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This study evaluates the efficacy of machine learning (ML) methods to predict the compressive strength
of field-placed concrete. We employ both field- and laboratory-obtained data to train and test ML models
of increasing complexity to determine the best-performing model specific to field-placed concrete. The
ability of ML models trained on laboratory data to predict the compressive strength of field-placed con-
crete is evaluated and compared to those models trained exclusively on field-acquired data. Results sub-
stantiate that the random forest ML model trained on field-acquired data exhibits the best performance
for predicting the compressive strength of field-placed concrete; the RMSE, MAE, and R? values were
730 psi, 530 psi, and 0.51, respectively. We also show that hybridization of field- and laboratory-
acquired data for training ML models is a promising method for reducing common over-prediction issues
encountered by laboratory-trained models that are used in isolation to predict the compressive strength

of field-placed concrete.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The 28-day compressive strength of concrete is a critical design
parameter for reinforced concrete structures [1]. Empirical
prescriptive- and performance-based mixture design methodolo-
gies remain the conventional means to obtain concrete mixture
design proportions that meet minimum 28-day compressive
strength requirements. However, numerical approaches for pre-
dicting the 28-day compressive strength of concrete are emerging
in the literature. Accurate numerical estimation of the 28-day com-
pressive strength of concrete is desirable because more precise
prediction (1) provides assurance of concrete quality, (2) reduces
the number of concrete batches that are needed to be tested to
meet strength targets, and (3) enables a reduction in factors of
safety. Recent computational studies have demonstrated the abil-
ity of advanced statistical modeling techniques to numerically pre-
dict concrete compressive strength for laboratory-mixed concrete,
termed laboratory concrete herein [2-13]. However, prediction of
the 28-day compressive strength of concrete placed in the field
on an actual construction site, termed field concrete herein, remains
a challenge for the concrete industry due to variable environmen-
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tal conditions and other uncertainties encountered during mixture
proportioning, transport, placing, curing, and finishing.

1.1. Prediction challenges for field concrete mixtures

Estimating the 28-day compressive strength of concrete is a
multifaceted problem. Complex physical and chemical interactions
occur between concrete constituents, which, in turn, affect com-
pressive strength. Therefore, nonlinear mathematical models are
advantageous for accurately capturing all phenomena. As an exam-
ple, consider the following physically intuitive correlations: com-
pressive strength decreases (nonlinearly) as the water-to-cement
ratio (w/c) increases [14,15]; increasing air content for improved
workability and freeze-thaw resistance also reduces compressive
strength [16]. Other correlations have not been as intuitively
deduced to-date. For example, it is well known that the proportion
of coarse-to-fine aggregate affects compressive strength, but the
relationship has not been precisely determined due to confounding
factors, such as particle size distribution, aggregate angularity, and
water demand. Coarse aggregate, for example, may vary in nominal
size, grading, chemical composition, shape, surface texture, and
absorptivity [17]; these properties can impact the strength of the
interfacial bonds between the aggregate and mortar, which, in
turn, affect the compressive strength of concrete. Furthermore,
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the addition of supplementary cementitious materials (SCMs), like
fly ash, slag, and silica fume, also introduce new, complex, and
nonlinear relationships to compressive strength because of com-
plex factors, such as fineness, chemical variability, and pozzolanic
reactivity [18,19]. Additionally, the fineness and mineral composi-
tion of fly ash and slag can be highly variable, depending on the
original industrial source and additional processing steps [20].

The conditions of the job site at which field concrete is mixed
and placed are also highly variable and lead to high variability in
field compressive strength compared to laboratory concrete. For
instance, it is commonplace for the environmental conditions at
construction sites to be loosely controlled. Here, temperature,
humidity, and inclement weather can all affect concrete curing
and the final compressive strength [21,22]. Such variabilities do
not exist in laboratory concrete mixing, which suggests that accu-
rate prediction of the compressive strength of field concrete is a
more challenging problem compared to compressive strength pre-
diction of laboratory concrete.

1.2. Machine learning methods for compressive strength prediction

Because of the physical limitations described above, there is
growing interest in predicting concrete compressive strength using
machine learning (ML) models for both field and laboratory con-
crete mixtures [23,24]. ML models predict compressive strength
(i.e., the target variable) from the types and quantities of the mix-
ture ingredients (i.e., the input variables). Using pairs of data of the
form [input variables, target variable], a model is trained from a
collected dataset and learns the relationship between the target
and input variables without constraint on prior intuitive under-
standing. The vast majority of this type of research has been per-
formed on laboratory concrete, which, as discussed, suggests
limitations on the actual usefulness of these models for predicting
the compressive strength of field concrete, given the myriad of
convoluting factors.

Prior research in ML methods for compressive strength predic-
tion has been limited to testing ML methods using laboratory data
to determine best-possible prediction models for concrete com-
pressive strength. A particularly popular ML algorithm is artificial
neural networks (ANNs). The first study of ANNs by Yeh et al.
[25] employed ANNs on a dataset of over 1000 laboratory concrete
mixture designs. Since then, other researchers have reported ANN
studies with coefficients of determination (R?) of up to 0.999
[2-8,10,26-28]. However, a significant number of ANN studies
employ less than 100 experimental data points, which may not
sufficiently sample the predictor variable space. While ANNs are
a flexible and powerful ML method, it suffers from the need to train
a large number of parameters. For small datasets (as is common for
field concrete), ANNs can quickly overfit the data, which leads to
strong training set performance but poor generalization perfor-
mance on new datasets. Other ML methods that appear in the
literature include support vector machines (SVM) [25,26] and deci-
sion tree-based models [13,29]. Studies that employ these methods
are less common than ANN studies, due to the historical alignment
of compressive strength prediction and ML methods.

Some narrower-scope prediction studies that used ML have
focused on modeling concrete mixtures that contain particular
mixture ingredients, such as fly ash [28], blast-furnace slag [30],
recycled aggregate [31], silica fume [32], and metakaolin [33]. This
body of research generates models that are useful for predicting
compressive strength when specific constituents are included.
However, this approach narrowly tailors the model to the particu-
lar dataset and, thus, is less useful when either mixture ingredients
or external conditions (possibly unmeasured) may change.

A recent study by Young et al. considered field concrete data
and compared the predictive performance of four ML models for

predicting both field and laboratory concrete [23]. This study found
that variance can be significantly better explained in the laboratory
concrete dataset, which is compatible with the idea that laboratory
concrete has fewer uncontrolled variables. The study determined
that the four ML methods investigated exhibited equivalent pre-
dictive performance for field concrete - a somewhat unintuitive
result, given that the four methods employed do not share com-
mon assumptions about the underlying data. In addition, it is also
of note that the laboratory and field datasets contained different
mixture ingredients (i.e., input variables). For example, the labora-
tory concrete dataset included blast-furnace slag, while the field
concrete dataset did not, making an apples-to-apples comparison
difficult between models for both laboratory and field concrete.

