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Abstract. We construct equilibrium models of uniformly and differentially rotating hybrid hadron-quark
stars using equations of state (EOSs) with a first-order phase transition that gives rise to a third family
of compact objects. We find that the ratio of the maximum possible mass of uniformly rotating config-
urations —the supramassive limit— to the Tolman-Oppenheimer-Volkoff (TOV) limit mass is not EOS-
independent, and is between 1.15 and 1.31, in contrast with the value of 1.20 previously found for hadronic
EOSs. Therefore, some of the constraints placed on the EOS from the observation of the gravitational
wave event GW170817 do not apply to hadron-quark EOSs. However, the supramassive limit mass for
the family of EOSs we treat is consistent with limits set by GW170817, strengthening the possibility
of interpreting GW170817 with a hybrid hadron-quark EOS. We also find that along constant angular
momentum sequences of uniformly rotating stars, the third family maximum and minimum mass models
satisfy approximate EOS-independent relations, and the supramassive limit of the third family is approx-
imately 16.5% larger than the third family TOV limit. For differentially rotating spheroidal stars, we find
that a lower-limit on the maximum supportable rest mass is 123% more than the TOV limit rest mass.
Finally, we verify that the recently discovered universal relations relating angular momentum, rest mass
and gravitational mass for turning-point models hold for hybrid hadron-quark EOSs when uniform rotation
is considered, but have a clear dependence on the degree of differential rotation.

1 Introduction

The properties of the equation of state (EOS) of dense nu-
clear matter constitute an important open problem that
brings together several different fields ranging from astro-
physics and gravitation to particle and nuclear physics.
While the EOS is understood up to nuclear saturation
density ρ0 ≈ 2.7 × 1015 g cm−3 [1–3], the situation is
less clear at super-nuclear densities, with several different
models being possible (see, e.g. [3, 4]). Regimes of such
high density are expected to occur in Nature in the cen-
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tral regions of compact stars, where the density can reach
up to several times ρ0.

The EOS determines several of the macroscopic prop-
erties of compact stars, such as mass and radius, thus
affecting observable quantities (for reviews, see [5–8]).
For this reason, astronomical observation is one of the
primary tools to probe the high-density end of the
EOS (see, e.g., [9]). Recently, the detection of gravi-
tational waves from a binary neutron star [10] (event
GW170817), accompanied by electromagnetic counter-
parts (events GW170817-GBM, and AT2017gfo [10–15])
provided a wealth of information that, under certain as-
sumptions, helped to place constraints on the EOS [16–27]
(see also [28] for a review). Among the EOSs that are
compatible with GW170817, there are those with a first-
order phase transition from hadronic to quark matter at
densities larger than ρ0, which can lead to the so-called
third family of stable stars. The third family consists of
objects that are more compact than white dwarfs and neu-
tron stars. These stars are hybrid hadron-quark stars (or
just hybrid stars), i.e., configurations with a quark core
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surrounded by a hadronic shell1. The third family has been
studied for a long time [30–46], with several of these ear-
lier works focusing on “twin stars”, which are hybrid stars
in the third family whose mass is in the same range as the
mass of neutron stars, but have smaller radii. Interest in
hybrid stars has recently increased due to GW170817, be-
cause GW170817 is also compatible with at least one com-
ponent being a hybrid star as first pointed out in [47]. Sub-
sequent studies also focused on prospects of future multi-
messenger detections of the merger of binary compact
stars with hybrid hadron-quark EOSs (e.g., [26, 48–56]).

Motivated by the fact that such hybrid stars are com-
patible with GW170817, in this paper we focus on improv-
ing our understanding of uniformly and differentially ro-
tating hybrid stars. These have received only little consid-
eration [36,39] and many of their properties are largely un-
explored. We adopt the same EOSs with first-order phase
transitions to quark matter introduced in [47], and focus
on answering the following set of questions: What is the
maximum mass for uniformly and differentially rotating
hybrid stars? Are these compatible with constraints from
GW170817? Do rotating hybrid stars satisfy the same ex-
isting universal relations that hadronic EOSs satisfy?

The maximum mass that a non-rotating relativistic
star2 can support —the TOV limit— is determined by
the EOS. However, rotation can increase the maximum
supportable mass [59–62]. In the case of hadronic EOSs,
uniform rotation increases the maximum mass by about
20 [60,63–66]3. Equilibrium configurations whose mass ex-
ceeds the TOV limit are commonly referred to as “supra-
massive” [70]. The maximum mass supported when allow-
ing for maximal uniform rotation is known as the “supra-
massive limit”. Given the approximate EOS-independence
(for hadronic EOSs), the supramassive limit has been used
to place constraints on the TOV limit mass using observa-
tions (e.g. [20,25]). Whether this universality for the ratio
of the supramassive limit to the TOV limit mass holds for
hybrid stars has not been investigated before and we test
this here. Using the code of [70], we construct mass shed-
ding sequences and find that for the hybrid EOSs we treat,
this ratio is between 1.15 and 1.30. As a result, the univer-
sality does not hold for hybrid stars or, at least, the spread
of the universality is significantly enhanced. However, us-
ing the same arguments as in [20, 25], we find that the
supramassive limit of our hybrid EOSs is consistent with
GW170817, lending further support to the results of [47]
that GW170817 is compatible with hybrid hadron-quark
EOSs.

Differential rotation can greatly boost the maximum
mass that a star can have [65, 71]. The term “hypermas-
sive” [71] is used to describe those stars that are more

1 It is also possible for a fourth family to arise [29] if the EOS
has an additional phase transition. However, this scenario will
not be considered here.

2 We will interchangeably also use the terms “static” and
“TOV” to indicate non-rotating stars [57,58].

3 However, it has been shown that strange quark-matter
stars can support up to 40% more than the non-rotating
limit [67–69].

massive than the supramassive limit, and are supported
by the additional centrifugal support provided by differen-
tial rotation. There also exist stars that can support more
than two times the TOV limit mass (these were termed
“ubermassive” in [72]), and which can arise only when dif-
ferential rotation is present. Differential rotation plays an
important role in temporarily stabilizing a binary neutron
star merger remnant, and likely many merger remnants
go trough a hypermassive phase (see, e.g., [62, 73, 74] for
recent reviews on binary neutron star mergers). Differen-
tially rotating stars have been shown to exhibit a rich and
interesting solution space (see [75–77] for polytropes, [72]
for hadronic EOSs, and [78, 79] for strange quark stars).
For instance, as the degree of differential rotation varies,
the topology of the star can change from spheroidal to
quasi-toroidal, where the maximum energy density does
not occur at the geometric center of the star, but in a
ring around the stellar center of mass. Studies of the dy-
namical stability of such quasi-toroidal configuration are
under way and it is found that these configurations are
dynamically unstable [80]. For this reason, in this paper
we focus primarily on the maximum mass that differen-
tially rotating spheroidal hybrid star configurations can
support using the differential rotation law of [81,82]. The
motivation for this study is that quark deconfinement can
happen not only for isolated stars, but also following a
binary neutron star merger [53], that can result in a dif-
ferentially rotating hybrid star. Using the code of [70], we
find that a lower-limit on the maximum supportable rest
mass is 123% more than the TOV limit rest mass. This
means that ubermassive spheroidal hybrid hadron-quark
configurations can exist.

In the context of binary mergers, EOS-independent
relations have proven useful as tools to devise tests for
general relativity and break degeneracies in gravitational
wave signals. For instance, the universal I-Love-Q rela-
tions [83–86] were used in [22] to tighten the constraints
placed on the tidal deformability of the two components
of the GW170817 binary. In [47] it was verified that, for
the EOSs we adopt here, the I-Love-Q relations are still
satisfied with a spread of at most 3% in both slowly and
rapidly rotating hybrid stars4. In [90], relations that do
not depend on the EOS or the degree of differential rota-
tion were found for turning-point models, which are the
critical points of the gravitational mass along equilibrium
sequences with fixed angular momentum or rest mass.
For uniformly rotating configurations, turning points lo-
cate the onset of the unstable branch, and for this rea-
son are useful to study the stability properties of rotat-
ing stars [91–94]. We verify that the universal relations

4 In [87] different hadron-quark equations of state were
adopted to investigate the I-Love-Q relations. The authors con-
structed sequences of uniformly rotating stars with constant
angular velocity and reported that EOSs with a first-order
phase transition violate the universality. However, the univer-
sal relations for rapidly spinning and slowly spinning stars are
different, and “universality” is restored when considering se-
quences with constant J/M2 instead of constant angular fre-
quency [88,89].
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relating angular momentum, rest mass and gravitational
mass for turning-point models found in [90] hold for hybrid
hadron-quark EOSs when uniform rotation is considered,
but have a clear, albeit weak, dependence on the degree
of differential rotation.

