
Lelantus: Fine-Granularity Copy-On-Write
Operations for Secure Non-Volatile Memories

Jian Zhou Amro Awad Jun Wang

University of Central Florida

{jian.zhou, amro.awad, jun.wang}@ucf.edu

Abstract—Bulk operations, such as Copy-on-Write (CoW),
have been heavily used in most operating systems. In partic-
ular, CoW brings in significant savings in memory space and
improvement in performance. CoW mainly relies on the fact
that many allocated virtual pages are not written immediately (if
ever written). Thus, assigning them to a shared physical page can
eliminate much of the copy/initialization overheads in addition
to improving the memory space efficiency. By prohibiting writes
to the shared page, and merely copying the page content to a
new physical page at the first write, CoW achieves significant
performance and memory space advantages.

Unfortunately, with the limited write bandwidth and slow
writes of emerging Non-Volatile Memories (NVMs), such bulk
writes can throttle the memory system. Moreover, it can add
significant delays on the first write access to each page due
to the need to copy or initialize a new page. Ideally, we need
to enable CoW at fine-granularity, and hence only the updated
cache blocks within the page need to be copied. To do this, we
propose Lelantus, a novel approach that leverages secure memory
metadata to allow fine-granularity CoW operations. Lelantus
relies on a novel hardware-software co-design to allow tracking
updated blocks of copied pages and hence delay the copy of the
rest of the blocks until written. The impact of Lelantus becomes
more significant when huge pages are deployed, e.g., 2MB or
1GB, as expected with emerging NVMs.

I. INTRODUCTION

Emerging Non-Volatile Memories (NVMs), e.g., Intel’s and

Micron’s 3D Xpoint, are entering the mainstream server

market. With terabytes of capacity and ability to host per-

sistent data, emerging NVMs are promising candidates to

build future memory systems. However, emerging NVMs bring

in unique challenges and aspects that require rethinking the

current designs of computing systems. Protecting against data

remanence attacks that are viable for NVMs is one of such

challenges. Moreover, the large capacity of NVMs motivates

more intelligent mechanisms for memory management, e.g.,

efficient use of huge pages. Additionally, systems that are

equipped with NVMs are expected to take advantage of the

data persistence feature through changes in system software

and supporting libraries, e.g., Intel’s PMDK.

The granularity of memory management in current oper-

ating systems is well-suited for DRAM capacities. However,

with NVMs coming with much larger capacities, the trade-off

between internal fragmentation (unused space within a page)

and translation overhead needs to be revisited. Page size is

an important factor affected by such trade-off, and the default

page size for the current system is typically 4KB or 8KB.

However, huge pages (2MB or 1GB) support is becoming

common in spite of some challenges. When using huge pages,

systems equipped with typical DRAM capacities, e.g., 32GB

or 64GB per processor socket, would suffer from internal

fragmentation and the limited number of pages, and hence

limit concurrent applications. In contrast, for systems equipped

with NVMs, of terabytes capacity per processor socket, it is

practical to use huge pages to reduce the bookkeeping and

translation overheads, especially when internal fragmentation

is unlikely to burden applications.

Bulk operations such as page initialization and page copying

have received lots of attention in the literature due to their

excessive use in many operating system (OS) operations [3],

[18], [31]. Such bulk operations become more expensive with

larger page sizes. The limited write endurance and slow write

operations of NVMs make bulk operations even more costly

and can easily lead to throttling the memory system. For

instance, when 1GB page sizes are used, at the first write

operation of a page, the OS has to zero out the whole

page, which can result in millions of write operations to the

memory. Similarly, the common CoW optimization used to

delay the instantiation of physical pages having content similar

to existing pages would incur a significant number of writes

at the first attempt to write a write-protected CoW page.

Enabling bulk operations to occur at fine granularity, and

delay their actual writes until smaller granularity blocks are

actually written/copied, can significantly improve performance

and avoid expensive bulk operations in many OS operations

and on-demand paging. Meanwhile, managing memory at a

fine-granularity can add significant bookkeeping and transla-

tion overheads. To reduce the tension between using coarse-

granularity and fast bulk operations, we propose Lelantus, a

novel hardware/software co-design scheme that allows fine-

granularity bulk operations while using coarse-granularity

pages. Lelantus mainly relies on tracking initialized/copied

cachelines on each page and do the actual copying/initializing

of cachelines on-demand (lazily). Lelantus repurposes security

metadata maintained per cacheline to enable the memory

controller to recognize delayed copy/initialization operations.

By doing so, the memory controller completes initializa-

tion/copying at cacheline granularity when written (or read).

Lelantus preserves the software semantics and provides the

same guarantees of data content as if initialization/copying

has been done conventionally; however, in a more efficient

and performance-friendly way.

Due to data remanence problem, emerging NVMs are al-

ways paired with encryption [3], [4], [9], [39], [41], [41]. Even

commercial products, such as Intel’s Apache Pass (DIMM

form factor of 3D XPoint), are expected to have encryption

built-in [12]. Meanwhile, current and future processors have

support for processor-side encryption, e.g., AMD’s Secure

597

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00056



Memory Encryption (SME) and Intel’s Total Memory Encryp-

tion (TME) [17], [20]. Such available support will facilitate the

adoption of NVMs. Unfortunately, memory encryption, due to

its avalanche effect, exacerbates the write endurance problem

and further amplifies the impact of NVM’s slow writes on

performance [3], [39]. Therefore, many recent works focus

on reducing the impact of NVM writes on the presence of

encryption [3], [39]. In this paper, we focus on improving the

performance of the CoW operations for emerging NVMs in

the presence of encryption.

To evaluate Lelantus, we modify the Linux kernel v5.0 and

run our modified Linux on a cycle-level full-system simulator,

Gem5 [6]. Our evaluation results show that Lelantus can

improve the performance by up to 3.33x (2.25x on average) for

regular pages and up to 67.53x (10.57x on average) for huge

pages. Meanwhile, Lelantus can reduce the average number

of NVM writes (and hence improve lifetime) to 42.78% for

regular pages and 29.65% for huge pages.

We organize the rest of the paper as follows. First, we

introduce the background and motivation in Section II. Second,

we discuss the design and implementation details in Section III

and Section IV. In Section V, we discuss our evaluation

methodology and present our evaluation results. Section VI

discusses the related work. Finally, we conclude our work in

Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the background and present mo-

tivational data for the overhead of Copy-on-Write operations.

A. Emerging NVMs

Different vendors are developing a wide range of emerging

Non-Volatile Memory (NVM) technologies. For instance, a

recent announcement from Intel and Micron has revealed a

new NVM technology, 3D XPoint [15]. Emerging NVMs

promise an order of magnitude lower access latency than

Flash, and an order of magnitude denser than DRAM. In that

similar trend, HP Labs has been investigating Memristor as

a promising technology to replace DRAM and make storage

systems [34]. Such memory technologies are favorable to

makeup storage systems for two key reasons [13], [37]. First,

they are non-volatile, which is a strict requirement for storage

systems. Second, they are orders of magnitude faster than

current storage devices, such as NAND flash-based Solid-State

Drives (SSDs) and Hard-Disk Drives (HDDs).

