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Featured Application: The current review summarizes our recent knowledge of ultrasonic
neuromodulation of peripheral nerve endings, axons, and somata in the dorsal root ganglion. This
review indicates that focused ultrasound application at intermediate intensity can be a non-thermal
and reversible neuromodulatory means for targeting the peripheral nervous system to manage
neurological disorders.

Abstract: Ultrasonic (US) neuromodulation has emerged as a promising therapeutic means by delivering
focused energy deep into the nervous tissue. Low-intensity ultrasound (US) directly activates and/or
inhibits neurons in the central nervous system (CNS). US neuromodulation of the peripheral nervous
system (PNS) is less developed and rarely used clinically. The literature on the neuromodulatory effects
of US on the PNS is controversial, with some studies documenting enhanced neural activities, some
showing suppressed activities, and others reporting mixed effects. US, with different ranges of intensity
and strength, is likely to generate distinct physical effects in the stimulated neuronal tissues, which
underlies different experimental outcomes in the literature. In this review, we summarize all the major
reports that document the effects of US on peripheral nerve endings, axons, and/or somata in the dorsal
root ganglion. In particular, we thoroughly discuss the potential impacts of the following key parameters
on the study outcomes of PNS neuromodulation by US: frequency, pulse repetition frequency, duty cycle,
intensity, metrics for peripheral neural activities, and type of biological preparations used in the studies.
Potential mechanisms of peripheral US neuromodulation are summarized to provide a plausible
interpretation of the seemly contradictory effects of enhanced and suppressed neural activities of US
neuromodulation.

Keywords: ultrasound; neuromodulation; single-unit recording; pain; sciatic nerve; compound action
potential

1. Introduction

Our nervous system consists of the central and peripheral nervous systems (CNS, PNS), which have
similar ion channel/modulator compositions [1, 2]. In the CNS, functional neural circuits implicated in
different neurological diseases overlap significantly with one another (e.g., overlapping circuits for
dementia, aphasia, and Alzheimer’s disease [3]), and certain neural circuits are not restricted to one region
but spread throughout the brain (e.g., the pain matrix [4]). Collectively, this has led to the challenge of
developing selective and effective drugs that target certain neurological diseases with limited off-target side
effects. The recent advancement of optogenetic neuromodulation offers the much-needed selectivity at the
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expense of invasive and permanent gene modification of neural tissues. On the other hand,
neuromodulation with focal delivery of physical energy to an affected area in patients has drawn growing
attention as a non-drug alternative for managing neurological diseases and symptoms.

The most widely used stimulus modality in neuromodulation is electrical stimulation, including
electrical stimulation of the brain for treating movement disorders, stroke, tinnitus, depression, and
addiction [5], as well as stimulation of the spinal cord and peripheral nerves for managing various types of
chronic injuries and pain [6-8]. Besides electrical stimulation, other modalities of stimuli have been
implemented that allow no-contact delivery of physical energy deep into the neuronal tissue, including
focused ultrasound [9], transcranial electromagnetic stimulation (TMS) [10, 11], and infrared light pulses
[12]. TMS uses a strong magnetic field of 2 to 3 T to evoke current pulses in the tissue, but it faces the
challenge of precisely localizing the activated areas in the brain because of the electrical and magnetic
anisotropy of the brain and skull tissues. Infrared light pulses affect neural activity by delivering a spatially
precise thermal stimulus, but the local heating of the targeted region remains a concern of the method. On
the other hand, ultrasound (US), as a mechanical wave operating at 250 KHz to 50 MHz, allows spatially
and temporally precise delivery of energy deep into the tissue with controllable heating. Hence, US can be
considered as an ideal means for non- or minimally invasive neuromodulation.

