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We investigate correlated gravitational wave and neutrino signals from rotating core-collapse supernovae
with simulations. Using an improved mode identification procedure based on mode function matching, we
show that a linear quadrupolar mode of the core produces a dual imprint on gravitational waves and
neutrinos in the early post-bounce phase of the supernova. The angular harmonics of the neutrino emission
are consistent with the mode energy around the neutrinospheres, which points to a mechanism for the
imprint on neutrinos. Thus, neutrinos carry information about the mode amplitude in the outer region of the
core, whereas gravitational waves probe deeper in. We also find that the best-fit mode function has a
frequency bounded above by ~420 Hz, and yet the mode’s frequency in our simulations is ~15% higher,
due to the use of Newtonian hydrodynamics and a widely used pseudo-Newtonian gravity approximation.
This overestimation is particularly important for the analysis of gravitational wave detectability and
asteroseismology, pointing to limitations of pseudo-Newtonian approaches for these purposes, possibly
even resulting in excitation of incorrect modes. In addition, mode frequency matching (as opposed to mode
function matching) could be resulting in mode misidentification in recent work. Lastly, we evaluate the
prospects of a multimessenger detection of the mode using current technology. The detection of the imprint
on neutrinos is most challenging, with a maximum detection distance of ~1 kpc using the IceCube
Neutrino Observatory. The maximum distance for detecting the complementary gravitational wave imprint
is ~5 kpc using Advanced LIGO at design sensitivity.
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Indeed, neutrinos have already been detected from such an
event, namely SN1987A [1,2]. Core collapse events with a
successful explosion are called core-collapse supernovae
(CCSNe). The electron-degenerate iron core collapses once
it exceeds its effective Chandrasekhar mass limit, and is
halted once the core reaches nuclear densities p ~ few x
10" gem™ and its equation of state stiffens. The core
overshoots its equilibrium radius, resulting in an over-
pressure, and bounces outward again. This imparts momen-
tum to the supersonically infalling stellar material, causing a
powerful outward shockwave. Whether and how this
shockwave and the subsequent dynamics result in a suc-
cessful explosion is a central theme of research in this area,
see e.g., the recent reviews [3,4] and references therein.

In the event of a successful explosion, photons will also be
detectable. In contrast with photons, which are heavily
reprocessed before freely streaming to an observer, the
intervening stellar material between the core and an observer
are transparent to GWSs. The star is also largely transparent to
neutrinos, except the region within ~50 km of the centre of
the protoneutron star (PNS) where neutrino-matter inter-
actions are still strong. Neutrinos and GWs therefore offer
direct probes of the central engine of a CCSN [5-9].

Gravitational waves in CCSNe arise from coherent
matter accelerations. One of the strongest sources of
GWs in CCSNe is from strongly rotating core collapse.
In this scenario, the collapsing rotating core has an
accelerating quadrupole moment, and therefore generates
gravitational waves. At core bounce, the newly formed
rotating PNS emits a distinct GW pattern. Following core
bounce and the stagnation of the CCSN shock, the growth
of turbulence at =100 — 150 ms after bounce can also lead
to excitations of the PNS and the production of GWs. These
are often emitted by characteristic modes of the PNS
(fow = 500 Hz). GW emission can occur at lower frequen-
cies as well (fgw ~ 100-200 Hz), due to matter motions
further out where the dynamic timescale is longer. In this
work, we focus on the time interval 0 ms < 7, < 150 ms.
In addition to low-frequency GWs from interactions
between the prompt convection and the shock [10],
GWs may also be expected from the PNS as it settles
down after the very dynamic bounce phase. Contrasting
against the late-time signal, the PNS radius is larger and the
mass is lower, so one may expect lower frequency GWs.
For a more in-depth review of GWs from CCSNe and the
different emission regimes we refer the reader to a recent
review [11]. Interestingly, correlated frequencies between
GWs and neutrino luminosities have been observed in
simulations within tens of milliseconds after core bounce in
[12]. Similar correlations at later times have been reported
in [13-19], purportedly due to the growth of the standing
accretion-shock instability (SASI). These observations
point toward a wealth of opportunity to probe specific
aspects of the central dynamics occurring at different times,
from tens of ms to several seconds and beyond.

Asteroseismology is the study of the interior structure of
stars inferred from observations of its seismic oscillations.
There have been recent theoretical efforts to use GWs to do
the same with CCSNe, so-called gravitational wave aster-
oseismology [20-24]. These efforts involve identifying
the modes responsible for GW emission in simulations.
The main strategy is to use data from numerical simulations
as input for a perturbative mode calculation, where the
simulated data serves as a background solution. The key
point to note is that there is a separation of scale between
the period of the modes of interest and the time scale over
which the postbounce CCSN background changes signifi-
cantly. For example, toward the pessimistic end, a 200 Hz
mode has a period of 5 ms, whereas the CCSN background
changes over a timescale of several tens of ms. Therefore
one expects to be able to treat the CCSN background as
stationary for the purposes of a perturbative calculation at
any instant of time. In [21] this was done using a
perturbative Newtonian hydrodynamic scheme in an effort
to generate a qualitative understanding of the GW emission
due to the oscillations of a rotating PNS that were excited at
bounce. Subsequently, [22] presented a similar effort using
perturbative hydrodynamic calculations in the relativistic
Cowling approximation. Shortly thereafter, and during the
course of this work, [23] partially relaxed the Cowling
approximation by allowing the lapse to vary, governed by
the Poisson equation. They claimed an improved coinci-
dence between their perturbative mode frequencies and
certain emission features in the GW spectrograms from
simulations. The Cowling approximation was then relaxed
even further in [24], where the conformal factor of the
spatial metric was allowed to vary as well, leaving only the
shift vector fixed.

All of these studies, however, attempt to identify specific
modes of oscillation of the system primarily by coincidence
between perturbative mode frequencies and peaks in GW
spectra, across time. This is potentially problematic for a
number of reasons. First, the approximations used in the
perturbative calculations introduce errors in mode frequen-
cies that can be quite significant, e.g., tens of percent in the
case of lower order modes in the Cowling approximation.
Second, any partial relaxation of the Cowling approxima-
tion presents difficulties with the interpretation of results,
since the resulting perturbative scheme neglects some terms
at a given order but not others, and thus is not under control;
one cannot argue a priori that the neglected terms are
smaller than those included, and so the regime of appli-
cability requires independent investigation. Furthermore,
the perturbative schemes applied in [22-24] are not con-
sistent linearizations of the equations being solved in the
simulations, albeit they are inconsistent in different ways
due to different perturbative schemes and simulation
methodologies. Third, the approximations used in the
simulations themselves introduce their own frequency
errors. For example, often hydrodynamics is treated as
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Newtonian and gravity treated in a pseudo-Newtonian
manner in CCSN simulations by modifying the potential
to mimic relativistic effects, as in [23,25-27]. Since the
mode population in the vicinity of a given frequency bin in
a GW spectrum can be rather dense (neighboring mode
frequencies differing by ~5-10%), and often the temporal
evolution of neighboring mode frequencies are approxi-
mately related by a scalar multiple (~1.05-1.10), all of
these above mentioned sources of error serve to lower the
significance of any given observed coincidence between
perturbative and simulated mode frequencies. Indeed, the
purported identification of a g-mode in [27] required a post
hoc modification of its frequency formula when matching
to GW spectrograms from simulations, which was specu-
lated to be due to the use of Newtonian hydrodynamics and
pseudo-Newtonian gravity in the simulations.

