

Using Calcined Waste Eggshells to Remove Sulfate in Nonpotable Concrete Mixing Water

Juan Pablo Gevaudan¹; Zoey M. Craun²; and Wil V. Srubar III, Ph.D., A.M.ASCE³

Abstract: The experimental and theoretical potential of using calcined waste eggshells (CWEs) to remove sulfate from sulfate-laden concrete mixing water was investigated in this work. Waste eggshells were first calcined at 800°C and batch-reacted with sodium sulfate solutions. Laboratory experiments elucidated the effect of initial sulfate concentration, temperature of reaction, and CWE particle size on total sulfate removal. Experimental results indicate a maximum sulfate removal of $29.5\% \pm 2.2\%$ via calcium sulfate mineral precipitation in laboratory batch reactions. To quantify the maximum sulfate removal potential of CWEs, batch reactions were simulated using PHREEQC, a geochemical code. After validating the simulation approach with experimental data obtained herein, PHREEQC was used to investigate the maximum sulfate removed as a function of CWE addition (g/L). Results indicate that sulfate-laden waters (≤4,000 ppm) can be decreased to ≤3,000 ppm with CWE additions of ≥3 g/L in order to comply with the standard specification for maximum allowable sulfates in water intended for use in the production of hydraulic cement concrete. **DOI: 10.1061/(ASCE)MT.1943-5533.0002721.** © *2019 American Society of Civil Engineers*.

Introduction

Adequate water for concrete mixtures could become a scarce resource. Experts predict that half of the world's population will be living in water-stressed areas by 2025 (WHO 2017). In industrial applications, potable water is used for concrete mixing, while regions facing water scarcity are forced instead to use surface waters or wastewaters (Su et al. 2002; Al-Jabri et al. 2011). The quality of mixing water affects both fresh- (Asadollahfardi et al. 2015; Ismail and Al-Hashmi 2011) and hardened-state (Chatveera and Lertwattanaruk 2009; Xuan et al. 2016; Ghrair et al. 2016; Barrera-Díaz et al. 2011) properties of concrete, and the presence of excess physical and chemical substances in nonpotable water (e.g., suspended solids, chloride, sulfate) can subsequently compromise the long-term durability of concrete. For example, Asadollahfardi et al. (2016) found that wastewater decreased approximately 10% of compressive strength after rapid freeze-thaw durability testing compared to concrete mixtures using potable water.

Watersheds affected by mining drainage or endemic geological features may exhibit surface waters with high levels of sulfate. Mining sites, even after closure, act as long-term sulfate pollutant sources, contaminating both groundwater and surface waters. In Germany, for instance, the Lausitz mining district is predicted to discharge approximately 11,000 tsulfate/year within the next

Note. This manuscript was submitted on February 27, 2018; approved on December 3, 2018; published online on March 27, 2019. Discussion period open until August 27, 2019; separate discussions must be submitted for individual papers. This paper is part of the *Journal of Materials in Civil Engineering*, © ASCE, ISSN 0899-1561.

40 years to the Kleine Spree and Spree Rivers (Graupner et al. 2014). In 2008, the USGS reported a broad range of sulfate concentrations (from 100 to 8,000 ppm) within the Red River Valley in Taos County, New Mexico, from both natural oxidation of pyriterich mineralized rock and waste-pile rocks from previous mining operations. Natural scar drainage and individual mine waste-pile rock drainage have sulfate concentrations of approximately 2,000 and >5,000 ppm, respectively (Nordstrom 2008). In some cases, waste-pile rock drainage was found to have sulfate concentrations up to 5,000 ppm, and scar drainage has been reported to reach sulfate concentrations of approximately 15,000 ppm (Robertson GeoConsultants, Inc. 2000).