1.3. Innovative contribution/knowledge gaps

Despite a large body of research in this area of study, the chal-
lenge of training a ML model for accurate prediction of concrete
compressive strength remains relevant. More specifically, two sig-
nificant gaps exist in the literature. First, prior studies are not well-
grounded in best-practice methods of the ML community. The
standard procedure in ML is to generate a pipeline of methods that
increase in complexity [34]. The reason for this is two-fold: (1)
while powerful, ML methods often search a large model space
and may miss simple solutions recognized by the researcher and
(2) the failure of simpler models is typically caused by a failure
in model assumptions that reveals previously hidden details about
the data interactions and non-linear behavior observed in the sys-
tem. These failures can thus be used to inform the appropriate
choice of ML tools for further development. Second, consensus on
the best model architectures for predicting the compressive
strength of field concrete has not yet been reached.

To this end, this study aims to address the aforementioned
knowledge gaps and is particularly focused on approaches for accu-
rate prediction of the compressive strength of field concrete. First, we
employ the standard ML procedure of testing models of increasing
complexity in order to determine the best-performing model for
field concrete. This procedure enables us to build on past research
by discussing why certain ML methods are particularly well-suited
for the concrete compressive strength prediction problem. The field
concrete dataset in this study contains 1681 concrete mixtures and
was collected by the Colorado Department of Transportation
(CDOT). The laboratory concrete dataset in this study was obtained
from the University of California, Irvine Machine Learning Reposi-
tory, which contains data for more than 1000 mixtures [35].

Following the analysis of the field concrete models trained on
the field concrete dataset, we evaluate the ability of ML models
learned on laboratory concrete data to predict the compressive
strength of field concrete mixtures. For this analysis, we perform
the same ML procedures for the laboratory data and select the
best-performing model. This model is then used to predict the
compressive strength of field concrete mixtures, and the relative
model performance is analyzed. It was hypothesized that the lab-
oratory ML model performance would be unsatisfactory for pre-
dicting field compressive strength compared to that of models
trained exclusively on field concrete data. Finally, this work
includes an analysis of laboratory data-trained models that are
supplemented with varying percentages of field data in order to
determine if such hybridized datasets can improve performance
the predictive capabilities of laboratory concrete models.

2. Machine learning (ML) methods

As discussed in the introduction, this paper builds a pipeline of
ML methods with increasing complexity, such that the underlying
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structure in the training data can be stepwise analyzed. First, in
Section 2.1, we describe the ML methods used in the pipeline.
We introduce linear methods (i.e., linear regression, polynomial
regression), transformed linear methods (i.e., kernelized support
vector regression, kernelized Gaussian process regression), and
non-linear methods (i.e., regression trees, boosted trees, random for-
est). In general, simple models are introduced first, and subsequent
models increase in complexity. The simplest methods (e.g., linear
regression) tend to require the most assumptions about the under-
lying data structure, and the most complex methods (e.g., boosted
trees) require few assumptions about the underlying structure of
the data. Second in Section 2.2, we analyze the utility of predictive
models trained on laboratory concrete data for predicting field
concrete strength. Third, in Section 2.3, we introduce the perfor-
mance measures used to evaluate the effectiveness of each model:
the coefficient of determination (R?), root mean squared error
(RMSE), and mean absolute error (MAE). Last, in Section 2.4, over-
fitting is discussed, which occurs when a model not only captures
the desired qualities in the data, but also begins to exactly model
the training data itself. An overfitted model is undesirable because
it lowers the predictive performance on “unseen” testing data. In
other words, overfitted models do not generalize well to real-
world cases. In this analysis, we describe and utilize nested
cross-validation as a means reduce overfitting. Reserved testing
data is used for final determination of the best-performing model.

2.1. ML methods

All models were created in the R Project for Statistical Comput-
ing [36]; in addition, Table 1 lists the ML methods employed in this
study, as well as the specific package and function used for model
training. For each ML method, we discuss parameter tuning and
the intuitive meaning of the parameters.

2.1.1. Linear regression

The simplest model to apply and analyze is linear regression. In
addition to providing useful understanding of the data, linear
regression also serves as a good baseline from which other tech-
niques can be evaluated. Linear regression is a model that
describes the output (target) variable as a linear combination of
the predictor variables [37]. This linear combination is a hyper-
plane in N-dimensional space, where N is the number of coeffi-
cients in the model. The model solution is the hyperplane that
minimizes the squared error between the observed output and
the predicted output. Mathematically, the solution is described as:

y=xp+e, (1)

where x is the input vector, g is the N-dimensional vector of
coefficients (parameters) for the linear model, ¢ is the error term,
and y is the predicted output variable from the model. The under-
lying assumption in linear regression is that the relationship

Table 1

ML models and corresponding R packages used in this study.
Model Type R Package R Function
Linear Methods
Linear regression stats Im
Polynomial regression stats Im
Transformed Linear Methods
Kernelized support vector regression kernlab ksvm
Kernelized Gaussian process kernlab gausspr
Non-Linear Methods
Regression trees rpart rpart
Random forest randomForest randomForest
Boosted trees gbm gbm

between the predictor variables and the output variable is linear.
Moreover, the model assumes that predictor variables are indepen-
dent from one another, and the resulting residuals, the difference
between the predicted and observed output variables, are both
homoscedastic (i.e.,, have constant variance) and normally dis-
tributed. When these assumptions are violated, it indicates that a
linear model is not appropriate. When such violations occur, it is
reasonable to use transformations on the input data to try to
reduce or eliminate the violation in assumptions. Failure of such
methods to improve the resulting model error and reduce violation
of the assumptions means that the dataset requires more complex
non-linear models.