The rest of the paper is structured as follows. In sect. 2
we review the EOSs we consider in this work. In sect. 3 we
briefly describe the code we use to perform our study. In
sect. 4 we compute the supramassive limit for hybrid stars
and discuss its implications for GW170817. We also test
the previously found universal relations of [66] and [90]
for the maximum mass along constant angular momen-
tum sequences, and point out that the minimum mass
twin stars also satisfies a universal relation. In sect. 5 we
compute the maximum rest mass of differentially rotating
spheroidal hybrid stars, and test the dependence on the
degree of differential rotation of the aforementioned uni-
versal relations. We conclude in sect. 6 with a summary of
our main findings. Unless otherwise specified, throughout
this paper we adopt geometrized units where c = G = 1
(where c is the speed of light in vacuum and G the gravi-
tational constant). Square brackets are used to designate
the units of quantities. For instance, [M�] indicates the
solar mass. In addition, when we use the word “mass” we
refer to the gravitational (Arnowitt-Deser-Misner, ADM)
mass for which we use the symbol M (or MADM) with
other sub- or superscripts except for the subscript 0. We
will specify “rest” or “baryon” mass otherwise, and to des-
ignate rest mass we use the subscript 0 with other sub- or
superscripts, e.g., M0.

2 Equations of state

The hybrid hadron-quark EOSs we employ are the same as
those developed in [47] for the EOSs introduced in [29] (Set
I) and [46] (Set II). Here we briefly describe these EOSs,
and refer the interested reader to [47] for more details.
Note that we use a different naming convention compared
to [47], and the map between the two is listed in table 1,
where we also report the maximum mass for static stars
in both the hadronic and third family branches.

The EOSs correspond to zero-temperature matter in
beta-equilibrium with a low-density hadronic phase and
a high-density quark phase that are matched through a
first-order phase transition. High tension at the quark-
hadron interface is assumed, leading to a sharp transition
boundary between the two phases. A low-density crust
component based on the model of [95,96] is also added to
both sets of EOSs. In all EOS models the pressure match-
ing between the two phases is performed via a Maxwell
construction.

The Set I EOSs have a hadronic part that follows [97]
in applying a covariant density functional theory [98] with
density-dependent couplings [99]. The quark phase in Set
I is described by a MIT bag model [100–103], adopting the
constant sound speed (cs) parametrization [29, 104–106].
Hence, the Set I quark phase pressure P as a function of

Table 1. Labels of the equations of state employed in this pa-
per and their corresponding labels in [47]. EOSs T1–TT belong
to Set I and have a first-order phase transition with energy-
density jump parametrized by ξ as shown in eq. (2). Their
quark phase is described by eq. (1). On the other hand, EOSs
A4–A7 belong to Set II, and have a quark phase parametrized
as piecewise polytropes as shown in eq. (3). We also report
the maximum mass that a TOV star can have on the hadronic
(MTOV

Max,hadronic) and the hybrid (MTOV
Max,hybrid) branches, respec-

tively.

EOS EOS in [47] MTOV
Max,hadronic MTOV

Max,hybrid

[M�] [M�]

T1 ACS-I ξ = 0.10 2.00 2.47

T2 ACS-I ξ = 0.27 2.00 2.31

T4 ACS-I ξ = 0.43 2.00 2.17

T6 ACS-I ξ = 0.60 2.00 2.05

T7 ACS-II ξ = 0.70 1.50 2.14

T8 ACS-II ξ = 0.80 1.50 2.08

T9 ACS-II ξ = 0.90 1.50 2.02

TT ACS-II ξ = 1.00 1.50 1.98

A4 ACB4 2.01 2.11

A5 ACB5 1.40 2.00

A6 ACB6 2.01 2.00

A7 ACB7 1.50 2.00

the energy density ε is given by

P (ε) =

{
Ptr ε1 ≤ ε ≤ ε2,

Ptr + c2
s(ε − ε2) ε ≥ ε2,

(1)

with Ptr value of the pressure at the phase transition
(which occurs in the energy density range ε1 ≤ ε ≤ ε2).
The energy density jump is parametrized by the value of
ξ defined through5

ε2 = (1 + ξ)ε1. (2)

The values of ε1, ξ, Ptr and cs that produce the Set I EOSs
(labeled here T1–T9 and TT) are listed in table I of [47].

Set II [46] consists of a piecewise polytropic represen-
tation [6,107,108] of the quark phase in which the pressure
is

P (n) = Ki

(
n

n0

)Γi

for ni < n < ni+1, (3)

where n is the baryon number density and n0 its value at
the nuclear saturation density and Ki the polytropic con-
stant. The second polytrope has Γ2 = 0 so that the pres-
sure is constant, corresponding to the phase transition.
The various coefficients that specify these EOSs (labeled
here as A4–A7) are listed in table II of [47]. Note that
EOSs with similar properties as the EOSs in Set I and II
have been obtained recently within a relativistic density

5 In [47] the letter j is used instead of ξ.
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Fig. 1. Pressure P as a function of the energy density ε for
the equations of state studied in this paper.

Fig. 2. Mass-radius relation for non-rotating stars with the
EOSs listed in table 1 and plotted in fig. 1. Equations of state
with quark-hadron transitions allow for a third family of rel-
ativistic stars more compact than neutron stars, and hence
hybrid stars are on the left part of the curve. The hadronic
and/or the hybrid branches of all the EOSs lead to configura-
tions (at least marginally) compatible with the constraint of a
2 M� pulsar (dashed line).

functional approach to quark matter [36, 41, 109]. More-
over, in [56], equations of state like the ones considered
here are systematically explored to find the parameters for
the phase transition allowed by GW170817 and to char-
acterize the properties of non-rotating stars constructed
with such EOSs.

Figure 1 shows the pressure P as a function of the en-
ergy density ε for the different EOSs, and fig. 2 depicts the
resulting mass-areal radius relationship for non-rotating
compact stars. The EOSs are compatible with the observa-
tional constraint of a pulsar mass of (1.97±0.04)M� [110–
113], and half of them are also compatible with the newly
discovered 2.17+0.11

−0.10 M� pulsar J0740+6620 [114]. The
EOSs span a relatively large range of compactness and
radii (10–13.5 km), and as such allow us to test for univer-

sal relations. Despite the fact that some of the EOSs in
our sample are incompatible with J0740+6620, we include
them in our study to check whether existing universal re-
lations are respected independently of the EOS.

3 Methods

We assume that neutron star matter can be described as a
perfect fluid with no meridional currents. An equilibrium
model for a rotating general-relativistic star is a stationary
and axisymmetric solution of Einstein’s equations coupled
with the equation of hydrostationary equilibrium. Under
these assumptions, the fluid four-velocity is given by

u = (ut, 0, 0, uφ), (4)

and the line element ds2 of the spacetime is

ds2 = −eγ+ρdt2 + eγ−ρr2 sin2 θ(dφ − ωdt)2

+ e2α(dr2 + r2dθ2), (5)

with (t, r, θ, φ) quasi-isotropic coordinates, and γ, ρ, α, ω
spacetime potentials that depend on the coordinates r, θ
only [62,115,116].

