

while	the	spectrum	post-artifact	removal	was	obtained	by	subtracting	the	predicted	artifact	from	

the	original	 lidocaine	recording	(using	the	Wiener	filter	method)	and	subsequently	computing	

the	power	spectral	density.	For	both,	 the	cochlear	 implant	stimulation	and	auditory	midbrain	

stimulation	recordings,	neural	activity	and	artifacts	were	not	isolated	chemically	using	lidocaine.	

Thus,	we	estimated	the	artifact	and	neural	spectrums	and	the	corresponding	ARR	numerically	

using	shuffled	cross-spectral	density	procedure	as	described	above	(Eqn.	6-12).		

	

Mouse Sciatic Nerve Recordings 

Surgical	 Procedures:	 All	 procedures	 were	 approved	 by	 the	 University	 of	 Connecticut	

Institutional	Animal	Care	and	Use	Committee.	Sciatic	nerves	of	male	C57BL/6	mice	(6–8	weeks,	

Taconic,	 Germantown,	 NJ)	 were	 harvested	 for	 extracellular	 recordings	 from	 teased	 nerve	

filaments	as	detailed	previously	39,40.	Mice	were	anesthetized	by	isoflurane	inhalation,	euthanized	
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by	exsanguination	from	perforating	the	right	atrium,	and	perfused	through	the	left	ventricle	with	

oxygenated	Krebs	solution	(in	mM:	117.9	NaCl,	4.7	KCl,	25	NaHCO3,	1.3	NaH2PO4,	1.2	MgSO4,	2.5	

CaCl2,	and	11.1	D-glucose).	Bilateral	sciatic	nerves	of	~30	mm	long	were	harvested	from	their	

proximal	 projection	 to	 the	 L4	 spinal	 cord	 to	 their	 distal	 branches	 innervating	 gastrocnemius	

muscles	and	transferred	to	a	custom-built	chamber	perfused	with	oxygenated	Krebs	solution	at	

30	°C.	The	distal	end	of	the	sciatic	nerve	(~5	mm)	was	gently	pulled	into	a	recording	compartment	

filled	with	mineral	oil	and	carefully	split	(i.e.,	teased)	into	fine	neural	filaments	(~25	μm	thick)	for	

extracellular	recordings	of	action	potentials.	 

Stimulation	 and	 Recording	 in	 the	 Sciatic	 Nerve	 Preparation:	 Action	 potentials	 were	

evoked	at	the	un-teased	end	of	the	sciatic	nerve	using	a	platinum-iridium	electrode	(FHC	Inc.,	

ME).	Electrical	 currents	were	delivered	using	a	 sub-	and	 supra-threshold	 stimulation	protocol	

consisting	of	a	120-s	long	low-frequency	stimulations	(0.5	Hz,	0.2	ms	duration,	cathodal	current)	

with	six	amplitudes	delivered	in	pseudo	random	order	(10,	20,	40,	80,	160,	320	μA;	10	stimulus	

pulses	per	amplitude	condition)	as	shown	in	Fig.	1A.		

Extracellular	 recordings	 from	 multiple	 teased	 nerve	 filaments	 were	 conducted	 by	 a	

custom-built	5-channel	electrode	array	consisting	of	micro-wires	deployed	parallel	to	each	other	

with	~150	μm	clearance	as	described	previously	39,40.		Recordings	were	digitized	at	25	kHz,	band-

pass	 filtered	 (300-3000	 Hz)	 and	 stored	 on	 a	 PC	 using	 an	 integrated	 neural	 recording	 and	

stimulating	 system	 (IZ2H	 stimulator,	 PZ5-32	 neurodigitizer	 and	 RZ5D	 processor,	 TDT,	 Alchua,	

Florida,	US).	

Application	of	 Lidocaine	 for	Acquiring	 Isolated	Artifacts:	 To	quantify	 the	efficiency	of	

artifact	removal	via	the	Wiener	filter	artifact	removal	method,	we	used	a	non-selective	sodium	
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channel	blocker	(lidocaine)	to	remove	most	if	not	all	neural	activity,	which	allowed	us	to	obtain	

recordings	of	isolated	artifacts.	A	bronze	tube	(4x4	mm	cross	section)	was	placed	over	the	sciatic	

nerve	to	isolate	a	small	segment	of	the	nerve	trunk	(~4mm)	for	lidocaine	application.	On	both	

edges	are	small	notch	holes	to	allow	nerve	trunk	to	go	through,	which	were	lined	with	petrolatum	

to	prevent	solution	exchange	between	inside	and	outside	the	bronze	tube.	Krebs	solution	inside	

the	bronze	tube	was	replaced	with	lidocaine	(2%	dissolved	in	saline,	~0.2	ml)	for	5	mins,	and	then	

the	bronze	tube	was	removed	for	bath	washout.	The	same	stimulation	protocol	mentioned	above	

was	conducted	 immediately	after	 lidocaine	application	 to	obtain	 isolated	artifacts	 for	 the	six-

amplitude	stimulation	current	signal.	

The	 benefits	 of	 applying	 lidocaine	 are	 as	 follows.	 First,	 lidocaine	 treatment	 prevents	

action	potential	generation,	which	allows	us	to	isolate	the	artifact	signal	in	the	absence	of	neural	

activity.	 This	 is	 useful	 for	 validating	 the	 accuracy	 of	 the	 artifact	 prediction	 since	 there	 is	 no	

confounding	neural	activity.	Second,	the	prediction	filters	obtained	during	lidocaine	treatment	

were	also	used	to	predict	and	remove	the	artifacts	obtained	in	the	absence	of	lidocaine	treatment	

during	supra-threshold	stimulation.	Thus,	the	approach	allows	us	to	cross	validate	our	artifact	

removal	algorithm	by	comparing	the	Wiener	filter	artifact	cancelation	performance	against	the	

pure	artifact	recordings	under	lidocaine	treatment	at	supra-threshold	stimulation	levels.	

Estimating	Artifact	Prediction	Filters	and	ARR:	Artifact	prediction	filters	were	estimated	

using	Eqn.	3	for	four	different	scenarios.	First,	we	used	the	highest	subthreshold	current	(without	

evoking	 action	 potentials)	 to	 estimate	 the	 artifact	 prediction	 filters	 using	 Eqn.	 3.	 For	 this	

condition,	there	were	only	10	pulses	delivered	so	that	the	artifact	prediction	filter	was	estimated	

using	 only	 10	 measurements.	 We	 refer	 to	 this	 condition	 as	 the	 subthreshold	 filter.	 This	
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subthreshold	 method	 of	 estimating	 the	 Wiener	 filter	 was	 only	 used	 for	 the	 sciatic	 nerve	

recordings	 and	 was	 not	 used	 subsequently	 for	 the	 cochlear	 implant	 or	 auditory	 midbrain	

stimulation.	Next,	we	used	lidocaine	treated	recordings,	which	lack	neural	activity,	to	derive	the	

artifact	prediction	filters	using	three	approaches.	For	the	first	lidocaine	condition,	we	used	the	

recordings	containing	currents	between	10-160	μA	to	derive	the	Wiener	filter	using	Eqn.	3.	Next,	

we	used	the	recordings	containing	stimulus	currents	between	10-160	μA	along	with	the	first	five	

trials	of	320	µA	artifacts	to	estimate	the	Wiener	filters	and	then	performed	cross	validation	by	

comparing	the	predicted	artifacts	with	those	from	the	remaining	five	trials	at	320	µA	stimulation.	

Finally,	we	estimated	the	Wiener	filers	using	all	of	the	recorded	data	from	both	sub-	and	supra-

threshold	stimulation	under	lidocaine	(10-320	μA).		

These	four	filters	were	then	used	to	predict	the	stimulation	artifacts	during	the	320	μA	

current	stimulation	scenario,	which	were	subtracted	from	the	neurophysiological	recordings	to	

isolate	the	supra-threshold	nerve	response	evoked	by	320	μA	current	stimulation.	The	artifact	

removal	quality	was	assessed	with	the	ARR	defined	above	(Eqn.	13)	for	each	scenario.	

	

Bilateral Cochlear Implant Stimulation in Rats 

Surgical	 Procedures:	 To	 illustrate	 the	 artifact	 removal	 during	 CI	 stimulation,	 we	 use	

example	 data	 from	 two	 female	 Wistar	 rats,	 one	 of	 which	 was	 normally	 hearing,	 the	 other	

neonatally	 deafened	 by	 daily	 intraperitoneal	 (i.p.)	 injections	 of	 400	 mg/kg	 kanamycin	 from	

postnatal	 day	 9	 to	 20	 41,42.	 The	 animals	 were	 part	 of	 studies	 designed	 to	 determine	 factors	

governing	sensitivity	to	binaural	cues	delivered	via	direct,	intracochlear	stimulation	similar	to	that	

used	in	clinical	CI	devices.	These	data	were	obtained	at	the	City	University	of	Hong	Kong,	using	
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procedures	 licensed	 by	 the	 Department	 of	 Health	 of	 Hong	 Kong	 (license	 number	 16-52	

DH/HA&P/8/2/5)	and	approved	by	the	Animal	Research	Ethics	Subcommittee	of	City	University..	

