1806.09240v1 [cs.IT] 25 Jun 2018

arxiv

Two Deletion Correcting Codes
from Indicator Vectors

Jin Sima, Netanel Raviv, and Jehoshua Bruck

Abstract

Construction of capacity achieving deletion correcting codes has been a baffling challenge for decades. A recent
breakthrough by Brakensiek ef al., alongside novel applications in DNA storage, have reignited the interest in this
longstanding open problem. In spite of recent advances, the amount of redundancy in existing codes is still orders of
magnitude away from being optimal. In this paper, a novel approach for constructing binary two-deletion correcting
codes is proposed. By this approach, parity symbols are computed from indicator vectors (i.e., vectors that indicate
the positions of certain patterns) of the encoded message, rather than from the message itself. Most interestingly,
the parity symbols and the proof of correctness are a direct generalization of their counterparts in the Varshamov-
Tenengolts construction. Our techniques require 7log(n) + o(log(n) redundant bits to encode an n-bit message,
which is near-optimal.

I. INTRODUCTION

A deletion in a binary sequence ¢ = (cy,...,¢y,) € {0,1}" is the case where a symbol is removed from ¢, which
results in a subsequence length n — 1. Similarly, the result of a k-deletion is a subsequence of ¢ of length n — k.
A k-deletion code C is a set of n-bit sequences, no two of which share a common subsequence of length n — k;
and clearly, such a code can correct any k-deletion.

It has been proved in [1] that the largest size Ly (n) of a k-deletion code satisfies

2k (k1)22n k12n
ok S Li(n) S VR (1)
which implies the existence of a k-deletion code with at most 2klog(n) + o(logn) bits of redundancy for a

constant k. However, to this day no explicit construction of such code is known beyond the case k = 1.
For k = 1, the well-known Varshamov-Tenengolts (VT) [2] construction

n
C:Zici:Omod(n—i—l))

i=1
can correct one deletion with not more than log(n + 1) bits of redundancy [1]. Several attempts to generalize the
VT construction to £ > 1 have been made. In the construction of [3], a modified Fibonacci sequence is used as
weights instead of (1,2,...,n) in (2). In [4], number-theoretic arguments are used to obtain k-deletion correction

in run-length limited sequences. Yet, both [3] and [4] have rates that are asymptotically bounded away from 1.

The problem of finding an explicit k-deletion code of rate that approaches 1 as n grows has long been unsettled.
Only recently, a code with O(k?log klogn) redundancy bits and encoding/decoding complexity' of Oy (n log* n)
was proposed in [5]. This code is based on a k-deletion code of length log n, which is constructed using computer
search. Nevertheless, the constants that are involved in the work of [5] are orders of magnitude away from the

The work was presented in part at the IEEE International Symposium on Information Theory, July 2018. The work was supported in
part by NSF grant CCF-1717884. The work of Netanel Raviv was supported in part by the postdoctoral fellowship of the Center for the
Mathematics of Information (CMI), Caltech, and in part by the Lester-Deutsch postdoctoral fellowship.

Jin Sima is with the Electrical Engineering Department, California Institute of Technology, Pasadena, CA, 91125, Email: jsima@caltech.edu.

Netanel Raviv is with the Electrical Engineering Department, California Institute of Technology, Pasadena, CA, 91125, Email:
netanel.raviv@ gmail.com.

Jehoshua Bruck is with the Electrical Engineering Department, California Institute of Technology, Pasadena, CA, 91125, Email:
bruck @caltech.edu.

"Here Oy, denotes parameterized complexity, i.e., Ox(nlog*n) = f(k)O(nlog* n) for some function f.

http://arxiv.org/abs/1806.09240v1

lower bound in (1) even for k£ = 2, and the code is not systematic. Moreover, finding a k-deletion correcting code
with an asymptotic rate 1 as an extension of the VT construction remains widely open’.

One such potential extension is using higher order parity checks " ; ile; =0mod (n? +1) for j =1,... 1,
but counterexamples are easily constructible even for k = 2. In this paper, we find that similar higher order parity
checks work when ¢ = 3, given that we restrict our attention to sequences with no consecutive ones. Consequently,
applying these parity checks on certain indicator vectors yields the desired result. For a and b in {0,1} and a
binary sequence ¢, the ab-indicator 14(c) € {0,1}"! of ¢ is

1 ifcg=aand ¢ 1 =0
:ﬂ-ab(c)i = {0 CISCZ " .

Since any two 10 or 01 patterns are at least two positions apart, the 10- and Ol-indicators of any n-bit sequence
do not contain consecutive ones, and hence higher order parity checks can be applied.
The parity checks in the proposed code rely on the following integer vectors.

m® 21,2 ... n-1)

1
m® 2 <1,1+2,1+2+3,...,M>

2
m® £ (12,12 +2212 4 22 +32,...,n(n— 1)6(2n — 1)> .
Further, for ¢ € {0,1}" let
f(e) 2 (110(c) - m® mod 2n,
119(c) - m® mod n?,
110(c) - m® mod »?), and

h(c) £ (1p1(c) - 1 mod 3, 1g; (c) - m™) mod 2n), 3)

where - denotes inner product over the integers, and 1 denotes the all 1’s vector.
For any integer k let By (c) be the k-deletion ball of c, i.e., the set of n-bit sequences that share a common n — k
subsequence with c. The main result of this paper, from which a code construction is immediate, is as follows.

Theorem 1. For any integer n > 3 and N = n+7logn+o(log n), there exists an encoding function £ : {0,1}" —
{0,1}V and a decoding function D : {0,1}N=2 — {0,1}" such for any ¢ € {0,1}" and subsequence c' €
{0,1}V=2 of &(c), we have D(c') = c. In addition, functions € and D can be computed in O(n) time.

To prove this, we first show that the parities f(c) and h(c) can be used to correct two deletions.
Theorem 2. For c,c’ € {0,1}", if ¢ € By(c'), f(c) = f(c'), and h(c) = h(c'), then ¢ = c'.

Theorem 2 readily implies that that the functions A and f can serve as the redundancy bits in a 2-deletion code,
and that the induced redundancy is at most 7log(n) + o(logn) (the additional term stems from protecting the
redundancy bits). Furthermore, the encoding algorithm is trivial, and the decoding algorithm in Section VI is linear.
Most interestingly, the proof of Theorem 2 can be seen as a higher dimensional variant of the proof for the VT
construction, as explained in the remainder of this section.

Clearly, a length n—1 VT code can be seen as the set of sequences c for which the values of /(c) = c-m©® mod n
coincide. Adopting this point of view, the correctness of the VT construction can be proved by the following lemma,
in which £,(c) £ ¢ v mod (vy,—1 + 1), and v = (v1,...,v,_1) is a vector in Z"} 1.

Lemma 1. For c,c’ € {0,1}" !, and v € Z7%, if ¢ € Bi(c), Ly(c) = Ly(c)), and vy < vy < ... < vpq
then ¢ = c.

2For k = 2, [6] has very recently improved the redundancy up to 8logn using techniques similar to [5], our techniques incur lower
redundancy and complexity, and use a fundamentally different approach.

In turn, the proof of this lemma can be completed by defining the following function. For a vector v € Zﬁ_l,

an integer r € [n — 1], and a binary vector x = (z1,...,2,) with r+s—2 <n —1, let
gv(T,’ X) A <. ((v(r,r+s—2)70) - (07V(r,r+s—2)))
s—1
= X1Vp — TsVpys—2 + th(thrrfl - fUtJrer)a (4)
t=2
where v(rr+s=2) & (U, Upg1y ..., Upps—2), and *-” denotes inner product. Let k; and ky (k1 < k2) be the indices

of the deletions after which ¢ and ¢’ are identical. Then we have

Ct = ﬂlo(cl)t ift <k
ort > ko, and
cry1 = Lio(c)y if by <t <ko—1 (5
One can find that
ki—1 ko n
c-v—c -v= Z CtVt + Ck, Vg, + Z cup + Z CtU¢
t=1 t=k1+1 t=ko+1
klfl kz*l n
- Z CtV + Z Ct4+10¢ + th% + Z CtU¢
t=1 t=k; t=ko+1
ko
= C, Uk, + Z ce(vp — vp—1) — CryVk—2
t:lirl
k1 ,k
:gv(kh(c(b 2)70;4:2)) (6)
Hence, if £,(c) = £,(c’) then gy (K1, (c(F1:F2), c,)) =0 mod (v, 1 + 1). Furthermore, since
s—1
—Up—1 < —Ur4s—2 < z1U, — TsVpys—2 + Zﬁﬂt(thrrfl - Ut+rf2)
t=2
s—1
< U + Z(Ut—l—r—l - Ut+7"—2) = Ur4s5—2 < Un—1,
t=2

it follows that £,(c) = £,(c’) if and only if gy (k;, (c(*1+2), c},)) = 0. Therefore, the proof is concluded by the
following lemma.