The presence of sulfates in concrete mixing water can result in damage or deterioration of concrete due to internal sulfate attack (Fu et al. 1997; Crammond 2002). ASTM C1602 (ASTM 2018) sets sulfate limits for concrete mixing water to a maximum of 3,000 ppm. Calcium- and barium-assisted precipitation are two common sulfate-reducing methods. Calcium-assisted precipitation of sulfate leverages dissolved calcium from lime (CaO) or, more explicitly, hydrated lime (i.e., portlandite) [Ca(OH)₂], which can react with available sulfate anions to precipitate calcium sulfate compounds. However, the solubility of the calcium sulfate precipitate is approximately 2,000 ppm, limiting precipitation to sulfate concentrations above 2,000 ppm (Bowell et al. 1998). In addition, this method requires the energy and resource intensity of limestone mining, which may be a prohibiting factor in some water-stressed areas. To further reduce the concentration of sulfate, barium chloride salt may be used after lime treatment. However, the cost of this method is high, and the presence of chlorides has tangential consequences in the removal of sulfates for mixing water intended for steel-reinforced concrete applications (Bowell 2000).

Scope of Work

Given that the removal of sulfate from sulfate-laden mixing water in water-stressed areas must be inexpensive and easy to implement, this work investigates the viability of calcium-assisted removal of sulfate anions using calcined waste eggshells (CWEs), which are naturally abundant in calcite (CaCO₃). While previous studies

¹Ph.D. Candidate, Dept. of Civil, Environmental, and Architectural Engineering, Univ. of Colorado Boulder, 1111 Engineering Dr., Boulder, CO 80305. ORCID: https://orcid.org/0000-0001-6843-9747. Email: jp.gevaudan@colorado.edu

²M.S. Candidate, Dept. of Civil, Environmental, and Architectural Engineering, Univ. of Colorado Boulder, 1111 Engineering Dr., Boulder, CO 80305. Email: Zoey.Craun@colorado.edu

³Assistant Professor, Dept. of Civil, Environmental, and Architectural Engineering, Univ. of Colorado Boulder, 1111 Engineering Dr., Boulder, CO 80305 (corresponding author). ORCID: https://orcid.org/0000-0001-8226-2458. Email: wsrubar@colorado.edu

Table 1. Chemical thermodynamic data used in geochemical simulation

Mineral	Dissolution reaction	on Log K	
	Primary minerals		
Thenardite (Na ₂ SO ₄)	$Na_2SO_4 \leftrightarrow 2Na^+ + SO_4^{-2}$	0.32	-9.12
Portlandite [Ca(OH) ₂]	$Ca(OH)_2 + 2H^+ \leftrightarrow Ca^{+2} + 2H_2O$	22.80	-128.62
Lime (CaO)	$CaO + 2H^+ \leftrightarrow Ca^{+2} + H_2O$	32.70	-193.91
Calcite (CaCO ₃)	$CaCO_3 \leftrightarrow Ca^{+2} + CO_3^{-2}$	-8.48	-8.00
	Secondary minerals		
Gypsum (CaSO ₄ :2H ₂ O)	$CaSO_4: 2H_2O \leftrightarrow Ca^{+2} + SO_4^{-2} + 2H_2O$	-4.36	1.00
Anhydrite (CaSO ₄)	$CaSO_4 \leftrightarrow Ca^{+2} + SO_4^{-2}$	-4.61	1.00
Mirabilite (Na ₂ SO ₄ :10H ₂ O)	$Na_2SO_4:10H_2O \leftrightarrow 2Na^+ + SO_4^{-2} + 10H_2O$	-1.11	79.44

Sources: Data from USEPA (1991); Gustafsson (2011); Allison et al. (1991); Stumm and Morgan (1996).

have investigated the use of CWEs in removing other water contaminants from wastewater, such as cadmium and phosphate, (Köse and Kivanç 2011; Kuh and Kim 2000), to the authors' knowledge no other studies have investigated the use of CWEs as a primary calcium source for calcium-assisted sulfate removal. In addition to experimental batch reactions, a geochemical simulation modeling code (PHREEQC) was used in this study for experimental verification, validation, and prediction of sulfate removal to investigate the maximum sulfate removed as a function of CWE addition (g/L).