At the same time, NVM technologies are also promising

to replace DRAM as primary memory devices due to several

reasons. To begin with, they possess high densities, the area in

which DRAM is struggling with time due to its reliability and

manufacturing constraints. In addition to that, they are non-

volatile, which promises near-zero idle power, hence an ideal

candidate for systems built with energy efficiency in mind. As

a result, major computing vendors envision emerging NVMs

to play a promising role in replacing main memory and storage

devices. Moreover, they are most likely to be merged into one

system [13], [15].

Most of the emerging NVMs are based on phase-change

or resistive material, in which the phase and other non-

volatile and measurable levels can be used to represent the

stored values. Passing high current or voltage can change

such levels [22], [24]. In some cases, the direction of such

current can be used to program the cells with different values

[14]. Most of these technologies have limited write endurance.

However, they feature an order of magnitude higher endurance

than current SSDs [22], [24], [28], [37].
While many promising NVM technologies are compelling

solutions for building future systems, they mostly share com-

mon features - high densities, ultra-low idle power, limited

write-endurance, and access latencies that are comparable to

DRAM.

B. Secure NVMs

Deploying emerging NVMs as main memory has always

been paired with memory encryption [3], [9], [39]. Typically,

counter-mode encryption is used due to its security and

performance advantages. Figure 1 depicts the counter-mode

encryption.

Encryption CounterPadding Address

AES Engine
Key

Initialization Vector (IV)

One-Time Pad (OTP)

Plaintext Ciphertext
Decryption

EncryptionEncryption

Decryption

Fig. 1: Memory counter-mode encryption.

Counter-mode encryption can overlap the latency of fetch-

ing data and the encryption engine latency; an initialization

vector (IV) is what gets encrypted to produce a one-time

pad (OTP), which gets XOR’ed with ciphertext/plaintext to

complete encryption/decryption. Therefore, such OTP could

be pre-generated while the data is being fetched, and hence,

the latency of the encryption algorithm (AES in this case)

is hidden. From the security perspective, by associating an

encryption counter with each memory block (e.g., 64 bytes),

counter-mode encryption can ensure both temporal and spatial

uniqueness of ciphertext for the same data. The temporal

uniqueness is guaranteed through incrementing the counter

associated with each data block after encryption, i.e., writing

the data block to memory. Meanwhile, the spatial uniqueness

is ensured by including the block address in the IV, and thus

the IV (and hence the OTP) will be unique for each block.
To reduce the storage overhead of encryption counters and

improve counter cache locality, prior work proposed a split-

counter scheme [36]. In the split-counter scheme, each 4KB

memory region would have one major counter (64 bits) and

64 7-bit minor counters. Each minor counter corresponds to

a specific 64-byte memory block within the 4KB memory

region. The encryption counter (shown in Figure 1) of each

64-byte data block is composed of the concatenation of the

corresponding minor counter and the region’s major counter.
One major vulnerability for counter-mode encryption is

tampering with counters or possibly replay their old val-

ues. Replaying counters enables known-plaintext attacks that

598



compromise the security of the system. Therefore, the use

of counter-mode encryption is typically paired with integrity

protection of data and counters through Merkle Tree [29].

The overhead for protecting the integrity of counters and data

is negligible (less than 2%) [29]. For the rest of the paper,

we assume the split-counter scheme with Bonsai Merkle Tree

similar to state-of-the-art work [4], [38], [41].

C. Copy-On-Write

Copy-on-write (CoW) is an efficient technique used in most

modern operating systems (OSes) to enable efficient memory

management. It delays an expensive copy operation until it is

needed. If the data is copied but not modified, the copied data

can exist on the source page. Only when the copied data is

modified, the kernel performs an actual copy to create a private

page. There are several use cases for the CoW technique.

The Fork System Call: When a process forks a new child

process, the parent and child processes make a copy of all

existing data. They then start from where the parent process is

left off. By avoiding the expensive copy operation, the kernel

memory management system renders both child and parent

processes able to share the original pages and masks those

pages as write-protected. Whenever either the child process

or parent process updates those write-protected pages, a page

fault is triggered, also, subsequently, the CoW technique is

engaged to create a private copy of the page. The fork is

widely used to create an isolated execution environment in

many applications so that an error in the child process no

longer affects the parent process. For example, the Apache

HTTP server forks child processes as independent agents in

response to network requests. Modern Web browsers fork child

processes to render Web pages as well as create sandbox

environments for plugins.

Virtual Memory Management: In modern OSes, when a

process allocates a new memory page on the heap, its virtual

address is mapped to a zero page in initialization. The zero

page, which is filled with all zeros, is a read-only page

reserved at system bootup time. Only when the process first

writes to the virtual page, the CoW technique allocates a

physical page and copies the zeros into the allocated page.

The CoW technique enables the OSes to allocate virtual pages

without performing expensive physical memory initialization

immediately. For example, malloc/remalloc [19] implemented

in libc use brk system call to resize the heap segment by

default. Alternatively, when the allocated memory is larger

than a threshold, the libc uses mmap/mremap to allocate large

mmap blocks beyond the heap segment. The threshold is 128K

by default and may be adjusted dynamically according to a

specific implementation. Both allocation methods leverage the

zero page and CoW techniques to delay the expensive tasks of

zeroing out the allocated memory. It is also true for huge pages

as all the newly allocated huge pages point to a particular huge

zero page.

Data Deduplication/Virtual Machine Cloning: Data dedu-

plication technologies search chunks or blocks containing the

same data. It reduces the memory usage by removing the

duplicates and then apply CoW to the remaining. For example,

Kernel Same-page Merging (KSM) merges duplicated pages

into a shared write-protected page [2], [8], [25], [32], [35].

Kernel-based Virtual Machine (KVM) first introduced KSM.

However, in current systems, any application, that generates

many instances of the same data, can advise those areas of

memory space to KSM for deduplication by using the madvise

system call. There is also Virtual Machine Cloning [21]

technology proposed to significantly reduce the startup cost

of VMs in a cloud computing server. Different from fork, VM

Cloning makes a private copy of I/O resources and defines a

set of identical virtual hardware configurations.

Snapshot/Checkpointing: A snapshot is a consistent copy

of the whole dataset. By having a snapshot, we can restore

the state of in-memory applications to the snapshot point.

Alternatively, we can also recover to the current state if the

latest transaction logs also exist [5], [33]. The CoW can be

used to make a fast snapshot of in-memory applications. For

example, Redis [7], one of the most popular in-memory key-

value database, creates a snapshot by forking a child process.

The parent process continuously serves any in-coming (read

and write) requests. The child process makes a complete copy

of the dataset at the snapshot point. By leveraging the CoW,

the parent process handles the write requests in a private copy

of memory. Hence, the dataset can be persisted to external

storage by the child process in the background.

D. Motivation

As OSes implement the CoW at page granularity, they intro-

duce two significant performance penalties. First, there exist

substantial delay for the first write operation on a shared page.

When we first update a CoW page, the whole page copying

inevitably slows down the first write. Second, performing full

page updates also results in duplicated write operations to the

target page (first copy then write), especially for huge pages.

For huge pages, the copy operation is typically implemented

as non-temporal stores (to avoid cache pollution). Hence, any

subsequent writes will be added to those incurred by the copy

operation. For regular pages, the extra writes would result in

pre-mature evictions from the cache due to cache pollution. In

both cases, the number of physical writes can be significantly

more than that of the logical writes for a CoW page, i.e., CoW

causes write amplification. The write amplification in CoW

pages not only hurts the performance but can also reduce the

lifetime of limited write-endurance memories such as NVMs.