The effects of US on the CNS have been shown to disrupt the blood brain barrier and evoke excitatory
and/or inhibitory responses in both motor and sensory neurons [13-23]. In addition, transcranial ultrasonic
stimulation (TUS) as a non-invasive brain stimulation technique has been investigated in primates. TUS of
the frontal eye field evokes a transient increase of neural activities in the supplementary eye field in awake
macaques as measured by multi-channel single-unit recordings [24]. In addition, a 40 s-long TUS of certain
brain regions can lead to long-lasting neuromodulatory effects up to two hours post-stimulation, according
to a functional MRI study in macaques [25]. Especially, TUS of the supplementary motor area and frontal
polar cortex causes those brain regions to interact more selectively with the rest of the brain. Outcomes of
those researches have led to the successful translation of US stimulation, after approval by the U.S. Food
and Drug Administration (FDA), to treat medical-refractory patients with essential tremor [26].
Electrophysiological recording from the rat hippocampal dentate gyrus has been reported to
simultaneously enhance (at the fiber volley) and suppress (in dendritic layers) the compound action
potentials (CAP) in response to US stimulation [27]. In line with this, another ex vivo study based on calcium
imaging, shows low-intensity focused pulsed US can evoke electrical activities in the mouse hippocampal
slices [28]. However, two most recent studies suggest that US neuromodulation of the CNS does not directly
activate brain regions in mice, but through an indirect auditory cochlear pathway [29, 30]. Nonetheless,
these recent results from whole-organ and whole-animal studies do not invalidate the prior studies in
reduced systems, which show apparent neuromodulation by focused US in the absence of a functioning
auditory system, like in Caenorhabditis elegans, tissue culture, retina [31], and brain slices (reviewed in
reference [9]).

Peripheral neuromodulation targets the PNS to preclude off-target CNS effects and thus is even more
selective than the CNS neuromodulation. PNS neuromodulation is particularly appealing to treat chronic
pain, as the pain circuitry in the CNS is complex and widespread. State-of-the-art peripheral
neuromodulatory strategies to treat chronic pain include spinal cord stimulation that targets peripheral
nerve entry to the spinal cord [8, 32], peripheral nerve field stimulation that targets a region of tissue [33,
34], direct peripheral nerve stimulation [35], and the recent dorsal root ganglion (DRG) stimulation of
sensory neural somata [36, 37]. US neuromodulation of the PNS is far less advanced compared to CNS
neuromodulation (see reference [38] for a review), and its mechanisms of action remain unclear. In this
paper, we comprehensively review the methods and outcomes of studies on US effects in altering neural
activities in the peripheral nerve axons, endings, and DRG. The seemly contradictory effects of US on
peripheral nerves are discussed in the context of the different study designs and methods. In addition, we
summarize the existing theories that account for the effects of US neuromodulation on peripheral nerves
and DRG.
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2. Peripheral Ultrasonic Neuromodulation — Technical Specifications

US waves are acoustic waves caused by mechanical vibrations at frequencies above 20 kHz (the upper
hearing range of the human ear). The frequency ( f, ) of the mechanical vibration source determines the

frequency of the propagating US wave. US waves propagate through both the liquid and solid media, in
the form of vibrating media particles, according to the following governing equation:

2
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in which p is the media pressure, p isthe media density, and x is the media compressibility. The US

wave speed c is equal to %/— For a simple monochromatic vibration source, the pressure of the US
PK

wave derived from Equation (1) takes the form of a harmonic plane wave:
p(r,t)= Acos(2r f, — kr) )

in which r is the distance vector from the source, A is the amplitude of the wave, and k is the wave number
equalto 27/ A.

Our current understanding of PNS neuromodulation is limited by the controversial outcomes of
different experimental studies, which are most likely affected by several critical parameters relevant to the
US itself, as well as by the metrics used to evaluate US neuromodulation. Accordingly, the following
parameters will be discussed in detail in this review: US frequency, pulse repetition frequency, duty cycle,
intensity, metrics for peripheral neural activities, and type of biological preparations.

2.1. US Frequency

The frequency of the US wave is determined by the central frequency of the acoustic vibration source,
generally, a US transducer. The US frequency used in the biomedical field ranges from 0.25 to 50 MHz. The
intensity of a US beam attenuates exponentially with the propagation distance because of both absorption
and scattering processes. Bones, especially cancellous bones, cause more severe US scattering than soft
tissues due to their material heterogeneity. Also, the US absorption coefficient is much higher in bones than
in the soft tissues. In addition, higher-frequency components are prone to relatively rapid attenuation.
Hence, to penetrate the bony skull and the skin, non-invasive US neuromodulation generally operates at a
lower frequency range from 0.5 to 3 MHz [38]. In contrast, high-frequency US (>3 MHz) is used in invasive
surgeries to ablate tissues by implementing its high absorption coefficients to heat the local tissues [39]. In
addition, high-frequency US at low intensity is widely used in US imaging to enhance resolution via
reduced wavelength in the sub-millimeter range. One exception for the use of high-frequency US in
neuromodulation (up to 43 MHZz) is the activation of the retina with high spatial resolution for vision
restoration [40], in which the penetration of the skull is not required.