To solve the equilibrium equations, an EOS and a ro-
tation law have to be supplied (see [62] for a recent review
on theoretical and numerical approaches to the construc-
tion of rotating relativistic stars). For uniform rotation,
we fix Ω = uφ/ut (the local angular velocity of the fluid
as seen by an observer at rest at infinity) to be constant.
For differential rotation, we adopt the Komatsu-Eriguchi-
Hachisu (KEH) j-constant law [81,82], which is described
by

utuφ = A2(Ωc − Ω), (6)

where Ωc is the angular velocity evaluated on the rota-
tion axis, and A is a parameter with units of length that
determines the lengthscale of variation of angular velocity
within the star. This rotation law is not the only possible
choice, but it is most commonly studied due to its sim-
plicity (for a summary of other differential rotation laws,
see [62]). In the following, instead of using A, we work
with the dimensionless parameter Â−1 defined by

Â−1 =
re

A
, (7)

where re is the coordinate radius of the star at the equator.
Stars with Â−1 = 0 are uniformly rotating.

We use the code developed in [60, 63] (the “Cook
code”) to solve the structure equations and construct equi-
librium models for rotating stars. For a given EOS and
degree of differential rotation Â−1, a rotating equilibrium
model is built by providing the maximum energy density
εmax and the ratio of the polar (rp) to equatorial coordi-
nate radius re. In the case of differential rotation with the
KEH law, the set of parameters {εmax, rp/re, Â

−1} does
not uniquely specify an equilibrium model, in spite of the
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fact that it is sufficient to find a solution [75]. To dis-
tinguish between physically distinct models that have the
same {εmax, rp/re, Â

−1}, the parameter

β = −
(

re

rp

)2 d(z2)
d(
2)

∣∣∣∣
�=re

(8)

was introduced in [75]. Here 
 = r sin(θ) and z = r cos(θ)
are cylindrical coordinates, and the derivative is evaluated
on the surface of the star at the equator. In practice, it is
more convenient to work with a new quantity β̂ defined in
terms of β as

β̂ =
β

1 + β
. (9)

The parameter β̂ describes how close to the mass-shedding
limit a configuration is, and approaches three limiting val-
ues according to the stellar shape in the solution space: in
the case of a spherical solution, β = 1 and so β̂ is 1/2; for
a model close to the mass-shedding limit, the stellar sur-
face is highly pinched near the equator, which implies that
the derivative appearing in eq. (8) vanishes, and hence β̂
approaches 0; finally, for a quasi-toroidal shape the ratio
rp/re becomes very small, and hence β becomes large. In
this limit β̂ approaches 1.

In the case of the KEH rotation law, the solution space
of differentially rotating stars is fully specifiable by the
quadruplet of parameters {εmax, rp/re, Â

−1, β̂} [75]. Our
code does not have the capability of fixing β̂ directly, but,
as in [72], we produce models with different values of β̂

given the other parameters {εmax, rp/re, Â
−1} by follow-

ing specific trajectories in the parameter space. This is es-
pecially relevant for our discussion in appendix A, where
we study the different solution types for hybrid stars.

4 Uniform rotation

In this section we focus on the case of uniform rotation.
We compute the supramassive limit mass and the maxi-
mum mass on sequences of constant angular momentum,
and test the applicability of the universal relations found
in [66] and [90] to the hybrid hadron-quark EOSs listed in
table 1. Differential rotation is treated in sect. 5.

One of the most important macroscopic parameters re-
lated to an equation of state is the maximum mass that
an equilibrium rotating star can support6. To study supra-
massive hybrid stars we construct equilibrium sequences
with constant angular momentum J . For these computa-
tions, we set the angular resolution of the Cook code to 300
points, the radial to 500 and used a basis of 20 Legendre
polynomials. Then, each sequence is constructed with at
least 500 models logarithmically equispaced in the central
energy density. Examples of such sequences are depicted
in fig. 3 for EOS T9, where boxes indicate the stars with

6 The most massive models are typically dynamically unsta-
ble [91,92,94]. In this paper we ignore the issue of stability and
focus on constructing equilibrium models.
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Fig. 3. Constant angular momentum equilibrium sequences for
uniformly rotating stars with EOS T9. The black solid line is
the non-rotating sequence, and the dashed line represents the
mass-shedding sequence. Black filled circles indicate the top
turning points, whereas boxes are models with maximum mass
along the sequence. Diamonds designate the bottom turning
points, which indicate the least massive twin star. Most of the
turning points lie inside a box because they are also the most
massive model along the sequence. The flat region that occurs
in the density range εc ∈ (0.6, 1.4) 1015 g cm−3 is a direct con-
sequence of the one in fig. 1: multiple values of εc lead to the
same central pressure, which in turn results in models with the
same mass.

maximum mass along each J-constant sequence. In fig. 3,
we also highlight other notable models: the turning points
indicated with filled diamonds and filled circles. In fig. 3,
most of the circles lie inside a box, since those turning
points are also the most massive model of the sequence.

Given a sequence of equilibrium models with constant
angular momentum J , and varying central energy density
εc, the turning points are the stationary points of the func-
tion M(εc), where M(εc) is the gravitational mass along
the sequence. For a constant J sequence, a turning point
is defined by the condition

∂M(εc)
∂εc

∣∣∣∣
J

= 0. (10)

For constant angular momentum sequences and hadronic
EOSs, the turning points are local maxima, whereas for
constant M0 sequences the turning points are local min-
ima. By virtue of the turning point theorem [91,117] that
applies to uniformly rotating configurations, the turning-
point lines for J-constant sequences coincide with those
of M0-constant sequences. In this work we located the
turning points along J-constant sequences by interpolat-
ing with a cubic spline around the local maxima and min-
ima model of the sequence, and then finding the roots of
the derivative of the cubic spline interpolant.
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In the case of EOSs exhibiting a hadron-quark phase
transition with a large jump in energy density, typically
each J-constant sequence has multiple turning points.
In this paper we focus on the two turning points of J-
constant sequences that occur at central energy densities
higher than the phase-transition. We call them “top” (la-
beled with an upward pointing arrow ↑) and “bottom” (la-
beled with a downward pointing ↓), indicating the higher
and lower mass turning point, respectively. In all figures
diamonds represent bottom turning points, filled circles
indicate top turning points, and boxes designate the most
massive models. Top turning-point models are interesting
because for uniformly rotating stars they detect the onset
of the instability to collapse [91, 92]. On the other hand,
bottom turning points indicate the least massive twin star
which must be unstable, too. Not all EOSs in our set have
bottom turning points: T1, T2 and T4 have too small a
jump ξ to produce such configurations (as can be seen in
fig. 2, where these three EOSs do not undergo a dip above
the phase transition energy density). These EOSs do not
exhibit twin star solutions.

The TOV sequences are constant angular momentum
(J = 0) sequences. Their top turning points indicate the
maximum mass allowed for static configurations7, and
their bottom turning points indicate the minimum mass
of non-rotating twin stars. These maximum and minimum
masses provide fundamental mass scales associated with
each EOS, and will be used to normalize other quanti-
ties. We will append the superscript “TOV” to designate
these mass, so that MTOV

Max and MTOV
0,Max are the maximum

gravitational and baryonic mass of a non-rotating hybrid
star in the third family, respectively, whereas MTOV

↓ and
MTOV

0,↓ are the minimum gravitational and rest mass for a
static twin star8.

4.1 The supramassive limit

An EOS-insensitive relation for hadronic EOSs that re-
lates the maximum mass (MMax) and angular momentum
along J-constant sequences was recently found in [66]. The
resulting universal relation (eq. (12) in [66]) is expressed
in terms of J normalized to the maximum possible angu-
lar momentum JMax that can be achieved with uniform
rotation, and is the following

M↑
MTOV

Max

= 1 + 0.1316
(

J

JMax

)2

+ 0.0711
(

J

JMax

)4

. (11)

7 This is not true for EOS A6, since, for this EOS, non-
rotating stars with central energy density within the phase
transition have mass M = 2.01 M�, whereas the top turning
point has mass M = 2.00 M�. Since our focus is on the stable
branch of the third family of stars, the top turning point is the
maximum mass of the third family.

8 Using the maximum possible TOV mass M = 2.01 M�
(instead of the maximum TOV mass in the third family M =
2.00 M�) to normalize mass scales for EOS A6 has negligible
impact on our results.
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Fig. 4. Same as fig. 3, but for EOS A4. Rotation leads to a
relative increase in the mass which is larger when the central
energy density is in the phase-transition region. For values of
εc in this range, a star can be spun up at higher values of
the angular momentum, increasing the supramassive limit. The
flat branches at high angular momentum have models with the
same mass, for this reason, each of those stars is a maximum-
mass model (empty rectangles).