Figure 2 shows the number of physical writes performed in

the memory when updating one byte per page and updating

the whole page. The total size of the memory allocation to be

modified is 16MB in all experiments. We can see the CoW has

amplified the number of writes for both regular pages (4KB

in size) and huge pages (2MB in size). For the first write,

the average write amplification factor (number of physical

memory writes versus logical writes to data blocks) is 7.07x

for regular pages and 477.96x for huge pages. For the whole

page write, the average write amplification factor is 1.87x for

regular pages and 1.97x for huge pages.

III. LELANTUS DESIGN

In this section, we discuss the design choices of Lelantus.

Before delving into the details of Lelantus, we first define our

threat model.

599



Fig. 2: Write amplification for CoW pages. The result is

labeled in format: [size of pages (size of data been updated

within each page)].

Threat Model: In our paper, we assume secure NVM memory

with the trusted boundary limited to the processor chip.

Similar to the related prior work [3], [38], [41], we assume

protection against physical access attacks, data and/or counter

tampering, replay attacks, and bus-snoop attacks. The integrity

of encryption counters and data is protected using Bonsai

Merkle Tree (BMT) [29]. Access pattern leakage and side-

channel attacks are beyond the scope of this paper.

Lelantus exploits the ability to track memory updates at

fine-granularity in secure memory controllers. Such ability

comes from the fact that secure memory controllers require

metadata per cacheline to complete its encryption/decryption.

Maintaining such security metadata at fine-granularity is es-

sential to ensure temporal and spatial uniqueness of encryption

pads, a critical security requirement [3], [39]. Lelantus aims

at repurposing such metadata to additionally track uncopied

cachelines within a page and allow reading them from the

source page.

To better understand our scheme, let’s first discuss how

metadata in secure NVMs are handled. As discussed earlier

(in Section II), in state-of-the-art secure NVM systems, each

data block has a corresponding encryption counter in memory.

In order to save memory space, the split-counter scheme is

generally used to organize counters in a split fashion where

the encryption counter is composed of a minor counter (per

data block) and a major counter (shared across data blocks

of the same page). Typically, the major counter is 64-bit, and

the minor counter is 7-bit, and thus, for a 4KB memory page

with 64B data blocks, the counter block (64 minor counters

and one major counter) fits in 64B block [36].

Figure 3 shows how security metadata (encryption counters)

are used in the context of secure NVM systems. As shown

in the figure, for each memory operation (read or write),

the counter block associated with the data block has to be

read, and the initialization vector (IV) is established using

minor counter, major counter, and others. The minor counter

gets incremented on each write operation, i.e., after each

encryption, and the major counter is incremented only when

minor counters overflow. However, the most related aspect to

our work is that each read/writes from memory needs to check

such security metadata.

The rest of the section discusses how we leverage such

security metadata to track unmodified (not copied) data blocks

Major Counter Minor Counters
64-bit 64 Minor Counter x 7-bit

Core

Cache

MEM Ctrl

Enc/Dec

Enc Cnt. NVM

Read/write Reqs

Padding Address Major Minor
Initialization Vector

Reading data block

Fig. 3: Overview of secure memory.

efficiently and how to redirect them towards the source page

while maintaining the semantic of CoW.

A. Communicating CoW Information

In Lelantus, we replace the actual copy operation at the

first write of a CoW page with encoding the copy information

in security metadata. Specifically, in the conventional process,

first, a new physical page is created and mapped, and then

the content of the source page is copied into the new page

(destination). In Lelantus, this process is similar in that a new

physical page is created. In contrast, instead of doing the actual

copying to the new page, the security metadata of the new

page would indicate that it is copied from another page and

which cache blocks are not copied yet. Specifically, the kernel

writes the following to memory-mapped IO registers within

the memory controller: 1 The physical address of the source

page. 2 The physical address of the new page (the copy).

The modified kernel code adds memory fence after such write

operations to ensure the memory controller has received them.

B. Encoding CoW Mappings

One critical question is how to leverage security metadata

to maintain the aforementioned source page address and track

not-copied-yet cache blocks within the destination page. To

this purpose, we propose two distinct strategies. The first one

is to reduce the size of encryption counters, thus increasing

the chances of getting counter overflows. The second one is to

add supplementary CoW metadata; therefore, it has a higher

space overhead. Table I shows a summary of both schemes,

which we will discuss in more detail later.

Encoding
Scheme

Minor Counter
Overflow

Space
Overhead

Extra
RW Traffic

Resizing
Counter Blocks

200% none low

Supplementary
CoW Metadata

0.07% 0.02% medium

TABLE I: Comparison of two CoW encoding schemes.

Solution 1: Resizing Counter Blocks: To encode information

about CoW pages in security metadata, we reserve one bit in

each 64B counter block for a CoW_Flag. If the CoW_Flag is

0, then the counter block covers a regular page, i.e., not a CoW

page. Meanwhile, if CoW_Flag is 1, the counter block covers

a CoW page. Based on whether the counter block covers a

regular page or a CoW page, its format/anatomy is different, as

shown in Figure 4. When used as a CoW page, minor counters

size becomes 6-bit instead of 7-bit, and a 64-bit source page

600



CoW_Flag(0) Major Counter Minor Counters
1-bit 63-bit 64 Minor Counter x 7-bit

Regular Page

Core

Cache

MEM Ctrl

Enc/Dec

Enc Cnt. NVM

CoW Commands

Read/write Reqs

(a) Counter Block for Regular Page.

CoW_Flag(1) Major Cnt. Minor Cnt.
1-bit 63-bit 64 Minor Cnt. x 6-bit

CoW Page

Core

Cache

MEM Ctrl

Enc/Dec

Enc Cnt. NVM

Src Addr.
64-bit

uncopied
copied

CoW Commands

Read/write Reqs

Copy Reqs

(b) Counter Block for CoW Page.

Fig. 4: Our Solution 1: Lelantus: Resizing Counter Blocks.

address field is created using the 1-bit saved from each of

the 64 minor counters. The source page address field, as its

name indicates, holds the physical address of the source page

from which the corresponding page is copied. Moreover, for

counter blocks of CoW pages, a value of zero in minor counter

indicates that the corresponding 64B cache block has not been

copied yet to the corresponding page, i.e., we need to read it

from the source page. Meanwhile, if the counter block covers

a CoW page and the minor counter of interest has a non-zero

value, this indicates its corresponding block has been modified

earlier. Hence, the requests to the corresponding block should

no longer be forwarded to the source page.

Solution 2: Supplementing CoW Metadata: The major

drawback of resizing counter blocks lies in the fact that a

smaller minor counter for CoW pages increases the counter

overflow rate, which in turn leads to more re-encryption

cost. To resolve such a problem, in this solution, we employ

supplementary CoW metadata to track the source page address.

As shown in Figure 5, we create only one field in the CoW

metadata to save the source page address, and store the CoW

metadata in the same way as security metadata is stored in

NVM. This scheme incurs minor space overhead, 8B per

page. For example, given 4KB pages, the space overhead is

2B for each KB. However, we no longer need to reduce 1-

bit in all 64 minor counters in order to track a 64-bit CoW

source page address. Instead, we only reserve one value in the

minor counter. A minor counter with the reserved value, zero

as an example, indicates that the corresponding cache block

belongs to a CoW page and has not been copied yet. A minor

counter with any other values indicates that the corresponding

cache block is a regular one. If a minor counter has a value

of zero, we then issue another request to retrieve the source

page address in the CoW metadata. To overcome the delay of

querying such CoW metadata, we employ part of the counter

cache as a small cache for CoW metadata. More specifically,

we enable one counter cache slot, which is 8x8B in size, to

host up to eight CoW mappings.