We opt to take a different approach. Rather than looking
for coincidence in mode frequencies, we look for coinci-
dence in mode functions. This means comparing mode
functions, obtained from perturbative calculations, with
the velocity data from simulations, which are postprocessed
using spectral filters and vector spherical harmonic decom-
positions. Mode function matching and mode frequency
matching may not agree unless the perturbative scheme
applied is a consistent linearization of the equations being
solved in the simulations. The perturbative schemes in
[22—-24] are not consistent linearizations of the simulations
they are applied to, so one expects mode function matching
can give different results than mode frequency matching. We
find that if a mode has an adequate excitation, its matching
with candidate perturbative mode functions produces an
unambiguous best-fit; see [28] for an exhaustive demon-
stration. Since this strategy does not use frequency-matching,
we also discover the frequencies observed in our simulations
are overestimated, with the true values being about 15%
lower. This illustrates the power of matching in mode
functions rather than mode frequencies, and bears out our
concerns with focusing only on mode frequency coincidence
as in [22-24]. These results were reported previously in [28]
with an erroneously large frequency discrepancy of ~40%,
which we correct in this work to ~15%.

Since the demonstration of mode function matching in
[28], the partially relaxed Cowling approximation of [23]
and mode identification via frequency coincidence was
used again in [29]. In [30], a reclassification of previously
misidentified modes from [24] was proposed, of the sort
one would expect based on our concerns outlined above
(1 miscounts of radial nodes n). Very recently, in [31] the
frequency spectrum was computed on a fully general
relativistic simulated background CCSN using the relativ-
istic Cowling approximation. Mode frequency matching
was again used in an attempt to identify the active modes in
the simulation, even though the Cowling approximation
will be systematically overestimating the frequencies of
the modes present in the general relativistic simulation.

Correlations between neutrino and gravitational wave
emission and properties of the central CCSN engine (over
longer timescales than we study here) were then explored in
[32], where the mode frequency matching methods of [23]
were used again.

We use the perturbative scheme in the relativistic
Cowling approximation from [22], which applies only to
spherical systems. Therefore we only apply it to a non-
rotating model in order to identify modes of oscillation that
are excited at bounce and ring for ~10-100 ms. This
identification serves to label the corresponding modes in
the rotating models [33] whose mode functions deform
continuously with increasing rotation, picking up a mixed
character in angular harmonics. We also simulate a sequence
of rotating models with progressively larger precollapse
rotations of Q. = {0.0,0.5, 1.0,1.5,2.0,2.5} rad sl In
order to follow the modes along this sequence, we take
inspiration from the works of [34-36]. In [34], knowledge
of the modes of the nonrotating star were combined with
continuity in frequency to follow modes across such a
sequence, whereas in [35,36] they used continuity in the
deformation of mode functions with varying rotation.

Continuity in mode function is more powerful than
continuity in frequency, since separate modes can have
very similar frequencies and thus would be degenerate in a
frequency continuity analysis. Thus we chiefly use mode
function continuity to follow modes along our sequence of
rotating models. We follow a particular quadrupolar mode
successfully to the Q, = 1.0 rads~! model that we focus
on. When following the mode to larger rotations we find
ambiguities, so we make the more conservative conclusion
than in [28] that we lose track of the mode beyond the
Q. = 1.0 rads~! model.

Our chief result is the implication of a linear quad-
rupolar mode in the Q. = 1.0 rad s~! model as imprinting
on the GWs and neutrino emission, and the mechanism of
this dual imprint. We also demonstrate our improved mode
identification via mode function matching, some variant of
which could also be used to study, for example, pulsations
of binary neutron star postmerger remnants or accretion-
induced collapse of white dwarfs.

In contrast with [12] where the neutrino treatment did not
supply information about the emission pattern on the sky,
our treatment does allow this. We relate the dominant
angular harmonics of the (spectrally filtered) emission to
the dominant energy harmonics in the / = 2 mode function
in the vicinity of the neutrinospheres. The causal explan-
ation for the oscillations in the neutrino emission properties
is that the / = 2 mode of the PNS, which in the rotating
Q. =1.0rads™! model has a mixed character in I, is
producing [ =2 and [ =0 variations of the neutrino-
spheres. Since the neutrinospheres are roughly the boun-
dary between trapped and free-streaming neutrinos, this
means that the region producing free-streaming neutrinos
is undergoing variations with an angular structure in
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accordance with the activity of the mode in the vicinity of
the neutrinospheres, at r ~60-80 km. This causes the
oscillations in neutrino signal registered by an observer
far away.

We therefore find that detailed asteroseismology of
CCSN is possible in principle with joint detection of
GWs and neutrinos, where the neutrinos supply informa-
tion from the neutrinosphere region r ~ 60—-80 km, and the
GWs supply information from deeper in. However, the 30
discovery potential with present-day neutrino detectors like
the IceCube Neutrino Observatory [37-39] is ~1 kpc for
the signatures and models investigated in this work. We
expect the complementary GW signal to be observable in
Advanced LIGO (assuming design sensitivity) for super-
novae located within ~5 kpc.

This paper is organized as follows. In Sec. IIA we
introduce our CCSN models and describe our simulations.
In Sec. IIB we present the multimessenger signals and
predicted IceCube neutrino rates from our simulations.
Section III A gives a brief description of the perturbative
schemes of [22,23]. Section IIIB describes our mode
function matching procedure first reported in [28]. The
mode analysis and mechanism of dual imprint are presented
in Sec. IV, and multimessenger detection prospects are
presented in Sec. V. Mode tests of our perturbative schemes
and our simulation code are performed on a stable hydro-
static star (Tolman-Oppenheimer-Volkoff (TOV) star) in the
Appendixes A and A 1, respectively. When applied to the
TOV star (which we note is more compact than a PNS and
thus is a more demanding application), we find that the
scheme of [23], which we dub a partially relaxed Cowling
approximation or simply a partial Cowling approximation,
is significantly less accurate than the Cowling approxima-
tion itself for fundamental mode frequencies, and even fails
to reproduce the correct radial order of high-order modes.
The factors which affect neutrino detectability are inves-
tigated in Appendix B using toy models. In Appendix C we
explore the sensitivity of the mode identification to different
choices of boundary conditions, as well as compare the
application of the Cowling approximation and the partial
Cowling approximation of [23] to the CCSN system. In
Appendix D we provide a sampling of the spectral filter
kernels we use. We conclude in Sec. VI

II. MODELS AND METHODOLOGY

In this section, we describe our numerical simulations,
initial conditions, and the resulting neutrino and GW
signals.