2.1.2. Multivariate polynomial regression

Multivariate polynomial regression (called polynomial regres-
sion in this study) uses nth degree polynomials of the input vari-
ables to predict the output variable. Polynomial regression is a
generalization of Eq. (1); however, each x term may be: (1) an orig-
inal predictor variable (e.g., X;), (2) a pure higher-order term of one
predictor variable (e.g., x}), or (3) an interaction term between two
or more predictor variables (e.g., x1x3)

A generalized example of an expanded second-order polyno-
mial solution with two predictor variables (for simplicity) is
described by:

Y = Bo+ BiX1 + PoXa + B11X3 + PoaX3 + BraXiXa (2)

The transformation of the predictor variables allows for model-
ing of higher-order relationships and modeling interactions
between the input variables; Eq. (2), for example, shows a para-
bolic relationship. When the original predictor variables are trans-
formed, they are called “features.” This term, also commonly
applied to all input variables of the models, denotes the fact that
the inputs have been transformed from their original space. In this
analysis, polynomials up to third-order are employed, where third
order is chosen due to limits in computational power. Since poly-
nomial regression is a form of linear regression, the same assump-
tions are required—more specifically, independence of the input
features, homoscedasticity of the residuals, and normality of the
residuals. Note, however, these assumptions apply to the trans-
formed features and not the original data space.

2.1.3. Kernalized regression methods

Kernalized regression methods utilize two mathematical con-
cepts applied in tandem - a transformation of the predictor vari-
ables and the pairing of the new predictors with a regression
method. These pairings can then be analyzed in order to determine
which (if any) kernel and regression assumptions fit the data well.

Kernels are a set of transformations that can be used to map the
original predictor variable space to a high-dimensional feature
space [34]. Here, this mapping is more complex than the polyno-
mial mappings in the previous section, and all mappings are the
result of extensive previous research effort [38]. Each kernel has
its own set of tuning parameters that must be optimized. This paper
compares four Kkernel transformations, including: linear kernel,
radial basis function (RBF) kernel, sigmoid kernel, and polynomial
kernels (up to order 4). The model order of the polynomial kernels
is only limited by the available computational power.

Kernel transformations have the form:

kx,x) = ($(x), ¢(x)) 3)

where k is the kernel function, x and & are N-dimensional input
vectors (N is the number of predictor variables), and ¢ is a mapping
from m dimensions to an m-dimensional space. Note that
(¢(x), ¢(x')) denotes the inner product between the two mappings
and can be thought of as a measure of similarity between the two



4 M.A. DeRousseau et al./Construction and Building Materials 228 (2019) 116661

transformed vectors. The kernel tuning parameters are optimized in
tandem with the optimization of a regression model. This optimiza-
tion is discussed below. Table 2 provides the kernel transformation
equations and kernel tuning parameters used in this study.

The transformed variables (features) can be utilized with any
regression method. The concept here is that parameters for both
the kernel transformations and the regression methods are tuned
simultaneously such that the cross-validated model error is mini-
mized. When there are multiple tuning parameters, a grid search
technique is employed in order to find near-optimal parameter val-
ues. In this paper, two kernalized regression methods are tested:
support vector regression and Gaussian process regression.

Support vector regression (SVR) is a version of support vector
machines (SVM) used for regression purposes (rather than classifi-
cation) [39]. The regression model generated by SVR depends on
only a subset of the dataset, and these data points are deemed sup-
port vectors. When an SVR model is trained, support vectors are the
points from the dataset that produce error values (€) larger than a
prescribed threshold value. SVR model training generates values
for By, (the coefficients for the transformed support vectors) and
Bo (the intercept). This occurs via minimization of Eq. (4) using gra-
dient descent:

=

min: H(fp, fo) = V(%—?)%Zﬁi 4)

I
—_

Here, V(r) is the prescribed error measure, y is the observed tar-
get variable, and 1 is a regularization parameter that serves as a
degree of importance given to large error values. When /4 increases,
large errors are more greatly penalized in the model; this parame-
ter can be tuned using cross-validation. In this study the SVR is
paired with the aforementioned kernel transformations in order
to examine the utility of transformations of the predictor variables.

The second regression method that is employed with the
kernel-transformed data is Gaussian process regression (GP). GP
can be thought of as the Bayesian interpretation of linear regres-
sion. Rather than assuming that the relationship between the pre-
dictor variables and the target variable has the prescribed linear
functional form (e.g. y = x"g), GP simply assumes that the data
can be represented as a sample from a multivariate Gaussian distri-
bution and that the mean of this distribution is zero. Using GP, the
predictions of the target variable are made using the conditional
probability, p(y.|y). In short: given the data, how likely is a certain
prediction for y,? Here, note the difference between y and y,. y
represents a predicted target variable from a model, and y, repre-
sents a distribution of possible outputs from the model. In the case
of GP, y is the expected value of y_,E[y.] = E[y.|y].

Given the assumed Gaussian distribution, the matrix of all pre-
dictor variables in the dataset (X), the output vector (y) and the
new matrix of data inputs, the goal is to make a prediction on
the new set of data points (x,). The derived conditional distribution
has the form,

iy ~ N(I(J(*ly, K**—K*K”KI» (5)

where K, K,, and K., are the covariance matrices resulting from
k(x,x), k(x.,x), and k(x.,x,'), respectively. The prediction, y, is

Table 2
Kernel Transformation equations and tuning parameters.

Name Kernel Transformation Tuning Parameters

Linear
Radial Basis Function

k(x,x) = (x, ¥') n/a
k(x,x') = exp(—yH x—x HZ) b
v, 1,and d

Polynomial k(x.®) = (y(x, %) + 1)

the expected value of this distribution, which can be reduced to
the equation below.

y=KK'y (6)

Since GP employs only the assumption of a Gaussian distribu-
tion and the covariance matrices for model formulation, no tuning
parameters are necessary for this regression method beyond those
required for the choice of kernel. The performance of GP allows us
to assess the veracity of the Gaussian distribution assumption for
the data under multiple different transformations of the predictor
variables. If none of the above regression methods can adequately
model the output variable, models with no linearity assumptions
(e.g. regression trees) are reasonable model options consider.

2.1.4. Regression trees

The goal of a regression tree is to generate partitions in the pre-
dictor variables such that the target variable can be predicted
based on the partitions among the input variables. Fig. 1a provides
a simple illustration of regression tree “nodes” (i.e., partition rules)
and “leaves” (i.e., terminal nodes that lead to one output value). For
instance, in the example provided in Fig. 1a, there are two predic-
tor variables (x; and x;). The “root node” (the uppermost blue
ellipse) is a rule that partitions the data along x;. For this node, if
X; is greater than 7.5, then the predicted output (in red) is 0.8.
However, if the value of x; is less than 7.5, then one must proceed
to the next node in the tree. This process continues until a pre-
dicted output variable is reached. For the same example regression
tree, Fig. 1b demonstrates that a regression tree partitions the pre-
dictor variables into rectangular spaces; and the predicted output
is the same value throughout each of these rectangular cells.