C. Decryption of CoW Blocks

In Lelantus, within a CoW page, there could be blocks that

have been updated and others that are still not copied yet.

One issue that arises here is deciding which major counter

and minor counters to use for not-copied-yet blocks. For not

copied yet blocks, the requested data blocks need to be fetched

from the source page and thus needs to be decrypted using an

0 0 000 0Major Counter Minor Counters
64-bit 64 Minor Counter x 7-bit

Regular Page

Core

Cache

MEM Ctrl

Enc Cnt. NVM

CoW Commands

Read/write Reqs

CoW MD

Src Addr.

Copy Reqs

uncopied
copied

64-bit

Enc/Dec

CoW cache

Fig. 5: Our Solution 2: Lelantus-CoW: Supplementing CoW

metadata.

initialization vector that consists of the major counter, minor

counter, and address of the physical source page to ensure

correct decryption. Re-fetching the counters of the source page

adds delays to access CoW blocks, as depicted by Figure 6.

Secure memory controllers employ a counter cache to reduce

such delay. Since many CoW pages share the same source

page, the counter block of the source page has an even higher

locality. As a result, the delay of such re-fetching should

usually be acceptable.

D. Handling Early Reclamation of Source Page

Usually, when we fork a child process to perform subtasks,

the parent process continuously runs in the background. In

this case, at least the parent process is owning the shared

(source) pages. The child process can get the original data

from the source pages without a problem. However, it is also

possible for the OSes to reclaim the shared pages before the

child processes release the copied pages. For example, the

parent process may exist before the child process ends, and

the parent process may make a private copy of the shared

pages as well. Under both circumstances, the map count (the

number of processes referring) of the source page decreases by

one. When the map count reaches one, the system assumes the

source page starts to be owned exclusively by one process. The

kernel will then call wp page reuse to mark the source page

as writable, and call page move anon rmap to tell reverse

lookup (rmap) code to not search parent or siblings. As a

result, unless restricted by the application, there’s no guarantee

that the source page is continuously write-protected after the

copy. We have observed extra writes to source pages in the

early stage of this research. If the counter block of the copied

pages still references to the source page, we could get modified

601



Cow
Page

Source 
Page

Processor

Counter

Block

Counter 

Block

Memory

Controller

1 Read Req for address X

2 Read corresponding

 counter Block

3
Read counter block of

 source page

 

4 Read source 

datat block

 5 Use the source 

counter block to

 decrypt the source

 data block

Fig. 6: Decryption of a CoW block.

data afterward instead of the original copy. One way to solve

this problem is to capture the writing and releasing events

of the source page, then perform a reverse lookup to find

the copied pages. Moreover, we need to apply real copies

for those uncopied cachelines before writing or releasing the

source page.

Fortunately, since the physical to virtual page reverse lookup

(rmap) code has already been implemented in the Linux kernel,

we can easily trace the provenance of such copied pages. As

shown in Figure 7, an anon vma structure is created in the

kernel for each process and linked with a structure called

anon vma chain. A list of vm area struct structures from

the same process are then linked to the anon vma chain via

same vma pointers. The anon vma chain from all the forked

processes are connected in light of reverse lookup as well.

From the page structure, which points to a related anon vma,

we can transverse the forked processes to trace all the possible

copied pages.

Fig. 7: Reverse lookup for source pages. “AV” is the anon vma

structure, and “AVC” is the anon vma chain structure. Each

“VMA” represents a chunk of continuous virtual memory

space, such as the stack or heap segments.

To implement this, as shown in Figure 8, as long as the

page’s map count reaches one, we pause the kernel’s invoca-

tions to functions wp page reuse and page move anon rmap.

Hence, upon writing the page later, another page fault will

kick in. The page fault handler checks whether the page’s

map count equals to one or not. If so, we handle the early

reclamation of the source page before invoking the two above-

mentioned delayed function calls. More specifically, we first

perform a reverse lookup in the virtual memory area (VMA),

which initiates the fault, to find the corresponding virtual

page == shared

CoW page_fault

Y
N

if count == 1

unshare

Write Req

copy page; count--;

Y
N

Return

Return

Return

Linux Default Lelantus

page == shared

CoW page_fault

Y
N

CoW req; count --;

Write Req

if count == 1

Y
N

Return

unshare

Return Return

CoW finish copies

Fig. 8: Early reclamation of source page

address mapped to the source page. Second, given any of the

page’s parents or siblings, if their identical virtual addresses

map to another physical page, this associated physical page

could be a copied page. Finally, we send a physical page

copy command to the memory controller to copy the uncopied

cachelines. Note, it is possible to find a destination page that is

not still pointing to the source page. Hence, we need to check

again in the memory controller to see if the destination page

still refers to the source page. Also, before releasing a (shared)

source page, we check if the page is write-protected. If true,

we perform the same operations to handle early reclamation.

Although we delay the function calls of wp page reuse

and page move anon rmap to unmask a “previously” shared

page as write-protected until we actually perform an in-place

update, we are not delaying page free operations. Upon freeing

such a shared page, the early reclamation handler kicks in

instantly to perform the remaining cacheline copies.

E. Handling Recursive Copy Chains

Since a forked process can also fork its child process,

the OSes could copy a copied page again. Generally, when

the secure memory controller observes a copy operation, the

copied page should have at least one modified cacheline.

Otherwise, the CoW technology delays the copy operation

in the kernel. However, for huge pages, one modification

results in multiple physical page copies. Moreover, part of

the physical pages in a huge page could leave unmodified.

For example, suppose Lelantus first copies page A to page

B. Later it copies page B to page C. If page B is unmodified,

as in huge pages, we record page A’s address for page C. Upon

the decryption of page C’s uncopied cachelines, we directly

load page A’s counter block. While reclaiming page A, we

would schedule real copy for both page B and C. These real

copies can be safely done in parallel to leverage row buffers

and achieve maximum memory bandwidth.

On the contrary, if we already have some cachelines mod-

ified on page B, while copy it to page C, we save page B’s

address on page C’s metadata. As for the decryption of page

C’s uncopied cachelines, we need to load page B’s counter

block. Again, if the corresponding cacheline on page B is

uncopied, we need to bring page A’s counter block. While

reclaiming page A, we only need to perform a real copy for

page A’s direct sibling, page B, without impact page C.

602



Note that we do not delay the releasing of page A in

any case. Thus, there is no garbage collection issue and no

space overhead. Handling early reclamation and recursive copy

mainly aims to guarantee correctness to avoid the potential

crash. Therefore we have not evaluated related performance

impact.

F. Security Discussion

Since encryption counter blocks have their integrity pro-

tected using Merkle Tree, any tampering with CoW metadata

in counter blocks will be detected as in typical secure memory

systems. Moreover, for the supplementary CoW metadata

blocks scheme, the CoW metadata blocks can be treated as

normal data blocks, i.e., encrypted, and integrity protected

using counter-mode encryption and integrity tree, respectively.