2.2. Pulse Repetition Frequency

US neuromodulation usually does not use continuous waves but burst of waves with certain pulse-
width, as shown in Figure 1. The pulse repetition frequency reflects the frequency of the burst, which can
be orders of magnitude lower than the US frequency. The pulse width can be as short as a few US cycles
and as long as the pulse repetition period. The pulse repetition frequency adds an additional frequency
component to the spectrum of the US wave and can be critical in activating auditory nerve endings and
other low-threshold mechanoreceptors.
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Figure 1. Schematics of spatial and temporal ultrasound (US) intensity. (A) The spatial intensity distribution
peaks at the focal location and attenuates quickly outside the focus. (B) Three different temporal averages of
US intensity. p: pressure; I: intensity; SP: spatial peak; SA: spatial average; TP: temporal peak; PA: pulse
average; TA: temporal average.

2.3. Duty Cycle

The duty cycle is defined as the ratio between the pulse width and the pulse repetition period, which
is generally less than 2% for diagnostic US imaging devices [41] but can be as high as 100% in US
neuromodulation.

2.4. Intensity

The strength of an ultrasonic wave is characterized by its intensity, usually in the unit of watts per
centimeter square (W/cm?), i.e., the average power per unit cross-sectional area evaluated over a surface
perpendicular to the propagation direction. For acoustic plane waves, the intensity is related to the pressure
amplitude by:

2 2
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As shown in Figure 1A, the spatial distribution of US intensity peaks at the focal location and attenuates
quickly outside the focus. To evaluate US intensity in neuromodulation, spatial peak (SP) intensity is more
widely used than spatial average (SA) intensity. In the time domain, the instantaneous intensity can be
calculated from the pressure plot, as shown in Figure 1B. The temporal peak (TP) intensity is the maximum
US intensity, the pulse average (PA) intensity is the average intensity within the pulse width, and the
temporal average (TA) is the average intensity for several pulse repetition cycles. In experimental and
clinical studies, US intensity is generally quantified as spatial peak-temporal peak (SPTP), spatial peak-
pulse average (SPPA), and spatial peak-temporal average (SPTA) intensities. In order to compare studies,

it is worth emphasizing that, for the same US wave, the magnitude of /g, [gpp,, and Igpp, is in

TP’
descending order, and /g, can be orders of magnitude higher than [g,,, for US pulses with low duty
cycle. Physically, I, reflects the highest spatial intensity in the US beam and is closely related to
potential mechanical effects and cavitation in the tissue. /g, measures the highest spatial intensity

averaged over the pulse repetition period and is related to the magnitude of the thermal effect. US
neuromodulation generally operates at low-intensity levels to avoid cavitation and is more concerned with
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the local thermal effect. Thus, [, appears to be a more suitable intensity indicator for peripheral

neuromodulation studies to avoid any prominent thermal effectors.

US stimulation of /g, below 1 W/cm? is generally considered as low-intensity, and the FDA has
approved the application of US in patients with a maximum / spra Of 0.72 W/em? for diagnostic purposes,

which is, presumably, safe enough also for therapeutics [42]. Several studies have reported
neuromodulatory effects on the CNS, with US intensity <1 W/cm?[15, 20-22, 28]. So far, there seem to be no
studies reporting appreciable neuromodulatory effects on the PNS with US intensity <1 W/cm?[43]. On the
other hand, /g,;, over 200 W/cm? is generally considered as high-intensity US and has been tested in a

number of clinical trials [44, 45], after being approved by the FDA, for the ablation of cancer cells in patients
via local elevation of temperature up to 85 °C [44, 46]. High-intensity focused US is also an approved tool
by the FDA for coagulative necrosis in the brain to create stereotactic lesions, also an irreversible ablation
process [26].

We, along with some other research groups, have demonstrated that US stimulation on the PNS, with
Igpr, between 1 and 200 W/cm?, is unlikely to induce a sufficient temperature change in the target region

to elicit temperature-driven neuromodulation [43, 47]. This intermediate intensity range has been explored
on the PNS by several neuromodulation studies, which have been systematically reviewed in the
subsequent sections.