Lemma 2. For integers v and s such that r +s —2 <n—1, a vector v € ZT}r_l, and an s-bit binary vector X,
if gv(r,x) =0 and v1 < ... < v,_1 then X is a constant vector.

Proof. We dinstinguish between two cases according to the value of x,. On the one hand, if x; = 0, then it is
readily verified that gy (7,x) is the sum of nonnegative terms. In which case, the equation gy(r,x) = 0 holds if
and only if x = 0.
On the other hand, if x4, = 1, then
s—1
gv(r, X) = Up21 + Z(Uzﬂrr*l - Ut+r72)xt — Ur4s—2
ot
< v+ Z(Ut-‘rr—l - Ut—l—r—Z) — Upgs—2 = 0. (7
t=2

The equality holds if and only if x = 1. U

Remark 1. The VT code is the special case when v = (1,...,n). From Lemma 2 we have that cj,, = ... = ¢, =
c;%. According to Equation 5, this implies that ¢, = c¢;11 = ¢y for ky <t < ko —1and ¢, = ¢; for t < ky ort > ks.

Ci—1CiCit1 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
110(0)1'_1]110(0)1' 00 00 01 00 10 10 01 00
Toi(c)i—1loi(c); | 00 | O1 | 10 | 10 | 00 | 01 | 00 | 00

TABLE 1
ALL POSSIBLE CASES OF DELETIONS OF ¢; FOR 2 < ¢ < n — 1 CORRESPOND TO DELETIONS IN 19 (C) THE DELETED SYMBOL IS IN
BOLD.

The crux of proving Theorem 2 boils down to the following higher dimensional variant of Lemma 2.

Lemma 3. For integers r1, 73, s1, and sy such that ro > r1+s1—2 and ro+s3—2 < n—1, and binary sequences x
and y of lengths s1 and sa, respectively, if

Im© (1, X) + Agmo (r2,y) = 0, and
Im® (Tl’ X) + Agm® (7“2, Y) =0, (8)
where A = +1, then x and y are constant vectors.

Additional technical claims, which involve the remaining ingredients of the redundancy bits, are given in the
sequel.

II. OUTLINE

The proof of Theorem 2 is separated to the following two lemmas. In a nutshell, it is shown that for two
confusable sequences, i.e., that share a common n — 2 subsequence, if the f redundancies coincide, then so are
the 10-indicators. Then, it is shown that confusable sequences with identical 10-indicators and identical h redundancy
have identical 01-indicators.

Lemma 4. For ¢ and ¢’ in {0,1}", if ¢ € Ba(c') and f(c) = f(c'), then 119(c) = 110(c).

Lemma 5. For ¢ and ¢ in {0,1}" such that ¢ € By(c'), if 110(c) = 119(c’) and h(c) = h(c’), then 1p1(c) =
101(C/).

From these lemmas it is clear that two n-bit sequences that share a common n — 2 subsequence and agree on the
redundancies f and h have identical 10- and Ol-indicators, and hence the next simple lemma concludes the proof
of Theorem 2.

Lemma 6. For ¢ and ¢’ in {0,1}" such that ¢ € By(c), if 119(c) = 110(c) and 1p1(c) = Lo1(c’) then ¢ = .

Proof. The conditions 119(¢) = 119(c’) and 1p1(c) = Lo1(c’) imply that the ascending and descending transition
positions of 1g1(c¢) coincide with those of 1g1(c’) respectively. Hence if transitions happen in ¢ or ¢/, then ¢ = ¢'.
If no transitions happen in ¢ or ¢’ and ¢ # ¢/, then one of ¢ and ¢’ is all 0’s vector and the other is all 1’s
vector. Since all 0’s vector does not share a common subsequence of length n — 2 with all 1’s vector, we conclude
that ¢ = ¢ O

The proofs of Lemma 4 and Lemma 5 make extensive use of the following two technical claims, that are easy
to prove.

Lemma 7. For c and ¢’ in {0, 1}”, ifce BQ(C,) then :ﬂ_lo(C) € Bz(ﬂ_lo(cl)) and :l]_(]l(C) € BQ(:U_Ol(C/)).

Proof. We first show that if ¢ € By (c’) then 11g(c) € B1(119(¢)) and 1g;(e) € B1(1p1(c')). To this end, it suffices
to show that if d € {0,1}"~! is obtained from c by one deletion, then 11(d) (Lo1(d)) is obtained from 11q(c)
(1p1(c)) by one deletion (see table I).

Further, it is easy to see that a deletion of ¢; corresponds to a deletion of 11g(c); (resp. Loi(c)1) and a deletion
of ¢, corresponds to a deletion of 119(c),—1 (resp. 1o1(c)n—1)- Hence, it follows that if

1 del” , 1 del’
c —d — e

c IE; d IE; e

then
T1o(c) ' 14 d —
Lip(c’) — 110(d") — T1yg(e)
Loi(c) — Lpi(d) — Lpi(e)
Ioi(c') — T1pi(d) — 1gi(e),
which concludes the claim. O
Lemma 8. For c,c’ € {0,1}", if ¢ € By(c') and 1¢1(c) - 1 = 1p1(c’) - 1 mod 3, then 1gi(c) - 1 = 1p1(c’) - 1.

Proof. Since ¢ € By(c') it follows from Lemma 7 that 119(c) € B2(110(c)), and thus 119(¢) and 11o(c’) have a
mutual (n — 3)-bit string s. Clearly,

s-1<1y(c)-1<s-1+2,and
S']].S]]_lo(cl)-]]_gs-]l—i-l

and thus |1ip(c) - 1 — 119(c’) - 1| < 2. However, since 3 divides |11g(c) - 1 — L19(c’) - 1|, we must have that
]110((3) -1 =]]_10(0/) - 1.]

In addition, one of the cases of the proof of Lemma 4 requires a specialized variant of Lemma 3.

Lemma 9. Let r1,72, 51, s2 and s3 be positive integers that satisfy ro =11 + s1 and ro + so +s3 < n—1, and let
x € {0, 1} 752! gnd y € {0,1}1752%%5 be such that

(.%'51+17 Lsy 425« - ,1'314_32) = (y27 Y3, .- 7y32+1)7
and (Ts,41,Ts,4+2,---,Ts,+s,) has no adjacent 1’s. If

Im©) (Tl’ X) + Im© (7’2, y) =0,
Im® (T17 X) + Im® (7”2, Y) = 07 and

Im@ (11, X) + gme (r2,y) = 0, 9)
then either x1 = ... = g, 45,41 = Y1 = - .. = Ysy+s54+1 OF
Tl =Ta=...=Tg 41 =1—y1,

T+ a1 =1, fort €{s1+1,...,81 +s2— 1},
x81+52+1 + y82+1 = 17 and
y32+1 — ... = y52+53+1' (10)

The following lemma shows a property of g (r,x), which will be useful in the proof of Lemma 3 and Lemma 9
that are given in Section V.

Lemma 10. For integers r and s such that r + s — 2 < n — 1, a vector v, and an s-bit binary vector x, if gy (r,x) =
0, then gy(r,X) =0, where X £ 1 — x.

Proof. Since

s—1
gv(ﬁ X) = UrT1 + Z(Ut—l—r—l - Ut+7"—2)xt — Up45—2T5
t=2
s—1 s—1
= vpr1 + Z(Uzﬂrr*l - Ut+rf2)xt — Up45—2Ts — Up — Z(Uzﬂrr*l - Ut+r72) + Vpgs—2
t=2 t=2
s—1
= Ur(xl - 1) + Z(UtJrrfl - Ut+rf2)($t - 1) - Ur+372($s - 1) = _QV(T, i) (11)

t=2

Hence if gy (r,x) = 0, we have gy (r,X) = 0. H

Lemma 5 is proved in Section III, and its more involved counterpart Lemma 4 is proved in Section IV. Finally,
Lemma 3 and Lemma 9 are proved in Section V.