Since such CoW blocks are encrypted, only if the CoW meta-

data is stored plainly in counter blocks, then some information

can be exposed to the attackers. While such information is

limited to indicate if the accessed block is copied from another

address or not, such a relationship can be used to learn access

patterns and leveraged in access pattern attacks. While access

pattern leakage is beyond the scope of this work, such new

information can be hidden through encryption, i.e., the CoW

metadata is encrypted within the counter block.

G. Applicability to Non-Secure Memory

While Lelantus leverages security metadata to encode the

CoW information, it can be applied to unencrypted memories

with slight modifications. The only requirement is that the

CoW data are associated with each cache block and visible to

the memory controller. We choose to alter security metadata,

which is available in platforms use Intels TME [17], Intels

SGX [11], AMDs SME [20], as they are maintained per cache-

line and visible to the memory controller. Any other metadata

that satisfies our requirements, such as memory tagging [27],

[30], can be applied to implement Lelantus with minor modifi-

cations. Moreover, maintaining and fetching encryption blocks

has minimal overheads, as shown in prior studies [4], [38],

[41]. Thus, even if memory is not encrypted, Lelantus can use

similar counter blocks that incur minimal storage overheads

(≈ 1.5%) and negligible performance overheads. Note that

if Lelantus is used for non-secure NVM, counter-like blocks

do not need to be protected by Merkle Tree, and hence

Lelantus only incurs the overheads of retrieving and updating

the counters.

IV. IMPLEMENTATION

In this section, we discuss the implementation of Lelantus.

A. Memory Controller Support

As described in Table II, we introduce three CoW com-

mands in the memory controller: page copy, page phyc and

page init. These commands enable the software to offload the

page copy and allocate operations to the hardware. Similarly,

bulk instructions, such as rep movsd, rep stosb, ermsb in

x86 [16] and mvcl in IBM S/390 [10], are already pre-

sented in several modern processors. However, those CPU

instructions would require significant effort to extend ISA,

change the microarchitecture, and add new decoding units in

CPUs. Our idea is to add a memory-mapped IO register in

the memory controller for communication. Specifically, the

page copy command tells the memory controller to save the

source page address on the metadata of the destination page.

The page phyc command checks if the source page address is

equal to the address saved on the metadata of the destination

page. If true, the memory controller then performs a real

physical copy for the uncopied cachelines. The page free

command tells the memory controller to drop the source page

address on the metadata of the destination page even if there

are uncopied cachelines.

Command Parameters Semantics
page copy src, dst Logical page copy.
page phyc src, dst Physical (real) page copy.
page free dst Clear CoW metadata for dst.

TABLE II: Semantics of the memory controller commands.

There are three crucial aspects of the execution semantics of

our CoW commands. First, all commands rely on the software

to take care of the alignment and size constraints. Page

alignment enables Lelantus to leverage the security metadata

to track the copying/initializing. It is also feasible to let the

microarchitecture to determine if Lelantus can fully/partially

accelerate a particular instance of copying/initializing. How-

ever, since the modern operating system manages current phys-

ical main memory in the unit of page granularity, it is natural

to re-implement existing page manipulation functions to max

out the benefits from Lelantus. Second, the microarchitectural

implementation ensures that any data in the on-chip caches

are kept consistent during the execution of these operations.

Third, for processors that perform out-of-order execution, the

activities to the destination pages need to be stalled. In the

meanwhile, the processor can still accept interrupts and handle

any page faults during the execution of these operations.

B. Processor Microarchitecture Support

To guarantee the cache coherence, upon the submission

of the page copy command, the processors need to conduct

1) flushing any dirty caches of the source page, and 2)

invalidating any caches (clean or dirty) of the destination page.

Otherwise, applications can get stalled data while reading the

destination page. The good news is, the processors already

implements such flush and invalidate instructions, and the op-

erating systems can conduct such cache flushing/invalidating

operations. First, before marking the source page as write-

protected, its on-chip cache should be flushed by the OSes.

Second, while allocating a new physical page, the OSes should

invalid its on-chip cache. Note, although Lelantus take care of

cache coherence issues, there are no cache consistency issues.

C. Operating System Support

In the Linux kernel, we mainly perform three modifications

to the memory management functions to utilize the above

mentioned CoW commands. The kernel implements CoW

pages in the unit of page granularity. Whenever an application

writes to a CoW page, the processor generates a CoW fault.

The kernel then handles the CoW fault and copy the data

from the CoW page to a freshly allocated new page by using

603



copy page kernel function. After the copying, the kernel then

updates the page mapping and point the virtual addresses to the

freshly allocated physical page. Finally, the processor resumes

the write operations. As this copy page function is already

page size aligned, we only need to replace the corresponding

function by sending the source and destination pages in a

page copy command. Other kernel features, such as fork,

kernel same-page merging, and huge pages, which directly

or indirectly rely on the copy page kernel functions, can then

benefit from Lelantus transparently. For example, the kernel

translates the copy of a huge page into a set of physical page

copy operations.

Another necessary kernel modification is to perform addi-

tional reverse lookup before the releasing or writing a shared

page. As discussed in Section III-D, we do not add additional

overhead to trace where we copied a shared page. While

writing or releasing a shared page, it’s map count should

be equal to one, which means only one process is owning

the shared page. We need to transverse the anon vma chain

to find the new “destination” page where the same virtual

address is mapped to in other forked processes. We then send

the source and destination pages in a page phyc command.

The memory controller then checks if the destination page is

already copied from the source before performing the physical

copy. By proposing page phyc instructions, we delay the copy

operations further compared to the CoW implemented in the

kernel. This delay enables the memory controller to merge

more writes and copies in the request queue.

The last kernel modification is to send a page free command

when releasing a copied page. When we free a copied page,

all the unperformed cacheline copies would be no longer

necessary. Thus, we remove the related metadata if it still

exists to get rid of the unwanted copy.

V. EVALUATION

In this section, we conduct performance evaluations.

A. Methodology

We model Lelantus in Gem5 [6] with the system config-

uration presented in the Table III. To perform full-system

simulation, we modify the Linux kernel v5.0 to mainly re-

implement the copy user page, do wp page and put page

functions. We extended gem5’s memory controller to include

a memory-mapped I/O register and a counter cache. The

memory-mapped I/O register enables the above mentioned

three CoW commands: page copy, page phyc and page init.

We assume all CoW commands have the same transfer latency

as write operation from the processor to the memory controller.

We implement a 256KB, 16-way set associative counter cache,

with a total number of 4K counters and employ the battery-

backed write-back scheme as the counter cache management

scheme by default. The counter blocks are randomly initialized

to model the counter overflow. Similar to prior work, we

assume the overall AES encryption latency to be 24 cycles,

and we overlap fetching data with encryption pad generation.

We compare four CoW schemes in our evaluation:

1 Baseline that is implemented in default Linux kernel.

2 Lelantus that resizes the counter blocks to save the source

page address.

3 Lelantus-CoW that employs supplementary CoW meta-

data. 32KB of a 256KB-sized counter cache is reserved for

CoW metadata.

4 Slient Shredder [3] that only avoids zero initialization.

An encryption counter has a value of zero indicates the

corresponding cacheline is filled with all zeros.

Component Parameters
Processor 8-core, 1GHz, out-of-order x86-64
L1 Cache 2 cycles, 64KB size, 8-way, LRU, 64B block
L2 Cache 8 cycles, 512KB size, 8-way, LRU, 64B block
L3 Cache 25 cycles, 8M size, 8-way, LRU, 64B block
Main Memory 16GB, 2 ranks, 8 banks
PM Latency 60ns read, 150ns write
Page Size 4KB, 2MB
Counter Cache 256KB, 16 way, LRU, 64B block

TABLE III: Configuration of the simulated system.