All	 surgical	 procedures,	 including	 CI	 implantation	 and	 craniotomy,	 were	 performed	 under	

anesthesia,	which	was	 induced	with	an	 i.p.	 injection	of	ketamine	 (80	mg/kg)	and	xylazine	 (12	

mg/kg)	and	maintained	by	continuous	i.p.	infusion	of	ketamine	(17.8	mg/kg/h)	and	xylazine	(2.7	

mg/kg/h)	in	0.9%	saline	solution	at	a	rate	of	3.1	ml/h,	and	the	animal’s	body	temperature	was	

maintained	 at	 38°C	 using	 a	 feedback-controlled	 heating	 pad	 (RWD	 Life	 Sciences,	 Shenzhen,	

China).	The	cochlear	implantation	methods	are	described	in	detail	in	41,43.		

In	 short,	 four	 rings	of	an	eight-channel	 intracochlear	electrode	carrier	 (ST08.45,	Peira,	

Beerse,	Belgium)	were	inserted	through	a	cochleostomy	in	the	medio-dorsal	direction	into	the	

middle	 turn	of	both	 cochleae.	 The	 tip	electrode	 ring	of	 each	 intracochlear	 array	was	used	 to	

deliver	electrical	stimuli,	while	the	second,	adjacent	electrode	served	as	ground.	A	craniotomy	

was	then	performed	bilaterally	of	the	central	cranial	suture,	just	anterior	to	lambda,	and	a	single-

shaft,	32-channel	silicon	array	electrode	(ATLAS	Neuroengineering,	E32-50-S1-L6)	was	inserted	

stereotaxically	 into	 the	 inferior	 colliculus	 (IC)	 through	 the	 overlying	 occipital	 cortex	 using	 a	

micromanipulator	(RWD	Life	Sciences).	

Electrophysiology:	 Electrical	 stimuli	 were	 generated	 using	 a	 Tucker	 Davis	 Technology	

(TDT,	 Alachua,	 Florida,	 US)	 IZ2MH	 programmable	 constant	 current	 stimulator	 (TDT,	 Alachua,	

Florida,	US)	running	at	a	sample	rate	of	24414	Hz.	To	verify	that	the	cochlear	implantation	was	

successful	and	yielded	symmetric	evoked	responses	at	comparatively	low	thresholds	(typically	

less	than	100	µA	peak)	in	each	ear,	electrically	evoked	auditory	brain	stem	response	thresholds	

were	 measured	 for	 each	 ear	 individually.	 This	 was	 done	 by	 recording	 scalp	 potentials	 with	
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subcutaneous	needle	electrodes	 implanted	over	the	vertex	and	each	bulla,	averaged	over	the	

presentation	of	400	individual	biphasic	electrical	stimulus	pulses.	

Extracellular	 signals	 were	 recorded	 at	 a	 rate	 of	 24414	 Hz	 with	 a	 TDT	 RZ2	 with	 a	

NeuroDigitizer	headstage	and	BrainWare	software.	Neural	tuning	to	interaural	time	differences	

(ITDs)	 of	 binaurally	 delivered	 pulse	 trains	 was	 then	 measured	 by	 recording	 extracellular	

responses	of	IC	neurons	to	200	ms	long	trains	of	anode	leading,	biphasic	electrical	pulses	(duty	

cycle:	 40.96	 µs	 positive,	 40.96	 µs	 at	 zero,	 40.96	 µs	 negative),	 with	 peak	 pulse	 amplitudes	

approximately	6	dB	above	neural	response	thresholds	and	a	rate	of	300	pulses	per	second.	The	

pulses	were	delivered	bilaterally	 to	both	ears	and	the	 ITD	between	the	 left	and	right	ear	was	

varied	(ITD=-160,	-80,	-40,	0,	+40,	+80	and	+160	µs).	In	one	set	of	recordings,	the	amplitude	of	

the	pulse	sequences	was	modulated	with	a	Hanning	window.	This	allowed	us	to	test	for	linearity	

of	the	stimulus	current	to	artifact	relationship	and	ultimately	allows	us	to	determine	whether	the	

Wiener	filter	artifact	prediction	method	is	able	to	generalize	and	predict	dynamic	time-varying	

artifacts.	The	recordings	typically	exhibited	short	response	latencies	(≈	3-5	ms),	which	indicates	

that	they	probably	come	predominantly	from	the	central	region	of	IC.	

Using	 the	 suprathreshold	 recording	 traces,	we	applied	Eqn.	3	and	derived	 the	Wiener	

artifact	prediction	filters	for	each	recording.	The	estimated	filters	were	then	used	to	predict	and	

subsequently	subtract	the	recording	artifacts	from	the	recorded	traces.	Eqn.	3	was	applied	in	a	

variety	of	ways	in	order	to	demonstrate	the	flexibility	of	the	Wiener	filter	method.	For	the	first	

recording,	we	treated	each	ITD	condition	separately,	and	derived	one	artifact	prediction	filter	per	

condition	(Fig.	3,	shown	for	0	ms	ITD).	For	this	example,	the	artifacts	associated	with	each	ITD	

condition	are	highly	reproducible	because	the	pulse	amplitude	and	ITD	of	the	left	and	right	ear	
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pulse	was	not	varied	for	each	individual	condition.	This	allows	us	to	measure	a	single	composite	

artifact	filter	for	each	individual	ITD	condition.	For	the	second	example	(Fig.	3),	we	used	pulses	

that	varied	dynamically	over	time	and	we	included	all	ITD	conditions	during	the	filter	estimation.	

For	this	example,	each	ITD	produces	a	unique	artifact	waveforms	and	the	goal	was	to	derive	filters	

that	 could	 generalize	 across	 all	 of	 the	 recorded	 conditions.	We	 did	 so	 by	 treating	 the	 pulse	

sequences	 of	 the	 left	 and	 right	 ear	 as	 distinct	 inputs	 (2	 input	Wiener	 filter).	 Thus,	 for	 each	

recording	channel,	we	obtained	two	separate	filters,	one	for	the	left	and	the	other	for	the	right	

channel.	These	filters	were	then	individually	convolved	with	the	left	and	right	ear	pulse	sequence	

(with	the	appropriate	ITD)	and	subsequently	summed	to	derive	the	final	predicted	artifact	(Eqn.	

1	for	N=2).	Finally,	we	tested	the	quality	of	the	artifact	prediction	achieved	either	by	applying	

Eqn.	3	one	recording	channel	at	a	time	or	by	considering	all	recording	channels	simultaneously	

(in	matrix	form,	multi-output	scenario).	Regardless	of	which	approach	we	used	to	estimate	the	

artifact	prediction	filters,	the	results	were	identical	and	within	the	machine	precision	(e.g.,	RMS	

error	for	example	of	Fig.	3	is	1.4×10Fpq	%).		

	

Electrical Stimulation and Recording in the Rat Auditory Midbrain and Cortex	

Surgical	Procedures:	All	procedures	were	approved	by	the	Institutional Animal	Care	and	

Use	Committee	of	the	University	of	Connecticut.	Recordings	were	obtained	from	right	cerebral	

hemisphere	 of	 adult	 male	 Brown	 Norway	 rats.	 Anesthesia	 was	 induced	 with	 ketamine	 and	

xylazine	and	maintained	throughout	the	surgery	and	recording	procedures.	Depth	of	anesthesia	

was	monitored	using	pedal	reflex,	heart	rate,	and	blood	oxygen	saturation	(SpO2)	measured	by	

a	pulse	oximeter.	A	heating	pad	was	also	used	to	maintain	the	animal’s	body	temperature	at	37.0	
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±	1.0	°C.	Craniotomies	were	performed	over	the	temporal	cortex	to	make	both	cortex	and	IC	

regions	accessible.	Dexamethasone	and	atropine	sulfate	were	administered	to	reduce	cerebral	

edema	and	secretions	in	the	airway.		

Electrophysiology: 16-channel	acute	neural	recording	probes	(NeuroNexus	5	mm	probe;	

16-linear	spaced	sites	with	150	um	separation;	site	impedance	~100	𝐾Ω)	were	used	to	record	

neural	 activity	 and	 also	 to	 deliver	 electrical	 stimulation	 to	 the	 IC.	 Stimulating	 and	 recording	

probes	were	grounded	to	the	animal’s	neck	muscle	and	the	eye	bars	holding	the	animal	in	place,	

respectively	 44.	 The	 probes	 were	 inserted	 with	 a	 high	 precision	 LS6000	microdrive	 (Burleigh	

EXFO).	A	4-channel	acute	single-shank	recording	tetrode	(Qtrode,	NeuroNexus	Inc;	5	mm	shank	

length,	tetrode	with	25	um	site	separation;	site	impedance	~1-3	𝑀Ω)	was	simultaneously	inserted	

into	auditory	cortex	(AC).	Penetration	sites	were	chosen	within	the	depth	range	of	cortical	layer	

IV	where	AC	receives	its	inputs	from	auditory	thalamus.	A	sequence	of	pure	tones	with	varying	

frequency	and	attenuation	was	initially	played	to	the	animal’s	left	ear	(contralateral	to	the	brain	

opening)	 and	 brain	 responses	were	 recorded	 to	 generate	 frequency	 response	 areas	 (FRA)	 to	

verify	probes	placements	in	the	central	nucleus	of	IC	and	AC.		

