

1 **Extracellular single-unit recordings from peripheral nerve axons in vitro by a**
2 **novel multichannel microelectrode array**

3 Tiantian Guo, Longtu Chen, Khanh Tran, Pejman Ghelich, Yi-Syuan Guo, Nicholas

4 Nolta, Sharareh Emadi, Martin Han, Bin Feng*

5 *Department of Biomedical Engineering, University of Connecticut, CT 06269, USA*

6 *Corresponding author. Tel.: 860-486-6435; fax: 860-486-2500.

7 E-mail address: fengb@uconn.edu

8 Lab URL: <https://npr.bme.uconn.edu>

9

10 **Abstract**

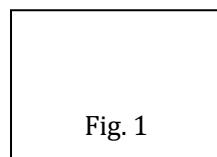
11 The peripheral nervous system (PNS) is an attractive target for modulation of
12 afferent input (e.g., nociceptive input signaling tissue damage) to the central nervous
13 system. To advance mechanistic understanding of PNS neural encoding and modulation
14 requires single-unit recordings from individual peripheral neurons or axons. This is
15 challenged by multiple connective tissue layers surrounding peripheral nerve fibers that
16 prevent electrical recordings by existing electrodes or electrode arrays. In this study, we
17 developed a novel microelectrode array (MEA) via silicon-based microfabrication that
18 consists of 5 parallel hydrophilic gold electrodes surrounded by silanized hydrophobic
19 surfaces. This novel hydrophilic/hydrophobic surface pattern guides the peripheral
20 nerve filaments to self-align towards the hydrophilic electrodes, which dramatically
21 reduces the technical challenges in conducting single-unit recordings. We validated our
22 MEA by recording simultaneous single-unit action potentials from individual axons in
23 mouse sciatic nerves, including both myelinated A-fibers and unmyelinated C-fibers.
24 We confirmed that our recordings were single units from individual axons by increasing
25 nerve trunk electrical stimulus intensity, which did not alter the spike shape or
26 amplitude. By reducing the technical challenges, our novel MEA will likely allow
27 peripheral single-unit recordings to be adopted by a larger research community and thus
28 expedite our mechanistic understanding of peripheral neural encoding and modulation.

29 **Keywords:** microelectrode array, single-unit, multi-channel, microfabrication,
30 peripheral nerve, pain

32 **1. Introduction**

33 To interrogate the nervous system functions and mechanisms commonly requires
34 high fidelity recordings of action potentials from individual neurons or axons, i.e.,
35 single-unit recordings. This is routinely conducted at the neural somata using a sharp
36 liquid or metal electrode that penetrates the neural membrane to record intracellular
37 membrane potentials (e.g., [1, 2]). Intracellular single-unit recording at the neural
38 somata can also be conducted by a patch-clamp liquid electrode that forms a whole-cell
39 giga-ohm seal with the neural membrane [3]. Intracellular single-unit recordings from
40 neural axons are challenged by the much smaller axon geometry compared to that of
41 the somata, and are conducted only in non-mammalian axons, e.g., the squid giant
42 axons, whose axons are large enough to allow electrodes to penetrate into the axoplasm
43 [4]. In contrast to intracellular recordings, to record action potentials extracellularly
44 relies on the sensitive detection of ionic transmembrane currents that are usually
45 estimated in the order of nano-Amperes in neural somata [5] and at individual Nodes
46 of Ranvier in myelinated axons [6]. Since those tiny transmembrane currents can be
47 easily dispersed into the surrounding electrolyte bath, extracellular single-unit
48 recordings of action potentials require close proximity of the electrode to the neuronal
49 tissue [7, 8].

50 Extracellular single-unit recordings are widely implemented in studying the neural
51 circuitry in the central nervous system (CNS) by penetrating multi-shank electrode
52 arrays [9], and recently by flexible neural probes or mesh-like electrodes (see [10] for
53 a recent review). While protected by bony structures of skull and vertebrae, CNS tissues


54 inside the dura and pia mater lack additional protective layers of connective tissue and
55 allow electrodes to reach close proximity to neural somata and axons; the amplitude of
56 recorded action potential spikes in the vicinity of electrode ($<50 \mu\text{m}$) is generally large
57 enough ($> 60 \mu\text{V}$) for resolving action potentials from individual neurons via spike
58 sorting algorithms [11]. In contrast to the CNS, neural axons in mammalian peripheral
59 nervous system (PNS) are protected by multiple layers of connective tissues as
60 illustrated in Fig. 1A, i.e., epineurium, perineurium and endoneurium, which are not
61 only physical barriers that prevent the electrodes from reaching the axonal membrane
62 but also insulating layers that severely attenuate the amplitude of extracellular
63 recordings [12]. The impact of electrode location inside or outside connective tissues
64 on the quality of extracellular recordings is comprehensively summarized by a recent
65 report [13]. Consequently, most existing electrodes and electrode arrays are incapable
66 of recording single-unit action potentials from mammalian PNS axons. For example,
67 cuff electrodes non-invasively wrap around the nerve trunk outside the epineurium,
68 providing long-term biocompatibility at the expense of low-resolution recordings of
69 compound action potentials (CAPs) from a population of axons [14, 15]. Penetrating
70 electrode arrays of various geometry were developed to be placed inside the epineurium,
71 including LIFE (Longitudinal intra-fascicular electrode) [16, 17], TIME (Transverse
72 intrafascicular multichannel electrode) [18, 19], USEA (Utah slant electrode array) [20],
73 and flexible needle-structure electrodes [21-23]. Closer to nerve fascicles than the cuff
74 electrodes, penetrating electrodes provide an enhanced signal-to-noise ratio and the
75 opportunity to monitor single-unit action potentials [17, 20, 22]. Recently, a flexible

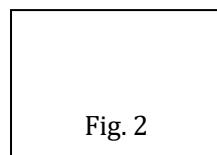
76 microchannel electrode array was developed for single-unit recordings from teased
77 spinal nerve or dorsal root filaments of about 100 μm thick [24, 25]. However, most
78 recordings appear to be from large-diameter myelinated axons (A-fibers) (e.g., in [25]),
79 while single-unit recordings from small-diameter unmyelinated axons (C-fibers) are
80 rarely reported by those electrodes or electrode arrays.

81 For sensory afferent axons, unmyelinated C-fiber afferents out-number myelinated
82 A-fiber afferents in almost all peripheral nerves [26, 27]. Compared with A-fibers, C-
83 fibers usually have much slower conduction velocity, lower maximum firing rate, and
84 broader width of action potentials [28]. These features collectively make C-fiber
85 afferents less important than A-fiber afferents in encoding physiological stimuli that
86 require high-fidelity encoding (large range of firing frequency) and rapid transmission
87 (fast conduction velocity). However, in pathophysiological conditions, C-fibers play
88 critical roles and are often responsible for the persistence of a diseased state [29]. For
89 example, C-fiber nociceptors (afferents that encode tissue-injurious stimuli and
90 commonly, initiate the sensation of pain) can sensitize, i.e., increasing their firing rate
91 and decreasing response threshold [30], which likely drives the persistence of many
92 chronic pain conditions [31, 32]. Targeting C-fiber afferents for treating diseases like
93 chronic pain requires mechanistic understanding of afferent neural encoding functions,
94 which can be revealed by single-unit recordings from individual C-fiber axons.
95 However, the existing penetrating electrode arrays are incapable of recording single-
96 unit action potentials from unmyelinated C-fibers inside the endoneurium, especially
97 those C-fibers located centrally in the Remak bundle. Currently, single-unit recordings

98 from mammalian peripheral C-fibers are typically conducted in vitro from manually
99 split nerve filaments of 10 - 50 microns using a metal wire recording electrode, which
100 is technically demanding. Recently, we expanded conventional single-wire electrode
101 recordings into a five-channel multi-wire electrode array to enhance the single-unit
102 recording efficiency [12] and successfully applied the multi-wire array to study the
103 effect of ultrasonic neuromodulation on mouse sciatic nerves [33].

104 In this study, we aim to further reduce the technical challenge and enhance the
105 efficiency of conducting single-unit recordings from peripheral nerve axons by
106 developing a novel microelectrode array via microfabrication as illustrated in Fig. 1B.
107 To eliminate the requirement of manually wrapping microns-thick nerve filaments onto
108 wire electrodes as done previously [12], we developed a surface microelectrode array
109 consisting of parallel channels with hydrophilic/hydrophobic patterns. Five recording
110 electrodes are parallel hydrophilic “islands” surrounded by hydrophobic regions, which
111 attract the split nerve filaments to attach onto hydrophilic electrodes in a hydrophobic
112 mineral oil environment; nerve filaments are hydrophilic. We implemented our
113 microfabricated electrode array in single-fiber recordings from mouse sciatic nerves in
114 vitro, and achieved simultaneous single-unit recordings from multiple sciatic nerve
115 axons of both myelinated A-fibers and unmyelinated C-fibers.

116


117 **2. Materials and methods**

118 ***2.1 Fabrication of the microelectrode array (MEA)***

119 The MEA was fabricated on a standard 4-inch silicon wafer (University Wafer Inc.,
120 South Boston, MA) with procedures summarized in Fig. 2. All of the microfabrication
121 procedures were performed in a clean room at Harvard University Center for Nanoscale
122 Systems (Harvard CNS, Cambridge, MA).

123 Briefly, the silicon wafer (Fig. 2a) was first deposited with a 2 μm -thick layer of
124 silicon dioxide (SiO_2) by low-pressure chemical vapor deposition (LPCVD) in
125 tetraethoxysilane (Fig. 2b). We then performed photolithography to deposit a pattern of
126 titanium (Ti) and gold (Au) onto the SiO_2 layer, consisting of five parallel electrodes,
127 connecting interconnects, and bond pads. In photolithography, SiO_2 surface was first
128 spun with a bilayer of photoresists (LOR3A/S1805, MicroChem Corp., Westborough,
129 MA), patterned with a maskless aligner (MLA150, Heidelberg Instruments, Woburn,
130 MA), and developed in MF CD-26 Developer (MicroChem Corp., Westborough, MA)
131 (Fig. 2c). Then, we sequentially deposited Ti (10 nm thick) and Au (200 nm thick) on
132 the patterned photoresist layers via e-beam evaporation (Denton Vacuum LLC.,
133 Moorestown, NJ) (Fig. 2d). We then conducted lift-off by soaking the wafer overnight
134 in Remover PG (MicroChem Corp., Westborough, MA) (Fig. 2e). To electrically
135 insulate the Ti/Au connecting wires, we deposited a layer of silicon dioxide (500 nm)
136 using plasma-enhanced chemical vapor deposition (PECVD, SPTS Technologies,
137 Newport, UK) (Fig. 2f). Subsequently, we conducted a second photolithography to
138 expose the electrodes and bond pads. Similarly, the photoresist (LOR3A/S1813) pattern
139 was created by a maskless aligner (MLA150) and developed in MF CD-26 Developer
140 (MicroChem Corp., Westborough, MA) (Fig. 2g). The SiO_2 covering the electrodes and

141 pads was removed by reactive ion etching (RIE) in oxygen plasma (SPTS Technologies,
142 Newport, UK) (Fig. 2h). Residual photoresist was stripped with solvent Remover PG
143 (MicroChem Corp., Westborough, MA). To facilitate the attachment of split nerve
144 filaments to the hydrophilic electrode surface (Ti/Au), we modified the areas other than
145 the electrode surface to be hydrophobic by conducting a third photolithography (Fig.
146 2i). Photoresist patterns were created by a maskless aligner to cover the area of
147 electrodes and bond pads, and the entire wafer was deposited with a layer of
148 hydrophobic silane, 1H,1H,2H,2H-Perfluorodecyltrichlorosilane (#L16584, FDTs,
149 96%, Alfa Aesar, Haverhill, MA) (Fig. 2j), followed by a lift-off (Fig. 2k), as detailed
150 in Section 2.3 below. The hydrophobic surface surrounding the electrodes restricts the
151 distribution of conductive electrolytes, which not only eliminates cross recordings
152 between electrodes but also enhances the signal-to-noise ratio by increasing the
153 shunting impedance of the electrode to the bath solution [34].