Training a regression tree is performed by selecting partitions in
succession using a criterion of variance reduction in the target vari-
able [40]. Since each successive partition is always chosen such
that the variance of the target variable is reduced, regression trees
are prone to overfitting the data. To prevent overfitting, a variety of
regularization techniques can be employed. This study minimizes
the cost complexity function, which places a penalty for each addi-
tional node that is selected for the model. As shown below, the cost
complexity function R,(T) has two terms that influence its value:

Ro(T) = R(T) + o0+ f(T), (7)

where R(T) is the training error, f(T) is the number of leaves in the
regression tree, and o is the regularization parameter that is deter-
mined via cross-validation [41]. In Section 2.3 the cross-validation
procedure used in this study is thoroughly discussed.

Regression trees have the advantage that they do not assume
linearity in the data, and, therefore, no complex data transforma-
tions are needed. Overall, this approach is simpler than linear
methods, but it requires careful consideration so as not to overfit
the data. Regression trees also implicitly select variables, which
means that a trained regression tree will show variables that have
more importance for predicting the target variable in earlier nodes
in the tree. Lastly, regression trees are interpretable and can pro-
vide some insight on the dataset being analyzed.

A disadvantage of simple regression trees is that they suffer
from model instability; in other words, small changes to the data-
set might create a completely different set of partitions, and, con-
sequently does not lead to the best-performing model. For this
reason, more complicated tree-based methods are often consid-
ered that are more stable. Random forest and boosted trees are
examples of more complex tree-based methods that aim to reduce
this instability and are discussed in the subsequent sections.
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Fig. 1. (a) Diagram of an example regression tree model with two predictor variables, x; and x,. (b) This diagram shows the same decision tree using the two predictor
variables as axes. It helps visualized the rectangularity of the target variable predictions when simple regression trees are employed. Within each rectangle the predicted

target variable would be the same.

2.1.5. Random forest

Random forest is a method that builds an ensemble of regres-
sion trees in order to reduce the instability of individual trees. Ran-
dom forest utilizes two strategies for improving the instability
issue. First, it employs the concept of “bootstrap aggregation”
(sampling with replacement) in order to generate many similar
datasets that were sampled from the same original dataset. These
datasets each lead to an individual tree within the ensemble. Sec-
ond, it incorporates randomness during tree-learning in order to
reduce the correlation between each tree within the ensemble.
For instance, when generating new nodes (for individual trees
within the random forest), only a subset of the original predictor
variables is selected as the set of candidate variables on which to
partition the data. The variable value that minimizes variance in
the output from these randomly selected predictors is the variable
selected for that node. This process is repeated for all nodes in a
regression tree and then for all regression trees in the random for-
est. For a random forest model, the tuning parameters are: the
number of randomly selected predictors (k), the number of individ-
ual trees that are trained (n), and the tree depth (d) [42].

The advantage of the random forest method is that it signifi-
cantly reduces the instability of simple regression trees. Further-
more, this method has been shown to minimize correlation
between trees compared to other tree-ensemble methods (e.g.
“bagging trees” that use only bootstrap aggregation and not ran-
dom variable selection) [40]. One disadvantage of random forests
is their reduction in interpretability compared to simple regression
trees; random forests cannot be easily visualized and individual
trees are often not good predictive models on their own. However,
variable importance plots can reveal the relative importance of
predictor variables.

2.1.6. Boosted trees

Like random forest, boosted trees are an ensemble method for
dealing with the instability and poor predictive performance of
simple regression trees. Generally, the concept of “boosting” is an
ensemble strategy that can be used to improve weak learning algo-

rithms (e.g. regression trees) [43,44]. Boosting can be applied to
any weak learning algorithm but is commonly utilized for regres-
sion trees. The main concept of boosting is to build a model using
the weak learning algorithm. Then another model is learned on the
residuals from the first model. This step of model-building on the
previous model’s residuals is repeated for a set number of itera-
tions. Therefore, a boosted tree is simply a model where the weak
learning algorithm used in each iteration is a regression tree.

Unlike random forest in which all trees are of the same impor-
tance, boosted trees are hierarchical, meaning that each tree layer
is constructed recursively. The tuning parameters for boosted trees
are: the number of trees, the interaction depth (maximum number
of nodes per tree), the minimum number of observations per node
(a stopping criteria used to prevent trees that have only one obser-
vation at each leaf), and the shrinkage rate (the rate at which the
impact of each additional tree is reduced).

Boosted trees are similar to random forest in their advantages
and disadvantages. Boosted trees tend to have high predictive per-
formance on highly nonlinear datasets and can be successful on
problems where there is unequal importance of predictor variables
[34]. One disadvantage of boosted trees is that this method has low
interpretability; it is difficult to gain much intuition of the patterns
that the model has learned or to determine why a boosted tree
model is successful (or not) at predicting the target variable. This
means that a strong ML pipeline must be used to train boosted
trees to ensure that the approach has not overfit the data.

2.2. Testing of laboratory and hybrid models for field concrete strength
prediction

2.2.1. Laboratory models

As was discussed in the introduction, many studies in the liter-
ature have developed ML models for predicting concrete compres-
sive strength using laboratory concrete datasets. While these
laboratory models report high predictive performance [2,4-
8,10,26,27], it has not yet been tested whether they are useful for
predicting the compressive strength of field concrete. A significant
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novelty of this study is that laboratory models are tested to deter-
mine if they are, in fact, useful for predicting compressive strength
when presented with other datasets - namely, field concrete data.

One issue preventing the direct testing of laboratory ML models
from the literature is the use of concrete age as a predictor variable.
In other studies, age is a convenient predictor variable because it
can explain a high percentage of variance in compressive strength
data. In other words, removing age as a predictor and using only
the final compressive strength as the output causes the compres-
sive strength problem to be significantly more difficult (i.e., model
performance measures tend to be poorer). In this analysis, the
desired model output is the final compressive strength (approxi-
mated by the 28-day strength) of a concrete mixture as a function
of only the quantities of the mixture ingredients. Due to this differ-
ence between the prediction problem described herein and that of
the literature, laboratory models for predicting the 28-day com-
pressive strength using laboratory concrete data have been trained
specifically for this study. Model utility is examined via the process
described below and illustrated in Fig. 2.

First, the aforementioned suite of ML models (i.e., linear regres-
sion, polynomial regression, kernel regression, tree-based models)
is trained and tested using the laboratory data described in Sec-
tion 3. The model with the best testing performance is selected.
Then, the predictor variables from the field data are used as inputs
and the performance measures and diagnostic plots for this new
data shall be reported and analyzed.