Neural	activity	was	recorded	digitally	at	a	sampling	rate	of	12	kHz	using	a	PZ2	preamplifier	

and	RZ2	real	time	processor	(TDT,	Alchua,	Florida,	US).	Electrical	stimuli	were	delivered	to	the	IC	

electrode	via	the	IZ2	stimulation	module	(TDT,	Alchua,	Florida,	US).	Electrical	pulse	sequences	

with	 amplitudes	 of	 either	 40	 µA	 or	 10	 µA	were	 transmitted	 to	 a	 single	 electrode	 (Fig.	 4)	 or	

independently	 across	multiple	 electrode	 channels	 (Fig.	 5	 and	 6),	 respectively	 (see	 below	 for	

details).	Neural	activity	was	then	recorded	from	the	auditory	cortical	probe	for	the	duration	of	

each	stimulus.		
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Single-Channel	 and	Multi-Channel	 Electrical	 Stimulation:	 We	 first	 delivered	 Poisson-

distributed	biphasic	pulse	sequence	during	single	channel	electrical	stimulation.	A	random	sparse	

sequence	of	impulses	with	arrival	time	following	Poisson	point	process	and	impulse	rate	of	16	Hz	

was	first	generated	(86	sec	duration;	delivered	twice).	The	impulse	sequence	was	convolved	with	

a	biphasic	pulse	(164	µs	duration	and	40	µA	current	amplitude)	to	produce	the	current	waveform	

used	for	electrical	stimulation.		

	 For	multi-site	electrical	stimulation,	we	delivered	a	random	quad-pulse	train	sequence	

(RQP;	86	sec	duration;	delivered	twice).	The	RQP	sequence	is	generated	by	delivering	biphasic	

pulses	(164	µs	duration	and	10	µA	amplitude)	concurrently	across	4	randomly	chosen	electrode	

channels	every	40	ms	yielding	an	average	pulse	rate	of	100	pulses/s	as	illustrated	in	Fig.	5.	This	

multi-site	 sequence	 produces	 a	 random	 spatio-temporal	 patterned	 set	 of	 pulses	 that	 are	

delivered	across	the	16-channel	electrode	array.	We	also	delivered	an	RQP	sequence	in	which	

the	amplitude	of	the	pulses	was	varied	dynamically	over	time	(Fig.	6).	Pulse	amplitudes	for	this	

sequence	varied	between	0.1	and	10	µA	in	logarithmic	steps	(11	steps	total).	Because	the	pulse	

amplitudes	scale	over	two	orders	of	magnitude	and	the	pulses	summate	across	channels,	this	

multi-channel	sequence	allows	us	to	test	for	linearity	of	the	current-artifact	relationship.	

	

RESULTS	

We	 demonstrate	 the	 Wiener	 filter	 effectiveness	 for	 predicting	 and	 removing	 neural	

recording	artifacts	during	single	and	multi-channel	electrical	stimulation	for	both	high-frequency	

spiking	activity	and	low-frequency	local	field	potentials	(LFP)	in	a	variety	of	recording	modalities.	

The	 success	 of	 the	 artifact	 removal	method	 is	 evaluated	 by	 comparing	 the	 residual	 artifacts	
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across	repeated	stimulation	trials	and	estimating	neural	recording	SNR	as	well	as	the	ARR	before	

and	after	removing	artifacts.	

	

Single-Channel	Electrical	Stimulation	of	Sciatic	Nerve	

Monopolar	stimulus	pulses	(0.2	ms	duration,	cathodal	current,	0.5	Hz	stimulation	rate)	

with	6	current	amplitudes	(10-320	µA,	octave	increments,	both	sub-	and	supra-threshold)	were	

delivered	in	pseudo	random	order	to	one	end	of	sciatic	nerve	with	a	platinum	iridium	electrode	

(Fig.	1A).	Evoked	action	potentials	along	with	stimulation	artifacts	were	recorded	from	40	teased	

sciatic	nerve	filaments	and	the	quality	of	artifact	removal	using	the	proposed	linear	Wiener	filter	

was	assessed	under	various	conditions.		

The	artifact	prediction	filter	accurately	predicts	the	recorded	artifacts	regardless	of	the	

current	 amplitude	 delivered,	 as	 shown	 in	 Fig.	 1B,	 where	 a	 representative	 recording	 of	 the	

lidocaine	treated	artifacts	is	superimposed	with	the	Wiener	filter	predicted	artifact	(Wiener	filter	

estimated	using	currents	between	10-320	µA	under	lidocaine).	The	prediction	filter	was	obtained	

by	correlating	the	input	stimulation	current	with	the	recorded	artifacts	using	the	Wiener-Hopf	

Equation	(Eqn.	3).	This	filter	is	subsequently	used	to	filter	the	input	current	in	order	to	predict	

the	artifacts.	As	 seen	 for	 the	entire	 session,	 the	 recorded	artifacts	under	 lidocaine	 treatment	

(purple)	 are	 highly	 overlapped	 with	 and	 indistinguishable	 from	 the	 predicted	 artifacts	 (red).	

Likewise,	magnified	 views	of	 the	 recorded	artifacts	 from	different	 stimulating	amplitudes	are	

indistinguishable	from	the	predicted	artifacts	as	displayed	in	Fig.	1C.	The	overlapping	waveforms	

between	 the	 actual	 and	 the	 linear	Wiener-filter	 predicted	 artifact	 verify	 the	 hypothesis	 that	

recording	 artifacts	 follow	 a	 linear	 relationship	 with	 respect	 to	 the	 input	 current	 signals.	We	



	 24	

explicitly	tested	for	linearity	by	first	plotting	the	relationship	between	input	current	amplitude	

and	 the	 peak-to-peak	 amplitude	 of	 recorded	 artifact	 which	 showed	 an	 exceptionally	 high	

correlation	coefficient	across	all	recordings	(Fig.	1D;	𝑟p = 0.9997 ± 0.0004,	Mean±SD,	N=40).	

Similarly,	the	relationship	between	the	peak-to-peak	amplitude	of	the	recorded	(with	lidocaine)	

and	the	 linear	 filter	predicted	artifacts	was	 likewise	highly	correlated	 (Fig.	1E;	𝑟p = 0.9997 ±

0.0004,	Mean±SD,	 N=40).	 These	 results	 suggest	 that,	 for	 this	 experimental	 preparation,	 the	

recorded	artifacts	scale	 linearly	with	respect	to	the	current	 input,	such	that	the	linear	Wiener	

filter	accurately	predicts	 the	recorded	artifacts	 regardless	of	 the	amplitude	of	 the	stimulating	

current.	

The	artifact	prediction	and	removal	procedure	accurately	isolated	neural	responses	for	a	

range	of	filter	estimation	conditions.	The	artifact	prediction	filters	were	estimated	using	artifact	

recordings	either	 from	subthreshold	stimulation	or	under	 lidocaine	 treatment	 (see	Methods).	

The	 estimated	 filters	were	 then	 used	 to	 predict	 and	 cancel	 out	 the	 recording	 artifact	 during	

suprathreshold	 stimulation	 (pre-lidocaine	 at	 320	 µA).	 Fig.	 1F	 shows	 a	 representative	

suprathreshold	 recording	 (320	µA	current	 stimulation;	black	 curves)	along	with	 the	predicted	

artifacts	 derived	 from	 each	 of	 the	 estimated	Wiener	 filters	 (gray	 box).	 As	 a	 control,	we	 also	

obtained	artifact	recordings	following	the	application	of	lidocaine	which	blocks	action	potential	

generation	so	that	the	recorded	signals	consisted	of	pure	stimulus	artifacts	as	shown	in	Fig.	1F	

(purple,	top	left).	This	post-lidocaine	artifact	signal	was	subtracted	from	the	original	recordings	

(pre-lidocaine	at	320	µA,	black)	which	allows	us	to	isolate	the	neural	response	component	(Fig.	

1F,	purple,	bottom	 left).	 For	 the	Wiener	 filter	 cancelation	method,	we	 first	used	 the	artifacts	

evoked	 from	 highest	measured	 subthreshold	 current	 to	 derive	 the	 artifact	 prediction	 filters.	
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Using	 this	 filter,	we	 subsequently	 predicted	 (Fig.	 1F,	 blue,	 top)	 and	 subtracted	 the	 predicted	

artifacts	from	the	suprathreshold	stimulation	recordings	(Fig.	1F,	blue,	bottom).	The	Wiener	filter	

obtained	 using	 subthreshold	 stimulation	 accurately	 predicts	 the	 recorded	 artifacts	 during	

suprathreshold	 stimulation	 and	 is	 able	 to	 isolate	 the	 neural	 activity	 (Fig.	 1F,	 bottom).	 An	

advantage	 of	 this	 approach	 is	 that,	 unlike	 lidocaine	 treatment,	 it	 does	 not	 require	 a	

pharmacological	treatment	to	block	neural	activity	 in	order	to	 isolate	and	remove	the	artifact	

signals.	Next,	we	estimated	the	artifact	prediction	filters	using	the	lidocaine	treated	artifacts	from	

the	lowest	five	current	intensities	(10-160	µA)	and	predicted	the	artifacts	at	320	µA	stimulation	

(green,	top).	Since	the	currents	used	for	the	filter	estimation	and	subsequent	prediction	are	not	

the	same,	this	test	serves	as	a	cross-validation	as	well	as	assessment	of	linearity.	As	can	be	seen	

in	 Fig.	 1F	 (green,	 bottom),	 subtracting	 the	 predicted	 artifact	 from	 the	 recorded	 waveform	

substantially	 reduces	 the	 artifact	 size	 and	 successfully	 isolates	 the	 action	potential.	Next,	we	

carried	out	the	same	procedure	but	estimated	the	Wiener	filters	using	the	lowest	five	current	

intensities	along	with	the	first	five	trials	of	the	320	uA	lidocaine	session	(10-320	µA,	55	trials	used,	

cross-validated	 condition,	brown)	or	 the	entire	 lidocaine	 recording	 session	 (10-320	µA,	 all	 60	

trials	 used,	 red).	 As	 exemplified	 for	 each	 of	 these	 cancelation	 examples,	 the	 isolated	 neural	

signals	obtained	from	artifact	removal	by	the	Wiener	filter	method	(gray	box,	bottom)	are	nearly	

identical	 to	 the	 experimentally	 isolated	 artifact	 signals	 using	 lidocaine	 treatment	 (purple,	

bottom).	