154 Fig. 2

155 **2.2 Metrology of microfabrication**

156 The quality of microfabrication was controlled by quantifying key features in each
157 step using ellipsometer, profilometer, and an optical microscope. The LSE-WS
158 Scanning Ellipsometer (ES-2), which measured the surface refractive index (n) and
159 absorption coefficient (K) (Gaertner Scientific Corp., Skokie, IL), was implemented to
160 quantify the uniformity of thickness of oxide and nitride layers over large areas
161 following deposition of photoresist or other thin film layers. In addition, visual

162 observation was performed under an optical microscope (100 \times) to check the outcome
163 after each lift-off and etching process. Etch depth following RIE was measured by a
164 profilometer (PL-8 DektakXT, Bruker, Billerica, MA), which was a stylus-based
165 profilometer for step-height measurement. We moved the stylus probe down to our
166 device surface and scanned forward for a programmed distance to determine the film
167 thickness and etch depth.

168 ***2.3 Hydrophobic surface by vapor-phase silanization***

169 The surfaces of the MEA, except for the electrodes and bond pads, were covered
170 by hydrophilic SiO₂, and were modified to be hydrophobic by salinizing the SiO₂ with
171 fluorocarbon chains. The silane reagent, 1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane
172 (CF₃(CF₂)₇(CH₂)₂SiCl₃, FDTs) was chosen based upon a reported study, in which
173 multiple silane reagents were compared; the FDTs-treated surface yielded the largest
174 contact angle, indicative of the strongest hydrophobicity [35]. The FDTs is also
175 biocompatible and allows cell growth on the silanized surface for up to 14 days
176 according to a cell culture study [36]. It was also reported that vapor-phase silanization
177 treatment yielded superior coating performance to water-phase [37]. Hence, we
178 deposited FDTs onto the SiO₂ surface of our MEA in a custom-built vacuum chamber
179 filled with vaporized FDTs for 20 min. Vaporization of FDTs was achieved by
180 applying a negative pressure of 10⁻³ Torr.

181 ***2.4 Contact angle measurement***

182 To quantify the hydrophobicity of the silanized surface, we measured the contact
183 angle using a light microscope connected with a live camera. A drop of water of

184 approximately 5 microliters was placed on the surface, the outline of the droplet was
185 captured by the camera, and the image was analyzed post-hoc to measure the contact
186 angle (ImageJ, National Institutes of Health).

187 ***2.5 Harvest of mouse sciatic nerves***

188 All experimental procedures were approved by the University of Connecticut
189 Institutional Animal Care and Use Committee. C57BL/6 mice of both sexes (6-8 weeks
190 of age, 20-30 g body weight, Taconic, Germantown, NJ) were anesthetized by
191 isoflurane inhalation, followed by transcardiac perfusion from left ventricle to right
192 atrium with oxygenated (95% O₂, 5% CO₂) Krebs solution (in mM: 117.9 NaCl, 4.7
193 KCl, 25 NaHCO₃, 1.3 NaH₂PO₄, 1.2 MgSO₄, 2.5 CaCl₂, 11.1 D-glucose). The carcass
194 was transferred to a tissue dissection chamber filled with cold (~8°C) oxygenated Krebs
195 solution for dissection of bilateral sciatic nerves from proximal branches (L3, L4, and
196 L5 spinal nerves) to distal branches (sural, tibial and common peroneal nerves). One
197 dissected sciatic nerve with proximal and distal branches (~3 cm in total length) was
198 transferred to a custom-built recording chamber consisting of two compartments, one
199 perfused with oxygenated Krebs solution at 32°C and the other covered with mineral
200 oil (Fisher Scientific, Hampton, NH). The proximal branches of the sciatic nerve were
201 pinned in the Krebs compartment while the distal branches were pulled into the adjacent
202 mineral oil compartment for extracellular single-unit recordings.

203 ***2.6 Single-unit recordings from mouse sciatic nerve axons***

204 To validate our microfabricated MEA, we conducted single-unit recording from
205 distal sciatic nerve branches *in vitro* in the two-compartment recording chamber

described above. Action potentials were evoked by electrical stimulation of the proximal end of either L3 or L4 spinal nerves (5 - 15 volts, 0.5 Hz, monopolar anodic) in the Krebs compartment using an extracellular suction electrode (WPI, Sarasota, FL) and a stimulus isolator (A365, WPI, Sarasota, FL). Single-unit recordings were obtained from the distal branches in the adjacent mineral oil compartment. The epineurium of a distal branch was carefully removed and the nerve trunk was split into fine filaments of 10 - 50 μ m thick, a process that usually removed the perineurium and severely disrupted the endoneurium [12]. When brought in proximity to the hydrophilic electrodes of the MEA in the hydrophobic mineral oil compartment, the split hydrophilic nerve filaments self-attached to the hydrophilic “islands” of the five parallel electrode lines surrounded by hydrophobic regions. To conduct simultaneous multichannel single-unit recordings, we connected the MEA via bond pads to a TDT system (Tucker-Davis Technologies Inc., Alachua, FL), which consisted of an RZ5D BioAmp processor, a PZ5 preamplifier, a high-impedance ZC32 head stage, and a ZCA-DIP16 adaptor. The single-unit recording signals were amplified at 104 dB, filtered between 300 and 3000 Hz, and digitized at 25 kHz. To reduce electrical noise, we enclosed the entire recording setup in a custom-built Faraday cage, and used DC battery packs to power the PZ5 preamplifier and A365 stimulus isolator.

2.7 *Histological assessment of split nerve filaments*

We qualitatively estimated the axon numbers in each split nerve filaments by imaging the cross-section using an electron microscopy protocol we reported previously [12, 33]. Briefly, the split nerve filaments were submerged in a mixed fixative solution

228 containing 0.12M phosphate buffer solution (PB, pH 7.2), 2.5% glutaraldehyde, 2%
229 paraformaldehyde, and 3 mM MgCl₂ at 4°C for 60 min. The tissue was then rinsed
230 twice in PB and fixed with 1% Osmium tetroxide in 0.12 M PB for 2 h in a dark
231 environment at room temperature. The tissue was then dehydrated by ascending series
232 of 30, 50, 70, 95 and 100% ethyl ethanol (10 min each), each was followed by two
233 exposures to 100% propylene oxide for 10 min. After embedding in epoxy resin at 60°C
234 for 48 h, the tissue was sectioned transversely on an ultramicrotome to reveal the cross-
235 sections of the nerve filaments (Leica, Bannockburn, IL). The tissue sections were
236 collected on grids and stained in 2% uranyl acetate and 2.5% Sato's lead citrate. The
237 cross-sectional images of split nerve filaments were captured by a transmission electron
238 microscope (FEI Tecnai T12, Thermo Fisher Scientific, Waltham, MA) coupled with
239 an AMT 2 K XR40 CCD camera (4 megapixel) at an accelerating voltage of 80 kV.

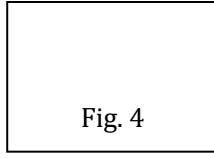
240 **2.8 Data analysis**

241 The single-unit recordings were processed post-hoc in MATLAB v2018
242 (Mathworks Inc., Natick, MA). The single-unit action potential spikes were detected
243 by setting a negative threshold of 8 (for A-fibers) or 1.5 (for C-fibers) times the root
244 mean square of the background noise. Conduction delay of each axon was extracted by
245 measuring the time delay between the stimulus artifact and the onset of action potential
246 spike, which was used to calculate the afferent conduction velocity. Spike waveforms
247 also underwent principal component analysis (PCA) and were classified based upon the
248 first three dominant components. Data are presented as means ± SE. One-way ANOVA,
249 two-way ANOVA or Student's t-tests were performed as appropriate using SigmaPlot

250 v9.0 (Systat Software, San Jose, CA). Differences were considered significant when p
251 < 0.05 .

252 **3. Results and discussion**

253 ***3.1 Successful microfabrication of the MEA***


254 As shown in Fig. 3A, the microfabricated MEA consists of five parallel Ti/Au
255 recording electrodes, each 50 μm wide and 4000 μm long, and with a 300 μm center-
256 to-center distance between electrodes. The Ti/Au electrodes, interconnects and bond
257 pads were protected by a layer of SiO_2 (500 nm). The recording sites of the electrodes
258 (50 \times 50 μm) and bond pads (1 \times 0.5 mm) were exposed by removing the SiO_2 with RIE
259 as indicated by light microscopy in Fig. 3B. The thickness of the deposited Ti/Au layer
260 measured by the profilometer showed consistent thickness of \sim 210 nm across all five
261 electrodes as indicated in Fig. 3C. An automatic dicing saw (Disco DAD321) was
262 utilized to define the shape of the device. One 4 inch wafer was cut into 40 devices
263 (7 \times 19 mm). The MEA was connected to an 18-pin DIP socket at the bond pads via
264 insulated Nichrome wires (0.0026", A-M systems, Inc.), which were pasted to the bond
265 pads by Silver Conductive Epoxy Adhesive (MG Chemicals, British Columbia, CA).
266 We then protected the bonding junction at the bond pads with a layer of silicone
267 (Sylgard 184, Dow Corp., Garrison, NY).