A. Numerical simulations and progenitor models

To simulate rotating CCSNe, we use the massively
parallel FLASH simulation framework [40,41]. FLASH offers
tools for simulating compressible hydrodynamics. These
tools have been extended in order to simulate CCSNe,

including support for nuclear equations of state, grid-based
energy-dependent neutrino transport, and an effective
general relativistic potential [26,42]. For the hydrodynam-
ics, we use a fifth order WENO (weighted essentially
nonoscillatory) reconstruction, an HLLC Reimann solver
(but revert to a more diffusive HLLE solver in the presence
of shocks), and a second order Runge-Kutta time integrator
using the method of lines. Details of this hydrodynamic
solver will be presented in [43]. Our computational grid is
cylindrical. The resolution in the core (and out to ~80 km)
1s ~195 m, and outside ~80 km we enforce refinement
such that Ax/r < 0°.33. Of particular interest to this work
is the treatment of gravity and neutrinos, which we describe
in some detail below.

The gravity and hydrodynamic treatments are Newtonian,
however an effective general-relativistic potential obtained
through phenomenological considerations and tested in
CCSN evolutions has been introduced in [25,44,45] and
implemented in our FLASH simulations in [26,42]. The
effective potential we use is a recasting of the monopole
term of a multipole decomposition of the Newtonian
gravitational potential. It is designed to recover the structure
of relativistic stars in spherical symmetry. We retain the
additional, nonspherical, Newtonian multipole moments for
1 < ¢ < 16 using the multipole solver of [46]. Since we do
not solve for the gravitational metric, GWs are not actually
present in the computational domain. We instead extract the
GW signal using the quadrupole formula [47-49]. For
axisymmetric simulations, the only nonzero GW polariza-
tion is the /1, polarization. This signal peaks for an observer
situated in the equatorial plane and is vanishing for an
observer along the axis of symmetry. It is worth comment-
ing on the impact of using the effective general relativistic
potential to model the gravitational field and the use of the
quadrupole formula to extract the GW signal. The use of the
quadrupole formula has been validated in the context of
rotating stellar core collapse and shown to give excellent
results when compared to far field extraction techniques
[50]. The effective potential, as we shall explore more in this
paper, impacts the frequency spectrum of the emitted GWs.
The dominant cause of this difference is that the underlying
Newtonian hydrodynamics is not subject to the general
relativistic kinematics [10], in particular the use of pseudo-
Newtonian gravity and the absence of a lapse function in the
hydrodynamic fluxes.

In CCSNe, neutrinos are present in both equilibrium and
nonequilibrium states. Simulating neutrinos requires a
sophisticated treatment that accurately captures both of
these regimes, and most importantly, the transition region
between them. A full solution, i.e., solving the energy-,
species-, and angle-dependent Boltzmann equation, is
limited by the large dimensionality of phase space and
too computationally expensive to solve without some
approximations in the methods or sacrifices in the reso-
lution (see e.g., [51,52] for the latter). Many different
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approximate treatments have been employed in the liter-
ature. We choose to keep the energy dependence (18 energy
groups) and approximate the angular dependence of the
neutrino field by evolving only moments (in our case, the
zeroth and first moments) of the Boltzmann equation
[53-55]. This method requires a closure. We choose the
M1 closure where we analytically prescribe the second
moment of the neutrino radiation field, the Eddington tensor.
Unlike other approximations such as leakage or ray-by-ray,
our method locally captures the neutrino emission (and
absorption) and then transports the neutrinos directly on the
multidimensional computational grid. This provides a great
advantage compared to previous work which studied the
correlations between neutrinos and GWs from rotating core
collapse in the past [12], in particular because it provides
directional emission information. Full details of our imple-
mentation in FLASH can be found in [26].

With this computational setup we evolve a 20 M zero-
age main sequence mass presupernova progenitor model
from the widely used stellar evolution calculations of
Woosley & Heger [56]. We utilize the SFHo equation of
state [57,58], which is a modern tabulated nuclear equation
of state compatible with the constraints available from e.g.,
astrophysical observations of neutron stars. Neutrino
microphysics is incorporated via NuLib [55] and is chosen
to match the setup of [59].1 The 20 M model was obtained
from spherically symmetric stellar evolution calculations
without rotation.

We study a sequence of rotating models, and therefore
we initialize this model with a precollapse rotation profile
prescribed by hand. The initial rotation law imposed is
taken to be,

o Q
1+ (4)?

where r = \/¢* + 22 is the radial distance from the center,
o is the cylindrical radius, and z is the axial position. For
values of r < A, this gives roughly constant angular
velocity of Q,, i.e., solid body rotation. For » much greater
than A the star is described by constant specific angular
momentum. For all the simulations presented here we adopt
A = 800 km. The angular velocity of the fluid is taken to

be v,(0,z) = 0Q(r).

Q(r) (2.1)

B. Signals in Advanced LIGO and IceCube

We perform a total of six simulations of rotating CCSNe
in 2D axisymmetry using FLASH with a sequence of
initial core rotation rates of Q.= {0.0,0.5,1.0,1.5,2.0,
2.5} rads~!. In this section, we present a brief overview of

'"The difference between the FLASH simulations here and those
of [59] are (a) our simulations are 2D and include rotation, (b) we
include neutrino-electron inelastic scattering, thereby allowing an
accurate evolution in FLASH during the collapse phase, and (d) we
use a new hydrodynamic solver as discussed above and in [43].

the simulations as a whole before exploring details of
modes in particular simulations in the following section.

The collapse times (from the start of the simulation
to core bounce) range from 300 ms for the nonrotating
model to 326 ms for the model rotating at Q. = 2.5 rads~'.
We subtract off this time in all our results below.

The rotation causes the collapsing core and subsequent
PNS to become oblate and partially centrifugally sup-
ported. For example, at ~40 ms after bounce, the oblate
isodensity contours at a density of 10'> gcm™ have polar-
to-equatorial radii ratios of ~1, ~0.98, ~0.94, ~0.88,
~0.82, and ~0.74 for our six simulations in order of
increasing Q.. The shock radii evolution is fairly similar
in all models up to the end of the simulated time, ~100 ms,
with only a mild rotational dependence. The mean shock
radius at 100 ms ranges from 155 km in the non-rotating
case to 165 km in the fastest rotating case. The small
amount of turbulent motion that is present at this early time
shows the expected (at least in 2D) dependence on rotation,
that is an overall suppression with higher rotation rates
[49]. The rotation itself slows down the accretion of matter
onto the PNS, but this is a small effect in these simulations.
The Q. = 2.5 rads~! simulation has a ~3% (~5%) lower
mass accretion rate, as measured at 500 km, when com-
pared to the non-rotating model at the time of bounce (at
~100 ms after bounce).

The added centrifugal support also reduces the gra-
vitational binding energy released and consequently the
emergent neutrino luminosity and neutrino average energy.
In Fig. 1, we show the sky-averaged neutrino luminosity
(top panel) and sky-averaged neutrino average energy
(middle panel) for electron neutrinos (blue), antineutrinos
(orange), and a characteristic heavy-lepton neutrino (green)
for each of the rotation rates explored. The neutrino
information was extracted at 500 km. The electron neutrino
neutronization burst is minimally impacted by the rotation.
However, the remaining species have reduced emission for
increasing rotation rates, as well as the electron neutrinos
after the neutronization burst (7 = 30 ms). The neutrino
luminosity is reduced by at least 35% for Q, = 2.5 rads™!
for all neutrino species at 100 ms after bounce, while the
corresponding neutrino average energy is reduced by at
least ~10%. With increasing €., the increase in the bounce
time, and reductions in neutrino luminosity and neutrino
average energy scale as Q2 [60,61].