III. PROOF OF LEMMA 5

We now show that for any ¢ and ¢’ in {0,1}" that satisfy ¢ € Bs(c'), if 119(c) = 119(c’) and h(c) = h(c')
(see (3) for definition of the h function), then 1¢;(c) = 1p1(c’). Since ¢ and ¢’ have an identical 10-indicator, they
can be written as

C = 071'0 17T107T2 171'3 . 0%2[17r2[+1,
C/ — OT01T10T217'3 ...072g172£+1’ (12)
where {m}?fgl and {Ti}?ﬁgl are nonnegative integers such that 7; and 7; are strictly positive for every i ¢ {0, 2¢+1},

and such that 7o; + m9;41 = To; + To;41 for all i € {0,1,...,¢}. In addition, since h(c); = h(c’); it follows from
Lemma 8 that 1¢1(c) - 1 = 1p;(c’) - 1. Hence, we have

Toi(c) -1 =1Tp1(c) -1 =€+ 1if mo > 0, w1 >0
loi(c) - 1 = 1o1(c) -1 = £ if m >0, m41 <0

or mg =0, mop+1 >0
Toi(c) -1 =1Tp1(c")-1=¢—1if 7o < 0, mopr1 <0

if mp and mop4q (resp. 7o and 7o 1) are both positive then this number is ¢+ 1, if precisely one of them is positive
then it is ¢, and if they are both zero it is £ — 1.

Let d = 070170717 ... 0%"¢172¢+1 € {0,1}"2 be a common subsequence of ¢ and ¢’ which is obtained by
deleting two bits from either ¢ or ¢/, where ; > 0 for all 7. Then, it is readily verified that

2041 2041
Z(Wz‘ —) =2, Z(TZ — i) = 2,, and hence
=0 =0
2041 2041 20+1
Z i — 7 < Z i — vl + Z ITi — il = 4.
=1 =1 i=1
Moreover, since mo; + moi+1 = To; + Toi+1 for all @ € {0,1,...,¢}, it follows that |my; — o;| = |m2i41 — T2i41]-

Assuming for contradiction that the Ol-indicators do not coincide implies either of the following cases.

Case (a). There exists an integer j € [¢] such that |my; — 79;] is either 1 or 2 and 7o; = To; for i # j.

Case (b). There exist two integers m and r (where m < r) such that |mo,, — 7o, | = |72, — T2r| = 1, and mo; = To;
for i ¢ {m,r}.

In Case (a), since mo; + moj+1 = To; + To;41 for every i and mo; = To; for every i # j, it follows that 1y1(c)
and 1g;(c’) differ in precisely two positions s and ¢ such that 1 < s — ¢ < 2. Hence, since the number of 1’s
in the Ol-indicators is equal, it follows that 191(c)s = Lo1(c)s, Lo1(c): = Lo1(c)s, and Lp1(c)s # Loi(c)s, and
therefore

2
(Lo1(c): — Lo1(c')e) <t J; 1)

() ()

Since 1 < s —t < 2, it follows that (13) equals either (¢ + 1) or £(2¢ + 3), and a contradiction follows since
neither of which is 0 modulo 2n, .

he)2 — ()2 = (101(€)s — Lor(€)s) (N 1)+

Similarly, in Case (b), if non of Tom s T2ms T2m+15 T2m~+15 T2, T2r, T2r4+1, T2r+1 is Zero, then 101(0) and ﬂol(cl)
differ in four positions s,s + 1,¢, and ¢ + 1, and hence

h(e)s — ()2 = (1o1(€)s — To1(c))s) (s ; 1)+
(Lo1(€)s+1 — Lot (c)s+1) <S —; 2) +
(Lo1(e)e = Lor(€):) (t J; 1) -

t+2
(Tor(e)e1 — 101(C/)t+1)< 5 > (14)
Once again, since 1p;(c) and 1p;(c’) have an identical number of 1’s, we have that
Loi(c)s = Lo1(c)s+1 Lo1(€)st1 = To1(c')s
o1 () = Lot ()it Lo1(€)e+1 = Loi (')
101((:)8 # :ﬂ-Ol(c/)s]].(]1(C)t # 1101(c')t.

This readily implies that (14) equals either (s —¢) or =(s-+¢+2), and since non of which is 0 modulo 2n, another
contradiction is obtained. If 7o, = 0 (resp. 72,, = 0), by the discussion after Eq. (12) it follows that 79,41 = 0

(resp. w11 = 0), and hence 1g1(c) and 1g;(c’) differ in the first and last positions. Hence, (14) becomes +(1 —

@), which is nonzero modulo 2n, and the claim follows.

IV. PROOF OF LEMMA 4

Since ¢ € By() it follows that there exist integers i1, 2, j1, and j such that
¢ g
c M d M e
and by Lemma 7 it follows that there exist integers ¢1,¢s, k1, and ko such that
L10(c) B 110(d) L 110(e)
Tyo(c) B 1yo(d’) = Ty0(e).

Due to symmetry between c and c’, we distinguish between the following three cases. In each case, the difference
between the f values of ¢ and ¢’ are given in terms of the function g (Eq. (4)). Further, the computation of these
three differences, which is tedious but straightforward, is deferred to the appendices.

Case (a). If {1 < /¥y < ko < ky (Fig. 1), then

11p(c); = L1o(c'); ift <t
or fo <t < ko
ort > kq,
11o(€)e+1 = Lio(c)s if (1 <t <4ty —1,
11o(c)s = L1o(c)e41 if ko <t <k —1,

Thus, for e € {0,1, 2},

(110(c) — Lio(c)) - m@ = g (01, (110(€)) 110(c)p,)) —
gm(E)(k27 (ﬂlo(c,)(k27kl)7 ﬂlo(C)kl))- (15)

Fig. 1. Case (a)

Fig. 2. Case (b)

Case (b). If {1 < ¥y < k1 < ko (Flg 2), then

11p(c)e = 11o(c): ift <1y
orlog <t < k.
ort > ko.
110(¢)e41 = L1o(c')y if (1 <t<it—-1

or k1 <t <ky—1.
Thus, for e € {0,1, 2},
(T10(c) = L1o(') - Mm@ = g (1, (T10(e)), 110())0,)+
Gmee (1, (L10(€) 42 119()i,)
Case (¢). If {1 < k1 < €5 < ko (Fig. 3), then

T10(c)¢ = L10(c’)s ift<l
ort > ko,
L19(C)i41 = L1o(c'): if fp <t <k —2
or b +1 <t <ky—1,
T10(€)¢ro = 110(c); itk —1<t</ty—1.

Thus, for e € {0, 1,2},
(]llo(C) — 110((3/)) .m® — Gt (01, (110(c)(€1,k1—1)’
110(e) B 4D, 150(¢'),)+
G (b1, (L10(€) *#2) 130()5,)

(16)

a7)

T1o(c)

]llo(cl)

Fig. 3. Case (c)

Note that if f(c) = f(c), then 119(c) - m(® = 119(c) - m(®) mod n,, where ng = 2n,n; = n?, and ny = n?.
Hence, from (15)-(17) we have that
Gme (01, (L10(c)) 110() g,)) = Gmeor (k2. (L1o(e))F2F) 110 (c)k,) = 0 mod 2n,
gme (£1, (L10(c) 5, 110("Ves)) + Geneor (K1, (L1o(c)¥152) 144(c')1,)) = 0 mod n?, and

Gmeo (1, (T1o(c) P 140 (c) B LETD 140(c),,))
+ gme (K1, (1110(c)<khkz>, 110(c)k,)) =0 mod n’g (18)
In what follows, we show that these equalities also hold in their non modular version. On the other hand, we have
gk 9 < gme (r,x) < mg*?k:—Q

for any x € {0,1}"! and any integer r that satisfies 7 + k — 2 < n — 1. Therefore,
—mi — mf?) g (6, (L10(€)), L10(€)1,)) = ganco (K, (L10(e)), 10(e),)) < mie) + mi),
mf? —mf <gme (61, (L10(e)), 110(¢)e,)) + gmee (R, (L10(€) ¥, 110(¢)p,)) < my +my, and
—mz) — m,(:?) <Gmeo (01, (L1o(c) R 110(c)Fr 1+ 1,4(c)),,))
+ g (k1 (L10(€)®5), 130 (¢)1,,)) < m + m(. (19)
Further note that
0® 4+ m® < 20,m® + m <72 m® + m® < 20)
Combining (18), (19), and (20), we conclude that if f(c) = f(c’), then
G (01, (110(€)) 110(c")1,)) = gmeor (K2, (T10(c") 27 139(c)r,) = 0, 2D

Gmeo (01, (T10(€)) 110(")e,)) + Gmeer (k1 (L1o(e) **2) 110(c")s,)) = 0, and (22)
Gmeo (01, (L10(e) R0 119(c) B LT 140(")g,)) + Gmeo (b1, (L1o(e)) 11g(')p,)) = 0. (23)

For Case (a), Equation (21) and Lemma 3 implies that

Lig(c)e, = ... = L1o(€)s, = L10(c)s,
11o(c)k, = ... = L1o()k, = L10(C)ky,

which readily implies that
119(c’); = 110(c)e1 = Tro(c)s
for /1 <t < ¢y and
1io(c)r = L10(c")1 = Tao(c):
for ko <t < ky. Together with 11p(c)s, = 110(c)e, and 119(c’)k, = L10(c)k,, wWe have that 119(c) = 11(c’).