B. Copy/initialization-intensive Applications

To stress-test our design, we select six representative

copy/initialization-intensive real-world applications in the Ta-

ble IV. The goal is to evaluate the performance and the write

overhead of our design. In all experiments, the full-system

simulation is fast-forwarded to skip the initialization phase

and then followed by the execution of the specific phase of the

benchmark applications. To study the impact of huge pages,

we use libhugetlbfs [1] to enable huge pages for particular

applications, except that in boot benchmark, we use huge

pages for the entire system.

Name Description
boot A phase booting up the Buildroot embedded Linux

system (while starting processes by reading information
from the /etc/inittab file).

compile A phase the GNU C compiler performing the compila-
tion by running cc1.

forkbench A phase of running the forkbench described in Sec-
tion V-D.

Redis An in-memory key-value database, a phase inserting
many key-value pairs while forking a background per-
sist instance.

mariadb An on-disk database system, a phase loading the sample
employeedb database.

shell A Unix shell script running “find” on a directory tree
with “ls” on each sub-directory (involves filesystem
accesses and spawning new processes).

TABLE IV: Copy/initialization-intensive benchmarks.

The forkbench and Redis (in a phase of doing bgsave)

are highly copy/initialization-intensive applications. The fork

is one of the most expensive yet frequently-used system

calls in modern systems. When updating the shared pages

from the parent or child process after the fork, the CoW

technique triggers a large number of page copy operations.

By performing CoW in the cacheline granularity and delaying

the copy operations further, Lelantus can significantly improve

the performance of a forked process. To validate this idea, we

develop a micro-benchmark, forkbench. In the forkbench, we

first initialize a number of memories (16K in this experiment),

we then fork a child process to update those initialized

memories. The performance results are taken between the

child process finish updating. In the experiments, we uniformly

update 32 cachelines per page for regular pages and 512

604



cachelines per page for huge pages. The Redis [7] is an

in-memory database that relay on point-in-time snapshots to

perform data persistence. Whenever Redis needs to dump the

dataset, it forks a child process and a parent process. The child

then starts to persist the dataset to a temporary RDB file; the

parent process continuously serves the client requests. This

method allows Redis to benefit from CoW semantics. In the

evaluation, we collect the insert performance of Redis while

the child process is persisting the data. Although it is common

to use Redis as a cache that is read dominant, it also widely

deployed for statistics and memorization, which is both read

and write dominant. We initialize Redis with 100K key-value

pairs then perform 10K set and get operations. Besides, we

also select the boot, mariadb, compile, and shell workloads

as the moderately copy/initialization-intensive applications.

These workloads also evolve extensive I/O requests through

direct memory access (DMA) after the forking.

(a) Speedup for 4KB pages. (b) Write reduction for 4KB pages.

(c) Speedup for 2MB pages. (d) Write reduction for 2MB pages.

Fig. 9: Lelantus on copy/initialization-intense applications.

C. Experimental Results and Analyses

To validate the effectiveness of Lelantus, we first collected

end-to-end results of two Lelantus schemes and the baseline.

Figure 9a and Figure 9c compares the performance of the

baseline with that of Lelantus. As seen from the figure,

Lelantus improves the performance of all applications. Specif-

ically, the performance of boot and mariadb, which consists

of a negligible number of copy operations, are marginally

improved by the Lelantus for regular pages by 20% and 14.7%.

For huge pages, the performance improvement of boot and

mariadb is 57.1% and 47.4%, respectively. Regarding the two

copy intensive applications forkbench and Redis, performance

improvement for regular pages is as much as 2.24 and 3.43

times. The speedup is much more significant at a huge-page

setting. For forkbench, Lelantus is 30.57 times faster. For

Redis, Lelantus is 23.28 times faster. Lelantus speed ups the

compile benchmark by 1.58 times for regular pages and 5.39

times for huge pages. The speedup of the shell benchmark is

2.99 times for regular pages and 9.27 times for huge pages.

Silent Shredder speed ups the performance by 1.20 times on

average, which is much less than Lelantus, especially for

forkbench and redis. This is because Silent Shredder only

avoids zero initializing pages, which is a small percentage of

CoW operations.

(a) Minor Counter overflow rate. (b) CoW cache miss rate.

(c) Page access for Baseline. (d) Page access for Lelantus.

Fig. 10: Comparison of Lelantus design choices.

The performance improvement mainly results from fewer

writes in Lelantus. As illustrated in Figure 9b and Figure 9d,

Lelantus reduces the number of writes for all the applications

mentioned above. More specifically, the number of writes in

boot and mariadb is cut to 57.12% and 47.36% of baseline

system for regular pages. For forkbench and Redis, the average

number of write requests is reduced to 38.76% and 29.20%

respectively for regular pages. This explains why Lelantus

speeds up the most in both cases, as echoed in Figure 9a and

Figure 9c. The number for compile and shell workloads is

42.12% and 42.15%. The reduction of write requests when

using huge pages is much more significant. The boot and

mariadb have reduced the number to 36.10% and 42.15% for

regular pages. For forkbench and Redis, the average number

is 20.32% and 27.19%, respectively. For compile and shell

workloads, they are 32.28% and 34.39%. Comparing to Lelan-

tus, Comparing to Lelantus, Lelantus-CoW has introduced 5%

extra writes on average. This is because Lelantus-CoW needs

to perform additional writes to update the CoW metadata in

each page copy command. For comparison, Silent Shredder

reduces the number of write requests by 13% on average.
To study the overhead, we develop a non-copying intensive

workload, which is shown as non-copy in Figure 9. In non-

copy, we skip the initialization phase then launch the same

workload as forkbench to modify all allocated memory without

spawning a child process. As seen from the figure, both Lelan-

tus and Lelantus-CoW have no impact on the performance of

605



(a) Performance improvement for forkbench with 4KB regular pages. (b) Write reduction for forkbench with 4KB regular pages.

(c) Performance improvement for forkbench with 2MB huge pages. (d) Write reduction for forkbench with 2MB huge pages.

Fig. 11: Effect of Lelantus on forkbench.

the regular page read/write. This is because Lelantus/Lelantus-

CoW does not change the read/write request workflow for a

regular page. Also, because the size of the minor counters

for regular pages is untouched in both design, their counter

overflow ratios are comparable.

To gauge the efficiency of Lelantus, we collect encryption

counter overflow overhead, CoW cache miss rate, and page

access footprint, as illustrated in Figure 10. The overhead of

Lelantus is a function of the number of counter overflow. As

shown in Figure 10a, both Lelantus schemes bear an extremely

low overflow possibility, as low as one ten-thousandth. This

probably derives from the fact that the update frequency of

each cacheline is not high. For a CoW page, 6-bit minor

counter is able to accommodate up to 62 writes before it

overflows. For a regular page, 7-bit minor counter holds up

to 127 writes before it overflows. However, assuming the

minor counters for regular pages are randomly initialized,

the average number of writes before overflow is equal to

63. Our experiments indicate that it is unusual to update one

cacheline more than 60 times. The Lelantus-CoW overhead is

a function of CoW cache misses. In Figure 10c and Figure 10d,

we plot the memory access footprint of CoW pages with

writes engaged. In the baseline system, the page copy function

initializes the whole page before any other operations are

issued. While in Lelantus, we successfully avoid such copy

operation, as evidenced by the fact that only a few scattered

cachelines are accessed. Finally, in Table V, we present the

percentage of copy operations. The greater percentage of

copy traffic of an application, the higher the speedup of both

Lelantus solutions.

boot compile forkbench redis mariadb shell
51.96% 46.32% 82.77% 71.57% 48.11% 59.1%

TABLE V: Percentage of copy and initialization traffic.