Materials and Methods

Materials

Waste eggshells were collected from a residential waste stream. Sodium sulfate (ACS reagent, ≥99%) was obtained from Sigma-Aldrich Millipore (St. Louis, Missouri).

Experimental Methods

Eggshell Calcination

Eggshells were washed with tap water, and their inner membranes were removed. The shells were dried in a Quincy forced-air laboratory (Lewis Center, Ohio) oven set to 100° C for 24 h. To isolate two particle sizes, the dried eggshells were ground and screened through No. 100 (particle size <149 μ m) and No. 325 (particle size <44 μ m) sieves. The waste eggshell powders were then calcined in a Hach Furnace Muffle 1300 (Loveland, Colorado) set to 800°C for 1 h, as reported in Köse and Kivanç (2011).

Batch Reactions

Sulfate removal was experimentally investigated as a function of (1) initial sulfate concentration, (2) temperature of reaction, and (3) particle size using batch reactions of sodium sulfate (Na2SO4) solutions dosed with CWEs at a constant weight ratio $(Na_2SO_4:CWE = 2.73)$. Three sulfate concentrations were explored: high (13,440 ppm), medium (7,680 ppm), and low (1,920 ppm), which corresponded to CWE additions of 7.28, 4.16, and 1.04 g/L, respectively. Batch reactions were covered and stirred constantly for 24 h using a Scilogex analog 10-channel magnetic stir plate. After 24 h, the precipitate was separated from the solution via vacuum filtration employing Q5 filter paper (Fisher Scientific, medium porosity and flow). The precipitate was collected and dried in a Quincy forced-air laboratory oven set to 45°C for at least 24 h. Two reaction temperatures were explored, unheated (22°C \pm 4°C) and heated (46°C \pm 6°C), by varying the temperature settings of the magnetic stir plate.

Statistical Analysis of Data

Statistical analysis software, Minitab version 18.1, was used to analyze the significance of experimental results.

X-Ray Diffraction

X-ray diffraction (XRD) was employed to determine the mineralogy of the CWEs and to verify precipitates from the sulfate removal experiments. Powders were prepared for analysis using a method previously published in Eberl (2003).

Ion Chromatography

The initial and final concentrations of total sulfate-containing molecules were measured on a Dionex 4500i ion chromatograph. Four National Institute of Standards and Technology (NIST) traceable standards were used for calibration. An AG14 guard column and AS14 column were used for the separation of anions. Triplicates were used to calculate the concentration means, which were reported in parts per million (ppm) of total sulfate compounds.

Computational Methods

PHREEQC (v.3.3.12.12704), a geochemical simulation code developed by the USGS, was used to simulate CWE batch reactions in Na₂SO₄ solutions (Parkhurst and Appelo 2013). In the present study, equilibrium reactions and phase assemblages were defined to simulate Na₂SO₄ solutions at the three sulfate concentrations (simulation verification). Chemical thermodynamic data for the dissolution of primary and secondary minerals were obtained from the Minteq database (minteq.v4.dat). Values used in the simulation are presented in Table 1.

Thenardite was used as the model reagent to simulate $\mathrm{Na_2SO_4}$. X-ray diffraction was first used to identify the mineralogy of the CWEs, which were composed of a ternary mixture of lime, calcite, and portlandite. During calibration, varying the composition of lime, calcite, and portlandite enabled approximation of CWE mineralogy and permitted simulation of batch reactions. Finally, the calibrated simulation was used to predict the maximum removable sulfate from sulfate-laden waters as a function of CWE addition (g/L).

Results and Discussion

CWE Calcination

The calcination process decarbonates calcite $(CaCO_3)$ into lime (CaO), which, when hydrated, becomes portlandite $[Ca(OH)_2]$. Mineralogy results, shown in Fig. 1, confirm that calcite $(CaCO_3)$ is the main mineral found in uncalcined eggshells. During calcination, calcite decarbonates, releasing carbon dioxide (CO_2) , yielding lime (CaO) (Flamant et al. 1980):

$$CaCO_3 \leftrightarrow CaO + CO_2$$

Due to the presence of water in the environment, CaO can hydrate to form portlandite $[Ca(OH)_2]$ (Serris et al. 2011):

$$CaO(s) + H_2O(g) \rightarrow Ca(OH)_2(s)$$

The results confirm that the conversion of calcite to lime and portlandite is only partial due to the calcination process employed herein. As a result, CWEs obtained herein were mainly composed of portlandite and calcite, with traces of lime (Fig. 1).