This last equation can be used to estimate the supramas-
sive limit for hadronic EOSs, and yields the approximately
EOS-independent value of 20% larger than the TOV limit.
Here we are interested in testing whether eq. (11) ap-
plies to hybrid hadron-quark EOSs. Moreover, we explore
whether a similar relation exists for hybrid EOSs not only
for the top turning points, but also for the bottom ones. As
a reminder, we note that for hybrid EOSs, the top turning
point is not necessarily the most massive model along a
J-constant sequence, as shown for example in fig. 4.

4.1.1 Maximum mass

In fig. 5 we plot the maximum possible gravitational mass
normalized to MTOV

Max on J-constant sequences as a func-
tion of J normalized to J supra

Max , the angular momentum of
the most massive uniformly rotating star i.e., the supra-
massive limit configuration. This choice ensures that the
maximum mass is reached when J/Jsupra

Max = 1. As is clear
from fig. 5, some of the EOSs in our set produce uni-
formly rotating stars that can support more mass than
1.20MTOV

Max . On the other hand, some EOSs cannot even
reach such a large enhancement in mass compared to the
TOV limit mass. To be more specific, the supramassive
limit mass varies from 1.15MTOV

Max for TT to 1.31MTOV
Max

for A6.

4.1.2 Implications for GW170817

In [20,25] the result that for hadronic EOSs the ratio of the
supramassive limit to the TOV limit is EOS-independent
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Fig. 5. Maximum mass along J-constant sequences of uni-
formly rotating equilibrium models as a function of the angular
momentum J normalized to Jsupra

Max (the angular momentum of
the most massive star on the mass-shedding sequence). There
is a non-negligible dependence on the EOS, and the supramas-
sive limit for EOSs in table 1 varies from 1.15 MTOV

Max (for EOS
TT) to 1.31 MTOV

Max (for EOS A6). Given this result, the con-
straints put on the EOS that employed the universality of the
supramassive limit are valid only in the context of hadronic
EOSs.

was combined with the observation of gravitational waves
from event GW170817 to set an upper bound on the TOV
limit mass. We repeat here the same argument to highlight
the differences when EOSs with a hadron-quark phase
transition are considered.

As shown by simulations, the observed properties of
the gamma-ray burst and the ejecta following GW170817
suggest that the event left a rotating remnant supported
by differential rotation. The remnant subsequently under-
went delayed collapsed to a black hole (as argued out
in [16] where the estimated ejecta mass was considered,
see also [20, 25]), meaning that its mass was above the
supramassive limit M supra

Max . As we already mentioned, for
hadronic EOSs it is possible to write

M supra
Max = αMTOV

Max , (12)

with α ≈ 1.2, independently of the EOS. Then, assum-
ing the low-spin prior LIGO analysis for GW170817, the
total gravitational mass of the system as inferred by the
gravitational wave signal is Mtot ≈ 2.74+0.04

−0.01 M� [10], and
since this quantity has to be greater than the supramas-
sive limit, the following holds

Mtot ≈ 2.74M� > M supra
Max = αMTOV

Max . (13)

With this inequality, the authors of [20, 25] placed a con-
straint on the value of the maximum mass of a non-
rotating configuration

MTOV
Max <

Mtot

α
≈ 2.28M�. (14)

Figure 5 shows the loss of EOS-independence of the
supramassive limit mass, which can be between 15% to
31% more than the TOV limit mass. Assuming that we

Table 2. Supramassive limit M supra
Max and maximum mass

for uniformly rotating stars belonging to the third family
M supra

Max,third for the EOSs considered in this paper (table 1).
With the exception of T6, A4 and A6, for all the EOSs the
most massive star belongs to the third family. For the other
three EOSs, the maximum mass occurs in the phase transition
(see fig. 4).

EOS M supra
Max M supra

Max M supra
Max,third M supra

Max,third

[M�] MTOV
Max [M�] MTOV

Max

T1 2.39 1.20 2.39 1.20

T2 2.37 1.19 2.37 1.19

T4 2.36 1.18 2.36 1.18

T6 2.46 1.23 2.34 1.17

T7 2.32 1.16 2.32 1.16

T8 2.31 1.16 2.31 1.16

T9 2.31 1.15 2.31 1.15

TT 2.32 1.15 2.32 1.15

A4 2.56 1.27 2.34 1.17

A5 2.30 1.15 2.30 1.15

A6 2.63 1.31 2.33 1.16

A7 2.32 1.16 2.32 1.16

can extend eq. (12) to include hybrid stars with 1.15 ≤
α ≤ 1.31, using the same steps as in the case of hadronic
EOSs the upper bound when hybrid EOSs are considered
is revised to

2.07M� � MTOV
Max � 2.38M�. (15)

The lower bound in eq. (15) comes from most recent mas-
sive pulsar J0740+6620 [114]. The upper bound is relaxed
from 2.28M� to 2.38M� to encompass the EOSs treated
in this work.

The assumption that we can extend eq. (12) (with
1.15 ≤ α ≤ 1.31) to include hybrid stars, should be fur-
ther tested using hybrid hadron-quark EOS with different
baseline hadronic EOSs. But, this goes beyond the scope of
the current work. However, that GW170817 is compatible
with hybrid EOSs based on the fact that the supramassive
limit mass should be smaller than the inferred mass from
GW170817 is demonstrated in table 2, where we show the
supramassive limit mass and the supramassive limit in the
third family with each of the EOSs we treat in this work.
As is evident from the table, the largest supramassive limit
corresponds to EOS A6 which is 2.63M�, and hence safely
smaller than even 2.73M� (the lower limit on the mass
from GW170817). This result lends further support to the
finding of [47] that GW170817 can be interpreted as the
inspiral of a binary hybrid star-neutron star.

4.2 Universal relations for turning points

Turning points mark the onset of a radial instability of
the star, and provide a sufficient condition for secular
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axisymmetric instability in uniformly rotating (isentropic)
stars [91, 92, 94, 117] (see also [118, 119]). Top turning
points identify an instability to collapse and in the case of
our EOSs designate the most massive hybrid stars. On the
other hand, the bottom turning points single out the least
massive twin stars. For this reason, universal relations in-
volving turning point models are useful when studying the
stability of rotating stars. In this section, we focus on the
turning points in the third family of compact objects and
discover a new relation, similar to eq. (11), for both top
and bottom turning points. We also test the universal rela-
tions reported in [90], where it was shown that the angular
momentum and masses of differentially rotating turning-
point models satisfy relations that are approximately in-
dependent of either the degree of differential rotation (and
hence apply to uniformly rotating stars) or the EOS.

4.2.1 Top turning points

To normalize the top turning point mass and angular mo-
mentum we first define the “Kepler turning point” con-
figuration in the (εc,M) plane as the model that lies at
the intersection of the mass-shedding sequence with the
turning-point line, i.e., the line connecting the top turning
points along J-constant sequences. Note that the Kepler
turning point model is neither the most massive nor more
massive than the supramassive limit in the third family
(see, e.g., fig. 4), but is very close to the supramassive
limit of the third family. The same behavior was found for
hadronic equations of state in [120]. To study universal re-
lations of top turning points, we normalize their angular
momentum with that of the Kepler turning point, which
we denote JKep. In practice, we find the Kepler turning
point by least-squares fitting the turning-point line with a
fifth-order polynomial, and extending the resulting func-
tion until it intersects the mass-shedding sequence. Given
that for each EOS we construct between 15 and 40 J-
constant sequences, we never need to extrapolate more
than 1% out of the range of energy densities where we
have data.