We	next	quantified	the	artifact	cancellation	performance	for	each	of	the	above	scenarios.	

The	 cancellation	performance	depended	on	 the	data	used	 to	estimate	 the	artifact	prediction	

filter,	particularly	the	number	of	artifacts	and	the	signal-to-noise	ratio	of	the	artifacts	used	for	



	 26	

filter	estimation.	The	artifact	reduction	ratio	(ARR,	see	Methods)	quantifies	the	attenuation	of	

the	 artifact	 spectrum	 (in	 dB)	 following	 cancellation	 and	 is	 shown	 in	 Fig.	 1G	 for	 each	 of	 the	

conditions	 tested.	 The	 lowest	 ARR	 (measured	 between	 300-3000	 Hz)	 was	 observed	 for	 the	

subthreshold	condition	(22.8±4.4	dB,	Mean±SD;	N=40	fibers)	which	is	as	expected	due	to	fewer	

artifacts	 used	 (N=10)	 for	 the	 estimation	 of	 prediction	 filter	 and	 the	 fact	 that	 the	 measured	

artifacts	are	relatively	low	amplitude	and	thus	susceptible	to	background	noise	(i.e.,	low	signal-

to-noise	ratio).	The	ARR	improved	to	28.1±3.5	dB	(Mean±SD;	N=40	fibers;	cross	validated)	when	

lidocaine	treated	artifacts	from	10-160	µA	stimulation	were	used	to	estimate	the	Wiener	filter.	

The	 ARR	was	 29.9±4.7	 dB	 (Mean±SD;	 N=40	 fibers)	which	was	 calculated	 using	 the	 predicted	

artifact	built	from	55	trials	of	lidocaine	data	(10-320	µA)	against	the	remaining	5	trials	of	320	µA	

lidocaine	treated	artifacts	(also	cross-validated).	The	ARR	increased	to	39.9±3.3	dB	(Mean±SD;	

N=40	 fibers)	when	 lidocaine	 artifacts	 from	 all	 of	 60	 trials	were	 used	 to	 estimate	 the	 artifact	

prediction	filter	(10-320	µA).	As	a	reference	control,	we	used	the	recorded	artifacts	from	each	

trial	of	the	lidocaine	treated	signals	at	320	µA	current	stimulation	to	cancel	the	artifacts	for	all	of	

the	remaining	trails	(e.g.,	trial	1	artifact	was	used	to	predict	trials	2-10;	2	was	used	to	predict	1,	

3-10;	etc.).	This	control	artifact	removal	serves	as	a	way	of	assessing	the	inherent	noise	in	single	

trials	of	the	recorded	data	and	also	serves	as	a	way	of	canceling	artifacts	without	requiring	the	

need	to	assume	linearity	as	for	the	Wiener	filter	method.	The	ARR	for	this	procedure	(30.7 ± 6.8	

dB;	Mean±SD;	N=40	fibers)	is	comparable	to	our	cross-validated	artifact	removal	performance	

(29.9±4.7	 dB,	 Mean±SD;	 N=40	 fibers).	 This	 suggests	 that	 the	 Wiener	 filter	 artifact	 removal	

performance	 is	 comparable	 to	 the	 performance	 obtained	 using	 real	 recorded	 artifacts	 for	
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removal.	Thus,	the	Wiener	filter	cancelation	performance	for	this	example	is	largely	limited	by	

the	intrinsic	noise	in	the	recording.	

Collectively,	these	examples	demonstrate	that	the	Wiener	filter	cancellation	method	can	

achieve	 exceptional	 cancelation	 performance	 and	 is	 able	 to	 generalize	 by	 predicting	 and	

cancelling	artifacts	across	multiple	amplitude	conditions.	

	

Bilateral	Cochlear	Implant	Stimulation	

The	artifact	removal	procedure	was	also	tested	with	high-rate	bilateral	cochlear	implant	

stimulation	in	rat	while	concurrently	recording	from	a	silicon	array	electrode	implanted	in	the	IC.	

In	the	first	example,	constant	amplitude	biphasic	electrical	pulse	sequences	were	delivered	at	a	

pulse	rate	of	300	Hz	synchronously	to	both	ears,	at	different	interaural	delays	(ranging	between	

-160	us	to	+160	us,	40	us	steps;	see	Methods).	An	example	raw	recorded	waveform	from	one	IC	

electrode	channel	is	shown	in	Fig.	2A	(black),	along	with	the	predicted	artifact	waveform	(blue).	

For	this	example,	the	artifact	prediction	filters	were	estimated	separately	for	each	ITD	condition	

using	half	of	the	response	trials	from	each	particular	ITD.	The	remaining	trials	at	a	given	ITD	are	

used	to	test	artifact	removal	quality	(cross-validation).	As	can	be	seen	for	a	recording	segment	

(ITD=0	 ms),	 the	 predicted	 artifact	 signals	 are	 largely	 superimposed	 and	 are	 visually	

indistinguishable	 from	 the	 recorded	 artifacts	 on	 the	 neural	 recordings.	 Synchronized	 action	

potentials	are	observed	immediately	following	the	delivery	of	electrical	stimulus	current	pulses.	

Upon	subtracting	the	predicted	artifact	(blue)	from	the	neural	trace	(black),	the	cleaned	neural	

trace	is	exceptionally	clean	with	no	evident	sign	of	stimulation	artifacts	and	no	evident	sign	of	

waveform	distortions	(Fig.	2A	&	B,	red).	Spectral	analysis	of	the	recorded	signal	prior	to	(Fig.	2C,	
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black)	and	after	artifact	removal	(Fig.	2C,	red)	confirms	a	substantial	reduction	in	the	artifact	size.	

The	 artifact	 spectrum	 has	 harmonic	 components	 with	 a	 300	 Hz	 fundamental	 (blue)	 which	

dominates	 the	 original	 recording	 (black).	 Upon	 removal	 of	 the	 predicted	 artifact,	 there	 is	 a	

substantial	reduction	in	the	artifact	components	(red).	Overall,	the	average	artifact	reduction	at	

harmonics	of	the	stimulation	frequency	is	27.2	dB	(between	300-6000	Hz;	averaged	across	all	ITD	

conditions;	Fig.	2D).	

We	also	delivered	bilateral	electrical	stimulation	sequences	containing	pulse	amplitudes	

that	 varied	 dynamically	 over	 time	 (see	 Methods)	 as	 shown	 in	 Fig.	 3.	 We	 used	 time-varying	

amplitudes	 and	 different	 ITDs	 in	 order	 to	 determine	 whether	 the	 stimulus	 current-artifact	

relationship	 is	 linear	 and	 to	 determine	 whether	 the	 Wiener	 filter	 prediction	 method	 can	

generalize	to	dynamic	stimulation	scenarios.	For	this	example,	the	pulse	train	amplitudes	were	

ramped	 on-and-off	 with	 a	 smooth	 window	 and	 the	 pulses	 were	 delivered	 at	 multiple	 ITDs	

(between	-160	to	+160	µs	in	40	µs;	pulse	rate	of	300	Hz;	see	Methods).	The	artifact	prediction	

filters	were	estimated	using	all	of	the	ITD	and	amplitude	conditions	(1/2	of	the	data	for	estimation	

and	 the	 remaining	half	 for	 validation;	 validation	data	 is	 shown)	using	Eqn.	3	and	 two	artifact	

prediction	filters	were	derived,	one	for	the	left	ear	and	the	other	for	the	right	ear	(64	filters	total;	

32	recording	channels	x	2	filters	/	recording	channel).	These	filters	were	then	used	to	predict	the	

artifact	waveforms	for	all	of	the	ITD	conditions.	As	can	be	seen	from	Fig.	3A	for	a	representative	

recording	channel,	the	predicted	artifacts	(red)	derived	with	the	two-channel	Wiener	filter	largely	

overlap	the	recorded	artifacts	in	the	original	neural	recordings	(black;	shown	at	three	different	

scales).	 The	peak-to-peak	voltage	amplitudes	of	 these	artifacts	are	highly	 correlated	with	 the	

delivered	peak-to-peak	current	amplitudes	(Fig.	3C,	𝑟p = 0.9981 ± 0.0001;	Mean±SEM)	as	well	
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as	 the	 peak-to-peak	 voltages	 of	 the	 predicted	 artifacts	 (Fig.	 3D,	 𝑟p = 0.9981 ± 0.0001;	

Mean±SEM),	indicating	that	the	stimulation	current	and	artifact	follow	a	linear	relationship.	By	

subtracting	the	predicted	artifacts	from	the	original	recordings,	we	were	able	to	isolate	action	

potentials	 from	a	single	neuron	 (Fig.	3B).	Although	 there	are	still	 some	artifacts	visible	 in	 the	

cleaned	 recording	 (Fig.	 3B,	 arrows),	 the	 artifact	 size	 has	 been	 dramatically	 reduced	 (cross	

validated	ARR=25.0	dB,	between	300-6000	Hz)	making	isolation	of	this	single	neuron	possible.		