Effect of Temperature and Particle Size on Sulfate Removal

At room temperature, 29.5% of sulfates can be removed by addition of CWEs (Fig. 2). No significant difference in sulfate removal between medium and high initial sulfate concentrations was observed, as verified by an analysis of variance (ANOVA). For unheated solutions of medium and high initial sulfate concentrations, ANOVA yielded a *p*-value of 0.09. The *p*-value for heated solutions of these two initial sulfate concentrations was higher (0.41). Thus, results confirm that, in both unheated and heated batch reactions, no significant differences in sulfate removal exist between both medium and high initial sulfate concentrations. At low initial sulfate concentrations, the sulfate concentration was below the solubility limit

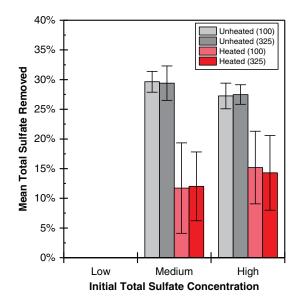


Fig. 1. XRD diffractogram of eggshells: (a) before; and (b) after calcination. See Table 2 for mineral symbol definitions. C: calcite, L: lime, P: portlandite, G: gypsum, B: bassanite, and O: corundum.

of gypsum (2,070 ppm at 25°C) (Bock 1961), thereby preventing gypsum precipitation and prohibiting sulfate removal.

For all solutions with initial sulfate (high or medium), increased temperature resulted in decreased sulfate removal (Fig. 2). As expected from Le Chatelier's principle, higher temperatures increased the supersaturation limit of calcium sulfate (gypsum) due to an increased equilibrium constant of gypsum precipitation. As observed in Fig. 2, heated batch reactions (46°C \pm 6°C) had, on average, decreased sulfate removal by approximately 53% compared to unheated batch reactions (22°C \pm 4°C). Heated batch reactions at low concentrations, however, neither increased nor decreased sulfate removal.

Contrary to expected increases in sulfate removal kinetics due to higher surface area, reduced CWE particle size does not affect sulfate removal (Fig. 2). For example, in unheated batch reactions at medium initial sulfate concentrations, the mean sulfate removal for CWEs of particle size 149 μm (sieve #100) and 44 μm (sieve #250) was 29.63 \pm 1.76 and 29.40 \pm 2.91, respectively. These results are evidenced by the means and standard deviations shown in Fig. 2. To verify this conclusion, an ANOVA was performed on the means of the sulfate removal percentages for each batch reaction with different temperatures and particle sizes. The CWE particle size was shown to negligibly affect sulfate removal regardless of initial sodium sulfate concentration and batch reaction temperature (p-values of 0.45 and 0.89 for both groups of heated and unheated

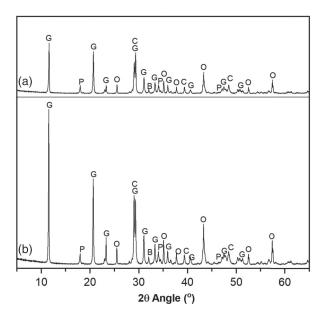


Fig. 2. Sulfate removal for heated $(46^{\circ}\text{C} \pm 6^{\circ}\text{C})$ and unheated (room temperature) batch reactions with particle sizes of 149 μm (sieve #100) and 44 μm (sieve #325) exposed to low (1,920 ppm), medium (7,680 ppm), and high (13,440 ppm) initial sulfate concentrations. No sulfate removal was observed at low initial sulfate concentrations.