In fig. 6 we plot the top turning point mass normalized
by the TOV limit mass versus the top turning point nor-
malized angular momentum. The plot displays a stronger
degree of universality compared to the one for the most
massive models (fig. 5). The best-fitting function is

M↑
MTOV

Max

= 1 + 0.215
(

J

JKep

)2

− 0.050
(

J

JKep

)4

. (16)

This expression approximates all the EOSs we study here
with a spread of at most 3%, which is only a little larger
than the 2% spread found for hadronic EOSs [66]. As in
the case of [66], the spread increases with the angular mo-
mentum, and for J/JKep � 0.5 all the EOSs agree with
eq. (16) to within approximately 1%. The spread at higher
angular momenta is mostly due to EOSs T1, T2 and T4.

By use of eq. (16), we can also find the supramassive
limit mass of the third family M supra

Max,third. This is because
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Equation (16)
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Fig. 6. Normalized gravitational mass of the top turning
point on J-constant sequences of uniformly rotating equilib-
rium models of stars in the third family vs. the configura-
tion’s normalized angular momentum J . The gray shaded re-
gion is the 3% spread. Note that in [66] j/jKep is used instead
of J/JKep, where j = J/M2

Max and jKep = JKep/M2
Max. The

two quantities are the same, only the notation is different. For
the EOSs in the Set I (see sect. 2) there is a correlation be-
tween M↑/M

TOV
Max and the value of jump ξ: for fixed J/JKep,

the smaller ξ is, the larger M↑/M
TOV
Max is. This can be clearly

seen for EOSs T1, T2, and T4 (the first three curves from top
to bottom).

the flatness of the mass-shedding sequence near the supra-
massive limit (see for example figs. 3 and 4) ensures that
the Kepler turning point mass agrees with the supramas-
sive limit mass of the third family to better than 0.1%
for all EOSs we consider. Moreover, the error in estimat-
ing the supramassive limit mass due to considering the
Kepler turning point angular momentum instead of the
supramassive limit angular momentum is smaller than the
dependence from the EOS. Plugging J = JKep in eq. (16),
we obtain

M supra
Max,third = (1.165 ± 0.035)MTOV

Max , (17)

where the spread corresponds to the largest discrepancy
from the mean value in the set of EOSs we study (shown
as the gray shaded region in fig. 6).

In fig. 6 we also compare our finding with the universal
relation of [66], since turning points were considered there,
too. We find that if we allow for a 3% spread, eq. (12)
in [66] holds up to J/JKep ≈ 0.85, but overestimates the
mass for larger angular momenta. Equation (12) of [66]
can describe the EOSs studied here with larger angular
momenta with an increased spread of 4.2% (cyan shaded
region in fig. 6). Thus, our expression (16) provides a bet-
ter fit to the data, and as is clear from fig. 6, eq. (16)
better captures the trend of the data.

Finally, we note that for the EOSs of Set I, there
is a correlation between the jump size ξ and the value
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Fig. 7. EOS-independent relation between angular momentum
and gravitational mass of the top turning points for J-constant
sequences of uniformly rotating stars. The solid line is eq. (13a)
in [90], with a 1.6% spread indicated by the shaded region. This
relation is satisfied by all the EOSs of table 1. Moreover, the
relation provides a different parametrization of eq. (16) with
smaller spread.

of M↑: for a given value of J/JKep, M↑/M
TOV
max is larger

for EOSs with smaller ξ (as is clear from the top three
curves in fig. 6). As a result, T1 has the largest normal-
ized maximum mass (1.19MTOV

Max ) and TT the smallest
(1.15MTOV

Max ). This does not happen for the EOSs in Set
II which are all comparable (regardless of the width of the
phase transition) and have no emerging trend.

Next, we consider the EOS-independent relations
found in [90] between angular momentum, gravitational
and rest mass of top turning points, which we report here
for convenience

M↑
MTOV

Max

= 1 + 0.29

(
J

MTOV
Max

2

)2

− 0.10

(
J

MTOV
Max

2

)4

,

(18a)

M0,↑
MTOV

0,Max

= 1 + 0.51

(
J

MTOV
0,Max

2

)2

− 0.28

(
J

MTOV
0,Max

2

)4

,

(18b)
M0,↑

MTOV
0,Max

= 0.93
M↑

MTOV
Max

− 0.07. (18c)

Figure 7 depicts these quantities and shows that
the top turning points are aligned with the previously
known equation. In fact, we find that these models sat-
isfy all the three relations (18) with the same spread as
hadronic EOSs (1.6% for eq. (18a)9 and 1.2% for eqs. (18b)
and (18c)). This is a non-trivial result because in [90] it

9 This relation carries similar information compared to
eq. (16), and exhibits better universality.

was noted that purely quark stars described with the MIT
bag model do not follow the same universal relations, even
in the uniform rotation case. Nonetheless, here we find
that for the EOSs of Set I, which employs a variant of
the MIT bag model for the high-density phase, the rela-
tions are still satisfied. This suggests that the hadronic
low-density part plays an important role in determining
the universality.

4.2.2 Bottom turning points

We discovered that bottom turning points satisfy a rela-
tion similar to eq. (16), if the normalizing angular momen-
tum is that of the Kepler bottom turning point (found at
the intersection of the bottom turning-point line with the
mass shedding sequence)

M↓
MTOV

↓
= 1 + 0.33

(
J

J↓,Kep

)2

− 0.10
(

J

J↓,Kep

)4

. (19)

The spread in this equation is at most 2%10.
Moreover, we find that the bottom turning points can

be described with the same eqs. (18), but with a spread
of 3%. The universality becomes tighter if we consider
top and bottom turning points separately. For the bottom
turning points, the best-fitting functions are

M↓
MTOV

↓
= 1 + 0.35

(
J

MTOV
↓

2

)2

− 0.12

(
J

MTOV
↓

2

)4

,

(20a)

M0,↓
MTOV

0,↓
= 1 + 0.58

(
J

MTOV
0,↓

2

)2

− 0.35

(
J

MTOV
0,↓

2

)4

,

(20b)
M0,↓

MTOV
0,↓

= 1.016
M↓

MTOV
↓

− 0.016, (20c)

with largest spread of 1% for the first two and 0.2% for the
last. Figure 8 shows eq. (20a), and in the inset we com-
pare it to eq. (18a), which is the corresponding universal
relation for top turning points. Among the three universal
relations, eqs. (20a) and (18a) are the ones in which top
and bottom turning point differ the most.

5 Differential rotation

In this section we consider differentially rotating stars with
hybrid EOSs and compute the maximum mass that can
be supported. In this context, it is more common to con-
sider the rest mass instead of the gravitational mass [65].
Nevertheless, the results that will follow are qualitatively
the same also for the gravitational mass.

10 Note that T1, T2, T4 do not have any bottom turning
point.
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Fig. 8. Same as fig. 7, but for bottom turning points. Here the
solid line is eq. (20a), and the shaded region is the 1% spread.
Bottom turning points satisfy an EOS-independent relation.
In the inset we compare the universal relations for top and
bottom turning points, eqs. (18a) and (20a).

The KEH rotation law of eq. (6) produces stars with
two different topologies: spheroidal and quasi-toroidal. In
quasi-toroidal configurations the maximum energy den-
sity occurs in a ring around the stellar geometric center,
whereas in spheroidal stars the location of the maximum
energy density coincides with geometric center of the star.
Examples of such configurations are reported in fig. 9,
where we show meridional energy density contours for a
spheroidal and a quasi-toroidal solution. In this paper,
we focus primarily on spheroidal models because quasi-
toroidal configurations are likely to be unstable [80].

5.1 Maximum mass

To find the maximum rest mass for each EOS, we fix the
degree of differential rotation Â−1, and scan the maximum
energy density in the range εmax ∈ (0.5, 3) 1015 g cm−3,
which is where the most massive models always lie for
the EOSs considered here. For each value of εmax we con-
struct equilibrium models with decreasing value of rp/re

until we find a quasi-toroidal solution or we reach the
mass-shedding limit. The last configuration built before
the quasi-toroidal or mass-shedding limit is reached is the
maximum mass for that value of εmax in our search.

