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Abstract

We have demonstrated plasmon-enhanced flexible and hierarchical photoanodes for hydrogen production from human urine
in a photoelectrochemical cell. The photoanodes consist of cobalt-doped a-Fe,O5 nanorod arrays functionalized with Au
nanoparticles and Ni(OH),. The Au nanoparticles and Ni(OH), work as plasmonic nanostructures and urea oxidation cata-
lyst, respectively. Benefiting from the plasmonic and catalytic effects, the photoanodes exhibit an AM 1.5 photocurrent of
5.0+0.1 mA cm™2 (urea solution) and 7.5 +0.1 mA cm™2 (human urine) at 0.3 V versus Ag/AgCl. At a Pt counter electrode,
continuous hydrogen gas evolution is achieved at a small bias. With their high performance and mechanical flexibility that
facilitates the large-scale transportation and implementation in the field, the photoanodes are paving a sustainable way towards
hydrogen production and urine treatment.
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1 Introduction

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s10800-019-01369-0) contains
supplementary material, which is available to authorized users.

Sustainable hydrogen supply could help solve many
energy challenges [1-8]. Despite being promising hydro-
gen sources, hydrazine and metal hydrides suffer from
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basis, which adversely impacts the environment, has a con-
centration of urea ranging from 0.155 to 0.39 mole/L [11].
Therefore, it benefits both energy and the environment to
generate hydrogen from urine.

There are multiple approaches for hydrogen produc-
tion from urea. One technique involves urea decomposi-
tion and high-temperature cracking of ammonia, which is
energy-intensive with safety issue [12]. Another technique
employs an external bias and a urea oxidation catalyst to
electrolyze aqueous urea solution for hydrogen, which con-
sumes a substantial amount of electricity [11, 13—-17]. A
more sustainable technique for hydrogen generation from
urea in human urine is driven by solar cells that power an
electrolyzer for urea electrolysis. Alternatively, a high-
performance and portable photoelectrochemical (PEC) cell
is promising for cost-effective hydrogen production from
human and animal urine.

Herein, we have developed mechanically flexible plas-
mon-enhanced photoanodes of hierarchical architectures
for portable PEC cells that enable solar-driven efficient
hydrogen generation from human and animal urine in
the field. The anodes are based on cobalt-doped Fe,0,
nanorod arrays (Co—Fe,O; NRAs) on flexible Ti mesh
substrates. a-Fe,O5 and its variants are promising semi-
conductors for PEC cells because of their high stability,
abundance, and low cost [18-21]. The Co-Fe,O; NRAs on
Ti mesh substrates feature a large surface—volume ratio for
enhanced photochemical reaction efficiency along with a
strong mechanical flexibility for the large-scale implemen-
tation [22]. We further functionalize the NRAs with plas-
monic Au nanoparticles (NPs) and Ni(OH), as urea oxida-
tion catalyst to create the composite photoanodes, which
are indicated as Ni(OH),/Au@Co-Fe,0; NRAs. Due to
their nanoscale concentration and enhancement of elec-
tromagnetic fields, plasmonic nanostructures have been
employed to improve non-linear optics [23, 24], biosen-
sors [25], and energy devices [26]. In particular, the use of
plasmonic nanostructures to enhance solar energy conver-
sion and storage has attracted strong interests [27-29]. We
aim to harness the plasmonic effects and their associated
phenomena such as hot carrier injection, resonance energy
transfer, and plasmonic heating to enhance photochemical
reactions in PEC cells [30-34].

With the synergistic effects of hierarchical structures,
plasmonic effects, and catalysis, our composite photoan-
odes exhibit high-performance solar-driven PEC hydrogen
production from urea and human urine at a small exter-
nal bias. The flexible photoanodes can be folded into a
compact form for the large-scale transportation and imple-
mentation in the field, paving the way towards sustainable
hydrogen production and urine treatment for environmen-
tal protection.
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2 Results and discussions

We synthesized Co—Fe,0; NRAs on flexible Ti mesh
substrates using hydrothermal method (see Support-
ing Information) [35]. X-ray diffraction studies confirm
that the NRAs have a Rhombohedral Hematite structure
(JCPDS 1-1053) (Fig. S1). Next, Au NPs were deposited
on the NRAs by sputtering and thermal annealing to create
Au@Co-Fe,0; NRAs (see Supporting Information). The
mechanical flexibility of Ti mesh substrates was retained
after the formation of NRAs and Au NPs (Fig. la).
As shown in Figs. 1b and c, highly dense and uniform
Co-Fe,0; NRAs were formed perpendicular to the sur-
faces of Ti wires of the mesh. The NRAs grew radially
outward around the entire surfaces of the Ti wires to form
branched three-dimensional (3D) structures with a large
surface—volume ratio. To promote urea oxidation kinet-
ics, we utilized a dip-coating method to deposit Ni(OH),
as an electrochemical catalyst on the Au@Co-Fe,0;
NRAs, completing synthesis of composite photoanodes
indicated as Ni(OH),/Au@Co-Fe,0; NRAs. In Fig. 1d,
transmission electron micrograph (TEM) of Ni(OH),/Au@
Co-Fe,0; NRAs reveals the amorphous nature of Ni(OH),
on the photoanodes. The lattice fringe with a spacing of
0.3775 nm agrees with (012) plane of Co—Fe,O; nanorods
(JCPDS 1-1053). Energy-dispersive X-ray spectroscopy
(EDS) confirms the presence of Ni on Au@Co-Fe,0;
NRAs (Fig. S2). The atomic percentage of Ni was deter-
mined to be ~ 1.8% according to the EDS result. The per-
centage of Ni(OH), is therefore ~9%.