Table 2. Summary of minerals found using XRD and corresponding symbols

Mineral	Stoichiometry	Symbol	Unit geometry	Density (g/cm ³)	Reference
Calcite	CaCO ₃	С	Hexagonal	2.71	00-005-0586
Lime	CaO	L	Cubic	3.346	00-037-1497
Portlandite	$Ca(OH)_2$	P	Hexagonal	2.243	00-044-1481
Gypsum	$CaSO_4 \cdot 2H_2O$	G	Monoclinic	2.32	00-033-0311
Bassanite	$CaSO_4 \cdot 0.5H_2O$	В	Monoclinic	2.69	00-041-0224
Corundum	Al_2O_3	O	_	_	00-010-0173

Note: Symbols correspond to peak identification.

Fig. 3. Representative XRD diffractograms of precipitates at high initial sulfate concentration (13,440 ppm) using CWE particle sizes of (a) 149 μ m (sieve #100); and (b) 44 μ m (sieve #325). C: calcite, L: lime, P: portlandite, G: gypsum, B: bassanite, and O: corundum.

batch reactions, respectively). As a result, calcium sulfate precipitation was not affected by differences in particle sizes investigated herein.

Mineralogy of Sulfate Precipitates

Sulfate removal by CWEs precipitates calcium sulfate compounds. These precipitates can contain remnants of unreacted portlandite at high initial sulfate concentrations. Particle size does not influence the type of precipitated minerals, as observed in Figs. 3(a and b). Moreover, the reaction of sulfate-laden water with CWE results in the precipitation of gypsum (CaSO₄:2H₂O) and bassanite, a calcium sulfate hemihydrate, at both medium [Fig. 3(c)] and high initial sulfate concentrations [Figs. 3(a and b)]. While calcite (from the original, uncalcined eggshell composition) is present at both medium and high initial sulfate concentrations, portlandite (from the CWE) is only present in high initial sodium sulfate concentrations. Unreacted portlandite is expected at higher CWE additions because the batch reactions cannot react all portlandite due to the solubility equilibrium limit of portlandite itself (1,130 ppm at 25°C) (Miller and Witt 1928; Noyes and Chapin 1899).

Computational Simulations of Sulfate Removal

Simulation Verification

Initial sulfate solutions were simulated using PHREEQC, and the results show a 0.02% error compared to experiments, confirming the ability of PHREEQC to simulate initial sulfate concentrations. As explicated in the computational methods section, experimentally known quantities of $\rm Na_2SO_4$ were used as inputs for the simulation at standard temperature and pressure. PHREEQC predicts the equilibrium dissolution of thenardite at three different concentrations. The error, which was calculated by comparing both experimental and simulation results (Table 3), is within 0.02% for all values, providing adequate verification for the code to simulate thenardite dissolution in water.

Table 3. Experimental and computational results of initial total dissolved sulfate

Results	Low	Medium	High
Experimental (IC)	0.004999	0.019994	0.034990
Simulation (PHREEQC)	0.005	0.020	0.035

Note: Initial sulfate concentrations: low (1,920 ppm), medium (7,680 ppm), and high (13,440 ppm). IC = ion chromatography.

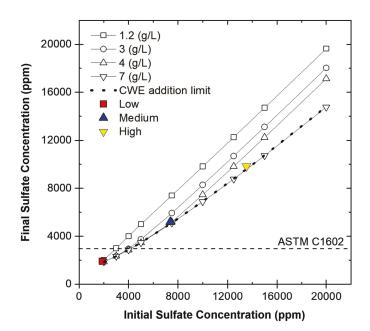
Table 4. Experimental and simulated results for sulfate removal at standard temperature and pressure conditions

Results	Low (%)	SD	Medium (%)	SD	High (%)	SD
Experimental (IC) Simulation (PHREEQC)	0	_	30 32	2%	27 29	2% —

Note: Initial sulfate concentrations: low (1,920 ppm), medium (7,680 ppm), and high (13,440 ppm). IC = ion chromatography; and SD = standard deviation.