10

For Case (b), Equation (22) and Lemma 3 implies that

Lig(c)y, = ... = Lio(c)e, = L10(c)e,
L1o(c), .= 110(c')k, = L10(C),

and hence

1io(c')e = L10(c)e+1 = Tro(c)y
for @1 <t< @2 and k1 <t < ko. 110(C) = 110(C/).
For Case (c), Equation (23) and Lemma 9 imply that either

11p(c)e, = ... = L10(C)k, = L10(c), = L10(c)k, (24)

or

Lio()e, = - .. = Lio(¢)k,—1 = L10(C)k, 41,

T10(c); + L1p(c)iy1 = 1 for i € {kq,..., L2},

110(c")g, + 110(c)g, = 1, and

T10(€)gy41 = ... = L10(C), = L10(c)g,- (25)

If (24) is true, we can obtain ¢ = ¢’ by following similar steps as above.
If (25) is true, we have

110(c')s = L1o(c)e1 = Lio(c)s
for {1 <t <k;—2and ¥y +1 <t <ky— 1. Further more, we have

11o(c')e = L1o(€)ir2 = 1 — Lyg(c)er1 = Lio(c):

for kl <t< @2 — 1. In addition, we have ﬂlo(C/)k1,1 = 110(C)k1+1 = 110(C)k1,1, ﬂlo(C/)gz =1-]llo(c/)ngrl =
T10(c)e, and 119(c’)g, = 110(c)k,. Therefore, we conclude that ¢ = ¢'.

V. PROOFS OF g-LEMMAS
Proof. (of Lemma 3) According to Eq. (11), if A = 1, then Eq. (8) can be written as

Im© (’I“l,) Im©) (7“2,) = 0 and
Im (71,X) = gmo (12, ¥) = 0.

Therefore, it suffices to prove the claim for A = —1. We distinguish between four cases according to the value

of (y17 3/52)-
Case (1). (y1,vs,) = (0,1)
we have that

Im© (11, X) = gm (12, Y)

S1— 1

—m©a; + Z m? —ml? L)w—

sa—1
mﬁislfﬂsl_ §§)y1 Z(mg«?rz 1 m2(5<ek)r272)yt+m$)+3272y52
o t=2
2z — m5~1)+s1 2~ Z(mﬁ)rz 1 mg?rrﬁ"‘ mi)Jrsrz
t=2
:mg’i) - mi?)-l—sl—Q > 0,

a contradiction.
Case (2)- (y1,y32) = (1’0)

11

From Lemma 10 and (8) we have gy (71,X) + g (r2,¥) = 0 fore € {0,1}, where X 2 1 —xandy 2 1 —y.
Since (71,%,,) = (1,0), from the previous case we have that X and y are constant vectors. So are x and y.
Case (3). (y1,¥s,) = (1,1)
Let
S £ {] D Yjratl = Lro+1< 3 < ry+ 592 —2}, and
SSE{G Yjrat1 = 0,12 + 1 < j <o+ 59— 2},

and notice that

_ (0 m®
Im©) (T2, Y) = mg“g) r2+32 2 + Z j+7’2—1 j+7’2—2)yj

To+52—2 s2—1
0 0 0 0
- Z (m§) - m.gjl) + Z (mgdszl B m§J2T2*2)yj
j=ratl j=2
T‘2+5272
0 0
== > <m§- = m§»21><1 -)
j T‘2+1
= - Z Z 1, and similarly
JESS JESS
I (r2,y) == > (m§” - mﬁ’l) == i (26)
Jjest jest

Now, on the one hand if z,, = 0 we have

s1—1

o (r1,%) =m0y + Z (m, _ —m{))z, >0, 27

and hence, (26) and (27) imply that g, (r1,X) — gm (r2,y) > 0, and equality holds only when g, (r1,x) and
Im© (r2,y) are both 0, which by Lemma 2 implies that x and y are constant vectors. On the other hand, if z;, = 1
let S2 = {j : Tmax{j—ri+1,1} = 0,1 < j <71+ 51 — 2}, and notice that

S1— 1
0 0
Im© (11, %) m(o 1+ Z mt+r1 1 szJr)rl 2)Tt — m£1)+3172
s1—1
0 0
=m0 (-)+ > (m, | —m,)@ —1)
t=2
=— Z 1, and similarly
tES,
G (11, %) == > 1. (28)
tES,

Inserting (26) and (28) into (8), we have

teS, JESS

= t+) j=0
teSs jeSY

This implies that the sets S| and S» have the same cardinality and the same sum of elements. However, the maximum

element in S is smaller than the minimum element in S{. Therefore S{ and Sy are empty, which implies that x
is the 0 vector and y is the all 1’s vector.

Case (4). (y1,vs,) = (0,0)

12

From Lemma 10 and Eq. (8) we have gme (r1,%) + gme (r2,¥) = 0 for e € {0,1}, where X £ 1 — x
and y £ 1 —y. Since (;,¥,,) = (1,1), from the previous case X and y are constant vectors, and thus so are x
and y. U

Proof. (of Lemma 9) We distinguish between four cases according to the value of (s, 45,41, Ysy+s5+1)-

Case (1)' (x51+82+17y82+83+1) = (070)

Similar to (27), we have that g, (71, X) 4+ gmo (r2,¥) > 0, where equality holds only if x and y are constant 0
vectors.

Case (2)' (x51+82+17y82+83+1) = (17 1)

From Lemma 10 and Eq. (9) we have gy, (71, X)+gmo (r2,y) = 0. On the other hand, since (T, 45,41, 7, 1s,41) =
(0,0) , it follows that gy, (71,X) + gmo (72,¥) > 0 where equality holds when x and y are constant 1 vectors.

Case ()‘ ($31+52+1,y52+s3+1) (0’ 1)
On the one hand, for y; = 0 we have

Im© (11, X) + gmo (r2,y) =

s1+1 s1+s2—1
_ (0) (0) (0)
= 951 + Z mt+r1—1 mg, o)T + Z (my ., —my L)T
t281+1
(0) E (0) (0)
0 0 0
+ Z(mtJerfl mt+r2 2 yt + Z mt+r2 1 mt+r272)yt —m, e tsa—1
t=s2+1
31+1 SlJrSz*l
_ (0) (0) (0)
= ﬂ31 + Z mt+r1 1My)T+ Z (myy, —my) (2 + @)
t281+1
£ (0) (0)
+ Z mt—l—rg—l m o)y — M, sytss—1
t=s5+1
s1+1 S14s2—1
(0) (0) (0)
<m? + Z mt—l—m—l m/, o)+ Z (mg,, —my /)
t=s1+1
&0 (0) (0)
0 0 0
+ Z (mt+r2 1 mt+r2 2) mr2+52+5371 = 0’
t232+1

where equality equality holds when
xp=1forte{l,...,s1+1},
2+ a1 =1fort € {s;+1,...,51+s2— 1}, and
yo=1fort € {sa+1,...,5892 + s3},
and hence (10) holds. On the other hand, when y; = 1, let
S1 =1t Tmaxft—ri+1,1} = L1 <t <51+ 71},
Sy={t:x—p, + T4—p, 11 =0,72 +1 <t <o+ 59 — 1},
Sy ={t:Yt—ry41 = 0,72+ 52 <t <o+ 53+ 53— 1},

and notice that

Im© (71 ,X) + gmo (12,)
SlJrl
0)

(
951 + Z mt+r1—1 m,)Tt

81 521

0
51+7"1 + Z mt+r1 - mz(tJr)r 71)(:615 + xt+1)+
t= SlJrl
0 (0) (0)
Z (M, — My o)y — M, sytss—1
t=s5+1
0 0 0 0 0 0
= Z(mg) mg—)l) - Z(mg)~ mg—)ﬁ - Z(mg) - mg—)l)
tesS, teSs teSs
SHED TN o
tesS: teSs teSs

Similarly, we have

Im@ (11, X) + gm (12,Y) Zt—Zt—Zt

tesS: teSs tES;

13

29)

(30)

Equations (9), (29), and (30) imply that the cardinality of S; equals the sum of cardinalities of Sy and S3, and in
addition, the sum of elements of S; equals the sum of elements of Sy and S3. Note that the minimum element
of So U S3 is larger than the maximum element of S;. This is impossible, unless Si, .52, and S5 are empty,
which implies that z; = 0 for ¢t € {1,...,s1 + 1}, oy + 441 = 1 fort € {s1+1,...,51 + so — 1}, and

yp=1 fort € {sa+1,...,s2+ s3}, and hence (10) holds.
Case (4)’ ($31+52+1,y52+53+1) = (1’ 0)
On the one hand, for y; = 0, let
S1 =1t Tmaxft—ri+1,1} = 0,1 <t <51+ 71},
SQ = {t Xy T 41 = 0,7“2 +1<t<7r9+ 89— 1},
Sz ={t:yYi—ry1 =110+ 50 <t <712+ 59+ 53 — 1}.