268 Fig. 3

269 ***3.2 Hydrophobic/hydrophilic surface patterning of the MEA***

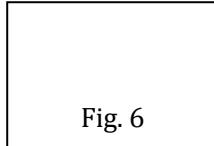
270 The five electrodes are hydrophilic. To modify the surrounding SiO_2 surfaces to

271 be hydrophobic, we conducted vapor-phased silanization as illustrated in Fig. 4A.
272 Tricholoro-silane groups (Si-Cl) of FDTs are converted into silanol groups (Si-OH)
273 which covalently attach to the hydroxyl groups of the SiO_2 surface via Si-O-Si bonds
274 to form a self-assembled monolayer (SAM). Unreacted terminal chlorine groups are
275 replaced with hydroxyl groups which produce a byproduct of HCl. These hydroxyl
276 groups then condense and cross-link with silanols on other precursor molecules to
277 generate a siloxane network. After silanization, the heavy fluorinated tail of FDTs
278 increases the surface hydrophobicity as quantified by increase in contact angle. As
279 shown in Fig. 4B, the contact angle of the MEA surface interfaced with a water droplet
280 was significantly increased following silanization treatment ($52^\circ \pm 3.1^\circ$ vs $92.6^\circ \pm 2.9^\circ$,
281 $p < 0.001$). Further, to assess the stability of silanized surface, we submerged the
282 silanized surfaces in mineral oil overnight, removed the mineral oil with ethanol and
283 measured the contact angle again; there was no significant change from before the
284 mineral oil treatment ($92^\circ \pm 3.1^\circ$ vs. $92.6^\circ \pm 2.9^\circ$, $p > 0.9$). This strongly indicates that
285 silanization with vaporized FDTs results in stable hydrophobic surfaces of the MEA
286 suitable for prolonged in vitro single-unit recordings in the mineral oil compartment of
287 our recording chamber.

288
289
Fig. 4

290 3.3 Electrical impedance of the MEA

291 The electrical impedance of the MEA affects the quality of extracellular recordings.
292 Generally, reduced contact area of the electrode/electrolyte interface will restrict the


292 ‘listening’ area to facilitate recordings from individual neurons or axons, i.e., single-
293 unit recordings [8]. However, this is at the expense of increased electrode impedance
294 that leads to increased thermal noise in the recordings attenuating the signal-to-noise
295 ratio [38]. Based on our extensive experience with metal wire recordings, relatively
296 large electrode size permits single-unit recordings from peripheral nerve axons, likely
297 due to the significantly lower density of axons/neurons in the PNS as compared to in
298 the CNS [39, 40]. Hence, we designed our electrode/electrolyte interface to be 50 by
299 50 μm , a surface area comparable to that of conventional wire electrodes. We
300 determined the impedance of our MEA in phosphate-buffered saline using a potentiostat
301 instrument (Metrohm Autolab, Utrecht, Netherlands). Each electrode of the MEA was
302 tested individually along with a large platinum counter electrode (PINE Research, NC,
303 USA) and a silver/silver chloride reference electrode (Cole-Parmer, IL, USA). The
304 electrode impedances were measured from 0.1 Hz to 100 kHz to generate an impedance
305 spectroscopy with a representative Bode plot shown in Fig. 5. The average impedance
306 of our MEA was $23.6 \text{ k}\Omega \pm 8.8 \text{ k}\Omega$ ($N = 11$) at 1 kHz, which falls in the anticipated
307 range for metal electrodes with an exposed tip dimension of $2500 \mu\text{m}^2$ in area.

308
309 Fig. 5

310 3.4 Simultaneous recording from multiple sciatic nerve axons *in vitro*

311 Following the procedures reported in Sections 2.5 and 2.6, we conducted single-
312 unit recordings from mouse sciatic nerve axons using our microfabricated MEA as
313 shown in Fig. 6A. In the Krebs compartment, action potentials were evoked by a suction

313 electrode at 0.5 Hz (5 - 15 volts, monopolar anodic 0.2 ms duration). In the mineral oil
314 compartment, five split filaments were attached to the 5 hydrophilic electrodes in the
315 MEA. The reference electrode was placed perpendicular to the 5 recording electrodes
316 to permit bipolar recordings of action potentials. The ground electrode was placed in
317 the bath solution in the Krebs compartment.

318
Fig. 6

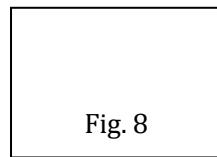
319 For multichannel recordings, electrical insulation between electrodes is crucial to
320 avoid action potentials from the same axon being recorded in multiple channels [12].
321 As shown in Fig. 6A, the large hydrophobic surface that surrounds individual electrodes
322 prevent conductive electrolyte solution from accumulating between electrodes, thus
323 reducing chances for cross-electrode recordings. To achieve distinct recordings from
324 individual axons, the sciatic nerve was split into fine filaments of 10 – 50 μm thick (Fig.
325 6B), which as indicated by the electron microscopy image in Fig. 6B loosened up the
326 individual axons to facilitate closer contact to the electrodes. The small number of axons
327 in each filament (<100) also enhances the chances of recording temporarily distinct
328 action potential spikes, i.e., single-units. As shown in Fig. 6C, single-unit recordings
329 using the MEA showed clearly different spike patterns, in both amplitude and
330 conduction delay, between adjacent MEA electrodes. The MEA was capable of
331 recording from both fast-conducting A-fibers (conduction velocity, CV, > 1m/s) as well
332 as slow-conducting C-fibers (CV < 1m/s).

333 ***3.5 Validation of single-unit recordings with ascending stimulus intensities***

334 To confirm that recorded spikes are from individual axons, we conducted
335 additional experiments by gradually increasing the electrical stimulus intensity by 0.5
336 or 1 volts. There are two criteria to isolate single-unit action potentials: consistent shape
337 and unchanged amplitude [41]. For a typical 5-channel single-unit recording shown in
338 Fig. 6C, action potential spikes were marked by unfilled arrows (from potentially 10
339 different axons), extracted from recordings conducted at different electrical stimulus
340 intensities, and overlaid with one another in Fig. 7A. We then conducted a principal
341 component analysis on all spikes recorded from multiple stimulus intensities and used
342 the first three dominant components to separate the spikes into ten clusters ($N = 54, 81,$
343 29, 301, 134, 356, 465, 203, 114, 185) as shown in Fig. 7B, which confirmed the unique
344 identity of spike shapes from different peripheral axons. In addition, the single-unit
345 spike amplitudes recorded at different stimulus intensities were plotted in 7C, which
346 showed no significant difference in amplitude. The fact that individual spikes in our
347 recordings do not change in shape or amplitude confirms that they are single-unit
348 recordings from 10 different, individual axons.

349
350

Fig. 7


351 As shown in Fig. 7D, the peak-to-peak amplitude of single-unit action potentials
352 is proportional to their conduction velocities. This is not unexpected given that fast-
353 conducting A-fibers are stronger electrical current sources than slowly-conducting C-
354 fibers, because of the significantly larger axon diameter and the presence of Nodes of

355 Ranvier with concentrated ion channels. As shown in Fig. 7E, the stimulus thresholds
356 that activate individual axons appear to be inversely proportional to their conduction
357 velocities, consistent with other findings that A-fiber axons have lower stimulus
358 activation thresholds than C-fiber axons [42, 43].

359 ***3.6 Distribution of conduction velocity from different types of axons***

360 The conduction velocities (CV) of recorded action potentials reflect their
361 myelination and physical diameters: axons with CV greater than 1 m/s in mice are
362 generally myelinated A-fibers with large diameters (5 – 20 microns) whereas axons
363 with CV less than 1 m/s are unmyelinated C-fibers with small diameters (~1 microns)
364 [12]. To validate that our MEA is capable to record action potentials from different
365 types of axons with different conduction velocities, we conducted recordings on 49 split
366 nerve filaments from 18 sciatic nerves, from which 147 single-unit spikes were
367 recorded. A typical recording shown in Fig. 8A allows the calculation of CV from
368 conduction delays, and the CV of the 147 axons were plotted in a histogram in Fig. 8B,
369 including 43 A-fibers (CV > 1 m/s) and 104 C-fibers (CV < 1m/s).

370

371

372

373 **4. Conclusions**

374 In summary, we have successfully developed a multichannel microelectrode array
375 via silicon-based microfabrication that allows convenient single-unit, simultaneous

376 recordings from mammalian peripheral nerve axons in vitro. The MEA consists of
377 planar titanium/gold electrodes sandwiched between insulating silicon dioxide layers.
378 The exposed electrode/electrolyte surface is 50 by 50 microns, yielding a relatively low
379 electrode impedance around $24\text{k}\Omega$ at 1 kHz to lessen recording noise, and may further
380 be improved with use of iridium oxide or PEDOT. The innovative MEA surface design
381 of parallel hydrophilic electrode channels surrounded by hydrophobic areas facilitates
382 the alignment of split nerve filaments with electrode channels, reducing the technical
383 challenge of traditional single-unit recordings from peripheral mammalian axons. The
384 hydrophobic surface pattern was generated by silanization of a silicon dioxide surface
385 by vaporized FOTS. The novel MEA achieved simultaneous five-channel recordings
386 from 5 different peripheral nerve filaments, a high throughput approach compared with
387 conventional recordings with wire electrodes. In addition, both myelinated A-fibers and
388 unmyelinated C-fibers were recorded with the MEA. Increased electrical stimulus
389 intensity did not alter the shape or amplitude of recorded action potential spikes, which
390 strongly indicated that those spikes were single units from different, individual axons.
391 We anticipate that with further development of this MEA, single-unit recordings from
392 peripheral nerve axons will be implemented by a broader research community that will
393 work collaboratively to advance our mechanistic understanding of peripheral neural
394 encoding, transmission and modulation for treating diseases.

395

396 **Acknowledgments**

397 We sincerely thank Dr. G. F. Gebhart for editing the manuscript and providing

398 constructive feedbacks. This work was supported by NSF CAREER 1844762 and NIH
399 R01 DK120824 grants awarded to Dr. Bin Feng, as well as NIH R01 R01DC014044
400 grant awarded to Dr. Martin Han.

401 **Illustration of the figures**

402 Fig. 1 (A) Schematic of a peripheral nerve and the three layers of connective tissues
403 around and within the nerve: epineurium, perineurium and endoneurium. (B)
404 Schematic of the novel microelectrode array (MEA) for in vitro simultaneous,
405 single-unit recordings from multiple split nerve filaments.

406 Fig. 2 Schematic of the silicon-based microfabrication processes for the MEA. SiO₂:
407 silicon dioxide; Ti: titanium; Au: gold; FDTs: 1H, 1H, 2H, 2H-
408 Perfluorodecyltrichlorosilane. Refer to the texts for more details.

409 Fig. 3 Validation of MEA fabrication by light microscopy and profilometry. (A) The
410 pattern of deposited gold electrodes and bonding pads sandwiched and insulated
411 by two layers of silicon dioxide. (B) Opening of the electrode/electrolyte interface
412 (50×50 μm) by removing the silicon dioxide layer on the gold electrode by reactive
413 ion etching. (C) Thickness of the metal deposition measured by stylus surface
414 profilometry. The inset shows the stylus tip.