Simulation Calibration

The approximate mineral composition of CWEs was determined to be 10% lime, 30% calcite, and 60% portlandite utilizing a combination of (1) experimental data and (2) a statistical analysis of simulation data. This quantitative mineral composition agrees with the qualitative XRD information of CWEs (Fig. 1).


Results from the ternary mixture design reveal that portlandite has a larger effect on sulfate removal and, as expected, calcite has little to no effect. Executing a response optimizer function at initially high sulfate levels, a global solution for CWE mineralogy was found to be 34.35% lime, 0% calcite, and 65.65% portlandite. Thus, to fit both experimental (Fig. 1) and simulation results, the mineral composition of CWEs was assumed to be calcite 30%, lime 10%, and 60% portlandite to retain values near the global solution. As seen in Table 4, the simulation results for the approximated mineralogy of CWEs are in good agreement with experimental results within their standard deviation, validating that PHREEQC is adequate to represent the studied system.

Effect of CWE Addition on Sulfate Removal

To investigate the theoretical sulfate removal potential of CWEs, a computational experiment of multiple batch reaction simulations was performed, and the results are presented in Fig. 4. Addition of CWEs is represented as grams of CWE added to liters of sulfate solution (g/L). Fig. 4 indicates that CWE additions above 7 g/L do not yield increased sulfate precipitation. Further validating the simulation results, experimental results are plotted in Fig. 4. The experimental values are in good agreement with the simulation, which further validates the adequacy of the simulation to predict real-life dissolution-precipitation scenarios.

CWE-assisted precipitation of sulfates is an effective method to reduce sulfates in concrete mixing water. In order for concrete mixing water to comply with the allowable sulfate limit set by ASTM C1602 (3,000 ppm), an initial total sulfate concentration of approximately \leq 4,000 ppm can be successfully treated using CWEs. Further illustrating this point, Fig. 4 demonstrates that an initial sulfate concentration of 4,000 ppm treated with a CWE addition of 7 g/L can comply with ASTM C1602 by reducing the sulfate concentration to acceptable limits.

Fig. 4 can serve as a tool for CWE-assisted precipitation of sulfates and, in turn, permit the valorization of a ubiquitous household waste. The use of CWEs to remove sulfates has the potential to provide adequate concrete mixing water where adequate concrete

Fig. 4. Effect of CWE addition in grams per liter [simulated as a ternary blend of portlandite $[Ca(OH)_2]$, lime (CaO), and calcite $(CaCO_3)$] on final sulfate (SO_4) concentration when added to sulfate-laden solutions. Experimental values correspond to the following initial sulfate concentrations: low (1,920 ppm), medium (7,680 ppm), and high (13,440 ppm).

mixing water is a scarce resource. As a result, this method has the transformative potential to improve the durability of future concrete infrastructure projects for specific industrial applications where mixing water may be compromised by high sulfate contents.

Conclusion

This study experimentally and theoretically investigated the viability of using calcined waste eggshells to remove sulfates from sulfate-laden concrete mixing water. Calcination of waste eggshells produced portlandite, which was verified through simulation as the main factor affecting the removal of soluble sulfates. The addition of CWEs to batch reactions with sodium sulfate precipitated calcium sulfate hydrate minerals, mainly gypsum. The maximum mean sulfate removal attained experimentally was $29.51\% \pm 2.16\%$ in medium initial sulfate solutions (7,680 ppm). The addition of heat in batch reactions decreased sulfate removal up to 53%. In addition, increased surface area via reduction of CWE particle sizes neither improved nor hindered reactivity or ultimate sulfate removal. Simulation results predict that CWEs can be used to treat concrete mix water with up to 4,000 ppm of soluble sulfates in order to yield compliant concrete mixing water, as specified by ASTM C1602. These findings highlight an opportunity for valorization of a ubiquitous waste material in an application that contributes to the long-term durability of civil infrastructure in resource-limited environments.