The luminosities plotted in the top panel of Fig. 1 are sky-
averaged; however, there is also a latitudinal dependence of
the neutrino luminosity, displayed in the lower panel of
Fig. 1. For illustration we only show the Q. = 2.5 rads™!
case, for which the neutrino emission has the strongest
angular dependence. In the analysis that follows we consider
both of these directions, pole and equator, which are
constructed by averaging the emergent neutrino fields (to
reduce numerical noise) at a radius of 500 km from within
30° of the pole and +15° of the equator, respectively.
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FIG. 1. Neutrino emission properties for various rotation rates

and observing angles. The top and middle panel shows the neutrino
luminosity and average energy, respectively, for all rotations and
for each neutrino species (v, : blue, 7,: orange, and v, : green). In the
bottom panel we show the latitudinal dependence of the neutrino
luminosity for Q. = 2.5 rad s~! by showing the luminosity seen by
an observer both along the polar axis and on the equator.

For the nonzero rotation rates, and especially evident
for Q. = 1.0 rads™! around 40 ms after bounce and in
the fastest rotating case (Q, = 2.5 rad s~!) directly follow-
ing bounce, we see small amplitude, high frequency
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FIG. 2. Predicted event rates (top panel) in IceCube for various
flavor oscillation scenarios (NoOsc: no oscillation effects, NO:
normal ordering, IO: inverted ordering) and observer positions
(green: equator, brown: pole) for the Q. = 1.0 rad s~! simulation
located at 1 kpc. In the bottom panel we show the high frequency
content of the neutrino signal by showing the rates relative to a
5 ms running average of the direction dependent signal (i.e., the
top panel). The characteristic frequency matches the expectation
from the GWs (see Fig. 7), and the amplitude is 1-2%.

oscillations imprinted on the neutrino luminosities and
average energies. The luminosities and average energies are
in phase, which has implications for the ability to detect
these oscillations. For this work, we focus on the oscil-
lations in the moderately rotating case, Q, = 1.0 rads™!.
We note that the oscillations seen soon (~5-10 ms) after
bounce in the fastest rotating case are precisely the signal
seen in [12].

To infer the detectability of the neutrino signal (more
details in Sec. V), we use the SNOwGLoBES package [62].
SNOwGLOoBES is a fast calculator for expected detection rates
of CCSN neutrinos. Our reference neutrino detector is
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FIG. 3.

Gravitational wave strains over the simulated time for the six progenitors explored, 0.0 and 0.5 rad s~! (top panel, blue lines),

1.0 and 1.5 rad s~! (middle panel, orange lines), and 2.0 and 2.5 rad s~! (bottom panel, green lines). On the left, we show the first 40 ms
of GW data, while on the right we show an enlarged view for the remain 60 ms. In the lower plot, we show a subset of the
Q. = 1.0 rads~! data from 20 ms to 60 ms (orange), a realization of Advanced LIGO design sensitivity noise (brown), and the sum
(grey). All signals are scaled to 1 kpc and are viewed on the equatorial plane. Small glitches in the GW data near 50-70 ms are due to the

shock crossing mesh refinement boundaries.

IceCube [37,38], a cubic-kilometer-scale neutrino detector
located at the geographic South Pole, which has been
recently incorporated into the SNOwGLoBES code [63]. The
detection of CCSN neutrinos in IceCube comes primarily
from the inverse beta decay reactions that arise from 7,
interactions with the free protons in the ice.

For a galactic CCSN, IceCube will measure the rate
evolution of the neutrino signal with the best statistical
accuracy [39]. In the top panel of Fig. 2, we show the
SNOwGLoBES predicted rates in the IceCube neutrino tele-
scope for the Q. = 1.0 rads~! model located at a distance
of 1 kpc. In this figure we do not include IceCube dark rate
noise or any statistical error due to counting statistics
(although we do include these noise sources in the detect-
ability analysis in Sec. V). We show the predicted rate for
purely adiabatic MSW neutrino oscillations (ignoring any
modification of the neutrino lightcurve due to neutrino-
neutrino interactions) in both orderings [normal (NO)) and
inverted (I0)] as well as assuming no oscillation effects
(NoOsc). In the normal ordering, the 7, signal at Earth is a
mixture of the original 7, signal (~70%) and the original v,
signal (~30%). For the inverted ordering, the 7, at Earth is
almost completely the original v, (~100%). The green line

shows the predictions based on an observer located on the
equator while the brown is for an observer on the pole.

To highlight the imprint of the oscillations, we show in
the bottom panel of Fig. 2 the neutrino rates relative to a
5 ms running average of the corresponding rate from the top
panel. Here we again separate the neutrino orderings and
the equatorial and polar signals. The typical high frequency
content of the equatorial neutrino rates is ~550-575 Hz
(22-23 cycles over 40 ms). As we show below, this is
similar to the 7, GW signal. However, the relative ampli-
tude of the oscillations are only 1%—-2% of the background
neutrino signal. We will require a close by CCSN in order
to have enough statistics to observe this feature.

The rapidly contracting, rotating, oblate spheroid also
generates a GW signal. As mentioned above, our simu-
lations are axisymmetric and therefore the only nonzero
GW signal is the A, polarization. This peaks for an
observer along the equator and vanishes for an observer
at the pole. Notice that the neutrino luminosity is instead
maximal at the pole and minimal at the equator, although
with a weaker dependence. The characteristic GW signal of
the rotating, collapsing core peaks at core bounce and
subsequently rings down, over the course of ~20 ms as the
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core settles into its new equilibrium. Further on in the
evolution the GW signal will become loud again when
convection and turbulence kick in, although in rotating
models this is expected to be muted relative to the non-
rotating case [49]. We show the GW strain as a function of
time for our six models in Fig. 3 for an observer located on
the equatorial plane. With increasing rotation, this signal
becomes more pronounced. Persistent after this time are
characteristic excited modes (which will be discussed in the
following sections) which radiate GWs for the remainder of
our simulations (up to 100 ms after bounce). Additionally,
low frequency GWs are present even in the nonrotating
simulations. For reference, the total energy radiated in
gravitational waves ([23]) up to 100 ms after bounce is (in
units of Mgc?) ~8.5x 10719, ~1.1 x 1079, ~3.5 x 107,
~1.0x 1078, ~3.9 x 1078, and ~3.3 x 10~® for our six
simulations in order of increasing Q. from 0.0 rads™!
to 2.5 rads™!.

In the bottom panel of Fig. 3, we show a subset of the
Q. = 1.0 rads~! GW signal between 20 and 60 ms after
core bounce for a CCSN located at 1 kpc (orange). Here we
see a dominant and persistent frequency of ~575 Hz (~23
cycles over 40 ms). This is consistent with the neutrino
signal discussed above. We also include in this panel a
realization of Advanced LIGO design sensitivity noise
(brown) [64], and the resulting expected signal (grey).