D. The fork System Call

We conduct a sensitivity study on how both Lelantus

schemes work with different numbers of update bytes per page

at a wide range of page sizes and the number of cachelines.

This is to validate two key designs in Lelantus: 1) integrating

the cacheline copy with its first write, and 2) avoiding copying

unmodified cachelines as much as possible.

In the previous evaluation, we run the forkbench under

specific settings. However, the performance speedup of the

forked process depends on two above-mentioned parameters:

1) the size of the page used by the OSes - which determines

how much data may be supposed to be copied by the Baseline,

also 2) the number of cachelines updated within each page

- which determines how much data are really copied by

Lelantus. In order to exercise both parameters, we first vary

the number of bytes to be updated in both regular and huge

pages. We then make all the writes in the child process evenly

distributed. Suppose we use 4K page size and 64 bytes block

size, while uniformly update 64 bytes in the page, we write

one byte for each cacheline. The parent process waits until

the child process to complete updating the pages. Finally, we

collect the execution time and number of write operations

issued during the execution of the child process.

Figure 11 shows the evaluation results for Lelantus on

forkbench. We study both the 4KB regular page size and the

606



2MB huge page size. To understand the performance impact

of Lelantus, we update a different number of bytes within the

page while we fix the total number of pages updated to 16KB.

Due to the high locality in the given workload, the cache hit

ratio in CoW metadata and encryption counters are both very

high. Thus, the performance difference between Lelantus-CoW

and Lelantus is neglectable for all experiments. Overall, both

Lelantus schemes excel the baseline due to the aforementioned

two core designs. Specifically, for the regular pages, Lelantus

is 1.11 times faster than the baseline when the whole page is

updated, and 3.33 times faster when only one byte is updated.

For the huge pages, Lelantus speeds up the performance by

1.10 times when the whole page is updated and by 67.53 times

when only one byte is updated. In the meantime, Lelantus can

reduce the number of writes to the memory to 53.45%-14.14%

for regular pages and 50.76%-0.20% for huge pages.

It may be noted that there is a knee point when the number

of bytes updated is less than 64 in regular pages, and 32K

in huge pages, respectively. This lies in a fact that, when the

number of updated bytes is less than the number of cachelines,

and hence some of the cachelines are not modified, Lelantus

enables unmodified cachelines no need to be copied. Namely,

Lelantus enables the physical copy to operate in fine block

granularity. Note we can observe the average performance

speedup for the first write (update one byte for each page) to

a CoW page is 3.33 times for regular pages and 67.53 times

for huge pages.

Fig. 12: Impact of write-through (WT) and write-back (WB)

schemes for encryption counter.

E. Impact of Write Strategy in Counter Cache

Every CPU write leads to one write to data page and

one write to encryption counter in secure memory. Lelantus

emphasizes at former writes while it is intriguing to study

how latter writes effect Lelantus. We vary the updating scheme

for the encryption counter while running the Redis workload.

In the write-through scheme, all updates to the encryption

counter update are flushed to memory immediately. In the

write-back scheme, the updates to the encryption counter are

returned when the write hit the cache, and the data is flushed to

memory by cache evict policy. Figure 12 plots the evaluation

results. The bars show the average execution time for inserting

key-value pairs while performing background checkpointing,

and the lines show the performance speedup. We calculate

the speedup by comparing it with the baseline using write-

through or write-back schemes, respectively. We can see that

by switching to the huge pages, the write-through scheme is

1.24 times faster, and the write-back scheme is 1.47 times

faster. Lelantus can further improve performance. While using

regular pages, Lelantus can speed up the performance by

2.07 times and 3.16 times for write-through and write-back

schemes, respectively. While using huge pages, Lelantus can

speed up up the performance by 5.83 times and 20.94 times

for write-through and write-back schemes, respectively.

VI. RELATED WORK

Offloading Copy/Initialization Operations. Prior works

[18], [31], [40] have proposed to offload bulk data copy oper-

ations to a separate engine or memory controllers. Seshadri et.

al. [31] aims to eliminate the data transfer over the memory

channel by performing bulk data copy and initialization using

row buffers in DRAM. Jiang et. al. [18] propose to use

a dedicated DMA engine close to the memory controller

to complete bulk data copy and initialization. This design

can reduce pipeline stalls (that waiting for the entire copy

operation to complete) and avoid cache pollutions. As all

prior design works, the copy and initialization still occur at

page granularity in a conventional DRAM setting. To take

advantage of newly released NVM as the main memory, we

have already shown the effectiveness of Lelantus in performing

the copy operations at cacheline granularity. The techniques to

bypass memory channel data transfer, reduce pipeline stalls,

and avoid cache pollution can be combined with Lelantus in

an orthogonal fashion to improve performance further.

Bulk Data Initialization. Lewis et. al. [23] track the

uninitialized memory at a cacheline granularity. They then

avoid fetching uninitialized blocks on initializing store misses.

While their work and Lelantus are similar in terms of perform-

ing cacheline granularity memory tracking, Lelantus further

reduce the unnecessary cacheline copy and initialization. It

is also feasible to combine their work to conduct copy or

initializations in on-chip caches directly to minimize the reads

further and improve performance.

Reducing Write Overhead in Secure Memory. Due to

data remanence attack, NVMs are paired with encryption.

However, it exacerbates the write endurance of NVM. To

improve write endurance in secure NVM, Chhabra et. al. [9]

firstly proposed to encrypt different parts of the main memory

at a different time based on the prediction that data in a

particular part is no longer used by the processor to enhance

memory performance. Young et. al. [39] further suggested

to re-encrypt the words with actual change instead of whole

cacheline encryption for each write operation to reduce unnec-

essary writes. Later, Awad et. al. [3] repurposed initialization

vectors used in standard counter mode encryption to indicate

zeroed cachelines without physically writing zeros to them

in data shredding stage. Likewise, Lelantus repurposes split

counters to improve write endurance and gain performance by

gradually modifying cachelines in a newly copied page during

the page initialization stage in NVM. We believe this approach

is orthogonal to all methods mentioned above.

Fine Granularity Cacheline Tracking. Ni et. al. [26]

propose to add a bitmap in TLB to track updated cachelines

for shadow sub-paging. Their primary goal is to solve the data

consistency issue as compared with logging, while Lelantus

mainly targets fork related CoW operations. Lelantus achieves

fine granularity cacheline tracking by leveraging existing split

607



counters in secure memory. In addition, Lelantus imposes

no changes to the TLB, and mainly modifies the memory

controller and its interactions with OSes. Hence, it is easier

to be deployed into production systems incrementally. Last,

Lelantus could be further extended to support shadow sub-

paging.