	

Single-	and	Multi-Channel	Electrical	Stimulation	in	Auditory	Midbrain	

We	also	tested	the	artifact	removal	procedure	by	delivering	random	biphasic	electrical	

pulse	sequences	(Poisson	distributed	pulse	intervals,	164	µs	pulse	duration,	and	40	µA	current	

amplitude,	 Fig.	 3A)	 to	 an	 auditory	midbrain	 electrode	while	 neural	 activity	was	 concurrently	

recorded	from	rat	auditory	cortex.	As	can	be	seen	in	Fig.	3B	and	C,	the	extracellular	neural	activity	

(Fig.	3B,	highpass	filtered	above	300	Hz)	and	the	corresponding	unfiltered	recordings	(Fig.	3C,	

unfiltered)	both	contain	stimulation	artifacts	that	are	substantially	larger	than	the	target	neural	

signals.	

We	numerically	estimated	a	digital	single	channel	Wiener	filter	(N=40	order;	1	stimulation	

x	1	recording	channel)	 to	predict	and	subsequently	remove	the	electrical	stimulation	artifacts	

(see	Methods).	Fig.	4B	and	C	show	the	raw	cortical	recordings	(top	panels),	the	predicted	artifacts	

(middle	panel)	and	cleaned	neural	traces	obtained	by	subtracting	the	predicted	artifacts	from	the	

raw	recordings.	The	artifact	prediction	algorithm	accurately	predicts	the	timing	and	amplitude	

waveform	of	the	electrical	artifacts	and,	upon	subtraction,	the	procedure	successfully	 isolates	

either	the	extracellular	waveforms	or	 low-frequency	 local	 field	potentials	 in	the	neural	signal.	
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Magnified	traces	of	the	extracellular	recordings	(marked	by	*	and	**)	are	presented	in	Fig.	4D	to	

show	 the	 cleaned	 neural	 recordings	 at	 a	 higher	 resolution.	 Notably,	 the	 algorithm	 is	 able	 to	

subtract	the	artifacts	that	occur	in	the	vicinity	of	neural	spiking	with	no	visible	signs	of	neural	

waveform	distortions.		

Performance	 metrics	 of	 the	 artifact	 prediction	 and	 subtraction	 algorithm	 for	 this	

recording	 is	 shown	 in	Fig.	3E	 (applied	to	 the	broadband	unfiltered	signal).	The	signal-to-noise	

ratio	of	the	original	recorded	waveform	varies	with	frequency	but	is	generally	in	the	order	of	-10	

to	-20	dB.	Upon	subtracting	the	predicted	artifact,	the	cleaned	SNR	is	~20	dB	with	an	average	

SNR	enhancement	ranging	between	30	to	45	dB	(average	=	39	dB	between	300-6000	Hz).	Thus,	

there	 is	a	marked	reduction	 in	the	artifact	size	and,	as	seen	in	the	zoomed	neural	recordings,	

there	are	no	visible	distortions	created	by	the	subtraction	algorithm.		

We	 also	 successfully	 used	 the	 artifact	 removal	 during	 high	 throughput	 multi-channel	

electrical	 stimulation	 (16	 stimulation	 channels)	 of	 the	 auditory	 midbrain	 while	 concurrently	

recording	with	a	tetrode	array	(4	channels;	see	Methods).	In	this	instance,	the	Wiener	filter	was	

applied	in	matrix	form	(Eqn.	3),	which	allowed	us	to	predict	the	artifacts	generated	by	all	of	the	

stimulating	channels	on	each	individual	neural	recording	channel	(16	stimulation	x	4	recording	

channels).	Random	pulse	sequences	(100	pulses/s)	were	delivered	to	the	16-channel	auditory	

midbrain	array	(Fig.	5A;	10	µA	pulses	delivered	across	four	randomly	chosen	electrode	channels	

simultaneously)	while	recording	from	auditory	cortex	electrodes.	For	this	multi-stimulation	site	

configuration,	we	numerically	estimated	the	digital	filters	that	predict	the	artifacts	generated	by	

each	of	the	electrical	stimulation	channel.	Filtered	and	unfiltered	neural	recordings,	predicted	

artifacts,	and	the	cleaned	neural	traces	are	depicted	for	both	the	filtered	(Fig.	5B)	and	unfiltered	
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(Fig.	5C)	data.	As	for	the	single	channel	electrical	stimulation,	the	artifact	prediction	filter	is	able	

to	accurately	predict	the	measured	artifacts	during	multi-channel	electrical	stimulation,	resulting	

in	minimal	distortion	of	the	extracellular	signals	or	the	local	field	potentials.	Prior	to	removing	

the	artifact,	the	SNR	for	this	recording	dips	to	approximately	-15	dB	at	~3	kHz	(Fig.	5E).	Following	

artifact	removal,	the	SNR	hovers	around	~20	dB	with	an	overall	improvement	in	the	range	of	30-

45	dB	across	the	frequency	range	(average	artifact	reduction	ratio=33.5	dB	from	300-6000	Hz;	

Fig.	5E).	

Finally,	we	assessed	the	linearity	of	the	artifact-current	relationship	by	delivering	multi-

channel	pulse	sequences	of	time-varying	amplitude	(Fig.	6).	 In	this	example,	 the	amplitude	of	

random	spatio-temporal	pulses	was	modulated	over	 time	between	0.1-10	µA	as	 illustrated	 in	

panel	Fig.	6A	(11	logarithmic	steps;	color	designates	the	current	amplitude).	By	considering	pulse	

sequences	 that	 contain	multiple	 concurrent	 pulses	 of	 time-varying	 amplitude	we	 are	 able	 to	

assess	linearity,	which	requires	that	artifacts	scale	in	amplitude	and	summate	linearly	with	the	

respect	to	the	input	current	signals.	The	multi-channel	artifact	prediction	filters	were	derived	for	

this	example	using	the	recorded	data	by	applying	Eqn.	3	and	the	predicted	artifacts	were	then	

derived.	As	can	be	seen	for	two	of	the	four	recorded	channels	 (Fig.	6B	and	C),	 the	procedure	

accurately	 predicts	 the	 recorded	 artifacts	 and	 the	 resulting	 cleaned	 neural	 traces	 show	 no	

evident	signs	of	artifacts	(Fig.	6B	and	C,	bottom;	D	and	E,	magnified	view).	Linearity	was	assessed	

by	plotting	the	recorded	versus	the	predicted	peak-to-peak	amplitudes	of	the	artifacts	(Fig.	6F).	

As	can	be	seen	from	the	scatter	plot	there	is	clustering	along	the	diagonal.	Variability	along	the	

diagonal	for	each	cluster	reflects	amplitude	variability	created	by	the	summation	of	randomly	

selected	 stimulating	 channels	 (4	 out	 of	 16	 channels	 are	 stimulated	 concurrently).	 Each	
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stimulating	channel	has	a	distinct	impedance	(transfer	function)	and	hence	a	distinct	artifact	on	

the	 recorded	 channel	with	 unique	 amplitude.	 Consequently,	 there	 are	16!	 12! ∙ 4! =1820	

possible	 channel	 combinations	 (4	 choose	 16)	 and	 a	 total	 of	 10920	 unique	 artifacts	 (1820	

artifacts/amplitude	x	6	amplitudes).	By	comparison,	variability	orthogonal	to	the	diagonal	reflects	

the	variability	in	the	neural	signal	of	interest,	which	is	present	in	the	original	recorded	trace.	As	

can	be	seen,	 for	very	small	 input	currents	 (<500	µA)	the	artifact	peak-to-peak	amplitudes	are	

smaller	than	the	detected	peak-to-peak	amplitudes	from	artifact	free	neural	signal	segments	(0.5	

ms	window	used	to	detect	the	peak-to-peak	voltage;	Mean	peak-to-peak	voltage	of	artifact	free	

segments	 =	 100	 µV,	 dotted	 blue	 line	 Fig.	 6D).	 Thus,	 for	 such	 small	 stimulation	 currents,	 the	

detected	 peak-to-peak	 amplitudes	 within	 the	 artifact	 measurement	 window	 are	 actually	

corrupted	 by	 the	 peak-to-peak	 amplitude	 of	 the	 neural	 signal.	 This	 neural	 signal	 variability	

represents	measurement	noise	 and	 creates	 a	 slight	 curvature	 in	 the	 scatter	 plot	 for	 currents	

below	 ~	 500	 µA.	 Despite	 this,	 the	 accounted	 artifact	 variance	 with	 a	 linear	 model	 was	

exceptionally	high	 (𝑟p = 0.9981 ± 0.0001,	Mean±SEM)	suggesting	 that	 the	artifacts	 follow	a	

linear	relationship	with	the	current	input.	

	 Overall,	these	examples	demonstrate	that	a	multi-channel	linear	prediction	filter	is	able	

to	account	for	the	recorded	artifacts	generated	via	spatio-temporal	summation	from	multiple	

dynamically	changing	current	inputs.	