We evaluated the light absorption properties of
Co-Fe,0;, Ni(OH),@Co-Fe,0;, and Ni(OH),/Au@
Co-Fe,0; NRAs using diffused reflectance UV-visible
spectroscopy. As shown in Fig. 2a, Co-Fe,0; NRAs
absorb light at wavelengths that are shorter than 580 nm,
corresponding to electronic band gap of Fe,O; (i.e.,
2.2 eV). The absorption edge of Co—Fe,0; NRAs does
not exhibit a significant change after the Ni(OH), func-
tionalization. In contrast, Ni(OH),/Au@Co-Fe,O; NRAs
exhibit an additional absorption at wavelengths from 510
to 575 nm, which arises from the excitation of localized
surface plasmon resonances (LSPRs) of Au NPs [36]. The
plasmonic effects lead to the enhanced PEC performance
of Ni(OH),/Au@Co-Fe,0; NRAs as discussed below.

We comparatively studied the PEC performance of
Co-Fe, 05, Au@Co-Fe,0;, and Ni(OH),/Au@Co-Fe,0,
NRAs for urea oxidation under solar-simulated illumi-
nation (AM 1.5, 100 mW cm™2). Both commercial urea
solution and human urine were used. Figures 2b—d are
the experimental results for the urea solution. Figure 2b
shows that, under light illumination, Co-Fe,O; and
Au@Co-Fe,0; NRAs have the onset potential for urea
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Co-Fe,0; NRAs

d=0.3775 nm
(012)

Fig. 1 a Photograph of a flexible Ti mesh consisted of Ni(OH),/Au@Co-Fe,0O; NRAs as photoanodes. b Scanning electron microscopic (SEM)
image of the Ti mesh. ¢ SEM image of Co—Fe,0; NRAs on the Ti mesh. d Transmission electron micrograph of Ni(OH),/Au@Co-Fe,0; NRAs

oxidation shifted to —0.2 V versus Ag/AgCl. However,
theoretical potential for urea electrolysis is 0.35 V versus
Ag/AgCl [13]. The potential reduction can be attributed to
urea oxidation driven by photovoltage in Co—Fe,05;. Com-
pared with Co-Fe,05, Au@Co-Fe,0; yielded an enhanced
anodic photocurrent of up to 2.8 mA cm~2 at 0.35 V versus
Ag/AgCl, suggesting the plasmonic enhancement from the
Au NPs. Ni(OH),/Au@Co-Fe,0; NRAs exhibit the lower
onset potential and substantially higher photocurrent than
Co-Fe,0; and Au@Co-Fe,0;. It is envisaged that, in the
Ni(OH),/Au@Co-Fe,0; NRAs, the photoexcited holes in
Co-Fe,0j; can oxidize Ni(OH), to NiOOH, which further
catalyzes the urea oxidation with a reduced electrode over-
potential [37]. Meanwhile, the photoexcited electrons can
be transferred to a Pt counter electrode to reduce water to
hydrogen gas. We observed continuous gas evolution on
the Pt wire under light illumination, as shown in Video S1.

The photoelectrochemical oxidation of urine involves H,O
and CO(NH,),, which are major components among the 3079
types of chemical species in human urine [38]. Upon light
illumination, the following chemical processes occur on the
cathodes and anodes.

Cathode:

Fe,0; + hv — Fe,0; + e” + h*
Ni(OH), + OH™ + h* — NiOOH + H,0
6NiOOH + CO(NH,), + H,0 — 6Ni(OH), + CO, + N,

Anode:
2H,0 + 2¢~ —» H, + 20H".

The total chemical processes can be summarized as

CO(NH,), + H)O0 — 3H,+ CO, + N,.

@ Springer
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Fig.2 a Optical absorption spectra of Co-Fe,O;, Ni(OH),@Co—
Fe, 03, and Ni(OH),/Au@Co-Fe,O; NRAs as photoanodes. b Linear
sweep voltammograms collected for the three types of photoanodes
in a 1.0 M NaOH aqueous solution in the presence of 0.33 M urea
in the dark (dashed lines indicated by “dark scans”) and under AM
1.5G illumination (100 mW cm™). ¢ Photocurrent—time response

Therefore, the final products of the photoelectrochemical
oxidation are non-toxic gaseous molecules that are not harm-
ful to the environment.