VII. CONCLUSION

Limited write endurance and data remanence vulnerability

have been the main challenges that hinder the adoption of

NVM as the main memory. Secure NVM controllers resolve

the data remanence issue by introducing encryption counters

at cacheline granularity. However, due to the limited write en-

durance and slow write operations of NVMs, bulk operations,

especially CoW operations in most modern OSes, are still ex-

tremely expensive and can easily lead to throttling the memory

system. In this paper, we repropose encryption counters in

Lelantus to enable fine-grained CoW operations. We imple-

ment Lelantus based on the Gem5 simulator and Linux kernel

v5.0. The evaluation results for six copy/initialization-intensive

real-world applications show an average 2.25x speedup when

using regular pages and 10.57x speedup when using huge

pages. Meanwhile, the average number of writes has reduced

to 42.78% for regular pages and 29.65% for huge pages.

ACKNOWLEDGEMENT

This project is supported in part by the US National Science

Foundation Grant CCF-1527249, CCF-1717388 and CCF-

1907765, CNS-1814417.

REFERENCES

[1] “Libhugetlbfs,” 2010. [Online]. Available: https://github.com/
libhugetlbfs/libhugetlbfs

[2] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using ksm,” in Proceedings of the linux symposium. Citeseer, 2009,
pp. 19–28.

[3] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne, “Silent
shredder: Zero-cost shredding for secure non-volatile main memory
controllers,” ACM SIGOPS Operating Systems Review, vol. 50, no. 2,
pp. 263–276, 2016.

[4] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-nvm:
Persistency for integrity-protected and encrypted non-volatile memo-
ries,” in Proceedings of the 46th International Symposium on Computer
Architecture. ACM, 2019, pp. 104–115.

[5] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate, “Plfs: a checkpoint filesystem for parallel
applications,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. ACM, 2009, p. 21.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[7] J. L. Carlson, Redis in action. Manning Publications Co., 2013.
[8] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao, “Cmd:

classification-based memory deduplication through page access charac-
teristics,” in ACM SIGPLAN Notices, vol. 49, no. 7. ACM, 2014, pp.
65–76.

[9] S. Chhabra and Y. Solihin, “i-nvmm: a secure non-volatile main memory
system with incremental encryption,” in 2011 38th Annual international
symposium on computer architecture (ISCA). IEEE, 2011, pp. 177–188.

[10] I. Corporation, “Enterprise systems architecture/390 principles of oper-
ation,” 2001.

[11] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint
Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[12] I. Cutress and B. Tallis, “Intel launches optane dimms up
to 512gb: Apache pass is here!” 2016. [Online]. Avail-
able: https://www.anandtech.com/show/12828/intel-launches-optane-
dimms-up-to-512gb-apache-pass-is-here

[13] HP, “The Machine: A new kind of computer,” http://www.hpl.hp.com/
research/systems-research/themachine/.

[14] Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, “Observation
of spin-transfer switching in deep submicron-sized and low-resistance
magnetic tunnel junctions,” Applied Physics Letters, vol. 84, no. 16, pp.
3118–3120, 2004.

[15] Intel, “Intel 3D XPoint,” IEEE, 2012.
[16] ——, “Intel 64 and ia-32 architectures opti-

mization reference manual,” 2012. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf

[17] ——, “Intel architecture memory encryption technology specification,”
2017. [Online]. Available: https://software.intel.com/sites/default/files/
managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

[18] X. Jiang, Y. Solihin, L. Zhao, and R. Iyer, “Architecture support
for improving bulk memory copying and initialization performance,”
in 2009 18th International Conference on Parallel Architectures and
Compilation Techniques. IEEE, 2009, pp. 169–180.

[19] P.-H. Kamp, “Malloc (3) revisited.” in USENIX Annual Technical
Conference, 1998, p. 45.

[20] D. Kaplan, J. Powell, and T. Woller,
“Amd memory encryption,” 2016. [Online]. Avail-
able: http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/
12/AMD Memory Encryption Whitepaper v7-Public.pdf

[21] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. De Lara, M. Brudno, and M. Satyanarayanan, “Snowflock:
rapid virtual machine cloning for cloud computing,” in Proceedings of
the 4th ACM European conference on Computer systems. ACM, 2009,
pp. 1–12.

[22] B. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in International Symposium on
Computer Architecture, 2009.

[23] J. A. Lewis, B. Black, and M. H. Lipasti, “Avoiding initialization misses
to the heap,” in Proceedings 29th Annual International Symposium on
Computer Architecture. IEEE, 2002, pp. 183–194.

[24] Z. Li, R. Zhou, and T. Li, “Exploring high-performance and energy
proportional interface for phase change memory systems,” IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), pp. 210–221, 2013.

[25] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and F. Bellosa,
“Xlh: More effective memory deduplication scanners through cross-
layer hints,” in Presented as part of the 2013 USENIX Annual Technical
Conference (USENIX ATC13), 2013, pp. 279–290.

[26] Y. Ni, J. Zhao, H. Litz, D. Bittman, and E. L. Miller, “Ssp: Eliminating
redundant writes in failure-atomic nvrams via shadow sub-paging,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2019, pp. 836–848.

[27] Oracle, “Hardware-assisted checking using silicon secured mem-
ory (ssm),” https://docs.oracle.com/cd/E60778 01/html/E60755/gphwb.
html, 2016.

[28] M. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, “Enhancing lifetime and security of pcm-based main memory
with start-gap wear leveling,” in Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, Dec 2009, pp.
14–23.

[29] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly,” in Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2007, pp. 183–196.

[30] K. Serebryany, E. Stepanov, A. Shlyapnikov, V. Tsyrklevich, and
D. Vyukov, “Memory tagging and how it improves c/c++ memory
safety,” arXiv preprint arXiv:1802.09517, 2018.

[31] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch et al.,
“Rowclone: fast and energy-efficient in-dram bulk data copy and ini-
tialization,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2013, pp. 185–197.

[32] P. Sharma and P. Kulkarni, “Singleton: system-wide page deduplication
in virtual environments,” in Proceedings of the 21st international sympo-
sium on High-Performance Parallel and Distributed Computing. ACM,
2012, pp. 15–26.

[33] S. M. Srinivasan, S. Kandula, C. R. Andrews, Y. Zhou et al., “Flash-
back: A lightweight extension for rollback and deterministic replay for
software debugging,” in USENIX Annual Technical Conference, General
Track. Boston, MA, USA, 2004, pp. 29–44.

[34] R. Tetzlaff, Memristors and memristive systems. Springer, 2013.

608



[35] J. Xiao, Z. Xu, H. Huang, and H. Wang, “Security implications of
memory deduplication in a virtualized environment,” in 2013 43rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2013, pp. 1–12.

[36] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in ACM SIGARCH Computer Architecture News,
vol. 34, no. 2. IEEE Computer Society, 2006, pp. 179–190.

[37] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[38] M. Ye, C. Hughes, and A. Awad, “Osiris: A low-cost mechanism to
enable restoration of secure non-volatile memories,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 403–415.

[39] V. Young, P. J. Nair, and M. K. Qureshi, “Deuce: Write-efficient
encryption for non-volatile memories,” ACM SIGPLAN Notices, vol. 50,
no. 4, pp. 33–44, 2015.

[40] L. Zhao, R. Iyer, S. Makineni, L. Bhuyan, and D. Newell, “Hardware
support for bulk data movement in server platforms,” in 2005 Interna-
tional Conference on Computer Design. IEEE, 2005, pp. 53–60.

[41] K. A. Zubair and A. Awad, “Anubis: Ultra-low overhead and recovery
time for secure non-volatile memories,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: ACM, 2019, pp. 157–168. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322252

609


