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Abstract—Bulk operations, such as Copy-on-Write (CoW),
have been heavily used in most operating systems. In partic-
ular, CoW brings in significant savings in memory space and
improvement in performance. CoW mainly relies on the fact
that many allocated virtual pages are not written immediately (if
ever written). Thus, assigning them to a shared physical page can
eliminate much of the copy/initialization overheads in addition
to improving the memory space efficiency. By prohibiting writes
to the shared page, and merely copying the page content to a
new physical page at the first write, CoW achieves significant
performance and memory space advantages.

Unfortunately, with the limited write bandwidth and slow
writes of emerging Non-Volatile Memories (NVMs), such bulk
writes can throttle the memory system. Moreover, it can add
significant delays on the first write access to each page due
to the need to copy or initialize a new page. Ideally, we need
to enable CoW at fine-granularity, and hence only the updated
cache blocks within the page need to be copied. To do this, we
propose Lelantus, a novel approach that leverages secure memory
metadata to allow fine-granularity CoW operations. Lelantus
relies on a novel hardware-software co-design to allow tracking
updated blocks of copied pages and hence delay the copy of the
rest of the blocks until written. The impact of Lelantus becomes
more significant when huge pages are deployed, e.g., 2MB or
1GB, as expected with emerging NVMs.

I. INTRODUCTION

Emerging Non-Volatile Memories (NVMs), e.g., Intel’s and
Micron’s 3D Xpoint, are entering the mainstream server
market. With terabytes of capacity and ability to host per-
sistent data, emerging NVMs are promising candidates to
build future memory systems. However, emerging NVMs bring
in unique challenges and aspects that require rethinking the
current designs of computing systems. Protecting against data
remanence attacks that are viable for NVMs is one of such
challenges. Moreover, the large capacity of NVMs motivates
more intelligent mechanisms for memory management, e.g.,
efficient use of huge pages. Additionally, systems that are
equipped with NVMs are expected to take advantage of the
data persistence feature through changes in system software
and supporting libraries, e.g., Intel’s PMDK.

The granularity of memory management in current oper-
ating systems is well-suited for DRAM capacities. However,
with NVMs coming with much larger capacities, the trade-off
between internal fragmentation (unused space within a page)
and translation overhead needs to be revisited. Page size is
an important factor affected by such trade-off, and the default
page size for the current system is typically 4KB or 8KB.
However, huge pages (2MB or 1GB) support is becoming
common in spite of some challenges. When using huge pages,
systems equipped with typical DRAM capacities, e.g., 32GB
or 64GB per processor socket, would suffer from internal
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fragmentation and the limited number of pages, and hence
limit concurrent applications. In contrast, for systems equipped
with NVMs, of terabytes capacity per processor socket, it is
practical to use huge pages to reduce the bookkeeping and
translation overheads, especially when internal fragmentation
is unlikely to burden applications.

Bulk operations such as page initialization and page copying
have received lots of attention in the literature due to their
excessive use in many operating system (OS) operations [3],
[18], [31]. Such bulk operations become more expensive with
larger page sizes. The limited write endurance and slow write
operations of NVMs make bulk operations even more costly
and can easily lead to throttling the memory system. For
instance, when 1GB page sizes are used, at the first write
operation of a page, the OS has to zero out the whole
page, which can result in millions of write operations to the
memory. Similarly, the common CoW optimization used to
delay the instantiation of physical pages having content similar
to existing pages would incur a significant number of writes
at the first attempt to write a write-protected CoW page.

Enabling bulk operations to occur at fine granularity, and
delay their actual writes until smaller granularity blocks are
actually written/copied, can significantly improve performance
and avoid expensive bulk operations in many OS operations
and on-demand paging. Meanwhile, managing memory at a
fine-granularity can add significant bookkeeping and transla-
tion overheads. To reduce the tension between using coarse-
granularity and fast bulk operations, we propose Lelantus, a
novel hardware/software co-design scheme that allows fine-
granularity bulk operations while using coarse-granularity
pages. Lelantus mainly relies on tracking initialized/copied
cachelines on each page and do the actual copying/initializing
of cachelines on-demand (lazily). Lelantus repurposes security
metadata maintained per cacheline to enable the memory
controller to recognize delayed copy/initialization operations.
By doing so, the memory controller completes initializa-
tion/copying at cacheline granularity when written (or read).
Lelantus preserves the software semantics and provides the
same guarantees of data content as if initialization/copying
has been done conventionally; however, in a more efficient
and performance-friendly way.

Due to data remanence problem, emerging NVMs are al-
ways paired with encryption [3], [4], [9], [39], [41], [41]. Even
commercial products, such as Intel’s Apache Pass (DIMM
form factor of 3D XPoint), are expected to have encryption
built-in [12]. Meanwhile, current and future processors have
support for processor-side encryption, e.g., AMD’s Secure



Memory Encryption (SME) and Intel’s Total Memory Encryp-
tion (TME) [17], [20]. Such available support will facilitate the
adoption of NVMs. Unfortunately, memory encryption, due to
its avalanche effect, exacerbates the write endurance problem
and further amplifies the impact of NVM’s slow writes on
performance [3], [39]. Therefore, many recent works focus
on reducing the impact of NVM writes on the presence of
encryption [3], [39]. In this paper, we focus on improving the
performance of the CoW operations for emerging NVMs in
the presence of encryption.

To evaluate Lelantus, we modify the Linux kernel v5.0 and
run our modified Linux on a cycle-level full-system simulator,
Gem5 [6]. Our evaluation results show that Lelantus can
improve the performance by up to 3.33x (2.25x on average) for
regular pages and up to 67.53x (10.57x on average) for huge
pages. Meanwhile, Lelantus can reduce the average number
of NVM writes (and hence improve lifetime) to 42.78% for
regular pages and 29.65% for huge pages.

We organize the rest of the paper as follows. First, we
introduce the background and motivation in Section II. Second,
we discuss the design and implementation details in Section IIT
and Section IV. In Section V, we discuss our evaluation
methodology and present our evaluation results. Section VI
discusses the related work. Finally, we conclude our work in
Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the background and present mo-
tivational data for the overhead of Copy-on-Write operations.