415 Fig. 4 Surface modification by silanization to convert hydrophilic silicon dioxide
416 surface to be hydrophobic. (A) Silanization reactions for generating a hydrophobic
417 FDTs monolayer on the silicon dioxide surface via covalent bonding. (B) Surface
418 hydrophobicity quantified by contact angle measurement of the electrode array
419 interfaced with a water droplet before and after silanization.

420 Fig. 5 Electrical impedance spectroscopy of the MEAs. The top and bottom panels are
421 impedance magnitude and phase angle, respectively. The inset shows the
422 magnitude of impedance around 1 kHz.

423 Fig. 6 Validation of the MEA by in vitro single-unit recordings from mouse sciatic nerve
424 axons. (A) A photograph of the single-unit recording setup in the two-compartment
425 recording chamber. The branches of L3-L5 spinal nerves were placed in the tissue
426 compartment and the distal branches of sciatic nerve were pulled into the adjacent
427 mineral oil compartment. Action potentials were evoked by electrically
428 stimulating spinal nerves with a suction electrode. The magnified view shows the
429 interface between five split nerve filaments and the five channels of electrodes in
430 the MEA. (B) The cross-section of a split nerve filament revealed by electron
431 microscopy. (C) Simultaneous single-unit recordings from five electrode channels.
432 The vertical dotted line indicates an approximate conduction velocity of 1 m/s
433 (30mm axon length), i.e., the criterion for distinguishing myelinated A-fibers from
434 unmyelinated C-fibers. Single-unit spikes are marked by unfilled arrows. The
435 stimulus artifact is marked by a filled arrow.

436 Fig. 7 Validation of single-unit recordings by increasing the electrical stimulus intensity
437 and post-hoc spike analysis. (A) The waveforms of the 10 action potentials spikes
438 indicated in Fig. 6C by unfilled arrows were extracted and overlaid after
439 application of six different electrical stimulus intensities. Spike waveforms are
440 unchanged by varying stimulus intensity. (B) Principal component analysis of
441 spike waveforms to cluster the same spikes in (A) into 10 groups based upon the
442 first three principal components in the Cartesian coordinate. (C) Amplitudes of the
443 10 labeled spikes in Fig. 6C evoked by varying stimulus intensities from 5 to 15
444 volts. (D) Spike amplitude is proportional to conduction velocity ($R^2 = 0.49$). (E)

445 Electrical stimulus threshold appears to be inversely proportional to conduction
446 velocity ($R^2 = 0.37$). PC: principal component.

447 Fig. 8 Ability to record from both A-type and C-type axons by the MEA. (A) Typical
448 recordings from both myelinated A-fibers (unfilled arrows) and unmyelinated C-
449 fibers (filled arrows). (B) The histogram of conduction velocities (m/s) from 43
450 A-fibers (orange) and 104 C-fibers (magenta).

451

452 **References**

453

454 [1] S. Malin, D. Molliver, J.A. Christianson, E.S. Schwartz, P. Cornuet, K.M. Albers,
455 et al., TRPV1 and TRPA1 function and modulation are target tissue dependent,
456 JNeurosci, 31(2011) 10516-28.

457 [2] M.P. Jankowski, K.K. Rau, K.M. Ekmann, C.E. Anderson, H.R. Koerber,
458 Comprehensive Phenotyping of Group III and IV Muscle Afferents in Mouse, Journal
459 of neurophysiology, (2013).

460 [3] B. Sakmann, E. Neher, Patch clamp techniques for studying ionic channels in
461 excitable membranes, Annu Rev Physiol, 46(1984) 455-72.

462 [4] J.R. Clay, Potassium current in the squid giant axon, International review of
463 neurobiology, 27(1985) 363-84.

464 [5] B. Feng, Y. Zhu, J.H. La, Z.P. Wills, G.F. Gebhart, Experimental and
465 computational evidence for an essential role of NaV1.6 in spike initiation at stretch-
466 sensitive colorectal afferent endings, Journal of neurophysiology, 113(2015) 2618-34.

467 [6] H. Kanda, J. Ling, S. Tonomura, K. Noguchi, S. Matalon, J.G. Gu, TREK-1 and
468 TRAAK Are Principal K⁺ Channels at the Nodes of Ranvier for Rapid Action
469 Potential Conduction on Mammalian Myelinated Afferent Nerves, Neuron, 104(2019)
470 960-71.e7.

471 [7] B.C. Wheeler, Y. Nam, In Vitro Microelectrode Array Technology and Neural
472 Recordings, 39(2011) 45-61.

473 [8] M.M. Heinricher, Principles of extracellular single-unit recording, Microelectrode
474 Recording in Movement Disorder Surgery, 8(2004).

475 [9] M. Han, P.S. Manoonkitiwongsa, C.X. Wang, D.B. McCreery, In vivo validation
476 of custom-designed silicon-based microelectrode arrays for long-term neural
477 recording and stimulation, IEEE transactions on biomedical engineering, 59(2011)
478 346-54.

479 [10] G.H. Kim, K. Kim, E. Lee, T. An, W. Choi, G. Lim, et al., Recent Progress on
480 Microelectrodes in Neural Interfaces, Materials (Basel), 11(2018) 1995.

481 [11] G. Buzsáki, Large-scale recording of neuronal ensembles, Nature neuroscience,

482 7(2004) 446-51.

483 [12] L. Chen, S.J. Ilham, T. Guo, S. Emadi, B. Feng, In vitro multichannel single-unit
484 recordings of action potentials from mouse sciatic nerve, *Biomed Phys Eng Express*,
485 3(2017) 045020.

486 [13] B.S. Spearman, V.H. Desai, S. Mobini, M.D. McDermott, J.B. Graham, K.J.
487 Otto, et al., *Tissue-Engineered Peripheral Nerve Interfaces*, *Advanced Functional*
488 *Materials*, 28(2018) 1701713.

489 [14] Y. Zhang, N. Zheng, Y. Cao, F. Wang, P. Wang, Y. Ma, et al., Climbing-inspired
490 twining electrodes using shape memory for peripheral nerve stimulation and
491 recording, *Science advances*, 5(2019) eaaw1066.

492 [15] X. Kang, J. Liu, H. Tian, B. Yang, Y. Nuli, C. Yang, Self-Closed Parylene Cuff
493 Electrode for Peripheral Nerve Recording, *Journal of Microelectromechanical*
494 *Systems*, 24(2015) 319-32.

495 [16] N. Lago, K. Yoshida, K.P. Koch, X. Navarro, Assessment of Biocompatibility of
496 Chronically Implanted Polyimide and Platinum Intrafascicular Electrodes, *IEEE*
497 *Transactions on Biomedical Engineering*, 54(2007) 281-90.

498 [17] K. Yoshida, D. Farina, M. Akay, W. Jensen, Multichannel Intraneural and
499 Intramuscular Techniques for Multiunit Recording and Use in Active Prostheses,
500 *Proceedings of the IEEE*, 98(2010) 432-49.

501 [18] J. Badia, S. Raspovic, J. Carpaneto, S. Micera, X. Navarro, Spatial and
502 Functional Selectivity of Peripheral Nerve Signal Recording With the Transversal
503 Intrafascicular Multichannel Electrode (TIME), *IEEE transactions on neural systems*
504 and rehabilitation engineering : a publication of the IEEE Engineering in Medicine
505 and Biology Society, 24(2016) 20-7.

506 [19] A. Cutrone, J.D. Valle, D. Santos, J. Badia, C. Filippeschi, S. Micera, et al., A
507 three-dimensional self-opening intraneural peripheral interface (SELINE), *Journal of*
508 *neural engineering*, 12(2015) 016016.

509 [20] H.A.C. Wark, R. Sharma, K.S. Mathews, E. Fernandez, J. Yoo, B. Christensen, et
510 al., A new high-density (25 electrodes/mm²) penetrating microelectrode array for
511 recording and stimulating sub-millimeter neuroanatomical structures, *Journal of*
512 *neural engineering*, 10(2013) 045003.

513 [21] J. Wang, X.Y. Thow, H. Wang, S. Lee, K. Voges, N.V. Thakor, et al., A Highly

514 Selective 3D Spiked Ultraflexible Neural (SUN) Interface for Decoding Peripheral
515 Nerve Sensory Information, Advanced Healthcare Materials, 7(2018) 1700987.

516 [22] D. Byun, S.J. Cho, B.H. Lee, J. Min, J.H. Lee, S. Kim, Recording nerve signals
517 in canine sciatic nerves with a flexible penetrating microelectrode array, Journal of
518 neural engineering, 14(2017) 046023.

519 [23] D. Yan, A. Jiman, D. Ratze, S. Huang, S. Parizi, E. Welle, et al., Microneedle
520 Penetrating Array with Axon-Sized Dimensions for Cuff-less Peripheral Nerve
521 Interfacing, 2019 9th International IEEE/EMBS Conference on Neural Engineering
522 (NER)2019, pp. 827-30.

523 [24] D.J. Chew, L. Zhu, E. Delivopoulos, I.R. Minev, K.M. Musick, C.A. Mosse, et
524 al., A microchannel neuroprosthesis for bladder control after spinal cord injury in rat,
525 Science translational medicine, 5(2013) 210ra155.

526 [25] S. Gribi, S. du Bois de Dunilac, D. Ghezzi, S.P. Lacour, A microfabricated nerve-
527 on-a-chip platform for rapid assessment of neural conduction in explanted peripheral
528 nerve fibers, Nature Communications, 9(2018) 4403.

529 [26] B.B. Murinson, J.W. Griffin, C-Fiber Structure Varies with Location in
530 Peripheral Nerve, Journal of Neuropathology & Experimental Neurology, 63(2004)
531 246-54.

532 [27] M.A. Reina, R. Arriazu, C.B. Collier, X. Sala-Blanch, L. Izquierdo, J. de Andres,
533 Electron microscopy of human peripheral nerves of clinical relevance to the practice
534 of nerve blocks. A structural and ultrastructural review based on original experimental
535 and laboratory data, Revista espanola de anestesiologia y reanimacion, 60(2013) 552-
536 62.

537 [28] B.Y. Li, B. Feng, H.Y. Tsu, J.H. Schild, Unmyelinated visceral afferents exhibit
538 frequency dependent action potential broadening while myelinated visceral afferents
539 do not, Neuroscience letters, 421(2007) 62-6.

540 [29] J. Tavee, L. Zhou, Small fiber neuropathy: a burning problem, Cleve Clin J Med,
541 76(2009) 297-305.

542 [30] M.S. Gold, G.F. Gebhart, Nociceptor sensitization in pain pathogenesis, Nat
543 Med, 16(2010) 1248-57.