III. MODE IDENTIFICATION

In this section, we describe the procedure for identifying
modes of oscillation of the system. The description we give
here is very terse, and so we refer the interested reader to
[28], where our analysis is described in great detail and
exhaustively demonstrated. The basic strategy is to com-
pute the spectrum of linear modes of the system via
perturbation theory, and then perform a matching between
those modes and the full nonlinear simulation. The match-
ing step is crucial, since the simulation tells us which
modes are actually excited.

A. Perturbative schemes

We use a perturbative scheme in the relativistic Cowling
approximation, as described in [22]. The scheme assumes
spherical symmetry and a coordinate system which accom-
modates our numerical setup of Euclidean spatial metric
and vanishing shift vector. The lapse function is obtained
from the effective relativistic gravitational potential ©
via a = €®.

The relativistic hydrodynamic equations are perturbed
on top of the fixed background spacetime, and the solution
ansatz uses spherical harmonics for the angular depend-
ence, harmonic time dependence, and an unspecified radial
profile which is solved for by outward radial integration of
a system of ordinary differential equations in r. Spherically
averaged snapshots from our full nonlinear simulations are

used as background solutions on which the perturbative
calculations are performed.

The radial displacement is prescribed to be a small
number at the first off-origin grid point, and the transverse
displacement is determined by a regularity condition in a
neighborhood of the origin. This regularity condition was
misreported in [22,23] and subsequently corrected in [24].
The error was pointed out in [28] and found not to produce
significant errors in computed mode frequencies. In [28],
for simplicity of analysis the outer boundary condition was
taken to be the vanishing of the radial displacement at
r =100 km.

In this work, we checked how the mode identification of
[28] changes when we instead use the outer boundary
condition of [22], in which the radial displacement is
taken to vanish at the position of the shockwave. The main
difference is that the number of radial nodes increases,
as anticipated in [28]; the /=2, m =0, n =2 mode
reported in [28] reveals two additional nodes in the outer
low-density region r 2 90 km. We explore various choices
of boundary conditions in Appendix C, and find broad
robustness of our results.

B. Mode function matching

Using the procedure described in Sec. III A, we obtain
the linear spectrum of the CCSN system at a given time. All
of the information about the mode excitations is in the full
nonlinear simulation itself. The determination of which
modes are excited involves a best-fit matching procedure
between the perturbative mode functions and the velocity
data from the simulations. Perturbatively we solve for the
displacement field, whereas we are comparing to velocity
fields in the simulations; harmonic time dependence
ensures that the two fields are proportional. In particular,
the displacement field & is related to the advective velocity
perturbation 6v* and Eulerian velocity perturbation 5o via
0,&" = 6v* = adv', and harmonic time dependence means
0,&" « & Thus we compare & /a with the Eulerian velocity
data in our simulations.

Prior to searching for the best-fit mode function, the
velocity field of the star is processed through a time-
varying spectral filter. This is more appropriate than a band-
pass filter, since mode frequencies can change in time. The
spectral filters are chosen to extract motions identifiable in
the velocity field itself, rather than the GW signal, since not
all modes will generate significant GWs (but may do so in
rotating stars, where the modes acquire quadrupolar defor-
mations). The spectral filter mask is a time-varying top-hat
window, drawn manually on the spectrograms of the
velocity field based on visual identification of excited
features. In the future it would be desirable to automate
this process, to increase reproducibility. But such automa-
tion may require something akin to machine learning,
which is well beyond our scope. Our filter kernel masks
are displayed on a sampling of velocity spectrograms in
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Appendix D. In [28] the analysis was found not to be
sensitive to shrinking the kernel masks in their frequency
extent by a factor of 2.

The spectrally-filtered velocity field is then decomposed
in a vector spherical harmonic basis. In this way, we obtain
a set of simulation velocity fields we denote schematically
as "W, gim» where [ is the spherical harmonic number and ¢ is
the (average) frequency of the spectral filter used.

To compare with perturbative mode functions, which we
denote as ’i)'gr,pen (where ¢’ is its frequency), we use a
measure of difference defined as

A= \/Z (lﬁa’,pen - Iﬁa.sim)z’

where the sum is over radial points on the numerical grid.
Mathematically this is a Frobenius norm. The best-fit mode
function for lﬁﬁ,sim is found by minimizing A over the
perturbative mode spectrum, which is parameterized by a
discrete set of frequencies ¢ whose mode functions satisfy
the outer boundary condition. Prior to matching, both
velocity fields are normalized by their L,-norms, since
we only wish to compare their shapes.

After identifying the active modes in the nonrotating
case, we can repeat the extraction of ‘4, g, in the rotating
cases. We do not compare with perturbative mode functions
in rotating models, since our perturbative scheme is not
valid there. We instead observe the progressive change in
the mode eigenfunctions across the different rotation cases
[33,35]. We use a similar measure of difference as A,
except between the simulated velocity fields between two
adjacent models in the rotating sequence, i.e., between
Wy im1 and @, g, » where simulations 1 and 2 are adjacent
in the rotating sequence. This amounts to following the
continuity of mode functions along the sequence of rotating
models.

In practice, we apply a mass density weighting ,/p to the
velocity fields and mode functions prior to matching. This
acts to discount fluctuations in the simulated data occurring
further from the core which are not representative of a linear
mode of the system. In this work we display mode functions
with a weaker p'/4 weighting, which is less forgiving but
allows for a visual inspection of the mode functions at larger
radii, so long as we also smooth the simulated data.

In rotating models, mode functions are no longer pure
spherical harmonics. In [28], we identified deformations of
modes via consistency with parity selection rules, unified
exponential decay rates and oscillation frequencies, and
expectations from first and second order perturbation
theory in rotation [33]. The identification of mode defor-
mations is not a crucial part of this work, so we leave the
details of the procedure to [28]. A powerful method in [35]
called mode recycling was used to converge toward the
mode function of rotating stars, but is not available in our
context. One simulates the star with an initial perturbation

(3.1)

corresponding to an educated guess for the mode function
of interest, which due to its inaccuracy will excite several
unwanted modes. By applying spectral filters to the
velocity field in the star, a more accurate trial mode
function for the target mode can be extracted and used
as an initial perturbation in a second simulation. This
process is repeated until the initial perturbation results in a
clean excitation of the target mode, with unwanted modes
highly suppressed. We cannot use mode recycling since our
target modes are excited by core bounce, which we do not
attempt to manipulate.

IV. THE MULTIMESSENGER IMPRINT
OF A PROTONEUTRON STAR MODE

In this section we implicate an [ = 2, m = 0, n 2 2 mode
in producing prominent frequency peaks in both GWs and
neutrinos for the Q, = 1.0 rad s~ model. We write n > 2
despite the fact that n = 3—4 if the nodes are counted all the
way out to the shock wave (depending on the exact time),
because the innermost 2 nodes exist more clearly within the
PNS proper, whereas the outermost 1-2 nodes are in a low-
density region. It is important to be explicit about this, since
[23,65] placed the outer boundary condition at the PNS
surface, whereas [22] placed it at the shock wave. We find
robustness of our mode identification on various boundary
conditions in C. In [31], results assuming both boundary
conditions were compared. Thus, comparing the node
counts with those works requires distinguishing between
the nodes interior and exterior to the PNS.