	

The	Impact	of	Data	Length	on	Artifact	Removal	Quality	

As	seen	from	different	examples,	there	are	some	discrepancies	in	the	artifact	reduction	

ratio	 between	 the	 different	 recordings	which	 varied	 between	 ~25	 to	 40	 dB	 for	 the	 different	
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examples	tested.	This	discrepancy	is	in	part	accounted	by	the	quality	of	the	estimated	artifact	

prediction	 filters,	 which	 is	 expected	 to	 depend	 on	 the	 length	 of	 the	 recorded	 data	 and	 the	

number	 of	 pulses	 delivered.	 For	 instance,	 the	 artifact	 prediction	 filter	 obtained	 for	 the	

subthreshold	 sciatic	 nerve	 stimulation	 were	 derived	 from	 slow	 rate	 pulse	 sequences	 (0.5	

pulses/s)	of	relatively	short	duration	(10	sec	total)	and	thus	relatively	few	artifact	measurements	

(10	 pulses	 total),	 which	 likely	 resulted	 in	 the	 low	 ARR	 (~20	 dB).	 This	 contrast	 the	 auditory	

midbrain	and	cortical	recordings	reported	in	Fig.	4	and	5,	where	longer	sequences	were	used	and	

pulses	were	delivered	at	a	much	higher	rate	(Fig.	2,	300	pulses/s;	Fig.	3,	16	pulses/s;	Fig.	4,	100	

pulses/s),	resulting	in	a	much	higher	number	of	artifact	measurements	for	the	filter	estimation	

and	 consequently	 a	 higher	 ARR	 (~30-40	 dB).	 The	 impact	 of	 the	 estimation	 data	 length	 (or	

equivalently	number	of	artifact	pulses	used	to	estimate	the	filters)	on	the	quality	of	the	algorithm	

are	shown	in	Fig.	7	for	the	auditory	cortex	recording	of	Fig.	5.	The	recorded	data	was	portioned	

into	segments	of	a	 fixed	duration	 (2.7-172	s;	corresponding	 to	~270-17,200	artifacts)	and	the	

filters	 were	 re-estimated	 using	 the	 partitioned	 data	 followed	 by	 the	 artifact	 prediction	 and	

removal	procedure.	As	expected,	the	ARR	improves	with	increasing	estimation	data	length,	or	

equivalently	the	number	of	artifacts	used	to	estimate	the	filters,	with	an	average	improvement	

of	~2.5	dB	per	doubling	of	the	data	length.		

	

DISCUSSION		

We	have	developed	an	optimal	multi-channel	artifact	removal	procedure	that	accurately	

predicts	 electrical	 stimulation	 artifacts	 using	 both	 the	 stimulating	 current	 signal	 and	 the	

estimated	linear	transfer	function	between	each	stimulating	and	neural	recording	electrode.	The	
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procedure	 is	 flexible	 and	 can	 be	 implemented	 in	 a	wide	 range	 of	 applications	 and	 recording	

modalities,	 including	 high	 rate	 and	 multi-channel	 electrical	 stimulation.	 The	 procedure	 was	

validated	in	three	different	neural	stimulation	settings:	single-channel	stimulation	of	sciatic	nerve	

axons,	bilateral	(two-channel)	cochlear	implant	stimulation	and	multi-channel	stimulation	of	the	

auditory	midbrain,	where	we	demonstrate	a	net	reduction	in	the	artifact	size	of	25-40	dB.		

Compared	with	other	artifact	removal	methods,	the	novelty	of	our	approach	is	two-fold.	

First,	 it	requires	establishing	linear	filter	coefficients	that	account	for	the	transfer	functions	of	

each	stimulus-recording	interface,	a	process	that	needs	only	a	modest	amount	of	recording	data	

(10-100	s).	An	added	benefit	 is	 that	the	filter	coefficients	can	be	easily	updated	as	needed	to	

account	for	the	temporal	drifting	of	the	stimulus-recording	coupling,	thus	potentially	allowing	for	

adaptive	 artifact	 removal	 over	 a	 long	 recording	 periods	 (e.g.,	 days	 to	 months).	 Second,	 the	

procedure	 utilizes	 the	 information	 of	 the	 stimulus	 signals	 that	 are	 the	 source	 of	 artifact	 and	

readily	 available	 in	 most	 instances,	 but	 are	 neglected	 by	 conventional	 artifact	 removal	

procedures.	This	allows	our	method	to	remove	artifacts	in	neural	recordings	evoked	by	arbitrary	

stimulus	waveforms	(e.g.,	variable	amplitudes,	multiple	channels	etc.),	which	is	not	possible	with	

conventional	artifact	removal	algorithms.	

Our	novel	artifact	removal	procedure	capitalizes	on	passive	linear	electrical	coupling	of	

stimulus	signals	through	tissue	and	air	(resistive,	capacitive,	and/or	inductive)	that	gives	rise	to	

the	artifacts	in	the	records	33.	Artifacts,	in	this	regard,	correspond	to	electrical	signals	that	are	not	

neural	in	origin	and	are	directly	dependent	on	the	presence	of	the	recording	electrodes	and	their	

electrical	characteristics.	We	confirmed	the	underlying	linearity	assumption	by	delivering	current	

pulses	 of	 different	 amplitudes	 and	 demonstrating	 that	 the	 artifact	 peak-to-peak	 amplitudes	
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exhibit	 an	 exceptionally	 high	 correlation	 with	 the	 delivered	 current	 amplitude	 and/or	 the	

predicted	artifacts	(Fig.	1D	and	E,	Fig.	3C	and	D,	and	Fig.	6F;	𝑟p > 0.998).	Furthermore,	the	multi-

site	 stimulation	 experiments,	 which	 successfully	 removed	 the	 electrical	 artifacts	 using	multi-

channel	linear	Wiener	filters	(Figs.	3,	5,	and	6),	suggest	that	electrical	artifacts	summate	linearly	

thus	further	supporting	the	linearity	assumption.	Several	prior	studies	have	demonstrated	that	

electrical	 stimulation	 artifacts	 can	 follow	 complex	 and	 nonlinear	 relationship	 with	 the	 input	

currents	31,45,	which	would	invalidate	the	use	of	a	linear	predictive	filter	approach	as	used	here.	

One	 plausible	 explanation	 for	 this	 difference	 is	 that	 these	 prior	 studies	 carried	 out	 neural	

recordings	within	relatively	close	proximity	to	the	stimulating	electrodes.	In	such	instances,	it	is	

highly	 probable	 that	 short-latency	 nonlinear	 neural	 activity	 (e.g.	 sub-threshold	 pre-	 or	 post-	

synaptic	 activity)	 and	 other	 extracellular	 field	 potentials	 interfere	 and	 summate	 with	 the	

electrical	artifacts,	which	likewise	exhibit	short	latency.	Such	short-latency	neural	signals	could	

be	 interpreted	 as	 artifacts	 even	 though	 technically	 they	 correspond	 to	 propagating	 activity	

through	the	neural	circuitry.	Although	such	a	scenario	is	not	evident	for	the	recordings	performed	

here,	such	short-latency	neural	activity	could	make	it	difficult	to	detect	specific	types	of	neural	

activity	(e.g.,	action	potentials)	and	could	potentially	limit	the	ability	to	accurately	estimate	the	

artifact	prediction	filters.	Stimulation	artifacts	can	also	potentially	exhibit	a	nonlinear	relationship	

if	the	artifact	amplitudes	saturate	the	recording	amplifiers	or	if	they	exceed	the	voltage	limits	of	

the	digital-to-analog	converter.	This	 in	 itself	 is	not	a	 limitation	of	our	 technique	and	could	be	

circumvented	through	the	use	of	appropriately	selected	neural	recording	hardware.		

	As	 demonstrated,	 the	 Wiener	 filter	 approach	 can	 accurately	 predict	 and	 remove	

recording	 artifacts	 in	 a	 variety	 of	 stimulation	 settings	 including	 single-	 and	 multi-channel	
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stimulation,	 high	 rate	 stimulation,	 as	well	 as	 stimulation	with	 time-varying	 amplitude	 and/or	

shape.	Conventional	procedures	based	on	template	subtraction	are	often	not	able	to	eliminate	

artifacts	 in	 these	 settings	 because	 finding	 a	 template	 that	 matches	 the	 shape	 of	 all	 artifact	

waveforms	 is	 not	 always	 possible	 20-22.	 This	 is	 especially	 true	when	 the	 electrical	 stimulation	

currents	consist	of	variable	amplitudes	and	shapes	or	when	multiple	current	pulses	from	a	single	

or	multiple	channels	summate	over	time.	However,	we	note	that	for	simple	stimulation	scenarios	

with	temporally	isolated	non-overlapping	artifacts,	template	cancelation	should	produce	similar	

results	as	our	method	because	templates	are	derived	using	event	triggered	averaging,	which	for	

such	scenarios	is	equivalent	to	generating	a	Wiener	filter	46.	Other	established	artifact	removal	

procedures	 utilizing	 independent	 component	 analysis	 25-30	 assume	 independence	 between	

neural	activity	and	artifact	sources,	which	is	not	always	satisfied	at	suprathreshold	stimulation	

condition	 that	 evokes	 synchronized	 neural	 activity.	 Thus,	 some	 of	 the	 estimated	 artifact	

components	 can	 contain	 both	 neural	 activity	 and	 artifacts,	 which	 can	 distort	 and	 eliminate	

relevant	neural	signals.	Recently,	a	statistical	model-based	artifact	cancelation	procedure	was	

developed	 to	 successfully	 remove	artifacts	 from	multiple	 sources	 to	enhance	 spike	 sorting	of	

recorded	neural	data	31.	This	statistical	model-based	approach	is	advantageous	when	the	current	

inputs	are	not	known,	however,	 the	procedure	assumes	 that	artifacts	on	a	given	channel	are	

relatively	stable	and	the	procedure	is	not	designed	to	account	for	dynamically	varying	artifacts.		