A. Emerging NVMs

Different vendors are developing a wide range of emerging
Non-Volatile Memory (NVM) technologies. For instance, a
recent announcement from Intel and Micron has revealed a
new NVM technology, 3D XPoint [15]. Emerging NVMs
promise an order of magnitude lower access latency than
Flash, and an order of magnitude denser than DRAM. In that
similar trend, HP Labs has been investigating Memristor as
a promising technology to replace DRAM and make storage
systems [34]. Such memory technologies are favorable to
makeup storage systems for two key reasons [13], [37]. First,
they are non-volatile, which is a strict requirement for storage
systems. Second, they are orders of magnitude faster than
current storage devices, such as NAND flash-based Solid-State
Drives (SSDs) and Hard-Disk Drives (HDDs).

At the same time, NVM technologies are also promising
to replace DRAM as primary memory devices due to several
reasons. To begin with, they possess high densities, the area in
which DRAM is struggling with time due to its reliability and
manufacturing constraints. In addition to that, they are non-
volatile, which promises near-zero idle power, hence an ideal
candidate for systems built with energy efficiency in mind. As
a result, major computing vendors envision emerging NVMs
to play a promising role in replacing main memory and storage
devices. Moreover, they are most likely to be merged into one
system [13], [15].

Most of the emerging NVMs are based on phase-change
or resistive material, in which the phase and other non-
volatile and measurable levels can be used to represent the
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stored values. Passing high current or voltage can change
such levels [22], [24]. In some cases, the direction of such
current can be used to program the cells with different values
[14]. Most of these technologies have limited write endurance.
However, they feature an order of magnitude higher endurance
than current SSDs [22], [24], [28], [37].

While many promising NVM technologies are compelling
solutions for building future systems, they mostly share com-
mon features - high densities, ultra-low idle power, limited
write-endurance, and access latencies that are comparable to
DRAM.

B. Secure NVMs

Deploying emerging NVMs as main memory has always
been paired with memory encryption [3], [9], [39]. Typically,
counter-mode encryption is used due to its security and
performance advantages. Figure 1 depicts the counter-mode
encryption.

| Padding | Address | Encryption Counter |

Initialization Vector (IV) l

| AES Engine
One-Time Pad (OTP)

Key
Encryption Y Encryption,
Plaintext .4__‘6' b *| Ciphertext
Decryption Decryption

Fig. 1: Memory counter-mode encryption.

Counter-mode encryption can overlap the latency of fetch-
ing data and the encryption engine latency; an initialization
vector (IV) is what gets encrypted to produce a one-time
pad (OTP), which gets XOR’ed with ciphertext/plaintext to
complete encryption/decryption. Therefore, such OTP could
be pre-generated while the data is being fetched, and hence,
the latency of the encryption algorithm (AES in this case)
is hidden. From the security perspective, by associating an
encryption counter with each memory block (e.g., 64 bytes),
counter-mode encryption can ensure both temporal and spatial
uniqueness of ciphertext for the same data. The temporal
uniqueness is guaranteed through incrementing the counter
associated with each data block after encryption, i.e., writing
the data block to memory. Meanwhile, the spatial uniqueness
is ensured by including the block address in the IV, and thus
the IV (and hence the OTP) will be unique for each block.

To reduce the storage overhead of encryption counters and
improve counter cache locality, prior work proposed a split-
counter scheme [36]. In the split-counter scheme, each 4KB
memory region would have one major counter (64 bits) and
64 7-bit minor counters. Each minor counter corresponds to
a specific 64-byte memory block within the 4KB memory
region. The encryption counter (shown in Figure 1) of each
64-byte data block is composed of the concatenation of the
corresponding minor counter and the region’s major counter.

One major vulnerability for counter-mode encryption is
tampering with counters or possibly replay their old val-
ues. Replaying counters enables known-plaintext attacks that



compromise the security of the system. Therefore, the use
of counter-mode encryption is typically paired with integrity
protection of data and counters through Merkle Tree [29].
The overhead for protecting the integrity of counters and data
is negligible (less than 2%) [29]. For the rest of the paper,
we assume the split-counter scheme with Bonsai Merkle Tree
similar to state-of-the-art work [4], [38], [41].

C. Copy-On-Write

Copy-on-write (CoW) is an efficient technique used in most
modern operating systems (OSes) to enable efficient memory
management. It delays an expensive copy operation until it is
needed. If the data is copied but not modified, the copied data
can exist on the source page. Only when the copied data is
modified, the kernel performs an actual copy to create a private
page. There are several use cases for the CoW technique.
The Fork System Call: When a process forks a new child
process, the parent and child processes make a copy of all
existing data. They then start from where the parent process is
left off. By avoiding the expensive copy operation, the kernel
memory management system renders both child and parent
processes able to share the original pages and masks those
pages as write-protected. Whenever either the child process
or parent process updates those write-protected pages, a page
fault is triggered, also, subsequently, the CoW technique is
engaged to create a private copy of the page. The fork is
widely used to create an isolated execution environment in
many applications so that an error in the child process no
longer affects the parent process. For example, the Apache
HTTP server forks child processes as independent agents in
response to network requests. Modern Web browsers fork child
processes to render Web pages as well as create sandbox
environments for plugins.

Virtual Memory Management: In modern OSes, when a
process allocates a new memory page on the heap, its virtual
address is mapped to a zero page in initialization. The zero
page, which is filled with all zeros, is a read-only page
reserved at system bootup time. Only when the process first
writes to the virtual page, the CoW technique allocates a
physical page and copies the zeros into the allocated page.
The CoW technique enables the OSes to allocate virtual pages
without performing expensive physical memory initialization
immediately. For example, malloc/remalloc [19] implemented
in libc use brk system call to resize the heap segment by
default. Alternatively, when the allocated memory is larger
than a threshold, the libc uses mmap/mremap to allocate large
mmap blocks beyond the heap segment. The threshold is 128K
by default and may be adjusted dynamically according to a
specific implementation. Both allocation methods leverage the
zero page and CoW techniques to delay the expensive tasks of
zeroing out the allocated memory. It is also true for huge pages
as all the newly allocated huge pages point to a particular huge
Zero page.