In Fig. 4 we display the mode function matching. The
shaded regions indicate the total mode energy exterior to r,
and is intended to convey that the mode function matching
is most significant in the inner ~30 km. This energy is
obtained by integrating p[n? + (I + 1)n3/r?] (see [22])
from r to the outer boundary, and then normalizing to 1.
The top row of Fig. 4 compares the simulation data with the
best-fit perturbative modes for the Q, = 0.0 rad s~! model.
Two best-fit modes are displayed, one fit according to mode
function (dashed lines, frequency 423 Hz), and the other fit
according to mode frequency (dotted lines, frequency
515 Hz). The mode rings at ~490 Hz in the simulation.
All plots are normalized by their L,-norms. Matching
according to mode frequency yields a mode function which
poorly represents the excitation observed in the simulation.
Instead, matching via mode function yields a much better
representation of the simulation, and allows for a convinc-
ing identification of radial nodes n, which would be very
challenging with the simulation data alone. Nodes of the
perturbative mode functions are indicated with crosses.

The middle row of Fig. 4 compares best-fit perturbative
mode functions at different times, which vary largely due to
the movement of the location of the outer boundary
condition (shockwave) during that time. The total number
of radial nodes is seen to increase as the shockwave moves
outward.
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FIG. 4. Simulation data and best-fit / = 2 modes in the Cowling approximation. Radial and angular components are displayed in the
left and right columns, respectively. The radial simulation data has been smoothed with a Gaussian of width 1.5 km, in order to allow a
visual inspection of the peaks and troughs across ~50 — 110 km. The angular component has not been smoothed. The shaded region
displays the fraction of energy external to radius r, which was computed using the Cowling perturbative mode function at 40 ms and the
simulated, spherically averaged density p. The shaded region is intended to indicate where the quality of mode match is most important.
Both the simulation data and the perturbative modes have been normalized by their L,-norms, just as they are during the mode function
matching procedure. Top row: Snapshots of the p'/*-weighted velocity field from the simulation in the neighborhood of 40 ms, as well as
the perturbative mode functions in the Cowling approximation which are matched via best-fit mode function (dashed lines) and via best-
fit mode frequency (dotted lines). Radial nodes of the perturbative mode functions are indicated with crosses. The additional zero-
crossings in the simulated data we interpret as noise. Middle Row: Perturbative mode functions only, at varying times. Shockwave
locations are indicated with vertical dotted lines. The number of nodes n over the whole domain increases from 3 to 4 as the outer
shockwave expands. Bottom Row: Simulation snapshots in the neighborhood of 40 ms taken from the Q. = {0.0,0.5, 1.0} rads~!
models. The band masks from which these snapshots are taken are those which yield maximal mode function continuity across the

model sequence.

The bottom row of Fig. 4 compares simulation data
across the Q. = {0.0,0.5, 1.0} rad s~! models for the best-
fit band masks. This illustrates our following of the mode
via continuity of its mode function. Strikingly, the radial
component in the Q. = 1.0 rad s™! model has clear zero-
crossing behavior that is well-captured by the perturbative
mode function of the nonrotating model, which suggests
that the radial nodes have not shifted significantly. The
clearer zero-crossing behavior we attribute to the larger
excitation of the mode.

One usually regards as p-modes those modes which
occur to the right of the minimum of the n(f) curve (i.e.,
the radial node count as a function of mode frequency).
That branch of modes has increasing frequency with
increasing n. To the left of the minimum of n(f) are
g-modes, which have decreasing frequency with increasing
n (see e.g., [22,24]). We are unable to determine whether
the best-fit perturbative mode function in Fig. 4 in the
nonrotating model is a p-mode or g-mode, since the best-fit
mode occurs too close to the minimum of the n(f) curve

(see e.g., Fig. 17.2 in [28]). However, modes with smaller n
do not appear to exist at the times analyzed.

In the Q. = 1.0 rads~! model, the / =2, n = 2 mode
picks up / = 1,3 deformations with consistent parity, as
well as with amplitudes consistent with expected leading
order effects in rotation. The mode’s frequency in the
simulation, measured as an average over the mode’s band
mask, rises modestly from ~490 Hz to ~570 Hz in the
Q.= 1.0rads™! case. We display the change in mode
frequency in Fig. 5, together with a downward correction to
the Cowling value in the nonrotating model.” Since the
central density of the system is decreasing as rotation
increases, one would instead expect the frequency of this

*Note we use the correction factor coming from the mismatch
in frequency between the nonrotating simulation and its best-fit
mode function. The correction factor may vary as a function of
rotation. However, since the mode ringing in the Q. = 1.0 rads™!
case is at a modestly different frequency than in the nonrotating
case, we expect the correction factor is similar there.
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FIG. 5. The frequency of the / =2, n 22 mode across the

entire sequence of rotating models. /€ is computed at 40 ms
and averaged over the innermost 30 km, where Qg is the
Keplerian frequency at 30 km. The frequencies (blue) are
extracted from the (/ =2:7) component in each model. Cor-
rected frequencies (black) are also shown, where we have scaled
them down by ~15% of in order to match the frequency of the
best-fit mode function obtained in the Cowling approximation for
the nonrotating model.

mode to decrease if the frequency scaled as /Gp. It is
unclear whether the increase in frequency is a result of the
approximations being employed in the simulation, as
explored in Appendix A 1, or whether the expected scaling
~+/Gp does not apply.

The best-fit mode function in Fig. 4 has a frequency of
~420 Hz, roughly 15% lower than the frequency observed
in the simulation itself. The lower frequency comes from a
calculation in the Cowling approximation, which has been
observed almost always to overestimate the true frequency
of modes (i.e., the frequency when using full general
relativity), see eg. [66-70].° One expects this kind of
systematic bias whenever a mode results in density fluc-
tuations, since overdensities would backreact on the space-
time to produce an attractive influence in full general
relativity (GR), thereby slowing the return to equilibrium.
In the Cowling approximation, this backreaction is
neglected. Thus, we expect that 420 Hz is as an upper
bound on the true frequency of the mode on the CCSN
background produced in our FLASH simulations. Based on
the tests in Appendix A1, one may expect the true
frequency to be of order several % lower than this upper
bound.

In order to narrow down the cause of the overestimated
mode frequency in the simulations, we also perform a
TOV oscillation test in the FLASH implementation in
Appendix A 1. In this test, all of the physics has been
eliminated except hydrodynamics and gravity. The TOV
star is more compact than the PNS, and thus is a more
demanding system. We find directionally consistent results,

*However, see the fundamental radial mode appearing in
Fig. 11 of [24] for an apparently glaring exception.

namely that the TOV mode frequencies are overestimated
with respect to the Cowling values (except for the funda-
mental radial mode, which we have not focused on). This
test implicates the lack of a GR metric in the hydro-
dynamics as a cause of the frequency overestimation.
In particular, the solver lacks a lapse function in the
hydrodynamic fluxes, and uses the pseudo-Newtonian
gravitational potential [25,26,42,44,45]. The absence of
densitization of the fluid variables by the metric determi-
nant may also play a role.