In fig. 10 we show the maximum rest mass normalized
to the rest-mass of the TOV limit as a function of Â−1.
The behavior is similar to that seen for polytropes [76]
and hadronic EOSs [72] and it is followed very closely
by the gravitational mass: at relatively low values of Â−1

(� 0.25), corresponding to rotational profiles closer to uni-
form rotation, there are only modest increases in the rest
mass, not exceeding 40%. For higher values of Â−1, the in-
crease of M0,Max compared to the TOV limit grows until it

reaches a maximum and then begins to decrease again as
Â−1 is increased further. The largest gain in rest mass is
seen for EOS A6 (123% more than the TOV limit), which
is also the EOS with the highest gain in the supramassive
limit (see sect. 4).

In table 3 we report relevant properties of the most
massive spheroidal models found in our search of the pa-
rameter space. Larger increases in the rest mass are pos-
sible if we consider quasi-toroidal stars and possibly other
differential rotation laws. Thus, these masses should be
considered as lower-limits on the maximum mass of even
spheroidal stars. Moreover, finding the “absolute” maxi-
mum rest mass model for hybrid EOSs with the KEH law
depends sensitively on the resolution in εmax, rp/re, and
Â−1 used to scan the parameter space. For the models pre-
sented in table 3 we use a step in εmax and rp/re of 0.01,
and a step in Â−1 of 0.005. Even with this high resolution
in Â−1, we found large increases in the rest mass over
small ranges of Â−1. Such increases in mass correspond to
a transition to a different solution type, as shown in the in-
set of fig. 10, where we show the maximum rest mass type
A models along with the maximum rest mass spheroidal
solutions (which also include type C models) for the A4
EOS. We explore the maximum rest mass of each solution
type in appendix A, where more details on the different
types of solutions of differentially rotating stars are also
presented.

5.2 Universal relations

In [90] it was found that for hadronic EOSs and restrict-
ing to spheroidal models, eq. (18) applies not only to uni-
formly rotating stars, but also to differentially rotating
stars, and, what is more, the relation is approximately in-
sensitive to the degree of differential rotation (with max-
imum spread of about 1% even for high degrees of differ-
ential rotation). Moreover, recently, in [78] it was noted
that for purely strange quark-matter stars the relations
between angular momentum and masses of turning points
follow equations approximately independent of Â−1 (with
spread below 2%), although the relation is not the same
as for hadronic EOSs [90]. Here, we construct sequences
of differentially rotating equilibrium models with constant
angular momentum and various degrees of differential ro-
tation in the range Â−1 ∈ (0, 2) to test whether this prop-
erty holds for the hybrid hadron-quark EOSs we treat in
this work.

We find that relations (18) apply approximately to hy-
brid EOSs for degrees of differential rotation Â−1 ∈ (0, 2),
but with a larger spread of about 3% and with an evi-
dent (albeit weak) dependence on Â−1. Furthermore, the
larger the degree of differential rotation, the larger the
spread becomes. For this reason, the universality found
in [90] appears to be broken in the case of hybrid stars.

For top turning points, we show an example of the
above conclusions in fig. 11, where we report the results
from J-constant sequences constructed with EOS TT. We
found that there is a correlation between the jump size
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Fig. 9. Examples of meridional contours of the energy density for spheroidal (left) and quasi-toroidal (right) stars for EOS
A5. The green dashed line locates the quark core by outlining the contour where the energy density equals the value of energy
density at the onset of the phase transition.

Table 3. Maximum rest mass spheroidal models for the EOSs considered in this work. Shown are the values of the degree
of differential rotation Â−1, the maximum energy density εmax in units of 1015 g cm−3, the ratio of polar to equatorial radius
rp/re, the ratio of kinetic to gravitational potential energy T/|W |, the ratio of central to equatorial angular velocity Ωc/Ωe,
the circumferential radius at the equator Re in units of km, the dimensionless spin J/M2, the mass MADM in units of M�, the
ratio of the mass MADM to the TOV limit mass MTOV

Max , the rest mass M0 in units of M� and the ratio of the rest mass to TOV
limit rest mass MTOV

0,Max. The increase in maximum mass compared to the non-rotating limit is between ∼ 40% and ∼ 123%.
Quantities of particular interest are T/|W | that can be larger than ∼ 0.26, which is the threshold for the dynamical bar mode
instability (see e.g. [62] for a review), and the rest mass which can be larger than twice the TOV limit – such configurations are
classified as ubermassive according to [72].

EOS Â−1 εmax rp T Ωc Re J M M M0 M0

[1015 g cm−3] re |W | Ωe [km] M2 [M�] MTOV
Max [M�] MTOV

0,Max

T1 0.390 1.03 0.35 0.265 1.930 18.25 0.922 3.860 1.563 4.526 1.542

T2 0.410 1.09 0.32 0.276 1.965 19.35 0.943 3.974 1.720 4.662 1.699

T4 0.415 1.23 0.31 0.280 1.990 19.53 0.948 4.008 1.847 4.699 1.842

T6 0.425 1.38 0.30 0.283 2.038 19.58 0.952 4.018 2.004 4.705 1.971

T7 0.415 1.71 0.36 0.247 2.064 14.70 0.892 3.097 1.447 3.633 1.393

T8 0.395 2.07 0.38 0.238 2.040 13.55 0.878 2.944 1.415 3.450 1.368

T9 0.420 2.08 0.38 0.235 2.079 13.49 0.875 2.845 1.408 3.325 1.361

TT 0.430 2.22 0.38 0.234 2.116 13.11 0.872 2.758 1.393 3.216 1.356

A4 0.405 1.11 0.26 0.304 1.985 22.69 0.985 4.688 2.222 5.593 2.275

A5 0.510 0.89 0.28 0.293 1.990 23.07 1.013 3.951 1.976 4.577 1.937

A6 0.410 1.31 0.25 0.305 2.036 22.00 0.983 4.557 2.279 5.431 2.334

A7 0.490 0.96 0.28 0.292 1.992 22.44 1.000 4.013 2.007 4.675 1.987

ξ and the loss of the universality: the larger the jump,
the stronger the deviation from universality. Hence, the
example in fig. 11 is one of the cases that violates the uni-
versality the strongest. For most of the EOSs we treat, the
bottom turning point universal relations exhibit a smaller
spread with increasing Â−1 (below 2%), but they still vi-
olate eqs. (20) for some EOSs, as reported in fig. 12 for
EOS A7. For this EOS, the deviation from eqs. (20) can
be up to 4%.

Both fig. 11 and 12 show that there is a clear depen-
dence on Â−1. Hence, we conclude that the universal re-
lations found in [90] are EOS-independent for uniform ro-

tation, but not for differential rotation, as they acquire
a dependence on Â−1 which is not the same for all the
EOSs. The regularity and smoothness of sequences in the
figures suggests that it is possible to parametrize the de-
pendence on Â−1 using some scale characteristic of the
EOS. However, exploring this goes beyond the scope of
the current work.

Finally, we point out that for sufficiently high values
of Â−1 and J , in some EOSs the J-constant sequences
exhibit no bottom turning points. This is because stars
whose central energy density is in the phase transition re-
gion become more massive when spun up compared to the
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Fig. 10. Maximum rest mass normalized to the TOV limit
rest mass M0,Max/MTOV

0,Max as a function of degree of differen-

tial rotation Â−1 for each EOS in our study (table 1). We
only show the curves relevant for the maximum rest mass of
spheroidal stars. In the inset we show the increase in mass for
EOS A4 including all spheroidal stars and only type A stars
(see appendix A).
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Fig. 11. Normalized rest mass as a function of the normalized
angular momentum for top turning points on J-constant se-
quences with various degrees of differential rotation. The plot
corresponds to EOS TT. The turning points are compatible
with the previously known relation only in the case of uniform
rotation, but there is a clear dependence on the degree of dif-
ferential rotation. This is the case where the violation of the
universal relation satisfied by the uniformly rotating case is the
most evident, and shows that the relations found in [90] can-

not be considered Â−1-independent for the EOSs considered
in this work.

ones with higher central energy density. This means that
J-constant sequences in the (εc,M) plane tend to become
flatter and have shallower dips (see, for example, fig. 4).
In some other cases with high degree of differential rota-
tion and angular momentum we could not even identify
the top turning point, because the change of concavity is
not resolved by the accuracy of our code.
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Equation (20a)
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Fig. 12. Similar to fig. 11, but for rest mass and angular mo-
mentum of bottom turning points, and for EOS A7. In this
case, too, there is a clear dependence on the degree of dif-
ferential rotation, and so eqs. (20) are not Â−1-independent.
Among the EOS considered in this study, this is the EOS with
the strongest violation of the universal behavior.