Acknowledgments

This research was made possible by the Department of Civil, Environmental, and Architectural Engineering, College of Engineering and Applied Sciences, and the Sustainable Infrastructure Materials Laboratory (SIMLab) at the University of Colorado Boulder. This work was supported, in part, by the National Science Foundation (Award No. CBET-1604457). Dr. Fred Luiszer of the Geological Sciences Department at the University of Colorado Boulder, Dr. Kate Campbell and Tyler Kane of the USGS are gratefully acknowledged for their insights and assistance. This work represents the views of the authors and not necessarily those of the sponsors.

References

- Al-Jabri, K. S., A. H. Al-Saidy, R. Taha, and A. J. Al-Kemyani. 2011. "Effect of using wastewater on the properties of high strength concrete." *Procedia Eng.* 14: 370–376. https://doi.org/10.1016/j.proeng.2011.07.046.
- Allison, J. D., D. S. Brown, and K. J. Novo-Gradac. 1991. "MinteqA2/ ProdefA2, A geochemical assessment model for environmental systems: Version 3.0 user's manual." Accessed October 14, 2018. https://engineeringonline.ncsu.edu/onlinecourses/coursehomepages/fall2007/Minteq_Users.pdf.
- Asadollahfardi, G., M. Asadi, H. Jafari, A. Moradi, and R. Asadollahfardi. 2015. "Experimental and statistical studies of using wash water from ready-mix concrete trucks and a batching plant in the production of fresh concrete." *Constr. Build. Mater.* 98: 305–314. https://doi.org/10 .1016/j.conbuildmat.2015.08.053.
- Asadollahfardi, G., M. Delnavaz, V. Rashnoiee, and N. Ghonabadi. 2016. "Use of treated domestic wastewater before chlorination to produce and cure concrete." *Constr. Build. Mater.* 105: 253–261. https://doi.org/10.1016/j.conbuildmat.2015.12.039.
- ASTM. 2018. Standard specification for mixing water used in the production of hydraulic cement concrete. ASTM C1602. West Conshohocken, PA: ASTM.
- Barrera-Díaz, C., G. Martínez-Barrera, O. Gencel, L. A. Bernal-Martínez, and W. Brostow. 2011. "Processed wastewater sludge for improvement of mechanical properties of concretes." *J. Hazard. Mater.* 192 (1): 108–115. https://doi.org/10.1016/j.jhazmat.2011.04.103.
- Bock, E. 1961. "On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride." *Can. J. Chem.* 39 (9): 1746–1751. https://doi.org/10.1139/v61-228.
- Bowell, R. J. 2000. "Sulphate and salt minerals: The problem of treating mine waste." *Min. Environ. Manage.* 8 (3): 11–13.
- Bowell, R. J., S. Dill, J. Cowan, and A. Wood. 1998. "A review of sulfate removal options for mine waters." In *Proc., IMWA*, 329–342. Cardiff, UK: SRK Consulting.
- Chatveera, B., and P. Lertwattanaruk. 2009. "Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture." *J. Environ. Manage.* 90 (5): 1901–1908. https://doi.org/10.1016/j.jenvman.2009.01.008.
- Crammond, N. 2002. "The occurrence of thaumasite in modern construction—A review." *Cem. Concr. Compos.* 24 (3–4): 393–402. https://doi.org/10.1016/S0958-9465(01)00092-0.
- Eberl, D. D. 2003. *User guide to rockjock—A program for determining quantitative mineralogy from X-ray diffraction data.* US Geological Survey Open-File Rep. No. 2003-78. Reston, VA: USGS.
- Flamant, G., D. Hernandez, C. Bonet, and J. P. Traverse. 1980. "Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO₃." Sol. Energy 24 (4): 385–395. https://doi.org/10.1016/0038-092X(80)90301-1.
- Fu, Y., J. Ding, and J. J. Beaudoin. 1997. "Expansion of portland cement mortar due to internal sulfate attack." *Cem. Concr. Compos.* 27 (9): 1299–1306. https://doi.org/10.1016/S0008-8846(97)00133-6.
- Ghrair, A. M., O. A. Al-Mashaqbeh, M. K. Sarireh, N. Al-Kouz, M. Farfoura, and S. B. Megdal. 2016. "Influence of grey water on physical and mechanical properties of mortar and concrete mixes." *Ain Shams Eng. J.* 9 (4): 1519–1525. https://doi.org/10.1016/j.asej.2016.11.005.
- Graupner, B. J., C. Koch, and H. Prommer. 2014. "Prediction of diffuse sulfate emissions from a former mining district and associated groundwater discharges to surface waters." J. Hydrol. 513: 169–178. https://doi. org/10.1016/j.jhydrol.2014.03.045.