544 [31] B. Feng, J.H. La, E.S. Schwartz, G.F. Gebhart, Irritable bowel syndrome:
545 methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms

546 of visceral hypersensitivity in irritable bowel syndrome, American journal of
547 physiology Gastrointestinal and liver physiology, 302(2012) G1085-98.

548 [32] P.R. Brumovsky, B. Feng, L. Xu, C.J. McCarthy, G.F. Gebhart, Cystitis increases
549 colorectal afferent sensitivity in the mouse, American journal of physiology
550 Gastrointestinal and liver physiology, 297(2009) G1250-8.

551 [33] S.J. Ilham, L. Chen, T. Guo, S. Emadi, K. Hoshino, B. Feng, In vitro single-unit
552 recordings reveal increased peripheral nerve conduction velocity by focused pulsed
553 ultrasound, Biomed Phys Eng Express, 4(2018) 045004.

554 [34] L. Wang, M. Riss, J.O. Buitrago, E. Claverol-Tinture, Biophysics of
555 microchannel-enabled neuron-electrode interfaces, Journal of neural engineering,
556 9(2012) 026010.

557 [35] D. Janssen, R. De Palma, S. Verlaak, P. Heremans, W. Dehaen, Static solvent
558 contact angle measurements, surface free energy and wettability determination of
559 various self-assembled monolayers on silicon dioxide, Thin Solid Films, 515(2006)
560 1433-8.

561 [36] G. Jing, Y. Wang, T. Zhou, S.F. Perry, M.T. Grimes, S. Tatic-Lucic, Cell
562 patterning using molecular vapor deposition of self-assembled monolayers and lift-off
563 technique, Acta biomaterialia, 7(2011) 1094-103.

564 [37] G.Y. Jung, Z. Li, W. Wu, Y. Chen, D.L. Olynick, S.Y. Wang, et al., Vapor-phase
565 self-assembled monolayer for improved mold release in nanoimprint lithography,
566 Langmuir, 21(2005) 1158-61.

567 [38] P.R.F. Rocha, P. Schlett, U. Kintzel, V. Mailänder, L.K.J. Vandamme, G. Zeck, et
568 al., Electrochemical noise and impedance of Au electrode/electrolyte interfaces
569 enabling extracellular detection of glioma cell populations, Scientific reports, 6(2016)
570 34843.

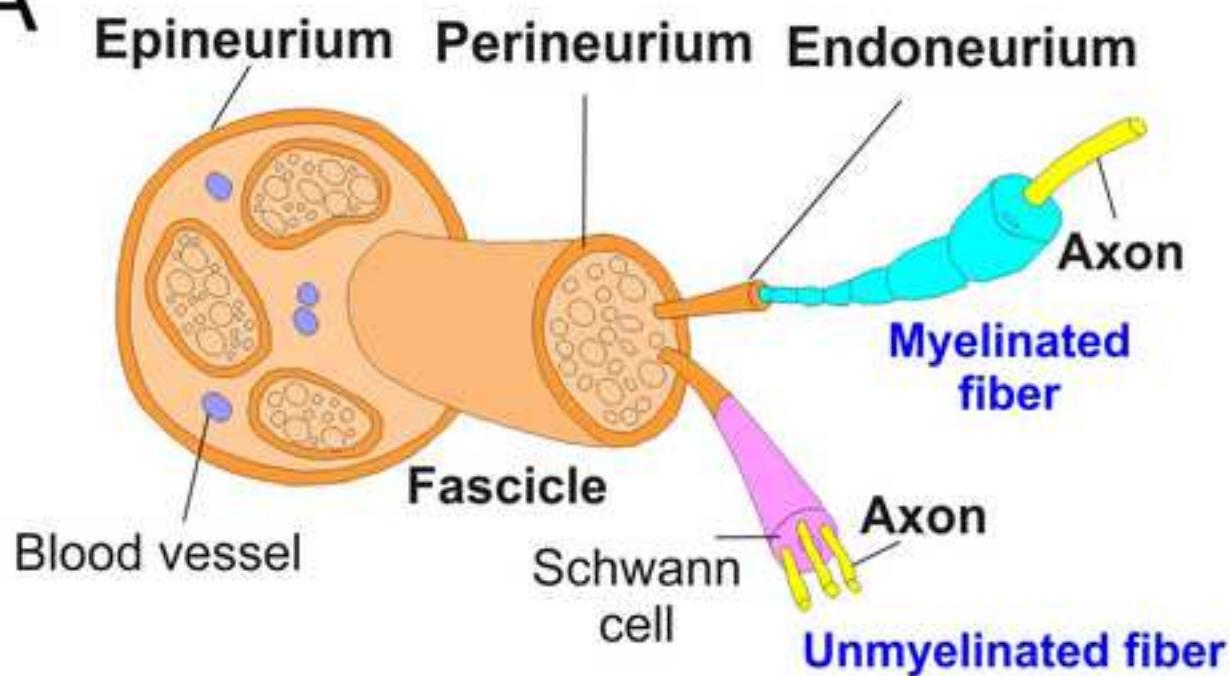
571 [39] B. Feng, S.C. Joyce, G.F. Gebhart, Optogenetic activation of mechanically
572 insensitive afferents in mouse colorectum reveals chemosensitivity, American journal
573 of physiology Gastrointestinal and liver physiology, 310(2016) G790-8.

574 [40] B. Feng, G.F. Gebhart, In vitro functional characterization of mouse colorectal
575 afferent endings, Journal of visualized experiments : JoVE, (2015) 52310.

576 [41] M. Schafers, D. Cain, Single-fiber recording: in vivo and in vitro preparations,
577 Methods in molecular medicine, 99(2004) 155-66.

578 [42] S. Qiao, O. Odoemene, K. Yoshida, Determination of electrode to nerve fiber
579 distance and nerve conduction velocity through spectral analysis of the extracellular
580 action potentials recorded from earthworm giant fibers, *Medical & biological*
581 *engineering & computing*, 50(2012) 867-75.

582 [43] S. Qiao, K. Yoshida, Influence of unit distance and conduction velocity on the
583 spectra of extracellular action potentials recorded with intrafascicular electrodes,
584 *Medical engineering & physics*, 35(2013) 116-24.


585

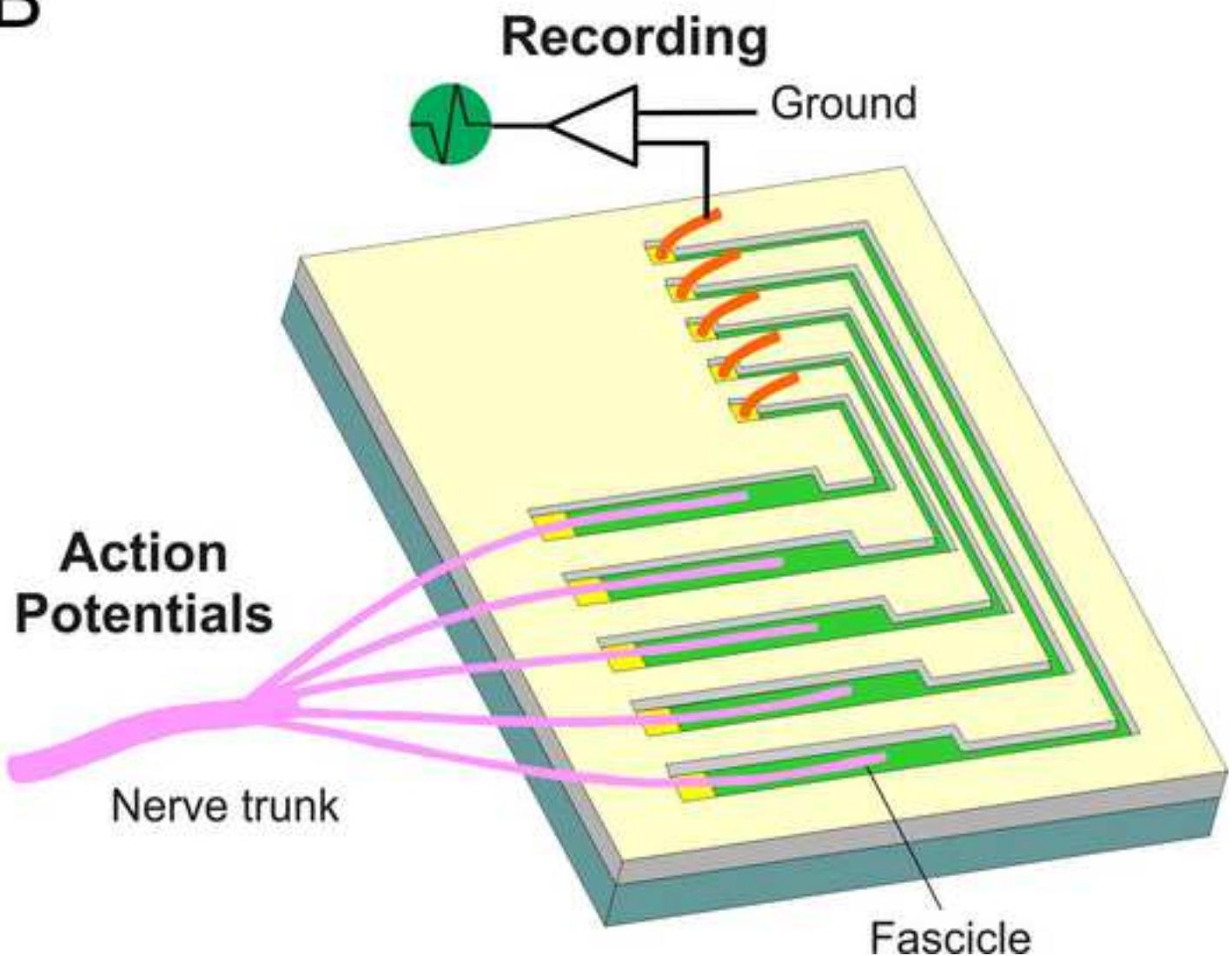
586

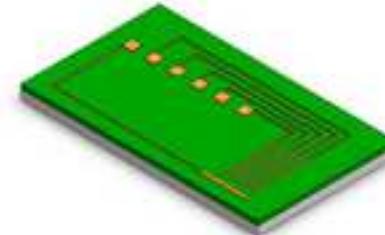
Figure 1

[Click here to download high resolution image](#)