2.2.2. Models trained on hybrid data

It was hypothesized that the previously-described laboratory
model will not satisfactorily predict the compressive strength of
real concrete mixtures. Thus, an analysis of models trained on
hybrid data (i.e., a dataset that is composed of both field laboratory
data) is conducted to determine whether they can improve predic-
tive performance compared to “pure” laboratory models.

Models trained on hybrid data are potentially valuable because
there is an inherent tradeoff between the use of laboratory and
field models for predicting real concrete compressive strength.
On one hand, laboratory data is the cheapest and most accessible
data to acquire. It is also the best method for exploring new and
exotic concrete mixtures that are uncommon in industry. However,
laboratory compressive strength data has the disadvantage that it
does not reflect the full set environmental variables experienced
by field concrete. Accordingly, it is expected that ML models
trained on hybrid data may have the potential to improve the pre-
dictive performance of laboratory models.

In this novel hybrid approach, a percentage, o, of the hybrid
dataset is composed of the field data, and the rest is composed of
the laboratory dataset. This procedure is used to determine if small
amounts of field data can improve model performance. In order to

Suite of models trained on laboratory data

determine the effect of variable amounts of field data, different o
values are utilized (10%, 20%, 30%, 40%, and 50%). The model build-
ing process occurs, as follows, for each value of o:

For each o

1. Sort the field dataset in the order of lowest compressive
strength to highest compressive strength and partition this
sorted dataset into quintiles.

2. In order to ensure the field data portion of the hybrid data is
well-sampled, randomly sample (in equal number) the appro-
priate number for points from the quintiles of the sorted field
dataset. Randomly sample from the field dataset the appropri-
ate number of points.

3. Use this hybrid data to train a cross-validated ML model. (The
selection of ML model is determined by the best performing
laboratory model.)

4. Use the remaining, unsampled field data to determine the aver-
age testing performance of the hybrid model. The performance
measures described in the following section are reported.

5. Repeat steps 1-4 five times to find average performance mea-
sures for each oL

2.3. Performance measures

When training statistical, data-driven models, it is necessary to
have a method to quantify the model performance so that hyper-
parameter tuning can be iterated to select the best possible model.
There are several established metrics for determining predictive
performance, each with advantages and disadvantages, which will
be discussed below. Common quantitative performance measures
common to regression modeling (rather than classification model-
ing) include the coefficient of determination (R?), root mean square
error (RMSE), and mean absolute error (MAE) [45,46]. These met-
rics, coupled with model diagnostic plots and visualization of pre-
dicted versus observed output values, provide a comprehensive
picture of a model’s performance.

R? is a measure of the proportion of the variance in the data that
is explained by the model. Accordingly, R? is the ratio shown in Eq.
(8), where y; is the observed value from the data, y; is the predicted
value from the model, and y is the average output from the data.

2 Sii-y)
R — y) (®)
2=y

The value of R? ranges from zero to one, with higher values indi-
cating a better ability to explain the variance in the data with the
model. However, R? is a measure of correlation, not accuracy, and
should be used with other performance measures because it is
dependent on the variance of the output variable.

A
r N
Field dat_a predictor
Model 1 l Model 2 Va”*:b'es
S ——— [—— N
e —— Laboratory model with
Model 3 Model 4 |- best testing performance I
— ] — — ]
—
\%
Model 5 ’ Model 6 Model predictions and
performance metrics

Fig. 2. Process for testing the predictive capability of laboratory models using field concrete data. The dotted outline indicates the laboratory model that is selected based on

its performance measures.
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The root mean square error (RMSE) indicates how concentrated
the data is around the model fit. The RMSE is measured on the
same scale as the output variable, and is always positive due to
the squared residuals in its calculation. Using the RMSE accentu-
ates the effect of outliers in the error metric. This means that if
median error of the model (usually captured by the mean absolute
error) is low, the RMSE of the model can still be large due to the
inability to model some outliers in the data. Given observed val-
ues,y;, predicted values, y;, and n observed values RMSE is calcu-
lated as:

RMSE =

The mean absolute error (MAE) is a measure of prediction accu-
racy of a model that uses the absolute value of the errors rather
than a squared value. The use of the absolute value reduces the
influence of very large errors on the measure of performance. Thus,
MAE is a measure of the median error of the model and is compli-
mentary to the use of R? and RMSE.

MAE:LH'{" —i (10)

Like RMSE, MAE is measured on the same scale as the output
variable, and a lower value indicates a better model fit. In addition,
MAE values for a model are typically smaller than the RMSE value
for the same model. In this paper we chose to use both RMSE and
MAE in order to report both the median and mean error of each
model.

2.4. Cross-validation

A critical issue to consider when training and comparing statis-
tical and machine learning models is the prevention of overfitting.
Overfitting is a problem for ML models that have a high capacity
to learn non-linear relationships and are trained on datasets that
do not contain a sufficiently large variance of the data (i.e., on data-
sets that are not rigorously sampled). When using iterative training
methods such as grid search, a model is particularly prone to over-
fitting if the same data is used for the training and validation data-
sets. In this case, the resulting performance measures would
indicate that the model has good predictive performance, but
when these models are tested on new data, poor performance is
observed.

To prevent overfitting, ML learning methods and pipelines can
employ several strategies. The strategy employed herein, is called
nested cross-validation (nested CV), which splits the data into
“training”, “validation”, and “testing” datasets. In the “inner CV
loop”, the performance measures are approximately optimized by
fitting a model to each of several training datasets. Subsequently,
the performance measures are directly optimized by selecting

hyperparameters with each validation dataset. In the “outer CV
loop”, the testing error is estimated by averaging test set scores for
several dataset splits. In order to prevent data leakage, it is critical
that the trained models have never been exposed to the testing data.

When performing CV, the selection of the sizes of the training,
validation, and testing sets is critical because this choice affects
the bias/variance tradeoff for a given statistical model. To strike a
balance between bias and variance error, this paper uses five folds
(i.e., partitions) for both the inner and outer CV loops which can
generate a favorable bias/variance tradeoff according to the litera-
ture [34]. This choice results in 25 validation scores and 5 testing
performance measure scores for each model.