- Gustafsson, J. P. 2011. Visual MINTEQ 3.0 user guide. Stockholm, Sweden: Dept. of Land and Water Recources, KTH.
- Ismail, Z. Z., and E. A. Al-Hashmi. 2011. "Assessing the recycling potential of industrial wastewater to replace fresh water in concrete mixes: Application of polyvinyl acetate resin wastewater." J. Cleaner Prod. 19 (2–3): 197–203. https://doi.org/10.1016/j.jclepro.2010.09.011.
- Köse, T. E., and B. Kivanç. 2011. "Adsorption of phosphate from aqueous solutions using calcined waste eggshell." *Chem. Eng. J.* 178: 34–39. https://doi.org/10.1016/j.cej.2011.09.129.
- Kuh, S. E., and D. S. Kim. 2000. "Removal characteristics of cadmium ion by waste egg shell." *Environ. Technol.* 21 (8): 883–890. https://doi.org /10.1080/09593330.2000.9618973.
- Miller, L. B., and J. C. Witt. 1928. "Solubility of calcium hydroxide." J. Phys. Chem. 33 (2): 285–289. https://doi.org/10.1021/j150296a010.
- Nordstrom, D. K. 2008. Questa baseline and pre-mining ground-water quality investigation. 25. Summary of results and baseline and premining ground-water geochemistry, Red River Valley, Taos County, New Mexico, 2001–2005. US Geological Survey Professional Paper 1728. Reston, VA: USGS.
- Noyes, A. A., and S. Edward. 1899. "Der Einfluss Zweiioniger Elektrolyte Auf Die Löslichkeit Dreiioniger Elektrolyte Mit Lauter Verschiedenen Ionen." Zeitschrift Für Physikalische Chemie 28 (1): 518–522. https://doi.org/10.1515/zpch-1899-2833.
- Parkhurst, D. L., and C. A. J. Appelo. 2013. Description of input and examples for PHREEQC version 3—A computer program for speciation,

- batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods. Reston, VA: USGS
- Robertson GeoConsultants, Inc. 2000. *Interim background characterization study*. Questa Mine, New Mexico: Molycorp.
- Serris, E., L. Favergeon, M. Pijolat, M. Soustelle, P. Nortier, R. S. Gartner, T. Chopin, and Z. Habib. 2011. "Study of the hydration of CaO powder by gas-solid reaction." *Cem. Concr. Compos.* 41 (10): 1078–1084. https://doi.org/10.1016/j.cemconres.2011.06.014.
- Stumm, W., and J. J. Morgan. 1996. *Aquatic chemistry*. Edited by J. L. Schnoor and A. Zhender. 3rd ed. New York: Wiley.
- Su, N., B. Miao, and F.-S. Liu. 2002. "Effect of wash water and underground water on properties of concrete." *Cem. Concr. Compos.* 32 (5): 777–782. https://doi.org/10.10.1016/S0008-8846(01)00762-1.
- USEPA. 1991. MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems version 3 user's manual. Washington, DC: Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
- WHO (World Health Organization). 2017. "Drinking Water Fact Sheet." Accessed October 14, 2018. http://www.who.int/mediacentre/factsheets/fs391/en/.
- Xuan, D., B. Zhan, C. S. Poon, and W. Zheng. 2016. "Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products." J. Hazard. Mater. 312: 65–72. https://doi.org/10.1016/j .jhazmat.2016.03.036.