Data Deduplication/Virtual Machine Cloning: Data dedu-
plication technologies search chunks or blocks containing the
same data. It reduces the memory usage by removing the
duplicates and then apply CoW to the remaining. For example,
Kernel Same-page Merging (KSM) merges duplicated pages
into a shared write-protected page [2], [8], [25], [32], [35].
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Kernel-based Virtual Machine (KVM) first introduced KSM.
However, in current systems, any application, that generates
many instances of the same data, can advise those areas of
memory space to KSM for deduplication by using the madvise
system call. There is also Virtual Machine Cloning [21]
technology proposed to significantly reduce the startup cost
of VMs in a cloud computing server. Different from fork, VM
Cloning makes a private copy of I/O resources and defines a
set of identical virtual hardware configurations.

Snapshot/Checkpointing: A snapshot is a consistent copy
of the whole dataset. By having a snapshot, we can restore
the state of in-memory applications to the snapshot point.
Alternatively, we can also recover to the current state if the
latest transaction logs also exist [5], [33]. The CoW can be
used to make a fast snapshot of in-memory applications. For
example, Redis [7], one of the most popular in-memory key-
value database, creates a snapshot by forking a child process.
The parent process continuously serves any in-coming (read
and write) requests. The child process makes a complete copy
of the dataset at the snapshot point. By leveraging the CoW,
the parent process handles the write requests in a private copy
of memory. Hence, the dataset can be persisted to external
storage by the child process in the background.

D. Motivation

As OSes implement the CoW at page granularity, they intro-
duce two significant performance penalties. First, there exist
substantial delay for the first write operation on a shared page.
When we first update a CoW page, the whole page copying
inevitably slows down the first write. Second, performing full
page updates also results in duplicated write operations to the
target page (first copy then write), especially for huge pages.
For huge pages, the copy operation is typically implemented
as non-temporal stores (to avoid cache pollution). Hence, any
subsequent writes will be added to those incurred by the copy
operation. For regular pages, the extra writes would result in
pre-mature evictions from the cache due to cache pollution. In
both cases, the number of physical writes can be significantly
more than that of the logical writes for a CoW page, i.e., CoOW
causes write amplification. The write amplification in CoW
pages not only hurts the performance but can also reduce the
lifetime of limited write-endurance memories such as NVMs.
Figure 2 shows the number of physical writes performed in
the memory when updating one byte per page and updating
the whole page. The total size of the memory allocation to be
modified is 16MB in all experiments. We can see the CoW has
amplified the number of writes for both regular pages (4KB
in size) and huge pages (2MB in size). For the first write,
the average write amplification factor (number of physical
memory writes versus logical writes to data blocks) is 7.07x
for regular pages and 477.96x for huge pages. For the whole
page write, the average write amplification factor is 1.87x for
regular pages and 1.97x for huge pages.

III. LELANTUS DESIGN

In this section, we discuss the design choices of Lelantus.
Before delving into the details of Lelantus, we first define our
threat model.
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Fig. 2: Write amplification for CoW pages. The result is
labeled in format: [size of pages (size of data been updated
within each page)].

Threat Model: In our paper, we assume secure NVM memory
with the trusted boundary limited to the processor chip.
Similar to the related prior work [3], [38], [41], we assume
protection against physical access attacks, data and/or counter
tampering, replay attacks, and bus-snoop attacks. The integrity
of encryption counters and data is protected using Bonsai
Merkle Tree (BMT) [29]. Access pattern leakage and side-
channel attacks are beyond the scope of this paper.

Lelantus exploits the ability to track memory updates at
fine-granularity in secure memory controllers. Such ability
comes from the fact that secure memory controllers require
metadata per cacheline to complete its encryption/decryption.
Maintaining such security metadata at fine-granularity is es-
sential to ensure temporal and spatial uniqueness of encryption
pads, a critical security requirement [3], [39]. Lelantus aims
at repurposing such metadata to additionally track uncopied
cachelines within a page and allow reading them from the
source page.

To better understand our scheme, let’s first discuss how
metadata in secure NVMs are handled. As discussed earlier
(in Section II), in state-of-the-art secure NVM systems, each
data block has a corresponding encryption counter in memory.
In order to save memory space, the split-counter scheme is
generally used to organize counters in a split fashion where
the encryption counter is composed of a minor counter (per
data block) and a major counter (shared across data blocks
of the same page). Typically, the major counter is 64-bit, and
the minor counter is 7-bit, and thus, for a 4KB memory page
with 64B data blocks, the counter block (64 minor counters
and one major counter) fits in 64B block [36].

Figure 3 shows how security metadata (encryption counters)
are used in the context of secure NVM systems. As shown
in the figure, for each memory operation (read or write),
the counter block associated with the data block has to be
read, and the initialization vector (IV) is established using
minor counter, major counter, and others. The minor counter
gets incremented on each write operation, i.e., after each
encryption, and the major counter is incremented only when
minor counters overflow. However, the most related aspect to
our work is that each read/writes from memory needs to check
such security metadata.

The rest of the section discusses how we leverage such
security metadata to track unmodified (not copied) data blocks
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efficiently and how to redirect them towards the source page
while maintaining the semantic of CoW.

A. Communicating CoW Information

In Lelantus, we replace the actual copy operation at the
first write of a CoW page with encoding the copy information
in security metadata. Specifically, in the conventional process,
first, a new physical page is created and mapped, and then
the content of the source page is copied into the new page
(destination). In Lelantus, this process is similar in that a new
physical page is created. In contrast, instead of doing the actual
copying to the new page, the security metadata of the new
page would indicate that it is copied from another page and
which cache blocks are not copied yet. Specifically, the kernel
writes the following to memory-mapped 10 registers within
the memory controller: @ The physical address of the source
page. @ The physical address of the new page (the copy).
The modified kernel code adds memory fence after such write
operations to ensure the memory controller has received them.

B. Encoding CoW Mappings

One critical question is how to leverage security metadata
to maintain the aforementioned source page address and track
not-copied-yet cache blocks within the destination page. To
this purpose, we propose two distinct strategies. The first one
is to reduce the size of encryption counters, thus increasing
the chances of getting counter overflows. The second one is to
add supplementary CoW metadata; therefore, it has a higher
space overhead. Table I shows a summary of both schemes,
which we will discuss in more detail later.

Encoding Minor Counter Space Extra
Scheme Overflow Overhead RW Traffic
Resizing

Counter Blocks 200% none tow
Supplementary .

CoW Metadata 0.07% 0.02% medium

TABLE I: Comparison of two CoW encoding schemes.