We have
Im© (71, %) + gm© (72, ¥)
™= (0) T o) (0)
0 0 0
5'31 + Z mt+r1 1My o)T + Z (my = my) (@ + Tp1)—
t281+1
0 Lo (0)
0) 0
m. %1 T Z mt+r2—1 my /o)y
t=so+1
SlJrl
0 0
=m0 -z)- Y m?, ,-m?)1 -z)-
t=2
S1+s2—1 () () Sa2+83 () ()
0 0 0 0
Z (m; ., —my D=2 — 1) + Z (mt+r2 1My, 2)Yt
t= SlJrl t= Serl
:_Z mtl) Z() _mt1+z mtl)
tesS, teSs teSs
SEED IS SR
tes, teSs teSs

Then similar to the previous case, we obtain sets with identical cardinalities and sum of elements, and yet the
smallest element in one is greater than the largest element in the others. Therefore, it follows that Sp,.S3, and S5

14

are empty. Then we have z; = 1 for t € {1,...,81 + 1}, &y +xy1 =1 fort € {s; +1,...,81 + so — 1}, and
ye=0fort € {sa+1,...,s2 + s3}, and hence (10) holds.
On the other hand, for y; = 1, let

S1 =1t Tmaxft—ri+1,1} = L1 <t <51+ 71},

Sy = {t X, F Tt 41 = 0,10+ 1 <t <194 59 — 1},

Sz ={t:yr—s,41 =1L,1r0+ 52 <t <ry+ 53+ 53— 1}.
We have

Im© (11, X) + gm© (72,)

s1+1 s1+s2—1
0 0 0
= mg‘?)xl + Z (ml(ﬁJr)h*l mlg+)7“1 2)CCt + ms1+7’1 + Z mtJrTl mlEJr)T 71)('1:15 + -’Et+1)_
t=s1+1
(0) £ (0)
0 0
mr1+sl+52 1 + Z mt+r2 1 mt+r172)yt
t= 32+1
™= (0)
0
= 951 + Z mt—l—m—l m,o)T—
s1+s2—1) S2+S3) ©)
0 0 0 0
S o —m® -z —w)+ > (mf —m)y
t=s1+1 t= 52+1
—th _mt 1) Z(z(t _mt1+z _mt 1)
tes: tes, teSs
=Y 1-Y 1+) 1=0. (31)
tesS, teSs teSs

Similarly, we have

G (11, %) + g (r2,y) = > t= > t+ > ¢

tesS: tesS, teSs

G (11, %) + gmen (r2,y) = D 2= 24) #2 (32)

teS: teSs teSs

According to (31) and (32), the following linear equation

Zt651 1 ZtGSQ 1 ZtESg 1 I
AIE = Zt651 t ZtESQ t Zt653 t T2 = O (33)
Zt€S1 t2 ZtESQ t2 ZtGSS t2 L3

has a nonzero solution (z1,x2,23) = (1,—1,1)". However, according to the linearity of the determinant, sharethe
determinant

11 1
det(A)= > det|di 4 k

i€S),j€S2,kES; i 5% k?

= > G-dk—i)k—j) (34)

i€51,§€52,kESs
is strictly positive since max;ecg, @ < minjeg, j < mingeg, k. Thus, Eq. (33) has no nonzero solution unless
A = 0, which implies that S, S5, and S5 are empty. Therefore, x; = 0 for t € {1,...,s1 + 1}, x4 + xp41 = 1
forte{s;+1,...,81+s2—1},and yy =0 for t € {sy +1,...,s2 + s3}, which implies (10). O

15

VI. ENCODING AND DECODING ALGORITHMS

We now show how to use Theorem 2 to construct an encoding algorithm and a decoding algorithm. Similar
to the two layer encoding method described in [5], we use the f(c) and h(c) redundancies (3) to protect the
sequence ¢ from two deletions in the first layer. In the second layer, the f(c) and h(c) redundancies are protected
again by their corresponding f(f(c),h(c)) and h(f(c), h(c)) redundancies. Since f(f(c),h(c)) and h(f(c),h(c))
are short, they can be protected by an inefficient 3-fold repetition code. Specifically, for any sequence ¢ € {0, 1}",
the encoding function is

£(c) = (c, f(c), hlc),r3(f(f(c), h(c))), r3(h(f(c), h(c)))), (35)

where 73 is a 3-fold repetition encoding function. The length of the first layer redundancy f(c),h(c) is Ny =
7log n+ 2. The length of the 3-fold repetition of the second layer redundancy r3(f(f(c), h(c))),rs(h(f(c),h(c)))
is No = 21log(7logn + 2) 4+ 6. The length of the codeword £(c) is

N=n+ Ny +Ny=n+Tlogn+2+21log(7logn +2) +6 =n+ 7Tlogn + o(log n).

Clearly, the computation of the function £(c) can be done in linear time.
To conveniently describe the decoding algorithm, two building blocks are needed. The first is a 3-fold repetition
decoding function

Dy : {0,132 ; {0, 1}

that takes a subsequence d; € {0,1}3"2=2 of a 3-fold repetition codeword r3(s1) € {0,1}3™2 for some s; €
{0,1}™2 as input, and outputs an estimate §; of the sequence s1. The second is a decoding function

Dy : {0,132 x {0,1}7lo8n+2 _, f0 1}"

that takes a subsequence dy € {0,1}"~2 of some sy € {0,1}", redundancy f(s2), and redundancy h(sz) as input,
and outputs an estimate Sp of the sequence s. The 3-fold repetition decoding D; can be implemented by adding
two bits to d; such that the length of each run is a multiple of 3, which can obviously be done in linear time.
According to Theorem 2, there exists a decoding function D that recovers the original sequence correctly given
its f and h redundancy. The linear complexity of D- will be shown later in this section.

The functions D; and Dy are used as subroutines to describe the decoding procedure that is given in Algorithm 1.
First, we use the function D; to recover the second layer redundancy f(f(c), h(c)) and h(f(c), h(c)) from the 3-fold
repetition code. Then, by applying Ds and using the second layer redundancy f(f(c), h(c)) and h(f(c),h(c)), the
first layer redundancy f(c) and h(c) can be recovered. Finally and similarly, the first layer redundancy f(c) and h(c)
can be used to recover the original sequence c, with the help of Ds. In the case of single deletion, Algorithm 1
outputs the orginal sequence c. One can also use a VT decoder (see [1]), which has a simper implementation
and O(n) time complexity.

Algorithm 1: Decoding
Input: Subsequence d € {0,1}V~2 of £(c)
Output: The sequence c.
layer2_redundancy = D;
if detect two deletions after the first run in dy_n,+1,v—2 then
return d(17);
else
L = the length of the longest suffix of d that is a subsequence of 73(layer2_redundancy);
N-Ni+1-L,N-2-L) layer2_redundancy);

(QWV—Nat1,N=2))

2

layerl_redundancy = Do(d!
¢ = Dy (dM"=2) layer]_redundancy);
return c.

Theorem 3. [f the functions Dy and Ds provide the correct estimates in O(n) time, then given a N — 2 subsequence
of €(c), Algorithm 1 returns the original sequence c in O(n) time.

16

Proof. To prove the correctness of Algorithm 1, it suffices to show the following
(1). dWW=N2+1LN=2) j5 a Jength N, — 2 subsequence of the repetition code r3(f(f(c),h(c))),r3(h(f(c), h(c)))).
(2). dN=M+1-L,N=2-L) j5 a length N; — 2 subsequence of the f(c),h(c) redundancy.
(3). d"=2) is a length n — 2 subsequence of the sequence c.
Since d is a length N — 2 subsequence of £(c), d,,—o must be either the (n — 2)-th, the (n — 1)-th or the n-
th bits of £(c), and hence (3) must hold. Similarly, (1) holds by looking at d and £(c) in reverse order. By
the definition of L, dy_o_y, is the i1-th bit of £(c) for some i; < n 4+ Nj. Since (1) holds, we have that L is
either the Na-th, the (N2 — 1)-th, or the (Ny — 2)-th bits of £(c). Therefore, dy_n,+1-1 is the ia-th bit of £(c)
for some ip > N — Ny + 1 — L > n. Since (f(c), h(c)) = E(c)®T1+N1)_(2) must hold.