By	 numerically	 estimating	 the	 linear	 transformation	 between	 each	 stimulation	 and	

recording	 channel	 and	 accounting	 for	 the	 input	 current	waveforms,	 our	 procedure	 is	 able	 to	

generalize	and	accurately	predict	artifacts	that	dynamically	vary	over	time.	Linear	models	have	

been	previously	applied	successfully	to	predict	and	remove	artifacts	from	cortical	recordings	19.	
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The	 linear	 removal	 procedure	 assumed	 that	 the	 artifact	 transfer	 function	 can	 be	 accurately	

described	 by	 a	 first-order	 capacitive	 and	 resistive	 circuit.	 Our	 method	 extends	 on	 such	 an	

approach	by	providing	a	more	general	framework	that	is	applicable	across	vastly	more	complex	

stimulation	 scenarios.	 First,	 although	 the	 use	 of	 a	 circuit	 based	model	 provides	 a	 first	 order	

approximation	of	the	artifact	transformation,	it	cannot	account	for	multiple	signal	transmission	

paths	 that	may	 be	 present,	 such	 as	 simultaneous	 conduction	 through	 the	 neural	 tissue	 and	

through	 air	 medium	 (inductive	 coupling).	 The	 use	 of	 Wiener	 filters	 allows	 us	 to	 empirically	

measure	the	transfer	function	of	each	stimulating-recording	pair	which	can	theoretically	account	

for	such	scenarios.	Furthermore,	as	shown	for	various	examples,	our	procedures	is	also	able	to	

generalize	across	a	variety	of	complex	stimulation	conditions	including	multiple	inputs,	multiple	

outputs,	variable	current	amplitudes,	and	multiple	stimulation	delays	such	as	for	the	cochlear	

implant	 and	 auditory	 midbrain	 stimulation	 examples.	 The	 flexibility	 of	 our	 approach	 is	

exemplified	in	the	dynamic	multi-channel	stimulation	example	(Fig.	6),	where	randomly	selected	

inputs	of	different	amplitudes	were	activated	creating	a	total	of	10920	possible	distinct	artifacts.	

Despite	this,	the	linear	Wiener	filter	accurately	predicts	and	cancels	the	incoming	artifacts	even	

for	this	complex	scenario.	As	far	as	we	are	aware	of,	there	are	presently	no	artifact	cancelation	

procedures	 available	 that	 can	 handle	 this	 high	 variability	 since	 all	 the	 available	 procedures	

require	relatively	stable	artifacts	over	time.	

The	artifact	reduction	ratio	varied	between	~25-40	dB	for	different	recording	modalities	

tested.	 Differences	 between	 the	 different	 modalities	 are	 due	 to	 the	 available	 data	 used	 for	

deriving	the	filter	coefficients	and	the	intrinsic	SNR	of	the	data	itself.	As	demonstrated	for	the	

sciatic	nerve	recordings,	the	quality	of	the	artifact	removal	is	limited	both	by	the	data	length	and	
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number	of	artifacts	in	the	training	data.	The	ARR	for	the	sciatic	nerve	recoding	is	~22	dB	when	

the	 filters	 are	 estimated	using	 subthreshold	 activity	which	 only	 contains	 10	 artifacts	 and	 the	

artifacts	 themselves	 are	 relatively	 small	 in	 relationship	 to	 the	 neural	 activity	 (low	 SNR	 for	

estimating	the	artifact).	Prediction	quality	and	hence	the	artifact	removal	effectiveness	improves	

dramatically	 when	 artifacts	 from	 higher	 current	 amplitudes	 are	 used	 to	 estimate	 the	 filter	

coefficients.	This	improvement	occurs,	in	part,	because	substantially	more	artifacts	are	used	to	

estimate	the	filter	coefficients	(increase	in	data	size)	and	because	the	measured	artifacts	for	high	

current	amplitudes	have	a	higher	SNR.	Similar	results	are	observed	for	the	multi-site	stimulation	

scenario,	where	the	quality	of	the	artifact	removal	improves	upon	adding	more	data	to	the	filter	

estimates	(Fig.	7).	For	this	scenario,	we	note	that	the	increase	of	SNR	for	every	doubling	of	the	

data	 is	~2.5	dB,	which	 is	close	 to	 the	 theoretically	expected	value	under	 the	assumption	 that	

measurement	noise	is	independent	47	(3	dB	improvement	per	doubling	of	the	data	length;	i.e.,	

estimation	error	variance	decreases	inversely	proportional	to	data	length).	

Because	 of	 the	 computational	 efficiency	 of	 the	 linear	 Wiener	 filter	 algorithm,	 the	

proposed	 artifact	 removal	 procedure	 has	 potential	 applications	 for	 real-time	 assessment	 of	

neural	function	and	real-time	feedback	control	8-14.	On	the	one	hand,	the	artifact	removal	filters	

can	be	 estimated	with	 a	 dedicated	 segment	 of	 recorded	data.	During	 such	 a	 period	 artifacts	

cannot	be	removed	and	the	acquired	data	is	strictly	used	for	training	the	artifact	removal	filters.	

The	speed	of	the	subsequent	artifact	removal	will	be	limited	by	the	recording	hardware	delays	

which	can	be	less	than	a	few	milliseconds	with	appropriately	selected	hardware	and	which	are	

sufficiently	short	 for	most	feedback	applications.	Alternately,	Wiener	filter	coefficients	can	be	

estimated	and	implemented	iteratively	using	solutions	that	update	the	coefficients	as	needed	34,	
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however,	this	approach	would	require	additional	computing	resources	to	iteratively	estimate	the	

filters	with	the	incoming	data.	Such	an	adaptive	approach	can	potentially	account	for	the	drifting	

of	the	stimulus-recording	that	will	be	investigated	in	a	future	study.	In	theory,	it	allows	the	filter	

to	be	updated	and	optimized	at	any	time	by	introducing	new	training	data	or	by	continuously	

using	 the	 recorded	 data	 itself	 to	 estimate	 the	 filter	 coefficients	 in	 real-time.	 Such	 iterative	

implementations	 would	 also	 allow	 for	 quantitative	 estimation	 of	 the	 stimulus-recording	

conditions	over	time,	which	may	exhibit	nonstationary	behaviors	for	chronic	recordings	(e.g.,	due	

to	changing	electrode	impedance	over	days	or	movement	of	electrodes	etc.).	

Overall,	 the	proposed	Wiener	 filter	artifact	prediction	and	 removal	procedure	has	 the	

potential	for	a	broad	range	of	applications	requiring	concurrent	neural	stimulation	and	neural	

recording	 from	multiple	 channels.	Wiener	 filter	estimation	and	prediction	approaches	have	a	

long	history	and	are	well	established	34,48.	They	are	computationally	efficient	requiring	little	data	

to	estimate	the	filter	coefficients	(10-100	sec	to	achieve	25-40	dB	ARR	in	our	examples)	and	do	

not	 require	 specialized	 hardware.	 Hence,	 the	 approach	 can	 be	 easily	 adapted	 for	 real-time	

applications	and	applications	requiring	real-time	assessment	of	neural	function	and	behavior.	
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Figure	1:	Artifact	removal	from	neural	recordings	in	mouse	sciatic	nerve.	(A)	Electrical	stimulation	

current	signal	(120-s	duration,	0.5	Hz,	0.2	ms	duration,	cathodic	current)	with	six	amplitudes	(10,	

20,	40,	80,	160,	320	μA;	10	stimuli	per	amplitude	condition)	delivered	in	pseudo	random	order.	

(B)	 Experimentally	 recorded	 artifacts	 after	 lidocaine	 treatment	 (purple)	 overlapped	 with	 the	

Wiener	 filter-predicted	artifact	 (red).	 (C)	Magnified	views	of	 the	 recorded	artifacts	 (lidocaine,	

purple)	 superimposed	 with	 predicted	 artifacts	 (Wiener	 filter,	 red)	 from	 different	 stimulating	

amplitudes.	(D)	Input	current	amplitudes	and	the	peak-to-peak	amplitudes	of	the	recorded	post-

lidocaine	artifacts	follow	a	linear	relationship	(𝑟p = 0.9997 ± 0.0004,	Mean±SD,	N=40).	(E)	The	

peak-to-peak	amplitudes	of	the	recorded	(lidocaine)	and	predicted	(Wiener	filter)	artifacts	follow	

a	 linear	 relationship	 (𝑟p = 0.9997 ± 0.0004,	 Mean±SD,	 N=40).	 (F)	 The	 suprathreshold	

recordings	 (pre-lidocaine	 treatment,	 320	 µA;	 black	 curves)	 are	 superimposed	 with	 the	 post-

lidocaine	artifact	(purple,	left).	The	predicted	(Wiener	filter)	artifacts	of	four	estimation	scenarios	

(colored,	in	gray	box)	are	shown	along	with	the	isolated	action	potentials	after	artifact	removal.	