6 Conclusions

The equation of state of nuclear matter is uncertain at
densities larger than nuclear saturation density ρ0. Some
of the proposed EOS models undergo a phase transition
from hadronic to quark matter which can result in hadron-
quark hybrid stars. For EOSs with a sufficiently large
jump in energy density over which the pressure remains
constant, a third family of compact objects emerges. In
this work we analyzed the properties of rotating rela-
tivistic stars using EOSs with first-order hadron-quark
phase transitions for many of which a third family of stars
emerges. To be more specific, we employed the quark mat-
ter parametrizations introduced in [47] for the EOSs de-
veloped in [29] and [46].

We employed the Cook code [60, 63] to build rotat-
ing relativistic stars and we studied equilibrium sequences
with constant angular momentum and varying central en-
ergy density. We found that the maximum mass a uni-
formly rotating hybrid star can support (the so-called
supramassive limit) is not an EOS-independent quantity,
but it varies from 15% to 31% more than the TOV limit
mass, in contrast to previous work [64, 66] which high-
lighted an approximately EOS-independent increase of
about 20% for hadronic EOSs. This implies that some con-
straints placed on the equation of state based on the uni-
versality of the supramassive limit and GW170817 [20,25]
do not apply to EOSs like the ones considered here. How-
ever, the supramassive limit mass of the EOSs we adopt
is consistent with GW170817, providing further support
that hybrid hadron-quark EOSs can describe GW170817.
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We located the turning points on constant angular mo-
mentum sequences, which are identified by the stationar-
ity condition of eq. (10). We defined the bottom and top
turning points along a J-constant sequence as those that
correspond to the least massive twin star and the most
massive star in the third family, respectively. Top turning
points satisfy a universal relation (eq. (16)) with spread
of about 3%. With this relation, we found that the supra-
massive limit of the third family is given by

M supra
Max,third = (1.165 ± 0.035)MTOV

Max . (21)

Enabling differential rotation and focusing on
spheroidal models, we found that the maximum mass
(both baryonic and gravitational) can increase by as much
as 123% compared to the non-rotating case. This enhance-
ment compared to the TOV limit mass, represents a lower
limit of what can be achieved with differential rotation.

Finally, we investigated the applicability of universal
relations for turning points found in [90], who reported
relations between the angular momentum, and the masses
of turning points that are independent of the EOS and
the degree of differential rotation. We found that the rela-
tions in [90] hold for the top turning points for uniformly
rotating stars. We also discovered similar universal rela-
tions for the bottom turning points for uniformly rotating
stars. However, both universal relations are violated when
differential rotation is enabled.

In future work we will consider constant rest-mass se-
quences, and explore additional hybrid equations of state
with varying baseline hadronic EOSs, to further test some
of the results we reported in this work.
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Appendix A. Solution space of differentially
rotating stars

In this appendix we discuss the solution space of equilib-
rium models for stars rotating with the KEH law of eq. (6).
We find features in the solution space which are consistent
with both hadronic and strange quark star EOSs, while
also finding others which are unique to hybrid EOSs. In
the case of differential rotation with the KEH law, solu-
tions for a given maximum energy density can be sepa-
rated on the (rp/re, β̂) plane into four classes depending
on the degree of differential rotation. These classes are
known as types A, B, C and D [75]. The first, type A,
consists of spheroidal configurations with a relatively low
degree of differential rotation. All uniformly rotating stars,
if seen as differentially rotating with Â−1 = 0, belong to
this family. Type B solutions are characterized by a high
central angular velocity but relatively low degree of differ-
ential rotation. These models are quasi-toroidal, since the
maximum energy density does not occur in the geometric
center of the star. In fig. 9, we show a comparison between
the energy density profiles of a type A and a type B solu-
tion. The third category (type C) contains spheroids and
quasi-toroids with higher degrees of differential rotation
than types A and B. Finally, type D stars are typically
highly pinched at the equator and quasi-toroidal. We were
unable to construct type D solutions with the Cook code,
but this is not a severe limitation on our study since these
configurations are not likely to be found in Nature because
their sequences start from a mass-shedding limit and end
at a mass-shedding limit [76].

The classification of different solution types works as
follows: for a fixed value of εmax, there exists a critical
value of the degree of differential rotational Â−1

crit, defined
by the condition

∂Â−1

∂(rp/re)

∣∣∣∣
εmax

= 0 =
∂Â−1

∂β̂

∣∣∣∣
εmax

. (A.1)

The function β̂(rp/re) that corresponds to Â−1
crit for a given

energy density is referred to as the “separatrix”. This
quantity partitions the solution space into four regions,
each corresponding to a different solution type. Models
are classified directly using the separatrix in the (rp/re, β̂)
plane, as shown in fig. 13, where we show the separatrix
for EOS A5 at energy density 0.5×1015 g cm−3. Figure 13
is consistent with the results observed for polytropic and
hadronic EOSs [72, 75]. However, since we were not able
to build type D stars, there are three regions instead of
four in fig. 13.

In practice, instead of working directly with the sepa-
ratrix, it is more convenient to consider Â−1

crit as a function
of maximum energy density in order to assign a type to a
configuration. For a fixed EOS and εmax, all equilibrium
models with Â−1 < Â−1

crit are of either type A or B, whereas
those with Â−1 > Â−1

crit are of type C (or D). Then, a
solution is categorized as spheroidal if the maximum en-
ergy density occurs in the center of mass. Since we do not
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Fig. 13. Mass-shedding parameter β̂, calculated using eq. (9),
as a function of the ratio of polar to equatorial radii rp/re for a
fixed energy density of εmax = 1.2×1015 g cm−3. The bold black
line corresponds to the critical degree of differential rotation
Â−1

crit = 0.611, defined by the saddle point on the (rp/re, β̂)
plane at which all solution types we are able to construct with
the Cook code co-exist for this value of the energy density (see
fig. 2 in [75] for a complete plot for polytropes). The Cook
code is not able to produce type D stars, which in this plot
would reside at values of rp/re � 0.33 (the vertical leg of the

separatrix), and 0 ≤ β̂ � 0.6 [75].

Fig. 14. Critical value of the degree of differential rotation Â−1

as a function of the maximum energy density εmax for the EOSs
in this study. Models of a given value of εmax with Â−1 < Â−1

crit

are type A or B models, and solutions with Â−1 > Â−1
crit are

type C. For some values of Â−1, equilibrium sequences with
varying maximum energy density change the type along the
sequence.

have control over β̂, we cannot directly solve eq. (A.1) to
find the critical value for Â−1. Hence, as in [72], we esti-
mate Â−1

crit with the maximum of the function Â−1
min(rp/re),

where Â−1
min is the smallest degree of differential rotation

for which an equilibrium model exists with the given max-
imum energy density. This method allows the calculation
of Â−1

crit to within 1% accuracy [72].

Figure 14 shows the critical degree of differential ro-
tation as a function of the maximum energy density for
all the hybrid EOSs we consider in this work. The fig-
ure exhibits features which are unique to hybrid EOSs
but which may be reconciled with the results of hadronic
and strange-quark-matter EOSs. Crucially, Â−1

crit is not a
monotonically decreasing function of εmax (see footnote11)
and, as a result, for some values of Â−1, an equilibrium
sequence with varying εmax (such as the ones considered
in sect. 5.2) can jump back and forth between being class
A or B and C. The significant increases in mass that we
find in sect. 5 correspond to a jump in models from type
A to type C.

In [75], homogeneous stars described by an incompress-
ible EOS in which

ε(P ) = ε0, (A.2)

where ε0 is a constant, were considered. For such an EOS,
the pressure and energy density do not depend on one an-
other, similar to the constant pressure regions of the EOSs
studied in this work. In [75] it was found that the func-
tion Â−1

crit(εmax) for incompressible EOSs first increases to
a maximum and subsequently decreases as the energy den-
sity increases. This same feature was observed for strange-
quark-matter EOSs, which may be suitably approximated
as homogeneous bodies [79]. We note that similar features
appear in the curves presented in fig. 14 above the values
of energy density corresponding to the constant pressure
regions of the EOSs. It is possible that the “bump” fea-
tures seen in the curves in fig. 14 arise for the same rea-
sons as those found in [75] and [79] for homogeneous and
strange-quark-matter EOSs, respectively.