Since finding L has O(N2) complexity, the complexity of Algorithm 1 is O(N) = O(n), given that the
complexities of the functions D; and Ds are linear. |

We are left to implement Dy with linear complexity. In particular, we need to recover the sequence ¢ € {0, 1}"
from its length n — 2 subsequence d in time O(n), given the redundancy f(c) and h(c). Note that there are O(n?)
supersuquences of d of length n, and f and h can be computed on each of them in O(n). Hence, the brute force
approach would require O(n?).

To achieve linear time complexity, we first recover 11(c), which is an (n—3)-subsequence of 119(c) € {0, 1}~ 1,
and then use it to recover c. In particular, we find the positions of the deleted bits by an iterative updating algorithm,
rather than by exhaustive search, and hence linear complexity is obtained. Furthermore, the uniqueness of the
obtained sequence is guaranteed by Lemma 4.

After recovering 11o(c), We can find all length n supersequences ¢’ of d such that 11¢(c’) = 11(c). It is shown
that there are at most 4 such possible supersequences, and since Theorem 2 guarantees uniqueness, the right c is
found by computing and comparing h.

A. Recovering 119(c)
For1 <7 <2n—2, let

—1 if1<i<n-1
p 2T T =T and (36)
i—n+1 ifn<i<2n-—2
1 if1<i<n—-1
o fLintsisn- @)
0 ifn<i<2n-—2

Given a subsequence d € {0,1}" 2 of ¢, let 119(d) = (r1,...,7_3), and letd : [2n—2] x [2n—2] — {0, 1}"U{x}
be defined as

(7"1,7"2, - Tpi—1, bi7rp¢7 s 77npj—27 ijrpj—lv e 77071—3) if pi < bj
d(Za.]) = (7"1,7"2,...,’I"pjfl,bj,’l"pj,...,’I"pi72,bl',7'pi,1,...,’I"n,3) 1fp2>p]?
* if p; = p;

that is, d(z,j) results from 1;9(d) inserting b; at position p; and b; in position p; of 1;9(d), if p; # p;. Notice
that d(i, j) is one possible way of correcting two deletions in the sequence 11¢(d).
For e € {0, 1,2} define matrices {A®)}2_, as follows.

J@ _ Jdeig) ml =3P m{“1yp(d); if d(i, 5) #*.
" * if d(i,j) = *.

Notice that Age]) is the difference in entry e of the f redundancies of d(7,j) and 1109(d), i.e., Az(ej) = f(d(4,7))e —
f(110(d))e-

We prove the following properties of A(¢). In the first property, we give an explicit expression for the matrices AZ(-?
in terms of 110(d), p;, p;, b;, and b;. The expression will be used for calculating AEZ-) in constant time from its
neighboring entries during Ds. In the following we use d(x) to denote the indicator of the event z, where §(z) = 1

if and only if z is true.

17
Proposition 1. If Age]) # % then

A(e) =b; m(e) +b; m e) + Z Lio(d)k[(k 4+ 1)6(min{p;, p;} < k+ 1) + (k4 2)°6(max{p;,p;} < k+2)].
(38)

Proof. The difference between ZZ;;’ m,(:)]llo(d) « and d(i, j)-m(®) consists of two parts. The first part follows from
the two inserted bits, and can be written as

bm{") + bym) (39)

The second part follows from the shift of bits in 11(d)j that is caused by the insertions of two bits b; and b;. Each
bit 119(d)y, shifts from position £ to position k41 if one insertion occurs before 119(d)y, i.e., min{p;,p;} < k+1
and max{p;,p;} > k + 2. The resulting difference is given by

n—3
110(d) 8 (min{pi, p;} < k + 1)6(max{pi, p;} > k +2)(m{, — m{?)
k=1
n—3
= Z Lio(d)xd(min{p;, pj} < k + 1)d(max{p;, pj} > k +2)(k +1)". (40)

The bit 1;9(d) shifts from position & to k + 2 if two insertions occur before 119(d)y, i.e., max{p;,p;} < k + 2.
The corresponding difference is given by

z 110(d)S(min{ps, p;} < k+ Dd(max{pi.p;} < k +2)11p(d) (mf), — m{")

—2110 Jid(max{p;,p;} < k+2)[(k+1)° + (k+2)°. “D

Combining (40) and (41), we have that the difference that results from the second part is given by

Z Lyo(d)k[(k + 1)°0(min{p;, p;} <k +1) + (k + 2)°6(max{p;, p;} <k +2)],

that together with (39), implies (38).]

The following shows that the entries of each A(®) are non-decreasing in rows and columns, and that the respective

sequences d(,7) that lie in the same column or the same row, are unique given each entry value. This property

. . . CoN . (e) o .

guarantees a simple algorithm for finding a sequence d (7, j) with a given value Ai’ ; by decreasing ¢ or increasing j
by 1 in each step.

Proposition 2. For every i,j and i1 < ia, j1 < jo, if neither of d(i1,j),d(i2,j),d(i,71), and d(i,j2) equals *,
then A(e)j < A(e)j and A() < Agej)z Moreover, ifAl(-le?j = AE:)] (resp. Age]) = A()) then d(iy,j) = d(ie,))
(resp. d(z,j1) = d(i, j2)).

Proof. By symmetry we only need to prove that the matrix A(®) is non-decreasing in each column, for which it
suffices to prove that:

() A(e) <A(e) for 1 <ip <ig <n-—1.

11,] —
(2). A© <A<>

n—1,7 —
(3). A gA() forngil <iy<2n-—2.
For (2 the only difference between d(n — 1,) and d(n,j) is that their first bits are 0 and 1 respectively, and
hence A,) ;1= A(e) We are left to show (1) and (3).
(1): For 1 <y < g < n — 1, we have b;, = b;, = 0 and p;, > p;,. Let d'(i1,5) € {0,1}"2 and d/(i2,j) €
{0,1}™2 be two subsequences of d(iy,) and d(22,) respectively after deleting the p;-th bit from both d(i1, j)

18

and d(i,), and similarly, let m©» = (m{” m{ ... m{ m . oml)

after deleting the p;-th entry. Then, according to (5) and (6), we have

be a subsequence of m(®)

A9 49— d(iy, 5) - m® — d(iy, j) - m®

12,7 11,J

— d/(ZQ,]) . m()7pj — d/(zlaj) . m(e)vpj

= gk, d'(ig, 7) %) d' (i1, j)k,)
>0, (42)

where k1 = p;, — 0(pi, > p;j) and ks = p;;, — §(p;, > p;) are the indices whose deletion from d’(is, j)
and d’ (i1, j), respectively, results in 11o(d). Similarly, as in the proof in Lemma 2, the last inequality follows from
the fact that d’(iy, j)r, = b;, = 0. Furthermore, equality holds when d’(iz, j)**%2) = 0 and d’(iy, j)x, = 0, which
implies that d’(i1,j) = d’(42,7), and hence d (i1, j) = d(ig, j).
(3): For n <y < iy < 2n — 2, we have b;, = b;, =1 and p;, < p;,. Similar to (42), we have that
A~ A = gk, d (i,)R d (i, f)1,) <0,

1,7 12,7

where ki = p;, —(p;, > pj) and ko = p;, —0(ps, > pj)g are the indices whose deletion from d’ (i1, j) and d’(i2, j),
respectively, results in 119(d). The last inequality follows from the fact that d’(i2,j)r, = b, = 1, and equality
holds when d(i1,j) = d(iz, j). O

Remark 2. From proposition 2, we have that

0=A1) <A <Ay, s <ml? 4+ ml?, <n, 1<ij<om -2 ALY £

where ng = 2n, n; = n?, ny =nd.

Our goal is to find a sequence d(i,7) # * for which
A = Z m{“14(d); mod n, (43)

for every e € {0, 1,2}. In addition, the sequence d(i,j) cannot contain adjacent 1’s, i.e.,

d(i,j)pi,1 : d(l,])pl = d(l,])pl : d(i’j)pﬂrl =0
d(ivj)pj—l : d(27j)pj = d(z7])p] : d(iaj)pj-f-l = 07 (44)

and from Lemma 4, such d(i,j) equals 119(c). Moreover, since Remark 2 implies that 0 < A(e]) < n, it follows

that the modular equality in (43) is unnecessary, i.e., it suffices to find a sequence d(i,j) # * that satisfies (44)
and

n—3
A(e> = Q¢ = fe(c) — Zmlge)]]_lo(d)k mod Ne, (45)

7/7]

where a, is the target value to be found in matrix A©). Eq. (45) implies that d(i,) satisfies the f redundancy.

The procedure to find such d(i, j) is given in Algorithm 2. We search for all sequences d(i, j) # * with no adjacent
1’s (satisfies (44)) such that Ag?j) = ag. This clearly amounts to a binary search in a sorted matrix®>. We start from
the bottom left corner of the matrix, proceed to the right in each step until reaching the rightmost entry such
that A() < ap, and then go one step up. Figure 4 illustrates an example of how Algorithm 2 runs on matrix A(®).