Purple:	lidocaine	treated	artifact	(top);	Blue:	predicted	artifact	using	the	strongest	subthreshold	

current	estimation	(10	trials);	Green:	predicted	artifact	using	the	lowest	five	current	estimation	

(10-160	µA,	50	trials);	Brown:	predicted	artifact	using	the	lowest	five	current	(10-160	µA)	along	

with	5	 trials	of	320	µA	current	estimation	 (55	 trials).	Red:	predicted	artifact	using	all	 the	 six-

current	estimation	(10-320	µA,	60	trials).	The	isolated	action	potentials	(obtained	by	subtracting	

the	predicted	artifacts	from	suprathreshold	responses)	are	displayed	in	the	bottom	row	(same	

color	 scheme).	 Arrow	head	 indicates	 the	 artifact	 residue	 after	 the	 subtraction;	 double	 arrow	

indicates	 nerve	 activity	 evoked	 from	 A	 fiber.	 (G)	 The	 artifact	 reduction	 ratio	 for	 the	 four	

estimation	scenarios	are	shown	with	shaded	error	bar	(Mean±SD;	N=40	fibers).	The	ARR	achieved	
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using	the	highest	subthreshold	current	estimation	method	is	22.8±4.4	dB	(blue),	using	the	lowest	

five	current	estimation	method	is	28.1±3.5	dB	(green),	using	the	lowest	five	current	along	with	5	

trials	 of	 320	 µA	 current	 estimation	method	 is	 29.9±4.7	 dB	 (brown),	 using	 all	 the	 six-current	

estimation	is	39.9±3.3	dB	(red).	The	average	ARR	are	calculated	within	300-3000	Hz.	

	

Figure	 2:	 Artifact	 removal	 during	 bilateral	 cochlear	 implant	 stimulation	 and	 concurrent	

extracellular	recordings	in	rat	inferior	colliculus.	(A)	Sequences	of	binaural	biphasic	pulses	were	

delivered	at	300	Hz	stimulation	rate	(0	ms	interaural	time	delay	shown;	10	sequences	delivered;	

each	sequence	lasting	200	ms	duration;	the	segment	shown	is	between	10-50	ms	post	onset).	

Example	 segment	 containing	 a	 raw	 neural	 recordings	 (black)	 and	 predicted	 artifacts	 (blue)	

demonstrates	that	both	are	highly	overlapped.	The	cleaned	neural	recording	trace	obtained	by	

subtracting	the	predicted	artifact	from	the	original	recording	(red,	superimposed)	show	no	visible	

signs	of	artifact	signals.	(B)	Zoomed	version	of	the	cleaned	neural	recording	signal	(red).	Dashed	

lines	 indicate	 the	 time	 instances	 of	 the	 recorded	 artifacts.	 (C)	 Power	 spectrum	of	 the	 neural	

recording	before	(black)	and	after	(red)	artifact	removal.	The	artifact	spectrum	contains	energy	

at	 harmonics	 of	 the	 300	 Hz	 fundamental	 frequency	 of	 the	 stimulus.	 The	 predicted	 artifact	

spectrum	(obtained	as	the	cross	spectrum	between	recording	trials,	see	Methods)	is	shown	in	

blue	and	largely	overlaps	the	recorded	spectrum	prior	to	artifact	removal	(black).	(D)	Shows	the	

artifact	reduction	ratio.	Artifacts	are	reduced	by	an	average	of	27.2	dB	(measured	at	harmonics	

of	300	Hz).	
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Figure	3:	Predicting	and	removing	time-varying	artifacts	and	testing	for	linearity	during	bilateral	

cochlear	 implant	stimulation.	 (A)	Neural	 recordings	were	obtained	at	multiple	 interaural	 time	

differences	(-160	to	+160	us;	40	us	steps)	using	300	Hz	pulse	trains	modulated	with	a	Hanning	

window	(see	Methods).	The	predicted	artifacts	(red)	are	shown	at	multiple	magnifications	and	

closely	match	the	recorded	artifacts	(black).	(B)	Cleaned	recordings	obtained	by	subtracting	the	

Wiener	 filter	predicted	artifacts	 from	the	original	 recordings	are	shown	at	 two	different	 time	

scales	(ITD=-40	ms,	left;	ITD=0	ms,	right).	(C)	The	input	current	peak-to-peak	amplitude	and	the	

recorded	peak-to-peak	voltage	of	 the	artifacts	exhibit	an	exceptionally	high	correlation	 (𝑟p =

0.9981 ± 0.0001;	 Mean±SEM),	 indicative	 of	 a	 linear	 relationship.	 (D)	 The	 predicted	 and	

recorded	artifact	peak-to-peak	amplitudes	are	likewise	highly	correlated	and	consistent	with	a	

linear	input-output	relationship.		The	data	shown	in	(C)	and	(D)	are	for	the	0	ms	ITD	condition.	

Error	bars	designate	SD.		

	

Figure	4:	Artifact	removal	during	a	single	channel	electrical	stimulation	of	the	auditory	midbrain	

and	 concurrent	 recording	 in	 auditory	 cortex.	 (A)	 Random	Poisson	distributed	pulse	 sequence	

(average	 pulse	 rate	 of	 16	 Hz)	 were	 delivered	 to	 an	 electrode	 in	 auditory	midbrain	 of	 a	 rat.	

Highpass	filtered	(B)	and	raw	(C)	neural	recordings	from	a	cortical	electrode	are	dominated	by	

the	 electrical	 artifacts	 (top).	 The	 estimated	 Wiener	 filters	 are	 used	 to	 predict	 the	 recorded	

artifacts	 (middle	 panels).	 Subtracting	 the	 artifacts	 from	 the	 neural	 recordings	 yields	 noise	

reduced	estimates	of	the	neural	activity	(bottom).	(D)	Zoomed	sample	waveforms	showing	the	

filtered	extracellular	signals	after	artifact	subtraction	(*	and	**	from	panel	B,	bottom).	(E)	Signal	
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to	 noise	 ratio	 prior	 to	 and	 after	 subtraction	 of	 the	 predicted	 artifacts	 (blue	 and	 black	 curve,	

respectively).	The	artifact	reduction	ratio	is	superimposed	on	the	same	panel	(green	curve).	

	

Figure	5:	Artifact	 removal	during	high	 throughput	multi-site	electrical	 stimulation.	 (A)	 Spatio-

temporal	pulse	sequence	applied	to	a	16-channel	probe	placed	in	the	auditory	midbrain	of	a	rat.	

Highpass	filtered	(B)	and	raw	(C)	neural	recordings	from	a	cortical	electrode	are	dominated	by	

the	electrical	artifacts	(top).	The	estimated	multi-channel	Wiener	filters	are	used	to	predict	the	

recorded	artifacts	 (middle	panels).	 Subtracting	 the	artifacts	 from	 the	neural	 recordings	 yields	

noise	reduced	estimates	of	the	neural	activity	(bottom).	(D)	Zoomed	sample	waveforms	showing	

the	filtered	extracellular	signals	after	artifact	subtraction	(*	and	**	from	panel	B,	bottom).	(E)	

Signal	to	noise	ratio	prior	to	and	after	subtraction	of	the	predicted	artifact	is	superimposed	on	

the	same	panel	(gray	and	black	curve,	respectively).	The	artifact	reduction	ratio	obtained	using	

the	 whole	 data	 segment	 and	 the	 cross-validated	 ARR	 obtained	 using	 half	 of	 the	 data	 are	

superimposed	on	the	same	panel	(dark	and	light	green	curves,	respectively).	

	

Figure	 6:	 Removing	 artifacts	 during	 dynamic	 multi-site	 electrical	 stimulation	 and	 testing	 for	

linearity.	(A)	Dynamically	time-varying	current	pulse	sequences	were	delivered	across	16-channel	

recording	 probe	 in	 the	 rat	 auditory	 midbrain.	 Stimulation	 sequences	 consist	 of	 concurrent	

activated	channels	(4	randomly	selected	channels;	every	40	ms)	with	pulse	amplitudes	that	vary	

dynamically	and	randomly	(between	0.1	and	10	µA,	color	indicates	current	strength;	log-steps;	

see	METHODS).	(B)	The	recorded	neural	traces	and	predicted	artifacts	are	shown	for	two	of	four	

recording	 channels	 along	 with	 the	 cleaned	 neural	 traces.	 The	 multi-channel	 Wiener	 filter	
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accurately	predicts	the	recorded	artifacts	and	there	no	evident	signs	of	residual	artifacts	upon	

removal	(C)	The	magnified	cleaned	neural	traces	from	B	shown	no	visible	artifact	distortions.	The	

gray	dashed	lines	indicate	time	instants	that	contained	visible	artifacts	before	removal.	(D)	The	

predicted	and	actual	recorded	artifact	peak-to-peak	amplitudes	exhibit	a	high	correlation	(𝑟p =

0.9981 ± 0.0001,	Mean±SEM)	 suggesting	 that	 the	 artifacts	 are	 linearly	 related	 to	 the	 input	

currents.		

	

Figure	7:	Dependence	of	artifact	reduction	quality	on	data	length.	The	artifact	reduction	ratio	

(ARR,	measured	between	300-6000	Hz)	is	shown	as	a	function	of	the	data	length	(varied	between	

2.7-171.8	s	in	octave	steps)	used	to	estimate	the	Wiener	prediction	filter	for	the	example	of	Fig.	

5.	The	cross-validated	ARR	increases	with	increasing	data	length	with	a	net	improvement	of	~2.5	

dB	per	doubling	of	the	data	length.	
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