Solution 1: Resizing Counter Blocks: To encode information
about CoW pages in security metadata, we reserve one bit in
each 64B counter block for a CoW_F1lag. If the CoW_Flagis
0, then the counter block covers a regular page, i.e., not a CoW
page. Meanwhile, if CoW_Flag is 1, the counter block covers
a CoW page. Based on whether the counter block covers a
regular page or a CoW page, its format/anatomy is different, as
shown in Figure 4. When used as a CoW page, minor counters
size becomes 6-bit instead of 7-bit, and a 64-bit source page
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Fig. 4: Our Solution 1: Lelantus: Resizing Counter Blocks.

address field is created using the 1-bit saved from each of
the 64 minor counters. The source page address field, as its
name indicates, holds the physical address of the source page
from which the corresponding page is copied. Moreover, for
counter blocks of CoW pages, a value of zero in minor counter
indicates that the corresponding 64B cache block has not been
copied yet to the corresponding page, i.e., we need to read it
from the source page. Meanwhile, if the counter block covers
a CoW page and the minor counter of interest has a non-zero
value, this indicates its corresponding block has been modified
earlier. Hence, the requests to the corresponding block should
no longer be forwarded to the source page.

Solution 2: Supplementing CoW Metadata: The major
drawback of resizing counter blocks lies in the fact that a
smaller minor counter for CoW pages increases the counter
overflow rate, which in turn leads to more re-encryption
cost. To resolve such a problem, in this solution, we employ
supplementary CoW metadata to track the source page address.
As shown in Figure 5, we create only one field in the CoW
metadata to save the source page address, and store the CoW
metadata in the same way as security metadata is stored in
NVM. This scheme incurs minor space overhead, 8B per
page. For example, given 4KB pages, the space overhead is
2B for each KB. However, we no longer need to reduce 1-
bit in all 64 minor counters in order to track a 64-bit CoW
source page address. Instead, we only reserve one value in the
minor counter. A minor counter with the reserved value, zero
as an example, indicates that the corresponding cache block
belongs to a CoW page and has not been copied yet. A minor
counter with any other values indicates that the corresponding
cache block is a regular one. If a minor counter has a value
of zero, we then issue another request to retrieve the source
page address in the CoW metadata. To overcome the delay of
querying such CoW metadata, we employ part of the counter
cache as a small cache for CoW metadata. More specifically,
we enable one counter cache slot, which is 8x8B in size, to
host up to eight CoW mappings.

C. Decryption of CoW Blocks

In Lelantus, within a CoW page, there could be blocks that
have been updated and others that are still not copied yet.
One issue that arises here is deciding which major counter
and minor counters to use for not-copied-yet blocks. For not
copied yet blocks, the requested data blocks need to be fetched
from the source page and thus needs to be decrypted using an
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initialization vector that consists of the major counter, minor
counter, and address of the physical source page to ensure
correct decryption. Re-fetching the counters of the source page
adds delays to access CoW blocks, as depicted by Figure 6.
Secure memory controllers employ a counter cache to reduce
such delay. Since many CoW pages share the same source
page, the counter block of the source page has an even higher
locality. As a result, the delay of such re-fetching should
usually be acceptable.

D. Handling Early Reclamation of Source Page

Usually, when we fork a child process to perform subtasks,
the parent process continuously runs in the background. In
this case, at least the parent process is owning the shared
(source) pages. The child process can get the original data
from the source pages without a problem. However, it is also
possible for the OSes to reclaim the shared pages before the
child processes release the copied pages. For example, the
parent process may exist before the child process ends, and
the parent process may make a private copy of the shared
pages as well. Under both circumstances, the map count (the
number of processes referring) of the source page decreases by
one. When the map count reaches one, the system assumes the
source page starts to be owned exclusively by one process. The
kernel will then call wp_page_reuse to mark the source page
as writable, and call page_move_anon_rmap to tell reverse
lookup (rmap) code to not search parent or siblings. As a
result, unless restricted by the application, there’s no guarantee
that the source page is continuously write-protected after the
copy. We have observed extra writes to source pages in the
early stage of this research. If the counter block of the copied
pages still references to the source page, we could get modified
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data afterward instead of the original copy. One way to solve
this problem is to capture the writing and releasing events
of the source page, then perform a reverse lookup to find
the copied pages. Moreover, we need to apply real copies
for those uncopied cachelines before writing or releasing the
source page.

Fortunately, since the physical to virtual page reverse lookup
(rmap) code has already been implemented in the Linux kernel,
we can easily trace the provenance of such copied pages. As
shown in Figure 7, an anon_vma structure is created in the
kernel for each process and linked with a structure called
anon_vma_chain. A list of vm_area_struct structures from
the same process are then linked to the anon_vma_chain via
same_vma pointers. The anon_vma_chain from all the forked
processes are connected in light of reverse lookup as well.
From the page structure, which points to a related anon_vma,
we can transverse the forked processes to trace all the possible
copied pages.

Virtual page

ESOurcepage Process 1 Process 2 Process 3
Cowpage [ av | [ Av | [_AV |
!
0001 AVC —{ AvC J—{ AvC |
! ! ]
VMA VMA | VMA
[0001->1010) [0001->0010)

x

Fig. 7: Reverse lookup for source pages. “AV” is the anon_vma
structure, and “AVC” is the anon_vma_chain structure. Each
“VMA” represents a chunk of continuous virtual memory
space, such as the stack or heap segments.

To implement this, as shown in Figure 8, as long as the
page’s map count reaches one, we pause the kernel’s invoca-
tions to functions wp_page_reuse and page_move_anon_rmap.
Hence, upon writing the page later, another page fault will
kick in. The page fault handler checks whether the page’s
map count equals to one or not. If so, we handle the early
reclamation of the source page before invoking the two above-
mentioned delayed function calls. More specifically, we first
perform a reverse lookup in the virtual memory area (VMA),
which initiates the fault, to find the corresponding virtual
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address mapped to the source page. Second, given any of the
page’s parents or siblings, if their identical virtual addresses
map to another physical page, this associated physical page
could be a copied page. Finally, we send a physical page
copy command to the memory controller to copy the uncopied
cachelines. Note, it is possible to find a destination page that is
not still pointing to the source page. Hence, we need to check
again in the memory controller to see if the destination page
still refers to the source page. Also, before releasing a (shared)
source page, we check if the page is write-protected. If true,
we perform the same operations to handle early reclamation.