2.5. Metrics for Peripheral Neural Activities

The assessment of the neuromodulatory effects of US requires a reliable metric of peripheral neural
activities, which includes direct and indirect measurements of neural action potentials from peripheral
nerves or neurons. In addition, secondary effects of neural activities were also used to indirectly infer the
neuromodulatory effects on PNS, including altered organ functions (i.e., bladder contraction, urethral
sphincter relaxation), electroencephalogram recordings in the brain, and behavioral signs (e.g., whisker
movement, freeze in motion, toe-pinch response). The detection of secondary effects tends to lag US
stimulation by hundreds of milliseconds to seconds, a time frame much longer than the direct neuronal
effects of milliseconds [38]. This review mostly focuses on the direct assessment of neural action potentials
and omits metrics using secondary effects.

Nerve axons in the PNS are generally protected by soft connective tissue stacked in multiple layers, in
contrast to the neurons and processes in the CNS, protected by bony structures like the skull or the
vertebrae. These tightly wrapped tissue layers in the PNS, functioning as electrical insulators, pose a great
challenge in recording electrophysiological activities from individual nerve axons, i.e., single-unit
recordings [48]; recordings from individual neurons or axons in the CNS are straightforward when the
electrodes are placed inside the skull or vertebrae. Consequently, the major metrics to assess the
neuromodulatory effects on the PNS are either CAP, as a summation of action potentials from a bulk nerve
bundle [47, 49-52], or evoked muscle forces, as an indicator of motor nerve functions [42, 53, 54]. However,
the characteristics of a CAP (peak amplitude, temporal location, and spread) depend on the temporal
summation of a population of action potentials from axons with various spatial locations, morphologies,
and insulation environment. The CAP characteristics can also be affected by changes in recording
conditions, e.g., relative position of the electrode sites and axons, change of access impedance of recording
electrodes due to altered moisture conditions, and multiple/chronic use of electrodes [48]. Thus, neither the
changes in CAP amplitude nor the assumed changes in conduction delay (Figure 2A) can appropriately be
representative of the effects of US neuromodulation. In addition, the signal strength in a CAP record can be
misleading, as shown in Figure 2A: the large peak contributed to by fast-conducting A-fibers usually
overshadows the small volleys by slow-conducting C-fibers, despite the presence of significantly higher
proportions of C-fibers than A-fibers in the PNS [55, 56]. Collectively, CAP appear to be an inappropriate
metric for PNS neuromodulation. Further, muscle forces, evoked by US neuromodulation of a nerve, are
indirect metrics of neve activities and limited to the study of motor axons innervating specific muscles.
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Figure 2. Metrics of peripheral neural activity via electrophysiological recordings of the compound action
potentials (CAP) in (A) and single units in (B). CAP represent the temporal summation of multiple action
potentials in the nerve trunk. Action potentials from individual nerve axons are recorded as distinct peaks
in single-unit recordings (arrows), allowing a precise determination of the conduction velocities of individual
axons for both myelinated A-fibers and unmyelinated C-fibers. CD: conduction delay.

On the other hand, single-unit recording can record action potentials from individual nerve axons
(Figure 2B), capable of capturing relatively fine variations of neural responses to mechanical, chemical,
and/or thermal stimuli [43, 57-65]. Single-unit recording relies solely on the temporal information of the
spike, which is mainly determined by the action potential transmission and is not affected by experimental
artifacts like changes in electrode impedance. Thus, compared with CAP, single-unit recordings are more
robust and provide much higher sensitivity to allow the detection of subtle changes of conduction delay in
individual axons. However, single-unit recordings are technically challenging and involve microdissection
of nerve fiber bundles until action potentials from a single nerve axon are isolated [43, 57-65].

In general, the CAP recordings and evoked muscle activities are “macroscopic” detections of a large
population of peripheral neural activities and thus may not serve as reliable and sensitive metrics for
assessing the subtle changes of individual neural activities. The single-unit recordings possess a much
higher sensitivity and are able to detect neuromodulatory effects within individual nerve axons, i.e., at a
“microscopic level”. However, single-unit recordings are technically challenging and have only been
implemented by a handful of studies [43, 57-65], whereas CAP recordings have been widely used. Among
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the above single-unit studies, neuromodulation by ultrasound was assessed only by a recent study from us
[43].