Writing @ = €®, we can estimate the lapse at the center
of the star during the ringdown as ~0.8. Since this is the
smallest value of the lapse in the system, this value provides
an estimate of the maximum effect of the absence of the
lapse on the mode frequency. This maximum effect of 20%
is consistent with the observed mismatch of ~15%.
However, the variability in the degree of overestimation
in Appendix A 1 suggests that the lapse is not the sole
cause. Indeed, the fact that the only mode whose frequency
improves with respect to the Cowling value is the funda-
mental radial mode implicates the effective GR potential as
well, since it was designed in spherical symmetry and so
one would expect an improvement of the most dominant
radial dynamics. The comparison in [71] between full GR
and the effective GR potential focused on longer timescales
of ~ seconds, and they also observe overestimated frequen-
cies.* The TOV migration test has also been observed to
produce stellar oscillations at about double the frequency as
that observed in full GR [25,26].

One interesting possibility is that the mode excitation is
moreso dependent on frequency rather than mode function.
For example, if the mode excitation mechanism has a
characteristic driving frequency, then it will tend to excite
modes with resonant frequencies. In this case, in a full GR
simulation one would still observe excitation of modes at
similar frequencies as in a pseudo-Newtonian simulation,
but the actual modes that are excited would be different. All
of these observations emphasize the importance of using a
mode function matching procedure rather than mode
frequency matching, and doing so in a comparison between
full GR and pseudo-Newtonian approaches.

The mode was followed to the Q. = 2.5 rad s~' model in
[28]. Upon reanalysis, and via the inclusion of an Q, =
1.5 rads~! case, we make a more conservative conclusion
in this work. Namely, we find the best-fit frequency bands
going from Q. = 1.0 » 1.5 — 2.0 rads~! imply a rapid
nonmonotonic change in frequency, which is not expected
on the basis of first or second order rotational effects, and
therefore indicates that we are losing track of the mode.
This may be partly due to the fact that the velocity field in

*However, the comparisons in [71] do not involve comparisons
of the mode functions, and therefore one does not actually know
whether the same mode is being compared between the simu-
lations using full GR and the effective potential.
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FIG. 6. Angular decompositions of the energy of the ~500 Hz band mask of the velocity field in the star (solid lines), for the
Q. = {0.0,0.5, 1.0} rad s~' models (left to right). The = 2 component of the kinetic energy in the mask is plotted with a bold line. The
contour plots display the GW spectrograms (with power spectrum scaling) on a normalized logarithmic scale, plotted against the
simulation frequency axis; the true frequency of the mode contained in the mask is closer to ~420 Hz. The band masks are displayed as
well (dashed lines). The energies have been smoothed with a Gaussian of width 3 ms. The node counts of the best-fit mode function are
displayed at their respective times for the Q. = 0.0 rads™! case (left panel). In the Q. = 1.0 rads™' case, the /=1 and [ =3
components of the energy have distinguished themselves, and it was argued in [28] that they are deformations of the / = 2 mode
occurring at first order in rotation.

the mode’s expected band mask for Q. > 1.0 rads™!
exhibits significant deviations from harmonic time depend-
ence. The velocity field instead acquires a mixed character
of harmonic and traveling-wave time dependence, and
therefore becomes difficult to follow to higher rotation
without a more sophisticated analysis strategy. This is one
of the difficulties of not having fine control over the
perturbations applied to the star, as one has for example

when using full nonlinear simulations to study linear modes
of rotating stars by carefully designing the applied pertur-
bations [33].

Our focus here is instead on the Q. = 1.0 rad s~' model,
where the mode has been followed well and the neutrino
emission properties show a clear imprint from the mode.
We emphasize that the analysis involved in following the
mode across models is a separate methodology from the
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FIG. 7. Top Row: Spherical harmonic decompositions of the neutrino luminosities on a sphere at 500 km for species v, (left), 7,
(centre), v, (right) plotted on top of spectrograms of the oscillating part of the sky-averaged neutrino light curves. The band mask is
displayed, and is coincident with a prominent emission feature in the spectrograms. The vertical frequency axis is according to the
simulation, which we argue overestimates the true frequency of the mode in the band mask by a factor ~0.87~!. The neutrino light
curves along each direction on the sky have had a Gaussian smoothing subtracted, and underwent the same spectrogram filtering as we
applied to the velocity field using the band mask shown. The resulting time series were then decomposed angularly to obtain spherical
harmonic coefficients f; at each time. The absolute value |f| is then smoothed with a Gaussian of width 10 ms before plotting. Bottom
row: The corresponding radial energy of the PNS in the band mask, integrated over a 5 km width radial shell centered on the respective
neutrinospheres. The harmonics / = 0, 2 stand out in all cases.
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mode identification via mode function matching in the non-
rotating model.

In Fig. 6, overlaid on the GW strain spectrograms, we
display an angular decomposition of the time-varying
energy of the simulated velocity fields in the band masks
of interest. The node counts of the best-fit perturbative
mode function at 40 ms are indicated for the nonrotating
model. The / = 2 component becomes highly distinguished
in the Q. = 1.0 rads™! model, as well as the [ =1,3
deformations of the mode occurring at first order in
rotation.

In Fig. 7 we demonstrate for the Q. = 1.0 rad s~' model
that the emission pattern of neutrinos on the sky at the
frequencies inside the band mask is coincident with the
angular distribution of radial kinetic energy in the star
within a 5 km width shell around the neutrinospheres.
The top row contour maps show the neutrino luminosity
spectrograms, where a moving average has been subtracted
first in order to accentuate the oscillations. Overlaid on the
contour maps are the coefficients |f;| of the angular
decomposition of the spectrally-filtered neutrino emission
on the sky, as a function of time. The bottom row plots the
radial kinetic energy of the star near the neutrinospheres,
also angularly decomposed. We observe that the [ = 0,2
components of the emission pattern on the sky are
dominant, and those two components are also distinguished
in the kinetic energy around the neutrinospheres. This is
evidence that the mechanism of imprint of the mode onto
the neutrino luminosity is via periodic variations of the
neutrinospheres by the mode. The modulations in the
neutrino luminosity therefore carry asteroseismological
information regarding the mode amplitude in the vicinity
of the neutrinospheres, which is complimentary to the
deeper information carried out by GWs.

V. MULTIMESSENGER DETECTABILITY

In this section, we determine the distances at which the
correlations we have found between the GW and neutrino
signals are detectable with current detector technology. For
Advanced LIGO design sensitivity noise levels, we find the
signal near 40 ms after bounce in the Q. = 1.0 rads™!
simulation under optimal orientations should be observable
out to a distance of ~5 kpc, while the imprint in the
neutrino signal is observable in IceCube within a distance
of ~1 kpc assuming the frequency is known from the
gravitational wave signal.