Although we delay the function calls of wp_page_reuse
and page_move_anon_rmap to unmask a “previously” shared
page as write-protected until we actually perform an in-place
update, we are not delaying page free operations. Upon freeing
such a shared page, the early reclamation handler kicks in
instantly to perform the remaining cacheline copies.

E. Handling Recursive Copy Chains

Since a forked process can also fork its child process,
the OSes could copy a copied page again. Generally, when
the secure memory controller observes a copy operation, the
copied page should have at least one modified cacheline.
Otherwise, the CoW technology delays the copy operation
in the kernel. However, for huge pages, one modification
results in multiple physical page copies. Moreover, part of
the physical pages in a huge page could leave unmodified.

For example, suppose Lelantus first copies page A to page
B. Later it copies page B to page C. If page B is unmodified,
as in huge pages, we record page A’s address for page C. Upon
the decryption of page C’s uncopied cachelines, we directly
load page A’s counter block. While reclaiming page A, we
would schedule real copy for both page B and C. These real
copies can be safely done in parallel to leverage row buffers
and achieve maximum memory bandwidth.

On the contrary, if we already have some cachelines mod-
ified on page B, while copy it to page C, we save page B’s
address on page C’s metadata. As for the decryption of page
C’s uncopied cachelines, we need to load page B’s counter
block. Again, if the corresponding cacheline on page B is
uncopied, we need to bring page A’s counter block. While
reclaiming page A, we only need to perform a real copy for
page A’s direct sibling, page B, without impact page C.



Note that we do not delay the releasing of page A in
any case. Thus, there is no garbage collection issue and no
space overhead. Handling early reclamation and recursive copy
mainly aims to guarantee correctness to avoid the potential
crash. Therefore we have not evaluated related performance
impact.

E Security Discussion

Since encryption counter blocks have their integrity pro-
tected using Merkle Tree, any tampering with CoW metadata
in counter blocks will be detected as in typical secure memory
systems. Moreover, for the supplementary CoW metadata
blocks scheme, the CoW metadata blocks can be treated as
normal data blocks, i.e., encrypted, and integrity protected
using counter-mode encryption and integrity tree, respectively.
Since such CoW blocks are encrypted, only if the CoW meta-
data is stored plainly in counter blocks, then some information
can be exposed to the attackers. While such information is
limited to indicate if the accessed block is copied from another
address or not, such a relationship can be used to learn access
patterns and leveraged in access pattern attacks. While access
pattern leakage is beyond the scope of this work, such new
information can be hidden through encryption, i.e., the CoW
metadata is encrypted within the counter block.

G. Applicability to Non-Secure Memory

While Lelantus leverages security metadata to encode the
CoW information, it can be applied to unencrypted memories
with slight modifications. The only requirement is that the
CoW data are associated with each cache block and visible to
the memory controller. We choose to alter security metadata,
which is available in platforms use Intels TME [17], Intels
SGX [11], AMDs SME [20], as they are maintained per cache-
line and visible to the memory controller. Any other metadata
that satisfies our requirements, such as memory tagging [27],
[30], can be applied to implement Lelantus with minor modifi-
cations. Moreover, maintaining and fetching encryption blocks
has minimal overheads, as shown in prior studies [4], [38],
[41]. Thus, even if memory is not encrypted, Lelantus can use
similar counter blocks that incur minimal storage overheads
(= 1.5%) and negligible performance overheads. Note that
if Lelantus is used for non-secure NVM, counter-like blocks
do not need to be protected by Merkle Tree, and hence
Lelantus only incurs the overheads of retrieving and updating
the counters.

IV. IMPLEMENTATION

In this section, we discuss the implementation of Lelantus.

A. Memory Controller Support

As described in Table II, we introduce three CoW com-
mands in the memory controller: page_copy, page_phyc and
page_init. These commands enable the software to offload the
page copy and allocate operations to the hardware. Similarly,
bulk instructions, such as rep movsd, rep stosb, ermsb in
x86 [16] and mvcl in IBM S/390 [10], are already pre-
sented in several modern processors. However, those CPU
instructions would require significant effort to extend ISA,
change the microarchitecture, and add new decoding units in
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CPUs. Our idea is to add a memory-mapped IO register in
the memory controller for communication. Specifically, the
page_copy command tells the memory controller to save the
source page address on the metadata of the destination page.
The page_phyc command checks if the source page address is
equal to the address saved on the metadata of the destination
page. If true, the memory controller then performs a real
physical copy for the uncopied cachelines. The page_free
command tells the memory controller to drop the source page
address on the metadata of the destination page even if there
are uncopied cachelines.

Command | Parameters | Semantics

page_copy | src, dst Logical page copy.
page_phyc | src, dst Physical (real) page copy.
page_free dst Clear CoW metadata for dst.

TABLE II: Semantics of the memory controller commands.

There are three crucial aspects of the execution semantics of
our CoW commands. First, all commands rely on the software
to take care of the alignment and size constraints. Page
alignment enables Lelantus to leverage the security metadata
to track the copying/initializing. It is also feasible to let the
microarchitecture to determine if Lelantus can fully/partially
accelerate a particular instance of copying/initializing. How-
ever, since the modern operating system manages current phys-
ical main memory in the unit of page granularity, it is natural
to re-implement existing page manipulation functions to max
out the benefits from Lelantus. Second, the microarchitectural
implementation ensures that any data in the on-chip caches
are kept consistent during the execution of these operations.
Third, for processors that perform out-of-order execution, the
activities to the destination pages need to be stalled. In the
meanwhile, the processor can still accept interrupts and handle
any page faults during the execution of these operations.

B. Processor Microarchitecture Support

To guarantee the cache coherence, upon the submission
of the page_copy command, the processors need to conduct
1) flushing any dirty caches of the source page, and 2)
invalidating any caches (clean or dirty) of the destination page.
Otherwise, applications can get stalled data while reading the
destination page. The good news is, the processors already
implements such flush and invalidate instructions, and the op-
erating systems can conduct such cache flushing/invalidating
operations. First, before marking the source page as write-
protected, its on-chip cache should be flushed by the OSes.
Second, while allocating a new physical page, the OSes should
invalid its on-chip cache. Note, although Lelantus take care of
cache coherence issues, there are no cache consistency issues.