2.6. Biological Preparations to Assess Peripheral US Neuromodulation

Peripheral US neuromodulation has been studied both in humans and in preclinical animal models.
Human studies benefit from the direct verbal feedback from the subjects, while preclinical animal studies
allow mechanistic investigations in vivo, as well as in vitro or ex vivo with reduced and isolated systems.
Studies that implement whole-animal in vivo preparations require to maintain anesthesia, the level of which
can directly affect the detection of US neuromodulation [20]. In addition, the interpretation of the results
from in vivo studies can be confounded by indirect effects of US on surrounding muscles, blood vessels,
and immune cells. In vitro cultures of dissociated sensory neurons from the DRG have also been used as a
model to study the effects of US neuromodulation [66]. Although the sensory cell somata in the DRG differ
significantly from the nerve axons and endings in fundamental electrophysiological properties [67], neurites
grown in cultured DRG have similar dimensions as axons and nerve endings and thus could potentially be
an adequate model for studying peripheral neuromodulation. Nonetheless, cultured neurites in the absence
of Schwann cells lack clustering of sodium channels [68] and thus differ significantly from the bundled
axons in peripheral nerves in the physiological situation. In contrast, ex vivo studies on isolated peripheral
nerves offer a physiologically relevant model for the direct assessment of US neuromodulatory effects,
while avoiding the potential confounding factors of in vivo or in vitro studies. It is worth mentioning that
many studies described isolated peripheral nerves as in vitro preparations, but they are considered as ex
vivo preparations in this review to distinguish them from in vitro cultured DRG preparations.

3. Ultrasonic Neuromodulation of the Peripheral Nervous System

The effect of US stimulation to alter tissue activities was reported as early as in 1929 by a study on frogs
and turtles [69]. The ability of low-frequency low-intensity US to modulate the CNS neural activities is
elegantly demonstrated both in vivo in whole animals and in vitro in reduced systems of brain tissue slices
(see reference [9] for a review). Recent studies indicate that US neuromodulation of the CNS might take an
indirect route through the auditory cochlear pathway [29, 30]. In stark contrast, the mechanisms of US
neuromodulation of the PNS are still under debate, partly because of the contradictory experimental
outcomes, which are systematically summarized and discussed below.

As summarized in Table 1, US appears to directly activate peripheral sensory nerve endings, as
evidenced by studies of US stimulation of human hand, skin, soft tissues, bones, joints, ears, acupuncture
points [53, 70-73], as well as of cat ear [74] and frog Pacinian corpuscles [75]. CAP activities are evoked by
US stimulation in animal preparations. More convincing evidence has been found by clinical studies in
which direct verbal reports show that US stimulation is able to evoke virtually all the somatosensory
modalities: tactile, warm, cold, itch, deqi, hearing, and pain. Unlike in the CNS, low-intensity US (<1 W/cm?)
is unable to activate mammalian nerve endings. In non-mammals, dissociated frog Pacinian corpuscles can
be activated by US with intensity as low as 0.4 W/cm?2. US with intermediate intensity (1-200 W/cm?)
activates only low-threshold mechanoreceptors, e.g., tactile receptors and auditory nerve endings.
Activation of other sensory modalities like temperature and pain generally requires high-intensity US
stimulation (>1000 W/cm?). However, it remains unclear whether US inhibits sensory nerve endings, which
unlike neurons in the CNS, generally do not fire spontaneously. Further experimental studies are required
to investigate whether US application to sensory nerve endings could lead to the loss of sensation.
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Table 1. US neuromodulation of peripheral nerve endings. PNS: peripheral nervous system; PRF: pulse repetition frequency; DC: direct current
PNS Endings (Research) Effect (3:1(;) PRF (Hz) DC (%) I(n‘:;?z:g D(::;:::)n 1\2/([) (th:lll;tfi(:)rn Preg;?:mn
Human hand nerve endings Tactile, warm, cold, 0.48 160—
[70] itch, and pain 0.887 100% 30,000 1,10, 100 Verbal report Clinical study
(Gavrilov et al., 1977) sensation 2.67 ’
Human skin, soft tissue,
bone, joint [71] Pain sensation 0.48-2.67 12-15,000 1-100 Verbal report Clinical study
(ab Ithel Davies et al., 1996)
Human fingers and upper
forearm [72] Tactile sensation 2.2 50-1000 50% 150 0.1 to 100 Verbal report Clinical study
(Dalecki et al., 1995)
Human ear [73] Active'ltion of N
(Tsirulnikov et al., 1988) acoustic nerve 2.5 125-8000 50% 1-5 0.05-0.1 Verbal report Clinical study
’ fibers
Human acupuncture point 1-3
[53] Degqi sensation 0.65 50 10% (SPPA) 1000 Verbal report  Clinical study
(Yoo et al., 2014)
Cat ear [74] Activation of
(Foster and Wiederhold, . 5 100% 30 0.068 CAP In vivo
1978) auditory nerve
Frog Pacinian corpuscle [73] Activation 0.48 100%  04-25  0.1to100 CAP Ex vivo
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US neuromodulation of peripheral nerve trunks and axons has been investigated by a handful of
studies summarized in Table 2, which give seemly contradictory results, with reports of enhanced nerve
activities, suppressed activities, and mixed effects. Nonetheless, there are two consistent observations. First,
all studies document no direct activation of peripheral nerves by US stimulation alone, except for a recent
abstract report lacking technical details [76]. Second, high-intensity US stimulation (>200 W/cm?) causes a
nerve conduction block likely from a local thermal effect, and the nerve blocking effect can last for days to
weeks and even be completely irreversible [50, 54, 77]. Lee et al. did report a reversible conduction block
with a proper selection of the stimulus parameters [78]. The contradictory results occur with US intensity
in the intermediate range, with enhanced nerve conduction velocity by some reports [43, 51, 79] and
suppressed conduction velocity by others [47, 52]; Mihran also reported that US enhanced CAP amplitude,
thus providing mixed outcomes [52]. The difference in US neuromodulation effects could be attributed to
the difference in the types of nerves studied (e.g., sciatic vs vagus), preparations (e.g., ex vivo vs in vivo),
and animal species (e.g., mammals vs non-mammals). CAP recordings are used to evaluate US effects except
for one study in which single-unit recordings from individual axons are implemented [43]. As discussed
earlier, single-unit recordings are more sensitive in detecting neuromodulatory effects than CAP recordings.
Collectively, the study by Ilham et al. conducted on harvested nerve ex vivo with single-unit recordings has
the least confounding factors and thus provides the most convincing results: US stimulation of intermediate
intensity enhances peripheral nerve activity by increasing the conduction velocity in both A- and C-type
axons [43]. This is further supported by a clinical study showing increased conduction velocity in human
median nerves following US stimulation [79].