To av01d the computation of the entire matrix, that would require O(n?) time, each entry is computed from
previously seen ones only upon its discovery. To this end we prove the following lemma, that alongside Proposition 1,
provides a way of computing a newly discovered entry.

3The two * entries in each row or column can simply be ignored.

19

i=1] = | 1 9 | =
2 o | = « | o9
Y
—» 1
m—70 71 8] o9 1(f wl =110
.
m—6| 7 s loliwol =|| 1]

>
2n -5 8 8 9 * 10 1 11 | 12

2n—41 8 9 * 104) 11 | 12 | 13

2n—-31 9 * 10() 11 | 12 | 13 i i

2n =2 * 9 11112 13]) 14 *

j=1 2 3 4 5 6 7 o2n — 2

Fig. 4. The path of Algorithm 2 on the matrix A© The algorithm searches for all 4, j pairs such that Az(.?j) = 10 that appear in the lowest

position (with maximum) of each column. The algorithm proceeds right until the next term Ag)j) is greater than 10. Then, it proceeds up
one step and repeats the process in the same manner.

Lemma 11. Whenever the (i, j)-th and (i + 1,7)-th (resp. (i,j + 1)) entries of A\®) are not x, we have that

(e) (e)
A —A

itl,j = bim(e) - bi-i—lm(e)

Pi Pi+1
min{py,pi4+1}
+ > Lio(d)[(k + 1) (6(min{p;, p;} <k +1) — d(min{piy1,p;} <k +1))
k=min{p;,pi+1}—1
+ (k4 2)°(0(max{p;,pj} < k+ 2) — d(max{p;y1,p;} < k+2))], and (46)
AF) = AF)) = bm(— b m()
min{p;,p;j+1}
+ > Lyo(d)k[(k + 1)°(6(min{p;, p;} <k + 1) — §(min{p;, pj+1} <k +1))
k=min{p;,p;41}—1
+ (k +2)°(0(max{p;, pj} <k +2) — d(max{p;,pj+1} <k +2))] 47)

Proof. Note that if 4 increases by 1 or if j decreases by 1, then p; or p; changes by at most 1 (See (36)). Hence,
d(min{p;,pj} < k+1) = 6(min{piy1,p;} < k+1),
d(max{p;,p;} < k+2) = 6(max{pi+1,p;} < k+2)

for k < min{p;, pi+1}—2 and k > min{p;, pi+1}+1. According to (38), we have that (46) holds, and similarly, (47)
holds as well. U

We first show that Algorithm 2 outputs the (7,) pair such that d(i,j) = 119(c). Note that by Lemma 4 there
exists a unique sequence d(i,j) = Lj9(c) for which d(i,j) satisfies Eq. (44) and for which (i, j) satisfies Eq.

20

Algorithm 2: Finding 1,((c).
Input: Subsequence d € {0,1}"2 of c, and f(c)
Output: ¢ and j such that d(i,j) = 110(c)
Initialization: : = 2n — 2,5 = 1;
Te = Age%n , for e € {0 1,2},
() — Zk L my)]llo(d)k mod n, for e € {0,1,2};
Whlle 7 >0 do
if z. = a. for every e € {0,1,2} and d(i,j) # x and has no adjacent 1s’ (satisfies (44)) then
‘ return ¢, j;
else

0)

Find the maximum 5 for which AE’ ;
if p; = pj or (g > ag) then
temp_ze =z + AL)_| — A) (using (47)), for e € {0,1,2};

< ag.

2,—1
temp_j=j—1
while pic,,y_; = p; do
temp_Te = Te + Aget)emp_j 1 AE t)emp_j (using (47)) for e € {0,1,2};

| temp_j =temp_j — 1;
if temp_j > 1 then

J =temp_j;
xe = temp_x, for e € {0,1,2, };

else
temp_Te = T + AEEJ)H Eej) (using (47)), for e € {0,1,2};
temp_j=j5+1;
while pic,,p_; = p; do
temp_Te = T + AE t)emp_jﬂ AE t)emp_j (using (47)) for e € {0,1,2};

| temp_j =temp_j + 1;

if temp_zo < ag then

J = temp_j;

Te = temp_x, for e € {0,1,2, };
else

ze =z + A — AL (using (46));

1 =1—1;

return (0,0);

(45). Since the algorithm terminates either when such a sequence d(i,j) = 1jo(c) is found or no such sequence
is found and ¢ reaches 0, it suffices to show that the latter case does not occur. We prove this by contradiction.
Assuming that the latter case occurs, we show that d(i, j) # 119(c) for all (¢, 7) pairs, which is a contradiction. For
each i € {1,2,...,2n — 2}, let j; be the maximum j = j; for which A() < ag. If Al j) > ag for all j, then j; = 1.
Note that each pair (i, j;) is visited in Algorithm 2 and by assumption we have that d(z Ji) # L10(c). We consider
the following two cases

(1. 7>

(2). J<Ji

and conclude that no (¢, 7) pairs in these cases result in d(i,j) = 119(c). For 7 > j;, by Proposition 2 we have
that Ag)j) > AEOJ) or that d(i,j) = % Hence by definition of j; we have that A() > ag or that d(i,j) = x and

hence d (7, j) # 110(c). For j < j;, by Proposition 2 we have that A;O) A(O'), or that d(i,j) =% If A(O) < AEOJ),

21

then A 7é ap. If A(O) AZ(.?]{, then according to Proposition 2, we have that d(7, j) = d(4, j;) # 110(c).

We now show that Algorithm 2 terminates in O(n) time. From (46) and (47) the (i,7)-th entry of A(®) e €
{0,1,2}, can be computed by using the update rule z. + AZ()1 j AZ() and z, + AZ() 1 A() (see Algorithm 2),
that can be computed in constant time. In addition, one can verify in constant time that (44) holds.

Note that in each round, either ¢ decreases by 1 or j increases by 1, with the exception that j decreases
when A(Oj) — % or Al]) > ap. We prove by contradiction that the latter case, in which Al j) > apand 7 > 1
is impossible. Notice that for each current pair (,7), the value of next pair (i*,j*) falls into either one of the
following three case:

(1). (¢*,5%) = (4,4") for some j' > j with A() < ag

(2). (i,57) = (2—1 7)

(3). (¢*,7%) = (i — 1,4) for some j' < j when A

i1 =

Assume by contradiction that A() > ap and j* > 1, and (¢*, j*) is the first pair for which this statement is

true. In Case (1), we have that A(*)]* < ay, in contradiction to A(*) . > ap. In Case (2) or Case (3), Proposition 2

(0)

1mphes that ag < A,.7,. < A(), contradicting the assumption that (¢*,j*) is the first visited pair which satisfies

A()

Havmg proved that A]) < ap whenever j > 1, we have the Algorithm 2 proceeds to left only when it encounters
a x-entry. We now show that the algorithm terminates in O(n) time. Notice that unless Algorithm 2 encounters
a x-entry, it proceeds either up or to the right, for which case, it is clear that only O(n) many steps occur. In
cases where Algorithm 2 encounters a x-entry, it proceeds to the left until a non x-entry is found. Since the number
of x-entries is 4n —4, the number of left strides of the algorithm is at most this quantity, and therefore the algorithm
terminates in at most O(n) time. In the following, we provide a running example of Algorithm 2.

Example 1. Consider a sequence ¢ = (1,1,0,0,1,0,1,0), where the first and the 6-th bits are deleted, resulting
ind=(1,0,0,1,1,0). Then n =8, 110(c) = (0,1,0,0,1,0,1), f(c) = (14,46,200), and 110(d) = (1,0,0,0,1).
Hence ag = 8,a; = 30,a9 = 144.
Then, Algorithm 2 proceeds in the following manner.
1=1,7=14,p; = pj, 0 = 7,21 = 28,19 = 140
—i=2,7=14,d(i,5) = (1,0,0,0,1,0,1),z9 = 7,21 = 28,29 = 140
—i=3,j=14,d(i,j) = (1,0,0,0,0,1,1), 29 = 8,21 = 34,25 = 176,
—i=4,7=14,d(¢,7) = (1,0,0,0,0,1,1), 20 = 8,21 = 34, x5 = 176,
—i=75,7=14,d(i,j) = (1,0,0,0,0,1,1), 29 = 8,21 = 34,25 = 176,
—i=6,7 =14,d(¢,7) = (1,0,0,0,0,1,1), 20 = 8,21 = 34, x5 = 176,
—i=17,7=14,d(4,j) = (0,1,0,0,0,1,1), 29 = 9,21 = 36,29 = 180
—i=7,7=13,d(i,5) = (0,1,0,0,0,1,1), 29 = 9,21 = 36,29 = 180
—i=7,7=12,d(¢,5) = (0,1,0,0,1,0,1),z9 = 8,21 = 30,29 = 144
B. Recover the original sequence c

Let (4, j) be the output of Algorithm 2, for which we have that d (i, j) = 119(c). Let ¢’ be a length n supersequence
after two insertions to d such that 1;9(c’) = 119(c). If b; = 1, then inserting b; to 119(d) corresponds to either
inserting a 0 to d as the p; + 1-th bit in ¢’ or inserting a 1 to d as the p;-th bit in ¢’ (see Table I). If b; = 0, then
inserting b; to 119(d) corresponds to inserting a 0 or 1 in the first O run or 1 run respectively after the £’-th bit
in ¢/, where k' = maxy{d(i, j)r = 1,k < p;}. The same arguments hold for the insertion of b;.