3. Datasets

In this study, two datasets - field and laboratory concrete com-
pressive strength data - are used. The field dataset is from the Col-
orado Department of Transportation (CDOT); it has 1681 mixture
designs and corresponding compressive strength values. The mix-
ture constituent variables in this dataset include masses of cement,
fly ash, water, water-reducing admixtures (WRA), coarse aggre-
gate, fine aggregate, and percent air entrainment. The laboratory
dataset was obtained from the Machine Learning Repository at
the University of California, Irvine [35]. This dataset contains over
1000 mixture designs and corresponding compressive strength
values. However, it originally contained some mixtures that
included blast-furnace slag (a mixture ingredient not included in
the field dataset) as well as some mixtures in which the compres-
sive strength was measured earlier than 28 days of curing. In order
to reconcile these differences, only mixtures that do not include
blast furnace slag and that measure compressive strength after
28 days are included in this analysis. This decision reduced the
number of usable mixtures to 311. One last discrepancy is that
the laboratory dataset does not report air entrainment values. It
is not clear which of the following is true: a constant amount of
air was entrained, no air was entrained, or variable amounts of
air were entrained but not reported. Notably, this discrepancy does
not prevent model training for either dataset. However, when the
best laboratory predictive model is used to predict field compres-
sive strength, the air entrainment predictor cannot be utilized.

Table 3 provides a statistical summary of the two datasets. The
laboratory dataset has been converted to US customary units for
ease of comparison. Note also that both datasets have used the Abso-
lute Volume Method for proportioning concrete mixtures, which
generates weights of ingredients on a cubic yard basis; this means
that ingredient quantities are comparable between datasets.

4. Results and discussion

In this analysis, we evaluate the predictive performance of the
aforementioned ML models. The values for RMSE, MAE, and R?
for all models are reported in Fig. 3. Low values for RMSE and

Table 3
Statistical summary of laboratory- and field-acquired datasets.
Dataset Statistic Cement Fly Ash Coarse Aggregate Sand Water Air WRA Strength
Units Ibs/yd> Ibs/yd> Ibs/yd? Ibs/yd> Ibs/yd? Vol. % oz/yd? psi
Lab Mean 501 113 1678 1332 307 - 149 5357
Median 487 161 1689 1330 314 - 154 5362
Min 227 0 1350 1001 236 - 0 1239
Max 910.2 337 1896 1593 384 - 761 11,602
Field Mean 540 106 1697 1256 265 6.6 28 5938
Median 528 120 1725 1250 265 5.8 24 5820
Min 395 0 430 445 142 0 0 3400
Max 900 250 2240 2250 392 9.6 305 13,040
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MAE, and high values for R? indicate better model performance,
respectively. For simplicity of discussion, RMSE is used as the pri-
mary metric of performance. In addition, both the testing and val-
idation performance is reported, which facilitates the discussion on
overfitting in the models. These performance measures are plotted
as boxplots to illustrate the range and variance of the error. The set
of errors for each model is determined using a nested five-fold
cross-validation, with five testing values and twenty-five training
values for each model. Each model’s performance from a method-
ological standpoint is discussed in the sections to follow. The
methodological and architectural reasons for each model’s perfor-
mance are also examined.
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Fig. 3. Boxplots of the three cross-validated performance measures - (a) RMSE, (b)
R? and (c) MAE for all ML models. Both the training and testing performance
measures are reported. The abbreviations are as follows: linear regression (Linear),
polynomial regression (Poly), support vector regression (SVR), Gaussian process
regression (GP), regression tree (RT), boosted tree (BT), random forest (RF). Kernels
are referred to as follows: second-order polynomial (Poly 2), third-order polynomial
(Poly 3), fourth-order polynomial (Poly 4), radial basis function (RBF).

4.1. Linear regression

Linear regression is the first model tested in this analysis. This
model assumes that the predictors are independent and the resid-
uals are homoscedastic and normally distributed. The performance
of linear regression is used as a baseline for comparing model per-
formance and for determining what other models may be more
appropriate for the data. For the linear regression model, Bayesian
information criterion (BIC) - a parsimonious model selection crite-
rion - is employed to select important predictor variables. Of the
seven mixture ingredients, BIC selects five of these as predictor
variables (cement, fly ash, water, air, and WRA); this model has a
mean testing RMSE, MAE, and R? of 803 psi, 582 psi, and 0.40,
respectively. Of note is the relatively low value of R?, which indi-
cates that a linear model is only able to capture 40% of the variance
in the data.

There are two possible reasons for the poor performance of this
model. One reason is that there are strong predictor variables that
were not measured in the dataset. Consequently, the model does
not have all necessary information and is unable to perform well.
A second possible reason is that the data does not fit the linear
assumption of the model, that is, the assumption that the predic-
tors are linearly related to the output. These possibilities are fur-
ther evaluated below in diagnostic plots.

Four diagnostic plots are shown in Fig. 4. Fig. 4a shows a plot of
the residuals versus the predicted outputs; significant deviation of
the smoothed red line indicates non-constant error variances and
outliers. For this model, the smoothed average of the error vari-
ances indicates nearly constant error variance. The quantile-quan-
tile (Q-Q) plot (Fig. 4b) diagnoses the normality of the residuals.
Normal residuals (in the statistical sense) lie along the dotted line;
however, this figure indicates that there is some deviation from
normality of the residuals among higher residual values. Fig. 4c
is a scale-location plot, which illustrates whether the homoscedas-
ticity assumption is violated. For this plot, the residuals are stan-
dardized (to have a mean of zero and a variance of one) and the
absolute value is taken. This plot shows that there is a slight
increase in error variance with increasing compressive strength,
which is indicative of minor heteroscedasticity. Lastly, Fig. 4d
shows the standardized residuals against their leverage, which is
helpful for indicating if particular points more strongly influence
the regression. In this case, a few outlier points more highly influ-
ence the regression. However, the figure illustrates that points
with high leverage tend to have standardized residuals of low mag-
nitude. In other words, there is no great concern of large residuals
also having too great of leverage over the fit.

One conclusion from the model diagnostics is that there are
only minor assumption violations (non-normality of residuals
and heteroscedasticity). Despite this result, the linear model
retains poor predictive performance, which indicates that there
are unmeasured variables needed for predicting compressive
strength. Nevertheless, it is reasonable to investigate the use of
other types of models to determine if improved performance can
be achieved.

4.1.1. Polynomial regression

Polynomial regression introduces higher order terms and inter-
action terms between variables, which can sometimes improve
model performance because they approximate unobserved phe-
nomena. Here, the polynomial regression has potential because
the linear regression analysis indicates a lack of the necessary pre-
dictors for improving model performance. In this analysis, polyno-
mial regression is employed for second order and third order terms
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referred to the web version of this article.)

to determine if there is a physical basis for higher order variables
or interaction terms.