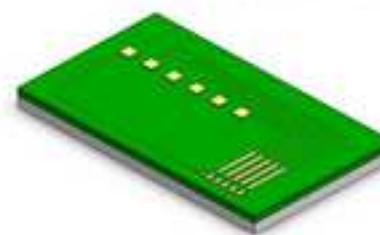
A

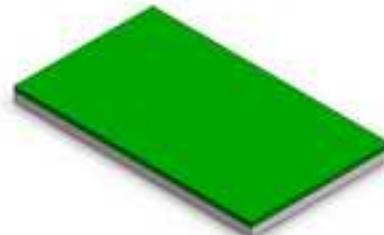
B

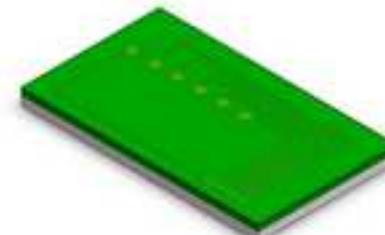


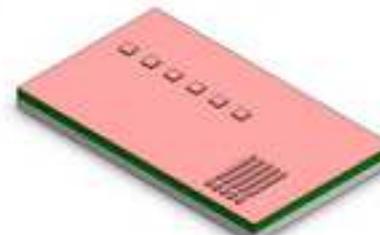

Figure 2

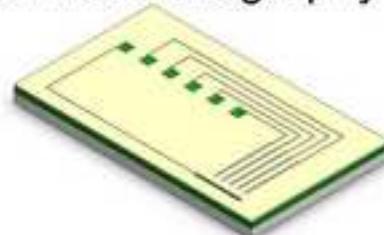
[Click here to download high resolution image](#)

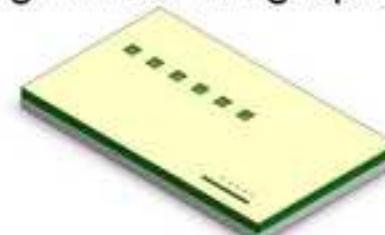

a. Clean

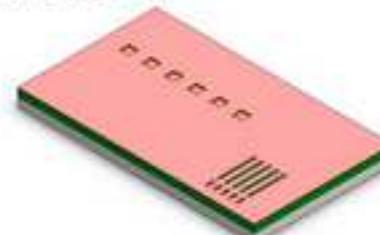

e. Lift-off

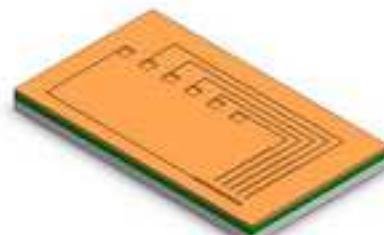

i. Photolithography

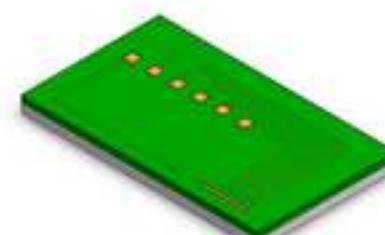

b. SiO₂ deposition


f. SiO₂ deposition


j. FDTs deposition


c. Photolithography

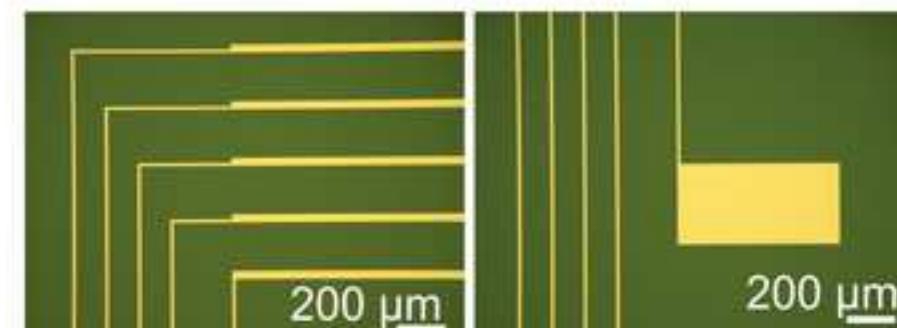

g. Photolithography


k. Lift-off

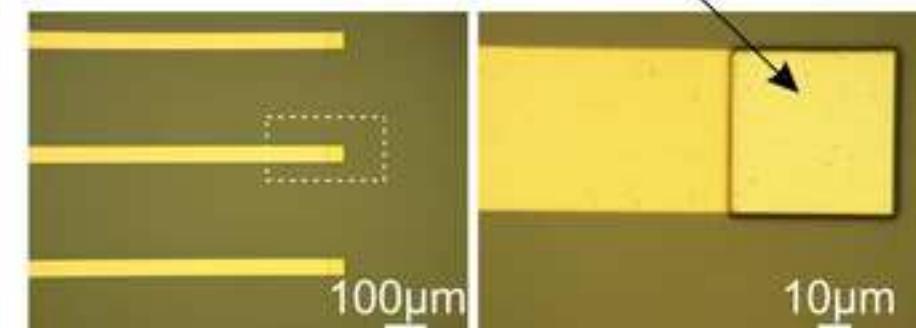
d. Ti/Au deposition

h. Reactive ion etching

□ Si wafer


■ SiO₂

■ Photoresist


■ Ti/Au

■ FDTs

Figure 3

[Click here to download high resolution image](#)**A** Electrical traces (5x)

Bond pad (5x)

B Electrode/electrolyte interface

10x

100x

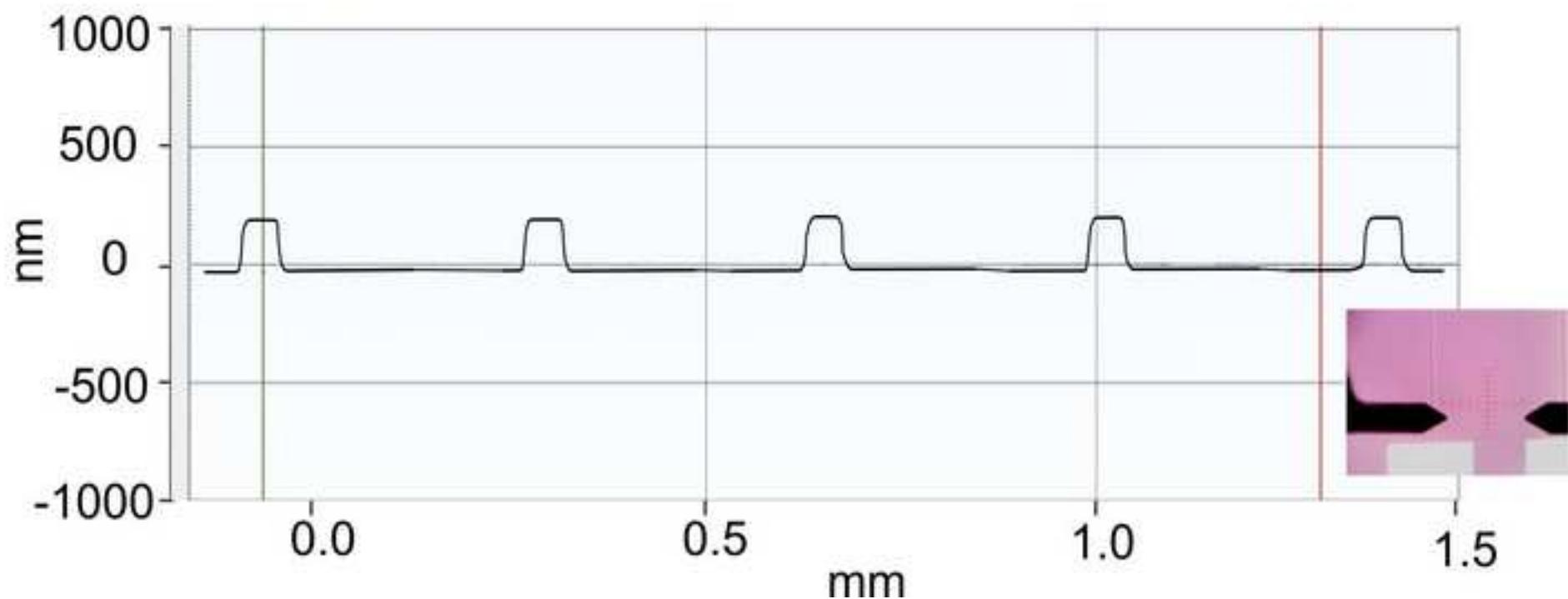
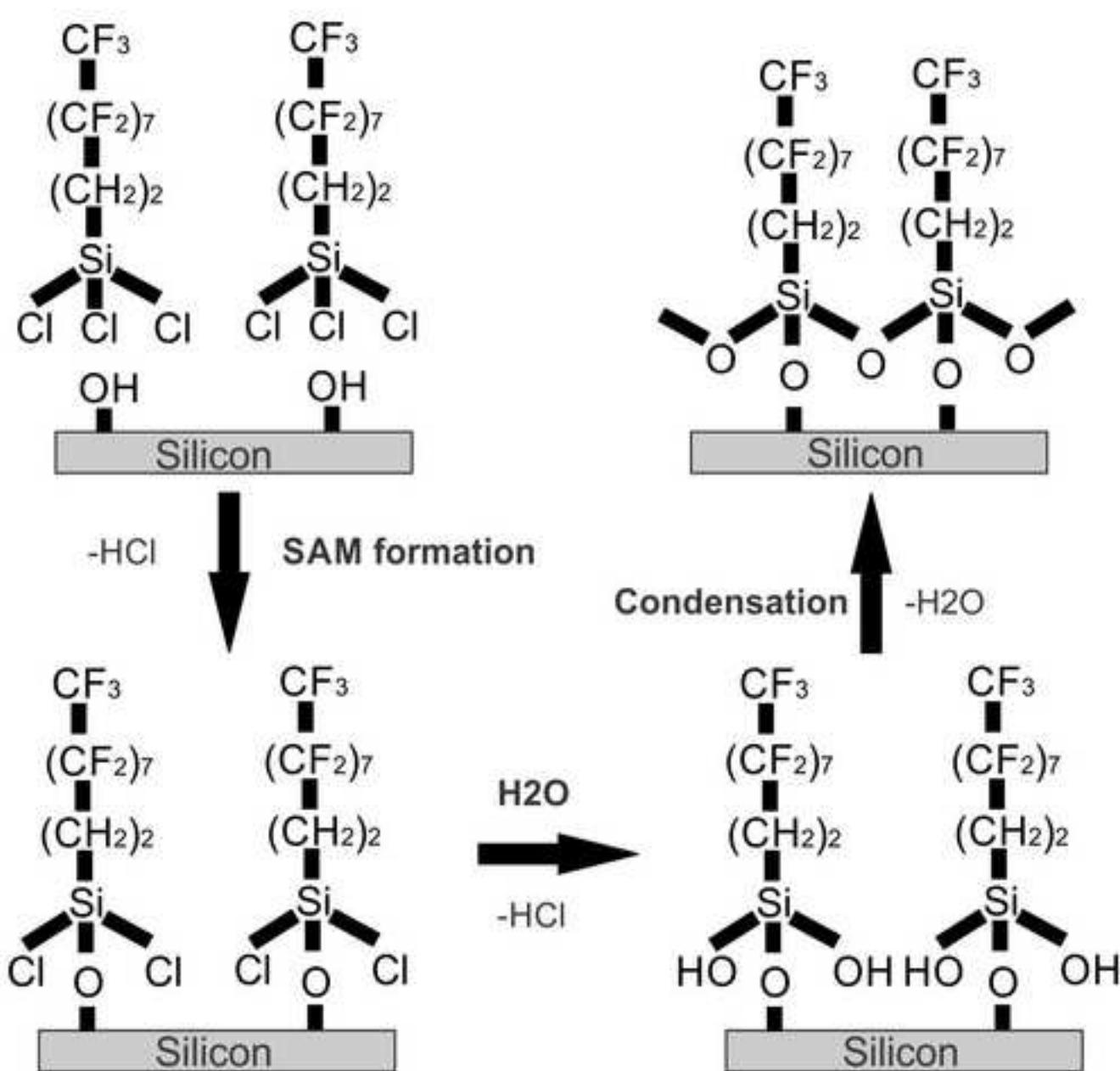