C. Operating System Support

In the Linux kernel, we mainly perform three modifications
to the memory management functions to utilize the above
mentioned CoW commands. The kernel implements CoW
pages in the unit of page granularity. Whenever an application
writes to a CoW page, the processor generates a CoW fault.
The kernel then handles the CoW fault and copy the data
from the CoW page to a freshly allocated new page by using



copy_page kernel function. After the copying, the kernel then
updates the page mapping and point the virtual addresses to the
freshly allocated physical page. Finally, the processor resumes
the write operations. As this copy_page function is already
page size aligned, we only need to replace the corresponding
function by sending the source and destination pages in a
page_copy command. Other kernel features, such as fork,
kernel same-page merging, and huge pages, which directly
or indirectly rely on the copy_page kernel functions, can then
benefit from Lelantus transparently. For example, the kernel
translates the copy of a huge page into a set of physical page
copy operations.

Another necessary kernel modification is to perform addi-
tional reverse lookup before the releasing or writing a shared
page. As discussed in Section III-D, we do not add additional
overhead to trace where we copied a shared page. While
writing or releasing a shared page, it’s map count should
be equal to one, which means only one process is owning
the shared page. We need to transverse the anon_vma_chain
to find the new “destination” page where the same virtual
address is mapped to in other forked processes. We then send
the source and destination pages in a page_phyc command.
The memory controller then checks if the destination page is
already copied from the source before performing the physical
copy. By proposing page_phyc instructions, we delay the copy
operations further compared to the CoW implemented in the
kernel. This delay enables the memory controller to merge
more writes and copies in the request queue.

The last kernel modification is to send a page_free command
when releasing a copied page. When we free a copied page,
all the unperformed cacheline copies would be no longer
necessary. Thus, we remove the related metadata if it still
exists to get rid of the unwanted copy.

V. EVALUATION

In this section, we conduct performance evaluations.

A. Methodology

We model Lelantus in Gem5 [6] with the system config-
uration presented in the Table III. To perform full-system
simulation, we modify the Linux kernel v5.0 to mainly re-
implement the copy_user_page, do_wp_page and put_page
functions. We extended gem5’s memory controller to include
a memory-mapped I/O register and a counter cache. The
memory-mapped I/O register enables the above mentioned
three CoW commands: page_copy, page_phyc and page_init.
We assume all CoW commands have the same transfer latency
as write operation from the processor to the memory controller.
We implement a 256KB, 16-way set associative counter cache,
with a total number of 4K counters and employ the battery-
backed write-back scheme as the counter cache management
scheme by default. The counter blocks are randomly initialized
to model the counter overflow. Similar to prior work, we
assume the overall AES encryption latency to be 24 cycles,
and we overlap fetching data with encryption pad generation.
We compare four CoW schemes in our evaluation:

(1) Baseline that is implemented in default Linux kernel.
(2) Lelantus that resizes the counter blocks to save the source
page address.
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@ Lelantus-CoW that employs supplementary CoW meta-
data. 32KB of a 256KB-sized counter cache is reserved for
CoW metadata.

@ Slient Shredder [3] that only avoids zero initialization.
An encryption counter has a value of zero indicates the
corresponding cacheline is filled with all zeros.

Component Parameters
Processor 8-core, 1GHz, out-of-order x86-64
L1 Cache 2 cycles, 64KB size, 8-way, LRU, 64B block
L2 Cache 8 cycles, 512KB size, 8-way, LRU, 64B block
L3 Cache 25 cycles, 8M size, 8-way, LRU, 64B block
Main Memory 16GB, 2 ranks, 8 banks
PM Latency 60ns read, 150ns write
Page Size 4KB, 2MB

Counter Cache 256KB, 16 way, LRU, 64B block

TABLE III: Configuration of the simulated system.

B. Copy/initialization-intensive Applications

To stress-test our design, we select six representative
copy/initialization-intensive real-world applications in the Ta-
ble IV. The goal is to evaluate the performance and the write
overhead of our design. In all experiments, the full-system
simulation is fast-forwarded to skip the initialization phase
and then followed by the execution of the specific phase of the
benchmark applications. To study the impact of huge pages,
we use libhugetlbfs [1] to enable huge pages for particular
applications, except that in boot benchmark, we use huge
pages for the entire system.

Name Description

boot A phase booting up the Buildroot embedded Linux
system (while starting processes by reading information
from the /etc/inittab file).

compile A phase the GNU C compiler performing the compila-
tion by running ccl.

forkbench A phase of running the forkbench described in Sec-
tion V-D.

Redis An in-memory key-value database, a phase inserting
many key-value pairs while forking a background per-
sist instance.

mariadb An on-disk database system, a phase loading the sample
employeedb database.

shell A Unix shell script running “find” on a directory tree

with “Is” on each sub-directory (involves filesystem
accesses and spawning new processes).

TABLE IV: Copy/initialization-intensive benchmarks.

The forkbench and Redis (in a phase of doing bgsave)
are highly copy/initialization-intensive applications. The fork
is one of the most expensive yet frequently-used system
calls in modern systems. When updating the shared pages
from the parent or child process after the fork, the CoW
technique triggers a large number of page copy operations.
By performing CoW in the cacheline granularity and delaying
the copy operations further, Lelantus can significantly improve
the performance of a forked process. To validate this idea, we
develop a micro-benchmark, forkbench. In the forkbench, we
first initialize a number of memories (16K in this experiment),
we then fork a child process to update those initialized
memories. The performance results are taken between the
child process finish updating. In the experiments, we uniformly
update 32 cachelines per page for regular pages and 512



cachelines per page for huge pages. The Redis [7] is an
in-memory database that relay on point-in-time snapshots to
perform data persistence. Whenever Redis needs to dump the
dataset, it forks a child process and a parent process. The child
then starts to persist the dataset to a temporary RDB file; the
parent process continuously serves the client requests. This
method allows Redis to benefit from CoW semantics. In the
evaluation, we collect the insert performance of Redis while
the child process is persisting the data. Although it is common
to use Redis as a cache that is read dominant, it also widely
deployed for statistics and memorization, which is both read
and write dominant. We initialize Redis with 100K key-value
pairs then perform 10K set and get operations. Besides, we
also select the boot, mariadb, compile, and shell workloads
as the moderately copy/initialization-intensive applications.
These workloads also evolve extensive I/O requests through
direct memory access (DMA) after the forking.
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Fig. 9: Lelantus on copy/initialization-intense applications.
C. Experimental Results and Analyses