One key aspect of polynomial regression is that the method acts
like a feature selection method. In other words, a set of polynomial
features is created, and then the features with the largest reduction
in RMSE are kept for the final model. This is the method by which
interaction terms are discovered. During the experiments in this
paper, the following terms were discovered and included in the

model: (Water) x (WRA) x (Air) and (Cement)2 x (Flyash). The first

feature is somewhat intuitive; it is expected that some interaction
between water and WRA would be relevant. However, it is somewhat
less intuitive that air content is also a part of this feature. The second
feature is intuitive because it is expected that fly ash and cement
would interactively have an impact on concrete compressive
strength. Promisingly, polynomials of order two and three decrease
the training RMSE compared to the linear model by 2.0% and 2.8%,
respectively. Given this trend, it’s likely that the RMSE of this model
will decreasewith increased order and computational power.

In addition to the training error, we also evaluated the testing
error. The testing error values for polynomial orders two and three
are higher than the training error by 40.6% and 123.8%. This result
suggests that the polynomial regression models are too flexible
and overfit the data as the polynomial order grows. Thus this
model type is not suitable for compressive strength prediction in
concrete.

4.2. Kernel transformations and regression
A different approach to discovering interactions and modeling

unobserved phenomena is to use non-linear transformations of
the data. Some of these are commonly known as kernel transfor-

mations. This section will survey techniques in using kernel
transformations.

4.2.1. Support vector regression

Solving the regression problem using kernel transformations,
support vector regression is a popular technique that has shown
good results in the literature. In this paper, an array of kernels
was tested in cross-validation. These kernels include the RBF ker-
nel, and polynomial kernels (2, 3, and 4).

One of the major goals of adaptive regression techniques like
SVR is to discover any underlying structure in the data. Of the
tested kernels, the RBF kernel has the greatest reduction in RMSE
compared to linear regression. Here, RBF SVR reduces the average
RMSE by 2.9%. In contrast, the linear and polynomial kernels
(orders 2, 3, and 4) reduce this error by —0.6%, —0.1%, 1.1%, and
0.2%, respectively.

From this result, it is inferred that the RBF kernel generates the
optimal hyperplane for linearly separable patterns among the
tested kernels. The smaller improvement from polynomial kernels
reveals that polynomial space abstractions are not sutiable for
these polynomial orders and at this computational cost.

The performance of SVR with RBF demonstrates that transfor-
mation of the predictor variables improves upon the linear regres-
sion baseline model. However, as will be demonstrated in section
3.3, further improvements in performance can be made with other
models. One possible explanation for this behavior is that SVR can
suffer from the curse of dimensionality in the sense that all terms
in the transformed space are given equal weight, so the kernel can-
not adapt itself to focus on the critical “subspaces” of the data [34].
Hastie et al. illustrates this concept via a prediction problem with
four standard normal features (ie., ‘“real” features) with a
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polynomial decision boundary and six Gaussian random features
(i.e., “noise” features) [34]. Although applying a polynomial kernel
with SVR reduces the test error, the signal to noise ratio is poor. In
the example, kernelized SVR is unable to perform as well compared
to when the real features are the only modeled features. We
hypothesize that this behavior is also true in this case; the noise
of irrelevant variables essentially overpowers the predictive capa-
bility of SVR to capture the true underlying behavior of field com-
pressive strength.

4.2.2. Gaussian process regression

As is displayed in Fig. 3 the GP training and testing performance
show that the RBF kernel also generates the highest performance
for GP for the kernels utilized in this study. Compared to the linear
regression baseline, the GP with RBF-transformed data decreases
the average testing RMSE by 3.6%. Utilizing the linear and polyno-
mial (orders 2, 3, and 4) transformations, the reduction in RMSE is
—0.1%, 1.0%, 2.5%, and 1.6% respectively. With these results, we can
conclude that the same transformation (RBF) generates the hyper-
plane most suitable for use in both SVR and GP.

Moreover, this analysis shows that GP is preferred over SVR for
this type of data due to its improved performance measures. We
hypothesize that GP is a better-performing method (compared to
SVR) due to its more sutiable Gaussian assumption. Unlike GP,
SVR retains the assumption that a transformation of the predictor
space causes the data to be linearly separable. GP, on the other
hand, makes predictions based on the maximum likelihood of an
output given the data, normal parameter distributions, and penalty
term that minimize the prediction error. The improved perfor-
mance of GP over SVR indicates that model performance improves
when no linearity assumption exists.

4.3. Tree-based models

4.3.1. Simple regression trees
Unlike the aforementioned techniques, tree-based methods
assume that the predictor variables may be partitioned repeatedly

and that each final partition generates a different output value. For
the simplest tree-based method (regression trees), the average
testing RMSE indicates an increase of 6.9% compared to linear
regression. We hypothesize that this result is due to the instability
of regression trees. In other words, the constructed nodes for a tree
may change significantly if the input training sample is slightly
changed. Fig. 3 illustrates the decreased performance of this model
for all three metrics: RMSE, MAPE, and R

Although the testing performance of the simple regression tree
indicates it should not be used for prediction, the results of the
model can be used to better understand the relative importance
of certain variables for determining concrete compressive strength.
In Fig. 7, the nodes (e.g. Cement <569 lbs.) and terminal node pre-
dictions (e.g. 4868 psi) are illustrated in the regression tree graph.
Values of cement are the first and second nodes, as well as multiple
nodes lower in the tree, which indicate the importance of cement
quantity as a discriminating predictor variable for this tree. The
next most important variable is the quantity of fly ash, which, like
cement, has positive correlation with strength. All of the mixture
ingredients appear in nodes in the tree, indicating that all are valu-
able for prediction.

4.3.2. Boosted trees

Boosted methods are used to reduce the instability of single
trees. In this paper, the ensemble tree model reduced the average
testing RMSE by 13.2% compared to the simple regression tree
and by 6.9% compared to linear regression. For this dataset,
boosted trees are the second best method for prediction based on
the three performance measures. Notably, the average training
RMSE for boosted trees (749 psi) is slightly lower than that of
the random forest model (751 psi). However, the random forest
model has the lower testing RMSE by 5.4%. Despite the nested
cross-validation routine, it appears that the boosted tree model is
slightly overfitted due to the higher value of testing RMSE com-
pared to the training RMSE. Recall from section 2.1.6, that this
method iteratively builds regression trees on the residuals from
each consecutive tree. We hypothesize that the model has learned
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noise in the residuals rather than signal in the data, which has lead
to lower testing performance.