C Thickness of Ti/Au pattern


Figure 4

[Click here to download high resolution image](#)


A

B

Before silanization

After silanization

Figure 5

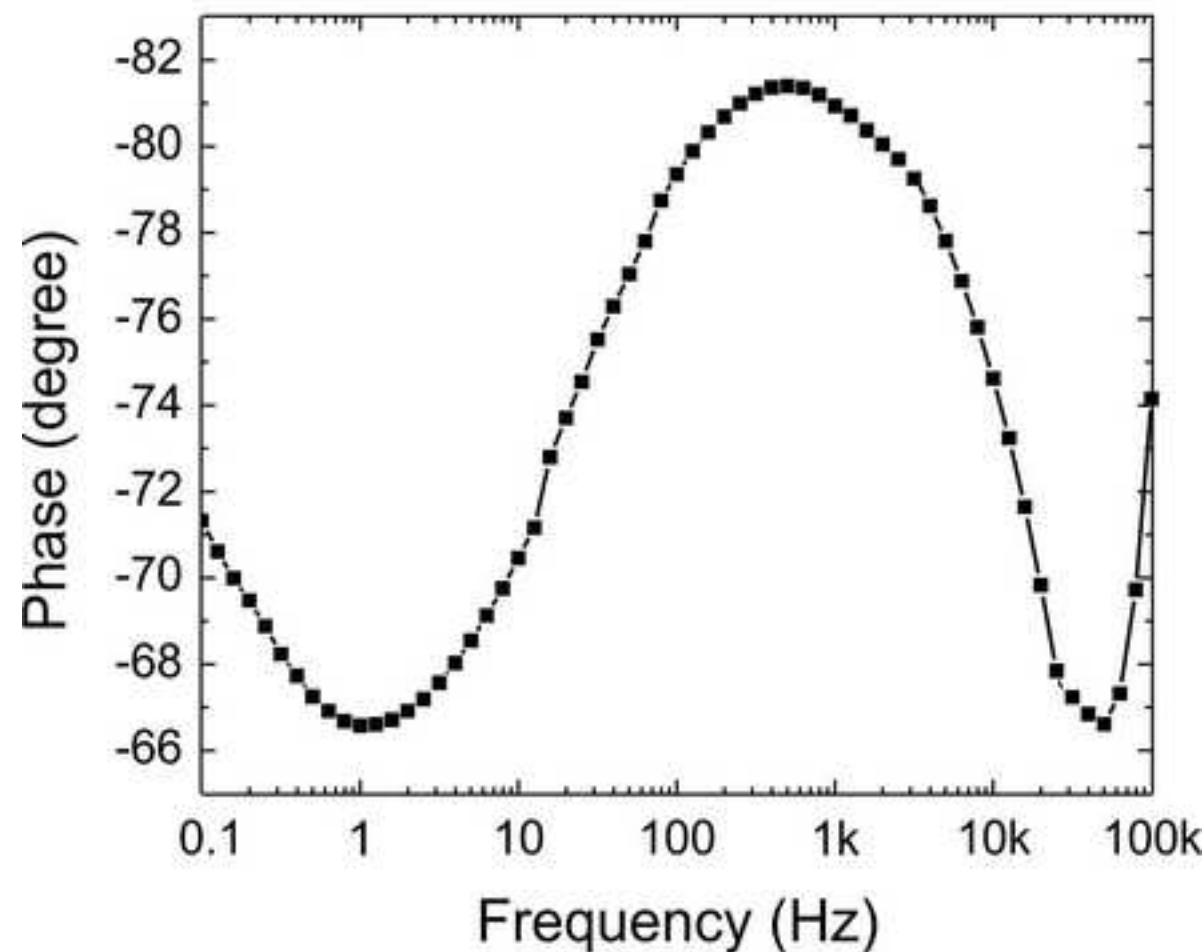
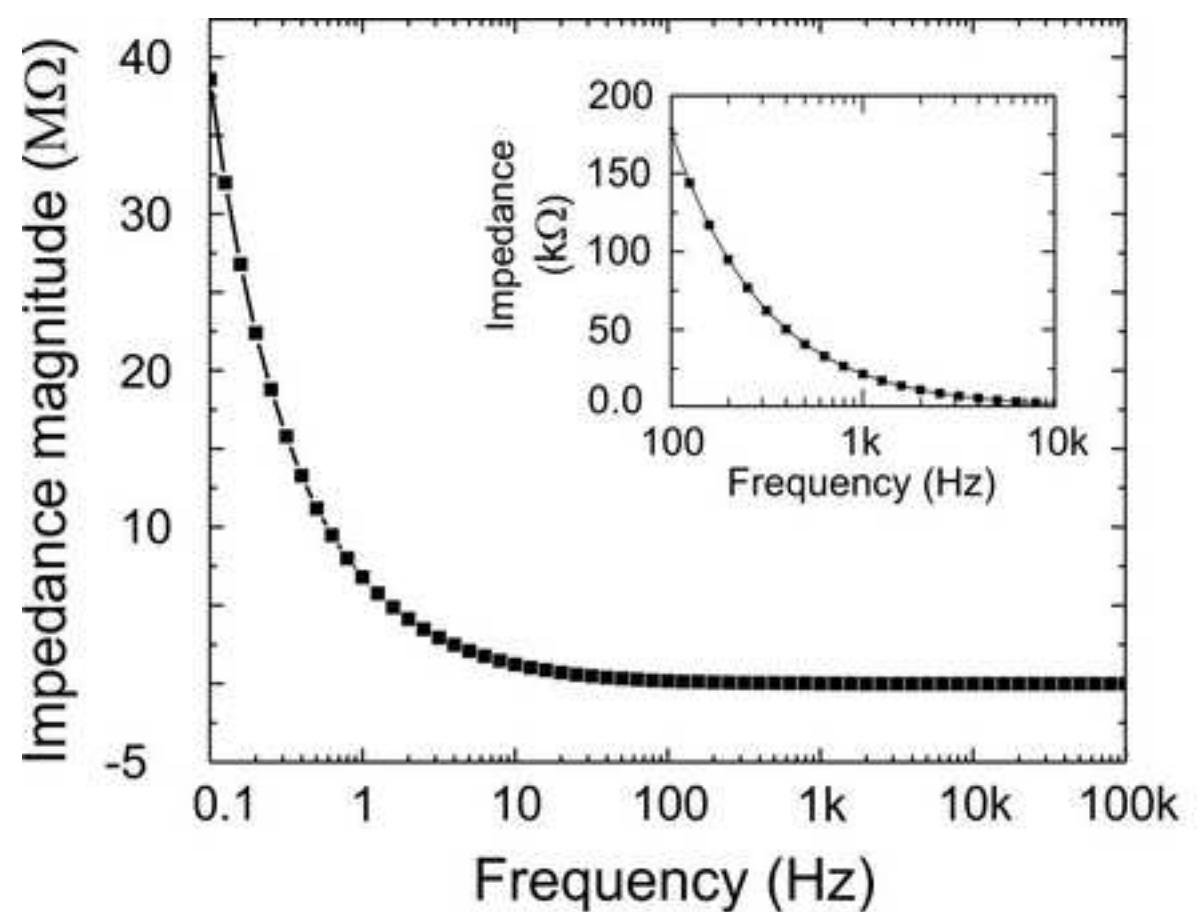


[Click here to download high resolution image](#)

Figure 6

[Click here to download high resolution image](#)