To validate the effectiveness of Lelantus, we first collected
end-to-end results of two Lelantus schemes and the baseline.
Figure 9a and Figure 9c compares the performance of the
baseline with that of Lelantus. As seen from the figure,
Lelantus improves the performance of all applications. Specif-
ically, the performance of boot and mariadb, which consists
of a negligible number of copy operations, are marginally
improved by the Lelantus for regular pages by 20% and 14.7%.
For huge pages, the performance improvement of boot and
mariadb is 57.1% and 47.4%, respectively. Regarding the two
copy intensive applications forkbench and Redis, performance
improvement for regular pages is as much as 2.24 and 3.43
times. The speedup is much more significant at a huge-page
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setting. For forkbench, Lelantus is 30.57 times faster. For
Redis, Lelantus is 23.28 times faster. Lelantus speed ups the
compile benchmark by 1.58 times for regular pages and 5.39
times for huge pages. The speedup of the shell benchmark is
2.99 times for regular pages and 9.27 times for huge pages.
Silent Shredder speed ups the performance by 1.20 times on
average, which is much less than Lelantus, especially for
forkbench and redis. This is because Silent Shredder only
avoids zero initializing pages, which is a small percentage of
CoW operations.
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Fig. 10: Comparison of Lelantus design choices.

The performance improvement mainly results from fewer
writes in Lelantus. As illustrated in Figure 9b and Figure 9d,
Lelantus reduces the number of writes for all the applications
mentioned above. More specifically, the number of writes in
boot and mariadb is cut to 57.12% and 47.36% of baseline
system for regular pages. For forkbench and Redis, the average
number of write requests is reduced to 38.76% and 29.20%
respectively for regular pages. This explains why Lelantus
speeds up the most in both cases, as echoed in Figure 9a and
Figure 9c. The number for compile and shell workloads is
42.12% and 42.15%. The reduction of write requests when
using huge pages is much more significant. The boot and
mariadb have reduced the number to 36.10% and 42.15% for
regular pages. For forkbench and Redis, the average number
is 20.32% and 27.19%, respectively. For compile and shell
workloads, they are 32.28% and 34.39%. Comparing to Lelan-
tus, Comparing to Lelantus, Lelantus-CoW has introduced 5%
extra writes on average. This is because Lelantus-CoW needs
to perform additional writes to update the CoW metadata in
each page_copy command. For comparison, Silent Shredder
reduces the number of write requests by 13% on average.

To study the overhead, we develop a non-copying intensive
workload, which is shown as non-copy in Figure 9. In non-
copy, we skip the initialization phase then launch the same
workload as forkbench to modify all allocated memory without
spawning a child process. As seen from the figure, both Lelan-
tus and Lelantus-CoW have no impact on the performance of
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Fig. 11: Effect of Lelantus on forkbench.

the regular page read/write. This is because Lelantus/Lelantus-
CoW does not change the read/write request workflow for a
regular page. Also, because the size of the minor counters
for regular pages is untouched in both design, their counter
overflow ratios are comparable.

To gauge the efficiency of Lelantus, we collect encryption
counter overflow overhead, CoW cache miss rate, and page
access footprint, as illustrated in Figure 10. The overhead of
Lelantus is a function of the number of counter overflow. As
shown in Figure 10a, both Lelantus schemes bear an extremely
low overflow possibility, as low as one ten-thousandth. This
probably derives from the fact that the update frequency of
each cacheline is not high. For a CoW page, 6-bit minor
counter is able to accommodate up to 62 writes before it
overflows. For a regular page, 7-bit minor counter holds up
to 127 writes before it overflows. However, assuming the
minor counters for regular pages are randomly initialized,
the average number of writes before overflow is equal to
63. Our experiments indicate that it is unusual to update one
cacheline more than 60 times. The Lelantus-CoW overhead is
a function of CoW cache misses. In Figure 10c and Figure 10d,
we plot the memory access footprint of CoW pages with
writes engaged. In the baseline system, the page copy function
initializes the whole page before any other operations are
issued. While in Lelantus, we successfully avoid such copy
operation, as evidenced by the fact that only a few scattered
cachelines are accessed. Finally, in Table V, we present the
percentage of copy operations. The greater percentage of
copy traffic of an application, the higher the speedup of both
Lelantus solutions.
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boot | compile | forkbench |

redis | mariadb | shell |
[ 51.96% | 4632% | 82.77%

[ 71.57% | 48.11% | 59.1% |

TABLE V: Percentage of copy and initialization traffic.

D. The fork System Call

We conduct a sensitivity study on how both Lelantus
schemes work with different numbers of update bytes per page
at a wide range of page sizes and the number of cachelines.
This is to validate two key designs in Lelantus: 1) integrating
the cacheline copy with its first write, and 2) avoiding copying
unmodified cachelines as much as possible.

In the previous evaluation, we run the forkbench under
specific settings. However, the performance speedup of the
forked process depends on two above-mentioned parameters:
1) the size of the page used by the OSes - which determines
how much data may be supposed to be copied by the Baseline,
also 2) the number of cachelines updated within each page
- which determines how much data are really copied by
Lelantus. In order to exercise both parameters, we first vary
the number of bytes to be updated in both regular and huge
pages. We then make all the writes in the child process evenly
distributed. Suppose we use 4K page size and 64 bytes block
size, while uniformly update 64 bytes in the page, we write
one byte for each cacheline. The parent process waits until
the child process to complete updating the pages. Finally, we
collect the execution time and number of write operations
issued during the execution of the child process.