Figure 2c shows the photocurrent density—time response
curves measured for the three types of photoanodes at a
zero bias. We made the measurements using a two-elec-
trode electrochemical cell under chopped AM 1.5 G illu-
mination (100 mW cm™~2). Stable photocurrent densities of
0.15 mA cm~2, 0.30 mA cm~2, and 0.65 mA cm™2 were
achieved for Co—Fe,0;, Au@Co-Fe,0;, and Ni(OH),/Au@
Co-Fe,0; NRAs, respectively. Therefore, the synergy of
LSPRs at AuNPs and urea oxidation catalysis of Ni(OH),
can significantly enhance the performance of solar-driven
urea oxidation and hydrogen production at small or zero
external bias. The photocurrent transient was observed
under zero bias, for the reason that the charge was not effec-
tively separated at the interface of the electrolyte and Au@
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curves of the three types of photoanodes collected at a zero bias in
a two-electrode electrochemical cell under chopped AM 1.5G illumi-
nation (100 mW cm™2). d Photocurrent—time response curves of the
three types of photoanodes collected at 0.2 V versus Ag/AgCl under
chopped AM 1.5G illumination (100 mW cm™2)

Co-Fe,0;. We also conducted the long-term stability test
at 0.2 V versus Ag/AgCl for solar-driven urea oxidation.
No apparent photocurrent density decay was detected for at
least 400 min in all the samples, implying the sustainability
for long-term operation of plasmonic enhanced PEC solar-
driven urea oxidation.

Encouraged by the performance of solar-driven urea oxi-
dation, we further employed the optimized Ni(OH),/Au@
Co-Fe,0; electrodes for solar-driven oxidation of urea in
human urine. The linear sweep voltammogram measured
under dark conditions for Ni(OH),/Au@Co-Fe,O; NRAs
exhibited a similar onset potential in urine and urea elec-
trolyte solutions. A lower onset potential of — 0.42 V versus
Ag/AgCl was observed under light illumination (Fig. 3a).
The urine samples generated a higher current than the urea
sample at 0.35 V versus Ag/AgCl due to the diversity of
urea and metabolites in urine solution. The inorganic and
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Fig.3 a Linear sweep voltammograms collected for the Ni(OH),/
Au@Co-Fe,0; NRAs as a photoanode in a urea electrolyte solution
and a human urine electrolyte solution in the dark (dashed lines by
“dark scans”) and under AM 1.5G illumination (100 mW cm™2). b
Photocurrent—time response curve of the Ni(OH),/Au@Co-Fe,0,

organic metabolites in human urine also contribute to incre-
ment in the current. The photocurrent density—time response
curve collected for the electrode in urine solution at zero
bias under chopped light illumination exhibited a photocur-
rent density of 0.68 mA cm™~2 (Fig. 3b). The performance
at a zero bias substantiates the applicability of plasmon-
enhanced urea photooxidation for practical applications in
unassisted devices. In addition, the electrode showed stable
photocurrent density in urine solution for at least 400 min
(Fig. 3c), along with continuous hydrogen gas evolution
at the Pt wire counter electrode at 0.2 V versus Ag/AgCl
(Video S2). The successful demonstration of the flexible
Ni(OH),/Au@Co-Fe,0; NRAs for solar-driven hydrogen
evolution from human urine provides a new opportunity
for sustainable hydrogen generation and biological waste
treatment.

(] Al
200 300 400

Time/min

NRAs as a photoanode collected at a zero bias in a two-electrode
electrochemical cell in human urine solution under chopped AM
1.5G illumination (100 mW cm™2). ¢ Photocurrent-time response
curve of the Ni(OH),/Au@Co-Fe,0O; NRAs as a photoanode col-
lected at 0.2 V versus Ag/AgCl under the same condition of (b)

We attribute the improved PEC performance to multi-
ple enhancement mechanisms occurring in the composite
photoelectrodes. When the optical absorption of Co—Fe,0;
overlaps with the LSPRs of the Au NPs, the near-field elec-
tromagnetic localization and enhancements improve the light
absorption and facilitate the generation of electron—hole
pairs. Further, the non-radiative decay of the LSPRs on Au
NPs can generate plasmon-induced hot electrons and holes.
The hot electrons were injected into the conduction band of
Fe,03, and eventually migrate to the cathode, where they
interact with urine to form hydrogen under small amount
of bias. Simultaneously, the hot holes and the photoexcited
holes from Co-Fe,0; oxidize Ni(OH), to NiOOH, a well-
known electrochemical catalyst for urea oxidization that pro-
duces N, and CO, [13, 14]. The photoexcited electrons from
Co-Fe,0; can reduce urine at the counter electrode as well.

@ Springer
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Lastly, plasmon resonance energy transfer also contributes
to the carrier generation in Co—Fe,0;.

3 Conclusions

Mechanically flexible and hierarchical photoanodes of
Co—Fe,0; NRAs with plasmonic enhancement and catalysis
enable efficient hydrogen production from urea and human
urine. We attribute the enhanced PEC performances of the
composite photoanodes to the combined plasmonic effects
of Au NPs and catalytic effects of Ni(OH), along with the
hierarchical nanoarchitectures. The mechanical flexibility
of the photoelectrodes facilitates the effective transporta-
tion and implementation of the PEC cells for the sustainable
production of renewable energy from wastewater.
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