The DRG that contains sensory afferent somata has emerged as a promising target for
neuromodulation [80-82]. To the best of our knowledge, all existing DRG neuromodulations implement
electrical stimulation, and the modality of US has yet to be investigated on DRG. A recent pilot report with
patch-clamp and calcium imaging recordings on dissociated DRG neurons shows that US evokes action
potentials in 33-40% of DRG neurons, which may involve the activation of sodium, calcium, and non-
selective ion channels [66].
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Table 2. US neuromodulation of peripheral nerve axons.
Freq o . ) Duration Metric for .
PNS Axons (Research) Effect (MHz) PRF (Hz) DC (%)  Intensity (W/cm?) (mSeo) Modulation Preparation Type
Enhanced Activities
H di 7 d mot
uman median nerve [79] Increase conduction velocity 1-3 50-100% 1 480,000 Sensory and motor Clinical study
(Moore et al., 2000) latency
Mouse sciatic nerve [43] . . o . . .
(llham et al,, 2018) Increase conduction velocity 1.1 200,000 20-40% 0.91-28.2 40,000 Single-unit Ex vivo
Rat posterior tibia nerve [42] Inhibition of rhytllirmc bladder 025 2000 0.9 (MPa) 300 Bladder contraction In vivo
(Casella et al., 2017) contraction
Bullf.rog sciatic nerve [51] . Enhanced conftluctlon, . 35 » <1% 13 W CAP Ex vivo
(Tsui et al., 2005) increased conduction velocity.
Crab leg nerve [76] . L. :
(Saffari et al,, 2017) Direct activation Ex vivo
Suppressed Activities
Rabbit sciatic nerve [54] Nerve conduction block 32 58% 1930 (SATA) 10,000 Flexion muscle force In vivo
(Foley et al., 2007)
Rat sciatic nerve [77] . o .
Nerve conduction block 5.7 390-7890 (SPTP) 5000 Muscle activities In vivo
(Foley et al., 2008)
Rat sciatic nerve [78] . ;
Nerve conduction block 2.68 2290-2810 (SATA) 3000-7000 CAP Ex vivo
(Lee et al., 2015)
Rat vagus nerve [47] Inhibition of CO.I'ldUCthI‘I., 11 20-1000 18.7-93.4 15,000 CAP In vivo
(Juan et al., 2014) reduced conduction velocity
Earth worm giant axon [83] Inhibition of conduction, o .
(Wahab et al,, 2012) reduced conduction velocity 0.825 100 10% 0.1-0.7 (MPa) 15,000-75,000 CAP In vivo
Frog sciatic nerve [84, 85] Nerve conduction block 27 03305  11-30% 1150 (SATA) 9800 CAP Ex vivo
(Young and Henneman, 1961)
Bullfrog sciatic [50] . ;
! Nerve conduction block 0.66-1.98 10, 20 1-20% 370 30,000 CAP Ex vivo
(Coluccdi et al., 2009)
Mixed Effects
Frog sciatic nerve [52] Enhanced and suppressed 97 3-90 kHz 100-800 (SPTP) 05 CAP Ex vivo
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4. Mechanisms of Peripheral US Neuromodulation