Figure 11 shows the evaluation results for Lelantus on
forkbench. We study both the 4KB regular page size and the



2MB huge page size. To understand the performance impact
of Lelantus, we update a different number of bytes within the
page while we fix the total number of pages updated to 16KB.
Due to the high locality in the given workload, the cache hit
ratio in CoW metadata and encryption counters are both very
high. Thus, the performance difference between Lelantus-CoW
and Lelantus is neglectable for all experiments. Overall, both
Lelantus schemes excel the baseline due to the aforementioned
two core designs. Specifically, for the regular pages, Lelantus
is 1.11 times faster than the baseline when the whole page is
updated, and 3.33 times faster when only one byte is updated.
For the huge pages, Lelantus speeds up the performance by
1.10 times when the whole page is updated and by 67.53 times
when only one byte is updated. In the meantime, Lelantus can
reduce the number of writes to the memory to 53.45%-14.14%
for regular pages and 50.76%-0.20% for huge pages.

It may be noted that there is a knee point when the number
of bytes updated is less than 64 in regular pages, and 32K
in huge pages, respectively. This lies in a fact that, when the
number of updated bytes is less than the number of cachelines,
and hence some of the cachelines are not modified, Lelantus
enables unmodified cachelines no need to be copied. Namely,
Lelantus enables the physical copy to operate in fine block
granularity. Note we can observe the average performance
speedup for the first write (update one byte for each page) to
a CoW page is 3.33 times for regular pages and 67.53 times
for huge pages.

.20 25

35

S 15 20
o 10 é
£ 10 §
=

c 5 5
i<l

50 —_— 0

Q

.% Baseline Lelantus Baseline-HP  Lelantus-HP

Time-WT mmETime-WB —e=Speedup-WT —e=Speedup-WB
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schemes for encryption counter.

E. Impact of Write Strategy in Counter Cache

Every CPU write leads to one write to data page and
one write to encryption counter in secure memory. Lelantus
emphasizes at former writes while it is intriguing to study
how latter writes effect Lelantus. We vary the updating scheme
for the encryption counter while running the Redis workload.
In the write-through scheme, all updates to the encryption
counter update are flushed to memory immediately. In the
write-back scheme, the updates to the encryption counter are
returned when the write hit the cache, and the data is flushed to
memory by cache evict policy. Figure 12 plots the evaluation
results. The bars show the average execution time for inserting
key-value pairs while performing background checkpointing,
and the lines show the performance speedup. We calculate
the speedup by comparing it with the baseline using write-
through or write-back schemes, respectively. We can see that
by switching to the huge pages, the write-through scheme is
1.24 times faster, and the write-back scheme is 1.47 times
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faster. Lelantus can further improve performance. While using
regular pages, Lelantus can speed up the performance by
2.07 times and 3.16 times for write-through and write-back
schemes, respectively. While using huge pages, Lelantus can
speed up up the performance by 5.83 times and 20.94 times
for write-through and write-back schemes, respectively.

VI. RELATED WORK

Offloading Copy/Initialization Operations. Prior works
[18], [31], [40] have proposed to offload bulk data copy oper-
ations to a separate engine or memory controllers. Seshadri et.
al. [31] aims to eliminate the data transfer over the memory
channel by performing bulk data copy and initialization using
row buffers in DRAM. Jiang et. al. [18] propose to use
a dedicated DMA engine close to the memory controller
to complete bulk data copy and initialization. This design
can reduce pipeline stalls (that waiting for the entire copy
operation to complete) and avoid cache pollutions. As all
prior design works, the copy and initialization still occur at
page granularity in a conventional DRAM setting. To take
advantage of newly released NVM as the main memory, we
have already shown the effectiveness of Lelantus in performing
the copy operations at cacheline granularity. The techniques to
bypass memory channel data transfer, reduce pipeline stalls,
and avoid cache pollution can be combined with Lelantus in
an orthogonal fashion to improve performance further.

Bulk Data Initialization. Lewis et. al. [23] track the
uninitialized memory at a cacheline granularity. They then
avoid fetching uninitialized blocks on initializing store misses.
While their work and Lelantus are similar in terms of perform-
ing cacheline granularity memory tracking, Lelantus further
reduce the unnecessary cacheline copy and initialization. It
is also feasible to combine their work to conduct copy or
initializations in on-chip caches directly to minimize the reads
further and improve performance.

Reducing Write Overhead in Secure Memory. Due to
data remanence attack, NVMs are paired with encryption.
However, it exacerbates the write endurance of NVM. To
improve write endurance in secure NVM, Chhabra et. al. [9]
firstly proposed to encrypt different parts of the main memory
at a different time based on the prediction that data in a
particular part is no longer used by the processor to enhance
memory performance. Young etf. al. [39] further suggested
to re-encrypt the words with actual change instead of whole
cacheline encryption for each write operation to reduce unnec-
essary writes. Later, Awad et. al. [3] repurposed initialization
vectors used in standard counter mode encryption to indicate
zeroed cachelines without physically writing zeros to them
in data shredding stage. Likewise, Lelantus repurposes split
counters to improve write endurance and gain performance by
gradually modifying cachelines in a newly copied page during
the page initialization stage in NVM. We believe this approach
is orthogonal to all methods mentioned above.

Fine Granularity Cacheline Tracking. Ni er. al. [26]
propose to add a bitmap in TLB to track updated cachelines
for shadow sub-paging. Their primary goal is to solve the data
consistency issue as compared with logging, while Lelantus
mainly targets fork related CoW operations. Lelantus achieves
fine granularity cacheline tracking by leveraging existing split



counters in secure memory. In addition, Lelantus imposes
no changes to the TLB, and mainly modifies the memory
controller and its interactions with OSes. Hence, it is easier
to be deployed into production systems incrementally. Last,
Lelantus could be further extended to support shadow sub-

paging.
VII. CONCLUSION

Limited write endurance and data remanence vulnerability
have been the main challenges that hinder the adoption of
NVM as the main memory. Secure NVM controllers resolve
the data remanence issue by introducing encryption counters
at cacheline granularity. However, due to the limited write en-
durance and slow write operations of NVMs, bulk operations,
especially CoW operations in most modern OSes, are still ex-
tremely expensive and can easily lead to throttling the memory
system. In this paper, we repropose encryption counters in
Lelantus to enable fine-grained CoW operations. We imple-
ment Lelantus based on the GemS5 simulator and Linux kernel
v5.0. The evaluation results for six copy/initialization-intensive
real-world applications show an average 2.25x speedup when
using regular pages and 10.57x speedup when using huge
pages. Meanwhile, the average number of writes has reduced
to 42.78% for regular pages and 29.65% for huge pages.
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