In table 4 we list the maximum rest mass models found
in our search for each solution type we were able to con-
struct with the Cook code and for three representative
EOSs. We focus on the T1, T8, and A6 EOSs to high-
light particular features of the solution space. As can be
seen from fig. 14, the “bump” feature of the function
Â−1

crit(εmax) results in the appearance of A and B solu-
tions at values of εmax and Â−1 which are high compared
to hadronic EOSs. Despite the presence of type A and B
stars in larger regions of the parameter space compared
to hadronic EOSs, we find that the maximum rest mass
configurations still correspond to modest degrees of dif-
ferential rotation and not for the largest energy densities
considered. For all three EOSs, we find that the type B
models are the most massive, which agrees with the find-
ings from studies with hadronic EOSs [72]. The largest
gain in mass is for EOS A6, with which it is possible to
construct stars almost three times more massive than the
corresponding TOV limit. This increase in rest mass is
larger than the ones seen for the hadronic EOSs studied
in [72]. Note that the type B stars tend to have the lowest
value of εmax among the maximum rest mass solutions,
suggesting that these configurations predominantly sam-
ple from the low density part of the corresponding EOS.

11 We refer to the increase and subsequent decrease of
Â−1

crit(εmax) at values of εmax above the phase transition (as
shown in fig. 14) as a “bump” feature.
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Table 4. Maximum rest mass differentially rotating models for the T1, T8, and A6 EOSs. Shown are the solution types (A, B,

or C), the value of the degree of differential rotation Â−1, the maximum energy density εmax in units of 1015 g cm−3, the ratio of
polar to equatorial radius rp/re, the ratio of kinetic to gravitational potential energy T/|W |, the ratio of central to equatorial
angular velocity Ωc/Ωe, the circumferential radius at the equator Re in units of km, the dimensionless spin J/M2, the ADM
mass M in units of M�, the ratio of the mass to the TOV limit mass, the rest mass in units of M� and the ratio of the rest
mass to TOV limit rest mass MTOV

0,Max.

EOS Type Â−1 εmax rp T Ωc Re J M M M0 M0

[1015 g cm−3] re |W | Ωe [km] M2 [M�] MTOV
Max [M�] MTOV

0,Max

T1 A 0.35 1.22 0.38 0.247 1.787 17.50 0.900 3.700 1.498 4.331 1.476

B 0.35 0.56 0.01 0.332 1.756 27.18 1.047 5.764 2.333 6.744 2.299

C 0.50 0.69 0.01 0.314 2.589 21.44 0.979 4.897 1.983 5.757 1.962

T8 A 0.39 2.14 0.39 0.236 2.037 13.27 0.874 2.920 1.404 3.421 1.357

B 0.35 0.56 0.01 0.332 1.756 27.18 1.047 5.764 2.771 6.744 2.675

C 0.55 0.66 0.02 0.309 2.646 21.70 0.983 4.728 2.273 5.519 2.189

A6 A 0.37 1.21 0.38 0.243 1.584 20.97 0.923 3.638 1.819 4.281 1.840

B 0.35 0.50 0.01 0.332 1.759 27.35 1.045 5.849 2.925 6.943 2.984

C 0.45 0.58 0.01 0.318 2.380 22.99 0.987 5.327 2.664 6.392 2.748

Note also that for this reason the T1 and T8 type B mod-
els presented in table 4 are the same. The T1 and T8 EOSs
are identical in the low density regime and begin to diverge
at ε ≈ 0.66×1015 g cm−3, whereas the maximum rest mass
stars for each of these EOS have εmax = 0.56×1015 g cm−3.
Because the maximum energy density of these configura-
tion is the same, and, because the EOSs are identical be-
low this energy density, the corresponding solutions are
identical. Any EOS that is the same in the low density
regime as the T1 EOS will have an identical maximum
rest mass type B model (including T2, T4, T6, T7, T9,
and TT). However, note that because of their different
TOV masses, each of these EOSs exhibit a different max-
imal increase in the rest mass compared to the TOV limit
rest-mass. The maximum rest mass type C solutions pre-
sented in table 4 are different between T1 and T8, because
the corresponding values of εmax are greater than the en-
ergy density at which the two EOS begin to diverge from
one another. The models presented in table 4 are not the
definitively most massive, but only the largest we were
able to locate in the solution space. We were unable to
scan the entire solution space using the Cook code (in
particular we could not construct type D stars or highly
pinched type B ones). Moreover, because different solu-
tion types can emerge as the maximum energy density
changes, locating the absolute maximum rest mass mod-
els for the solution types we were able to compute depends
on the resolution in the parameters εmax, rp/re, Â−1 used
to scan the solution space. We used a step in εmax and
rp/re of 0.01 and a step in Â−1 of 0.01 for the class A, but
a step of 0.05 for families B and C.

Appendix B. Convergence in presence of a
phase transition

In this appendix, we discuss the convergence properties of
our numerical scheme. While the Cook code has been thor-

200 400 600 800 1000 1200 1400 1600
10−6
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10−3

10−2

N

E N

r = 0.31 rp, 0 ≤ θ ≤ π

θ = 0, 0 ≤ r ≤ 0.83 rp

θ = 0, 0 ≤ r ≤ rp

Fig. 15. Self convergence of the relative error in energy density
EN (see eq. (B.1)) as a function of grid resolution at fixed
angle (orange solid lines with square points) and fixed radius
(teal solid line with round points). The grid resolution is N
in the radial direction, and N/2 in the angular one, and the
reference solution corresponds to N = 2000. We also compute
EN along the pole removing the contribution of the surface
(orange dashed line with square points), which indicates that
the surface discontinuity is the dominant source of error and
not the hadron-quark interface.

oughly tested for polytropic and hadronic EOSs, the pres-
ence of a sharp phase transition boundary may adversely
affect convergence. To quantify the effects on convergence
by the EOSs considered in this study, we focus on the most
massive spheroidal configuration for the equation of state
A5 (see table 3) as a representative model of hybrid ro-
tating stars. As a metric for assesing self-convergence, we
consider the maximum of the relative difference in energy
density profiles with respect to a reference high-resolution
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solution. In other words, we compute

EN = max
|εref(r, θ) − εN (r, θ)|

εref(r, θ)
, (B.1)

where εN is the energy density computed with N (N/2)
radial (angular) points, and εref the reference solution,
which we take here to be that at a resolution N = 2000.
The maximum in eq. (B.1) is evaluated separately along
the meridional direction at constant radius 0.31 rp and the
radial one along the north pole. These constant radius and
constant angle lines are chosen such that the correspond-
ing energy density profiles include the phase transition
jump, i.e., they cross the interface between the quark and
hadronic phases. We also compare EN as computed along
a radial direction but without including the contribution
from the surface of the star. To do so, we exclude radii
with r/rp � 0.83 from the computation of εN , but such
that the remaining set of points includes the phase tran-
sition.

Figure 15 shows EN for N in the range (200, 1600).
The density profiles converge toward the reference solu-
tion at similar rates (for N ≤ 600) regardless of whether
we fix the angle or the radius (orange and teal lines) indi-
cating good self-convergence properties. For N > 600 the
global solution convergence reaches a plataeu, but EN re-
mains small, and at the level of 1 part in 104. As a result
of the small value of EN , we find that the global stellar
properties (rest mass, gravitational mass and angular mo-
mentum) are well-behaved and converged to better than
one part in 104 for the set of resolutions considered. Fi-
nally, the convergence without the contribution from the
surface (orange dashed lines in fig. 15) is better than when
considering the entire star. This result suggests that the
error is dominated by the surface discontinuity, and not
by the phase transition.

In our main study we employed a grid with 500 radial
points. Based on the convergence study presented here,
we estimate that the stellar global properties we report in
the main text have an error of ∼ 0.01%.
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