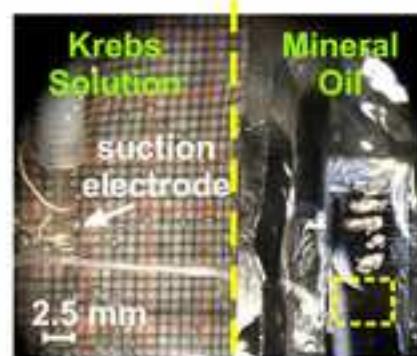
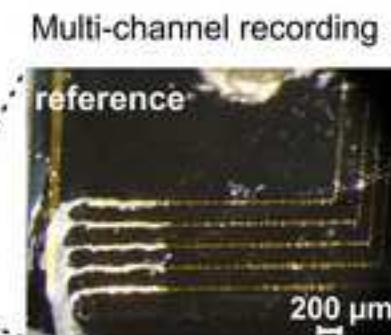
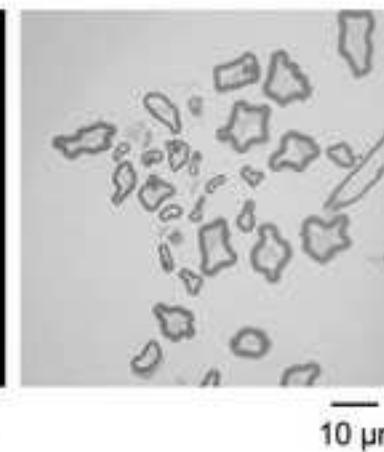
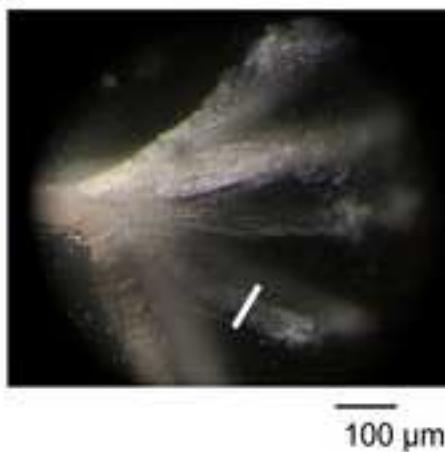
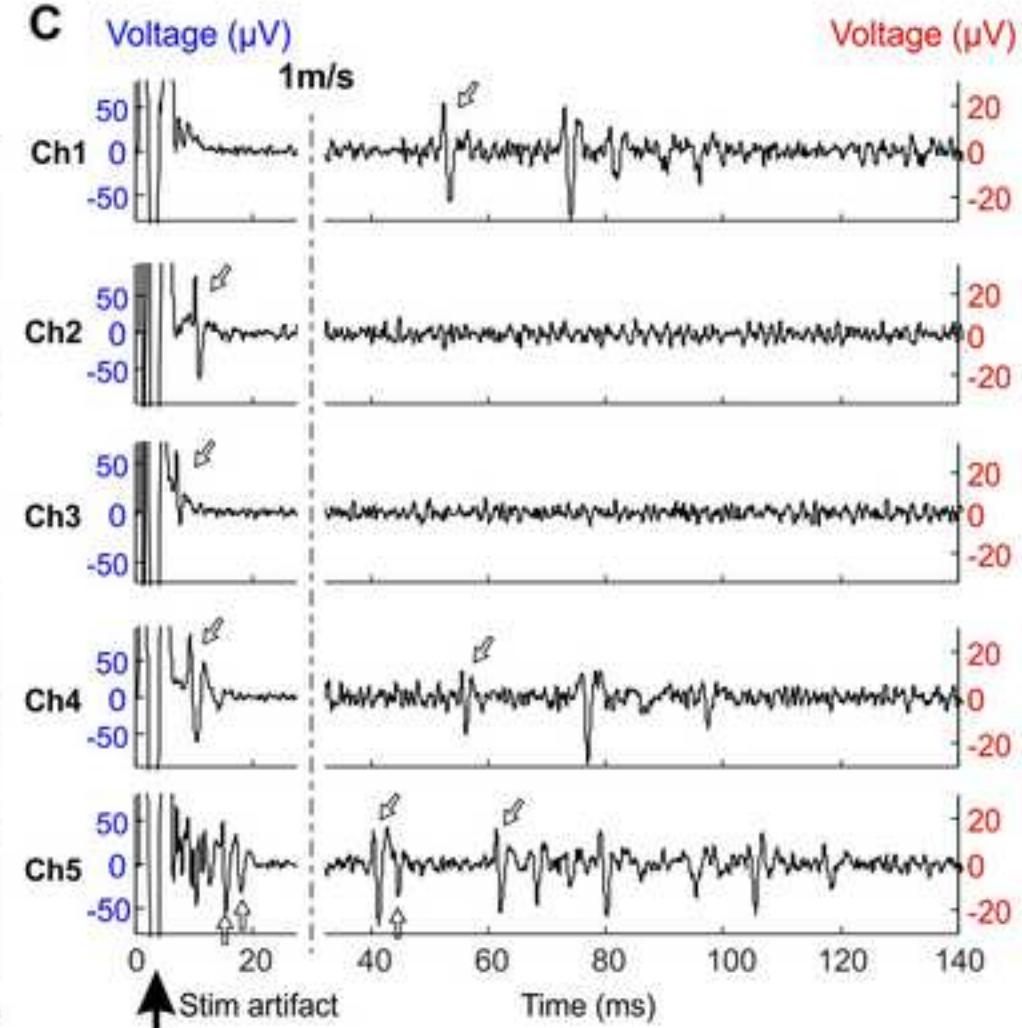





ATissue
CompRecording
Comp**B****C**

Figure 7

[Click here to download high resolution image](#)

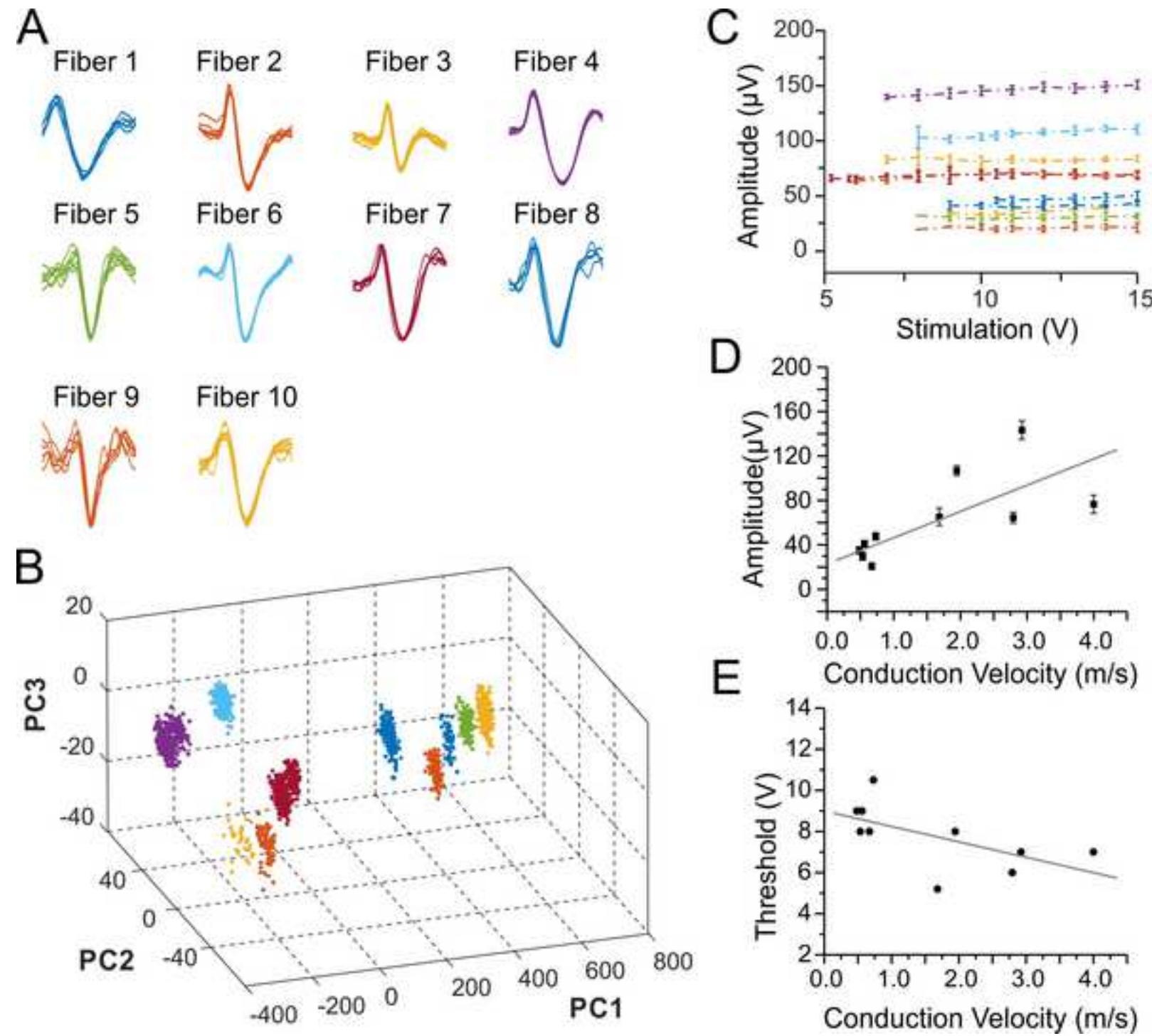
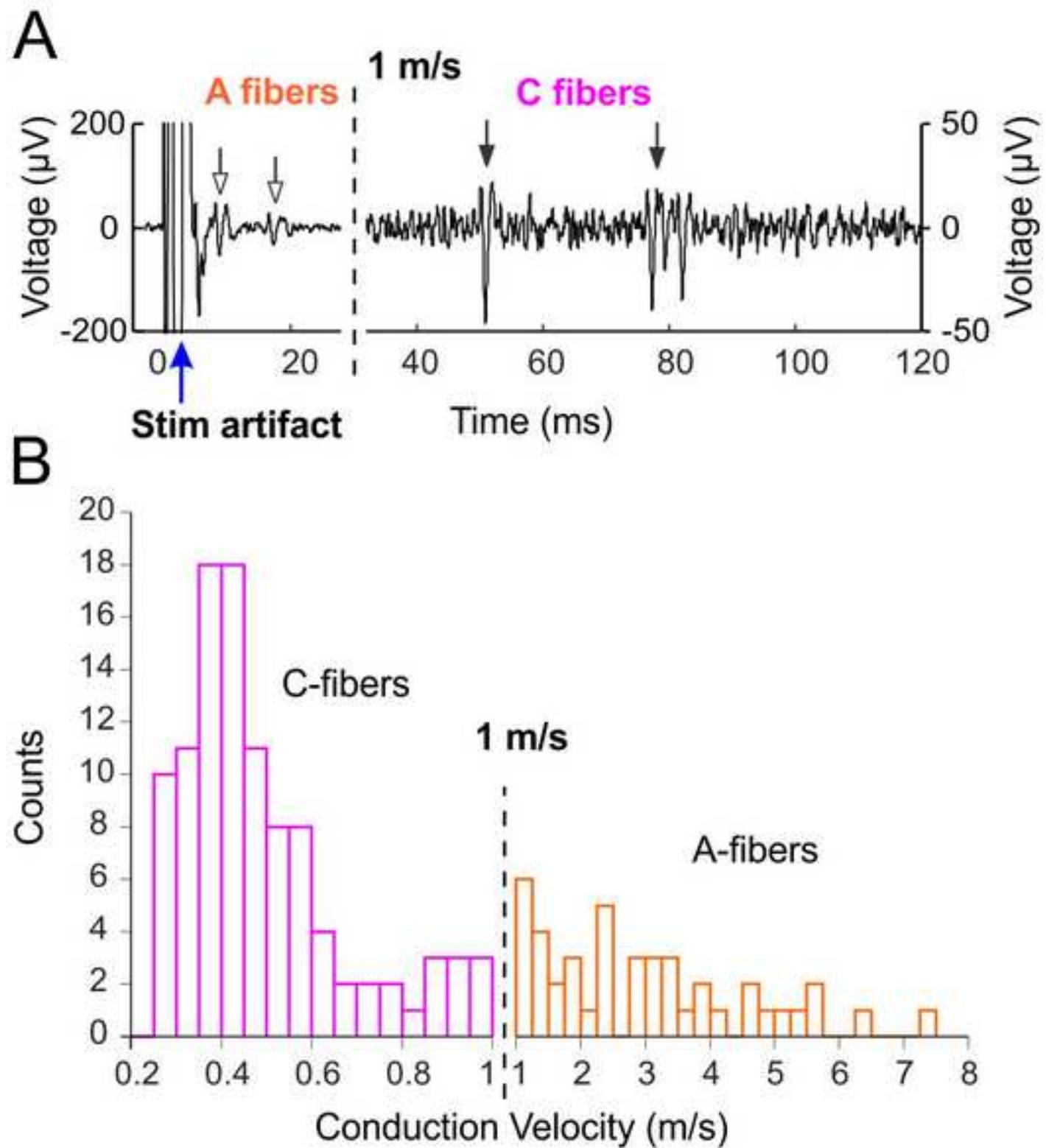



Figure 8

[Click here to download high resolution image](#)