4.3.3. Random forest

Like boosted trees, the random forest model reduces the insta-
bility of simple regression trees by utilizing an ensemble of trees
that utilize bootstrap aggregation and random variable selection.
Consequently, the model decreases the average testing RMSE by
9.4% compared to the linear model. It also improves upon the test-
ing RMSE of the simple regression tree by 20.0%. Furthermore, the
average testing error is slightly lower than the average validation
error (730 psi versus 739 psi) indicating that it is unlikely that
the random forest model is overfitted. These testing and validation
performance measures indicate that random forest is the best
method for predicting compressive strength with this dataset. It
has the lowest RMSE and MAE as well as the highest R*2 value
(730 psi, 530 psi, and 0.51, respectively).

This result may be due to the ability of tree-based methods to
learn inconsistent variable importance in the data. In other words,
each tree, trained on a subset of the data might learn a slightly dif-
ferent set of variable importance weights. In aggregate, the random
forest can then better predict the target variable. An example of
inconsistent variable importance can be seen in Fig. 5; for mixtures
with cement quantities of less than 569 Ib, the next most impor-
tant variable for determining strength is fly ash. In contrast, above
569 Ib, the next splitting criterion is an even higher quantity of
cement. Not only do random forest models have the ability to learn
inconsistent variable importance, they also reduce the instability of
individual trees and reduce the potential for overfitting [47].

4.4. Prediction of field compressive strength with laboratory and
hybrid models

4.4.1. Models trained on laboratory data

As was discussed in Section 2, many studies in the literature
have developed ML models for predicting concrete compressive
strength using laboratory datasets. While these laboratory models
report high predictive performance, it is relevant to consider
whether they are useful for predicting field concrete strength.

Consequently, in this study, a suite of ML models (i.e., linear
regression, polynomial regression, kernel regression, tree-based
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Fig. 6. Predicted versus observed plot for field compressive strength predictions

using the random forest laboratory model, which illustrates the models tendency to
overpredict strength.

models) is trained and tested using the laboratory data described
in Section 3. Among those tested, the highest-performing model
for the laboratory dataset is the random forest model, in which
the number of random variables selected at each node was 3,
and the number of trees was 550 trees; this model achieves a test-
ing R? value of 0.80.

Subsequent to the random forest model selection, the predictor
variables from the field data have been used as inputs in the labo-
ratory random forest model to determine how well the model can
predict compressive strength of real concrete. The predicted output
is plotted versus the observed field strength value in Fig. 6. Points
near the 1:1 line would indicate a high-performing model. This
plot shows that despite its high performance using laboratory data,
the laboratory model is not able to predict field strength to a high
degree of accuracy; the RMSE for the field data is 1655 psi. Further-
more, this plot illustrates that, overall, the laboratory model tends
to over-predict compressive strength. It is likely that this effect is
due to the ideal curing conditions in the laboratory setting, which
would tend to generate higher compressive strength values than if
the same mixture was cured under highly variable environmental
conditions.
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4.4.2. Models trained on hybrid data

As was described in Section 2.3.2, models employing hybrid
training data are explored in order to determine if small amounts
of field data can improve the performance of laboratory ML models
for predicting compressive strength of field concrete. In this anal-
ysis, o values of 10%, 20%, 30%, 40%, and 50% replacement percent-
ages are selected via the quintile sampling method discussed in
section 2.3.2. The remaining, unused field data is to determine
the average testing performance of each hybrid model.

As was hypothesized, the inclusion of small percentages of field
data significantly reduces the RMSE MAE and increases the R®
(compared to a pure laboratory model). As is shown in Fig. 7, the
most significant model improvements occur with the addition of
the initial 10% of field data, which reduces the RMSE by 43.0%.
However, continued performance improvements occur with the
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additional supplementation of field data driving the models. Fur-
thermore, Fig. 8 illustrates via predicted vs. observed scatter plots
how the addition of field data improves predictive performance. A
model comprised of 100% field data (Fig. 6), which was analyzed in
Section 4.3, is the standard with which the hybrid models are com-
pared in terms of the extent to which predictive performance could
be improved. This analysis illustrates that ML modeling of hybrid
training data is a promising area of research that improves upon
the downsides of field models and laboratory models being used
in isolation.

Future research in this area may explore different ML methods
(ie., models other than random forest) or other hybridization
strategies for utilizing hybrid training data. In addition, it may be
of interest to focus this modeling procedure on concretes with exo-
tic mixture ingredients, which inherently have been rarely
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Fig. 8. Scatter plots of predictive versus observed for ML models trained on hybrid data with the following percentages of field data: (a) 10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%.

Points lying near the one-to-one line indicate better model performance.
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employed in industry, and thus, have few data points with which
to model compressive strength.

5. Conclusions

The goal of this work was to specifically analyze the compres-
sive strength behavior of field concrete as a function of mixture
ingredient quantities. Furthermore, this work trained and tested
a variety of ML models for predicting compressive strength of field
concrete mixtures and determined which ML models are best sui-
ted for the data. By analyzing the performance measures and a
variety of diagnostic plots, the reasons for differing performance
for field concrete ML models have been elucidated. For instance,
from the linear regression model diagnostics, it was found that
there are only very minor violations of linearity assumptions; this
result indicated it is likely that important predictor variables are
missing from the data. Further manipulation of the predictor space
via polynomial regression and kernel transformation indicated that
a transformed predictor space can improve predictive capability
(via a 4% reduction in testing RMSE). Moreover, it was found that
nonlinear models, specifically random forest, generated the best
performance measures, which is attributed to its full rejection of
linear assumptions and ability to learn inconsistent variable
importance in the data.

It was also confirmed that, at the current time, the most accu-
rate prediction of compressive strength of field concrete is
achieved with models trained on field concrete data; however,
ML models that employ hybrid training data show promise for sig-
nificantly improving predictive performance of laboratory concrete
models even when only small amounts of field concrete data are
available. For instance, it was found that, when only 10% of the
training data were from field concrete, the RMSE was reduced by
43%. Moving forward, this research could be extended to explore
other ML models with the hybridized approach or applications
when it is desirable to explore modeling of exotic concrete mix-
tures and ingredients.

Broadly, the results of this research support two main conclu-
sions: (1) Prediction of field concrete strength requires the appli-
cation of nonlinear ML models using field-specific data. In
particular, advanced tree-based models, such as random forest,
are the highest-performing, even when field data is relatively less
abundant than laboratory data. (2) Although there is value in
testing and statistical-model training for the strength prediction
of laboratory concrete, these models should not be used for
stand-alone prediction of field concrete strength, because they
do not capture the many convoluting factors of field concrete
placement and curing. However, ML models that employ hybrid
training data can significantly improve the predictive perfor-
mance compared to laboratory concrete ML models that are used
in isolation.
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