The mechanisms of action of US in the modulation of neural activities in the CNS have been
systematically reviewed [9, 38]. Here, we focus on US neuromodulation of peripheral nerve endings, axons,
and somata in DRG, which, unlike the bone-protected CNS, are tightly wrapped by multiple layers of
connective tissues, e.g., the epineurium, perineurium, endoneurium, and nerve extracellular matrix. This
might explain why low-intensity US (<1 W/cm?) directly activates brain neurons [9] but cannot activate
peripheral nerve endings or axons. Another difference between the CNS and the PNS is the lack of
inhibitory neurons in peripheral sensory afferents. In the CNS, both activation and suppression effects are
reported by US stimulation [38], which can be attributed to the selective activation of excitatory (e.g.,
glutamatergic) and inhibitory (e.g., GABAergic and glycinergic) neurons, respectively. In the periphery, the
suppression effect is generally reflected as inhibition of action potential generation or transmission [50].

Sensory nerve endings can be directly activated by US stimulation, as evidenced by a series of classical
clinical studies by Gavrilov et al., which reveal that virtually all the sensory modalities can be activated by
US at intermediate and high-intensity [70, 71]. The activation of the low-threshold mechanoreceptors in the
skin and cochlear hair cell appears to require the least US intensity and energy [70, 73, 74], indicating that
US likely evokes action potentials via mechanotransduction intrinsic to those nerve endings, i.e., opening
of mechanosensitive ion channels by the local mechanical force leading to action potential generation in the
spike initiation zone [67]. Evoking other sensory modalities requires high-intensity focused US, which can
lead to significant local heating (>5 °C) and inertial cavitation with sudden collapse of the bubble [86]. How
high-intensity US activates sensory nerve endings remains undetermined. Putative mechanisms include
temperature gating of voltage-sensitive sodium and potassium ion channels, mechanical gating of other
transducer molecules like the transient receptor potential (TRP) channels, and indirect effects on
surrounding non-neuronal tissues.

US neuromodulation to block action potential transmission in peripheral nerve axons has been
extensively studied and appears to require the local thermal effect of high-intensity US stimulation [49, 50].
The rise of local temperature reportedly induces a conduction block in peripheral axons by changing the
kinetics of voltage-sensitive sodium channels, leading to their inactivation; temperature has a much greater
impact on the inactivation kinetic than on the activation kinetic [87]. Non-thermal mechanisms could also
contribute to the peripheral nerve block by high-intensity US, e.g., inertia cavitation with strong acoustic
forces that directly “bombs” the fibers leading to irreversible disruption [49]. Despite the invasiveness,
clinical applications of high-intensity US neuromodulation on peripheral nerves show beneficial effects on
pain management in painful amputation stump neuromas, phantom limbs [88], and spasticity [89].

Reversible peripheral neuromodulation of peripheral nerve axons implements low- and intermediate-
intensity US which does not directly evoke action potentials [43, 47]. Intermediate-intensity US generally
causes a negligible thermal effect (<1 °C) and produces harmless stable cavitation [43, 47], and thus, its
neuromodulatory effects on peripheral nerve axons occur likely through local acoustic radiation forces.
From analyzing the existing experimental reports in Table 2, intermediate-intensity US likely enhances the
neural activity in mammalian peripheral nerves by increasing the nerve conduction velocity. Unlike the
nerve endings, the axon may lack the mechanosensitive ion channels tuned to transduce micromechanical
forces. Thus, it is likely that other mechanically gated ion channels may participate to collectively enhance
the neural activity, which include, but are not limited to, voltage-sensitive sodium [90-92], two-pore-domain
potassium (K2P) [93], ASIC [93], TRP [94], and Piezo channels [95, 96].