Therefore, given the (7,) pair that Algorithm 2 returns, there are at most four possible ¢’ supersequences of d
such that 119(c’) = 110(c). One can check if the ¢’ sequences satisfy h(c). According to Theorem 2, there is a
unique such sequence, the original sequence c that satisfies both f(c) and h(c) simultaneously.

22

REFERENCES

[1] V. L. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8,
1966, pp. 707-710.

[2] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single asymmetric errors,” in Autom. Remote Control, vol. 26, no. 2,
1965, pp. 286-290.

[3] A.S. Helberg and H. C. Ferreira, “On multiple insertion/deletion correcting codes,” IEEE Trans. on Inf. Th., vol. 48, no. 1, pp. 305-308,
2002.

[4] F. Paluncic, K. A. Abdel-Ghaffar, H. C. Ferreira, and W. A. Clarke, “A multiple insertion/deletion correcting code for run-length limited
sequences,” IEEE Trans. on Inf. Th., vol. 58, no. 3, pp. 1809-1824, 2012.

[5] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy codes for correcting multiple deletions,” in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1884-1892. 2016

[6] R. Gabrys and F. Sala, “Codes correcting two deletions.” arXiv:1712.07222 [cs.IT], 2017.

APPENDIX
Proof of (15) (Case (a)):

(L1o(c) — L1o(c’)) - m®

A ey
= Z (110(c)s — Lio(c')e) - (m@), + Z (110(c); — Lio(c');) - (m@),

t:£1 t:k?Q

= (Lio(c)e, — L10(¢)e,) - (M), + (L10()r, — L10(c)i,) - (m @), +
-1 ki—1

Z (110(C)t o 110(C)t+1) : (m(e))t + Z (llo(cl)tJrl —]llo(c/)t) . (m(e))t

t:Zl t:kz

= (L10(c)r, — L10(c)e,) - (MD)g, + (L10(C)r, — L10(c)z,) - (M), +
-1

b
> Lio(e)r - (m @), = > Tyg(e)s - (mD), 4

t=_, l1+1

k1 ki—1
+ > Lo - (M) = Y Ly(¢)s - (m),
t=ko+1 t=ks
(Lio(c)e, — L10(c))e,) - (M), + (Lio(e)r, — L1o(c)k,) - (M), +
5271
Lio(e)r, - (m?)g, — Lig(e)y, - (M), 1+ D Tigle) - t+
t=Z1+1
klfl

Lio(¢)k, - (D)1 = Lio(), - (), = D Lio(e) - ¢
t:szrl

= (=110(c')e,) - (M), + (Lio(c),) - (M), +
0 ks

Lio(c)e, - (M @)y, + D7 Tyg(e)r ¢ = Lyo(g, - (M), — Y Tyg(c)) - £
t=01+1 t=ko+1

e
= Tig(c)e, - (m@)y, + Lig(e)y, - (m)g, + D Lig(e)s - 1

t=01+1
k1
= > (@)t = (Li0(@)e, -), + Lio(e, - (),
t:k2+1

= gm0, (L10(€)ey, -+, L10(€) s> Lio(€)e,) — gmer gy (L10(€)iy - - - L1o(€)iy s L1o(C)ky)

Proof of (16) (Case (b)):

(L1o(c) — 110(c)) - m'®

0 ko
=Y (Trole)s = L1o()e) - (M), + > (T1o(c)s — L1o(c)y) - (m)),

=t P
= (Lio(c)e, — L10(¢)e,) - (M), + (L10(€)k, — L10(c)k,) - (@), +

lo—1 ko—1

> (Lio(e)s = Tio(©)er1) - (M) + D~ (Lig(e)s — Tao(€)es1) - (m),

t=01 t=kq
= (L10(c)e, — L10(c)e,) - (MD)g, + (L10(C)r, — L10(c)),) - (M), +

lo—1 2 ka—1

Z Lip(c); - (m@);, — Z Tig(c) - (m@), g + Z Lip(c); - (m @),

t=01 l1+1 t=k,

ko
— > Tigle) - (m),
t=ki+1
= (Lio(c)e, — L10(c)e,) - (M), + (L10(€)r, — L10(c)k,) - (@), +
lo—1
Lig(c)e, - (m@), — Lig(e)s, - (m@)g,1 + Y Tyole)e - o+
t=01+1
ko—1
Lio(c)k, - (m)g, — Lig(Q)k, - (M), 1+ D Tigle) -1
t=k;+1
= (—110(c')g,) - (M), + (=L10(c),) - (M), +
0 ko
Tip(c)e, - (m(e))gl + Z T1p(c) - t°+ Lip(c)g, - (m(e))kl + Z Tip(c)e - t°
t=01+1 t=k;+1
= Lio(c), - (M), + Lig(c)g, - (M), — (110(0')62 - (m)y, + Lo(g, - (m(e))kz) +
0 ko
> Lugle)e-t+ Y Lig(e) -t
t=01+1 t=k;+1

= gm0, (110(€)ey 5 - - -, L10(€)ey, L10(€')) + Gmeo gy (L10(C)ky s - - - L10(€)ky 5 L10(C)k,)

Proof of (17) (Case (c)):

(110(c) — L1o(c’)) - m(®
Jei—2 lo—1

= Y (To(e)r — Lio(c)e) - (M) + D (Tro(e)r — Lig(c)r) - (m),
=, t=h 1
ko
+ > (T1p(c)e — T1g(c)y) - (m)),
kltf;Z la—1
= (Li(©)s = To()es1) - (M) + D~ (Lig(e)s — Tro(€)era) - (m)),+
=0, t=h 1
(Lio(€)e, — L10(c))s,) - (m @)y, + (L10(c)k, — L1o(c))k,) - (M), +
ka—1
Z (Lio(e): — T1o(€)er1) - (m),
t=0>+1
k1—2 ki—1 |2
= Tyle)e- m)e— > Typ(e)e- (m@) 1+ D Lyg(e)s - (m),
=, 1=t +1 t=h 1
tat1
— Y Tyg(e) - (M) g+ (—T10(c)g,) - (M), + (= 110()i,) - (D), +
- .
Z Lig(c); - (m')), — Z Lig(c); - (m)), 4
t=0+1 t=~0y+2
k1—2
= T10(c)e, (M), — Lig(e)k,—1 (M)y, 5 + Z Lip(c)e - t°+
t=01+1

Lio(€)g,—1(m)k, _1 + Lig(c)k, (M), — Lig(c)e,11(m D),y

2
+ Y Tap(e)u(t + (= 1)) + (=110(¢)e,) - (M), + (—T10(c),) - (), +

t=ki+1
ko
Lio(©)ez41(mD)ey 1+ D Tio(e)it®
a2
= 119(c)¢, (M), + L1g(c)r, (M), — (L10()g, - (M), + L1p(c g, - (M),)+
klfl 52+1 kz
D Luole)- 1+ Y Tuo(e)e(t*+ (E=1))+ > Lig(c)ut®
= Tyo(c)g, (M), + Lyg(c)g, (M), — (110(c'), - (MD)g, + T1o(), - (M),)+
1 0 ks
Z]llo(c)t -1+ Z llo(C)H_lte + Z llo(c)tte
t=01+1 t=k, t=k;+1

= gm© ¢, (L10()z,, s L10(¢)ky—1, L10(C)ky 415 - - - s L10(€) ez 41, L10(€) e,)+
Im gy (L10(€)ky s - - -5 L10(C)ky, L10(€)k,)

24

	I Introduction
	II Outline
	III Proof of Lemma ??
	IV Proof of Lemma ??
	V Proofs of g-lemmas
	VI Encoding and Decoding Algorithms
	VI-A Recovering H(c)
	VI-B Recover the original sequence c

	References