Virtually no study has been conducted to assess US neuromodulation on intact DRG, the clustering of
sensory afferent somata. A recent study indicates that action potentials can be evoked by focused US in
dissociated DRG neurons [66], opening new avenues of research on US DRG neuromodulation in future
preclinical and clinical studies. The underlying mechanisms of US activation of DRG neurons are unclear
and likely involve sodium, potassium, and non-selective cation channels [66].

The non-thermal and non-cavitation bio-effect of the focused US at low and intermediate intensity is
of central interests for reversible US neuromodulation; it likely induces local acoustic forces below the
harmful range. Potential mechanisms of neuromodulation include the mechanical gating of transmembrane
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ion channels, as discussed earlier. In addition, several theories have attributed the US neuromodulatory
effect to altered properties of the lipid-bilayer membrane at the nerve endings, axons, and somata, including
the soliton model [97], the flexoelectricity hypothesis [98], the neuronal intramembrane cavitation excitation
(NICE) model [99], and, more recently, the theory of direct transmembrane pore formation [100]. The main
assumption of the soliton model is that the transmission of signal through a nerve occurs as an
electromechanical soliton wave packet rather than a complete electrical phenomenon. However, this model
could not mathematically explain the role of voltage-gated ion channels in action potential generation. The
flexoelectric effect hypothesizes that the mechanical energy of the curved lipid-bilayer membrane leads to
electrical membrane polarization to depolarize the neural membrane, but the relevant mathematical
formulation to account for action potential generation has yet to be established. In the NICE model, it is
hypothesized that US stimulation with sufficient intensity (>0.10 W/cm? Ispra) causes nanobubble formation
in the intramembrane space, which subsequently changes the transmembrane capacitance. Hence, the NICE
model suggests the membrane capacitive current caused by the change of transmembrane capacitance as
the source of US neuromodulation and appears to explain the increased conduction velocities by US
modulation from our recent study with single-unit recordings [43]. The recent experimental finding on an
expression system indicates that US as low as 0.4 W/cm? can form pores in the lipid-bilayer membrane large
enough to allow the passage of the large dye molecule calcein [100], indicating that the pores are sufficiently
large for the passage of sodium and potassium ions to excite neurons. Both the NICE model and the
transmembrane pore formation theory can explain the enhanced excitability of peripheral nerve axons by
US, consistent with a recent ex vivo study with single-unit recordings from individual axons [43]. Further
experimental and theoretical studies are required to advance our mechanistic understanding of peripheral
US neuromodulation.

5. Conclusions

Peripheral US neuromodulation is capable of both enhancing and suppressing neural activities which
are likely dependent upon the range of US intensity and strength. Unlike the neurons in the brain, low-
intensity US (<1 W/cm?) is unable to evoke action potentials in the peripheral nerve endings or axons. US of
intermediate intensity (1 to 200 W/cm?) exerts mainly acoustic radiation force on tissues, with no apparent
thermal or inertia cavitation effects. US of intermediate intensity activates low-threshold mechanosensitive
nerve endings likely through the regular mechanotransduction process, by opening mechanosensitive ion
channels to evoke action potentials. US of intermediate intensity also enhances the neural activity of
peripheral nerve axons, leading to increased nerve conduction velocities in both A- and C-type fibers, which
is likely caused by mechanical gating of other ion channels like the NaV, K2P, ASIC, TRP, and Piezo
channels. In addition, enhanced neural activity could be attributed to a direct effect of acoustic radiation
force on the lipid-bilayer neural membrane. Plausible mechanisms include a transient capacitive current
from rapid changes of local membrane capacitance (the NICE model) and transmembrane pore formation
to allow sodium and potassium ions to pass through. High-intensity US (>1000 W/cm?) consistently inhibits
the action potential transmission in peripheral nerves (i.e., nerve block) likely through a thermal effect. In
addition, inertia cavitation from high-intensity US could lead to irreversible damage of peripheral nerve
axons. In conclusion, US neuromodulation of the PNS has profound therapeutic potential especially
through the non-thermal non-cavitation bio-effect in the intermediate intensity range, which is able to non-
invasively and reversibly enhance peripheral neural activities.
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