A. Gravitational waves

In Fig. 3, we showed a realization of the GW signal that
would be seen by an equatorial observer detecting GWs
from our Q. = 1.0 rad s~! simulation at a distance of 1 kpc
including a realization of Advanced LIGO design sensi-
tivity noise. At 1 kpc and comparable distances, the
detection of the GW signal at the dominant frequencies

we observe in our simulations should be possible. We now
quantify this assertion, following [72]. We use their Eq. (1)
to estimate the distance at which a portion of our signal is
observable (for an optimal orientation) at a signal-to-noise
ratio of 8,

AN 1/2
dopt:%:i*{Z/fhlbhdfM} ’ (5.1)
pop o Sa(f)

where h(f) is the Fourier transform of the /. (f) strain,
h*(f) is the complex conjugate of this, and S,(f) is the
design power spectral noise of Advanced LIGO. We take
Siow = 10 Hz and f;,, = 2048 Hz. As in [72], we take
p* = 8, which is often taken to be the minimal signal-to-
noise ratio for GW detections. Defining 4 (7) at a distance
of 1 kpc gives dp in units of kpc. We window our GW
strain from this simulation using a Nuttall window function
with a width of 40 ms centered on 40 ms after bounce. With
this narrowly defined time range, we find a value for d,, of
~5.5 kpc, suggesting this signal is easily detectable at
distances closer than this. As we shall see, this is much
more promising than the neutrino prospects, and therefore
we neglect a more detailed analysis and instead assume that
we can obtain a clear indication of excited PNS mode
frequencies with GWs (at distances closer than 5 kpc) to aid
our neutrino analysis.

B. Neutrinos

In Sec. II B we also presented estimated IceCube rates
for the Q. = 1.0 rads™' simulation at 1 kpc. In this
section, we generate realizations of IceCube event rates
by adding detector noise (via the dark rate of the photo-
multiplier tubes (PMT), taken to be 550 Hz per PMT [73])
and statistical noise from the finite neutrino arrival times

(taken to be \/ZV where N is the number of neutrinos
expected within each 0.1 ms time bin). From these
realizations we bin the mock data, window it using a
Nuttall window with a 40 ms width (although in practice
the type of window does not impact the results), and
Fourier transform the results to search for excess (and
significant) power in time-frequency regions suggested by
the GW signal as being potentially interesting.

In Fig. 8, we show power spectral densities of the
estimated IceCube neutrino rate as a function of time and
frequency for several observer distances. These are similar
to Fig. 7, but now for the expected detection rate rather
than the luminosity of a specific neutrino species. We
generate essentially random detector data by placing the
source at a large distance. Fourier transforming ~4 x 107
realizations of this data gives a flat (but noisy for any
given realization) power spectrum for all frequencies
greater than 100 Hz with a characteristic median value
set by the total number of events entering the windowed
region and the number of bins, i.e., Py ~Nevems/N§mS
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FIG. 8.

top [Ms]

Power spectral density maps of the expected IceCube signal for the Q, = 1.0 rad s~ model located at a distance of 0.5 kpc

(left), 1 kpc (middle), and 2 kpc (right). The data shown here correspond to the no oscillation scenario. The colors denote standard
deviations of pure Gaussian noise. See Supplemental Material [75] for animations of 128 realizations of the expected signal at each

distance.

[74]. We generate cumulative distributions of this noise
power at 575 Hz and at ~40 ms after bounce (although
this is arbitrary since the transform is dominated by noise)
and determine the standard deviation levels which we use
to normalize the data displayed in Fig. 8. If the power is
significantly above the median (defined as the 6 =0
level), this is evidence for structure in the signal at that
frequency and time. The broadband power at early times
corresponds to the rapidly rising neutrino signal (see
Fig. 2) at bounce. For close distances, ~0.5 kpc, the clear
presence of the oscillations in the neutrino signal near
~20 — 40 ms between 500 and 600 Hz is apparent in the
Fourier transform. At ~1 kpc, the power spectral density
still shows excess power at these times and frequencies,

but its significance becomes weaker. It is not visible at
2 kpc in this realization.

To quantify the detectability, we determine the percent-
age chance of making at least a 1o, 20, and 3¢ detection of
excess power at t = 37 ms and f = 575 Hz for the Q. =
1.0 rad s~! simulation at varying distances. We choose the
specific point t =37 ms and f = 575 Hz based on the
expected GW detection at this time and frequency. We
construct these percentages by making 50000 realizations
of the detected IceCube signal at each distance and
determining the ratio of the realizations with a power
of at least the 1o, 20, and 30 level to the total number of

realizations. We show these percentages in Fig. 9. In the
left panel we show the 16, 20, and 36 detection percentage
for the no oscillation scenario (and an equatorial
observer). We note the chance of making at least a lo
(20, 30) detection of excess power from a pure noise
signal is 15.87% (2.28%, 0.135%), hence the asymptotic

1.0 1.0T——

........... 1o R 30, No Oscillations

______ 20 Y ------ 30, Normal Ordering

30 v e 30, Inverted Orderi
a 0.81 b 0.81 ‘I g, Inverte raering
= Equator = I Equator
o) . . Q0 H H -1
8 L6l No Oscillations 8 o6l i Q.=10rads
° - Q.=1.0rads™ ! ° - P
a o CI |
5 0.4 S 0.4 ‘\
+— . o] . \
(@] (9} 1
Q [0) \
I L U 5 |
O o2] O\ N e 187% Q02 b
____________ 2.28%
0.0 . . - . — 0.0 T v ¥ "
0 1 2 3 4 5 6 7 0 1 2 3 4 5
Distance [kpc]
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FIG. 9. Detection probability, defined as the fraction of realizations where the power spectral density at t = 37 ms and f = 575 Hz
exceeds the 1o, 20, and/or 3¢ levels defined by pure noise, vs distance for the Q. = 1.0 rad s~ simulation. At close distances the
oscillatory part is easily found, but quickly gets buried in the noise as the distance is increased. In the left panel we show the 1o (blue
dotted), 26 (orange dashed), and/or 3¢ (solid black) detection probabilities for an observer located on the equator and where the
neutrinos underwent no oscillations after being emitted. In the right panel we show the 3¢ detection probabilities for an observer located
on the equator, but for three oscillation scenarios: no oscillations (solid black), normal ordering (dashed red), and inverted ordering
(dotted purple).
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values at large distances. For this panel, the distances the
discovery potential for lo, 20, and 30 (defined as the
probability of seeing a signal of this significance 50% of
the time) are ~2.15 kpc~ 1.47 kpc, and ~1.12 kpc,
respectively. In the right panel, we show the 3¢ detection
percentage (also for an equatorial observer) for the three
oscillation scenarios: no oscillations, normal ordering,
and inverted ordering. For these scenarios, we predict the
distances for a 3¢ discovery potential for the no oscil-
lation, normal ordering, inverted ordering oscillation
scenarios are ~1.12 kpc, ~0.90 kpc, and ~0.46 kpc,
respectively. The varying distances for the different
oscillation scenarios reflect the different amplitudes of
the oscillation signal in the 7, and v, signals. As discussed
for Fig. 2, the no oscillation signal is dominated by 7,
while in the inverted ordering the signal is dominated by
the v, signal. The normal ordering is a mixture between 7,
and v,, but dominated by 7,.

In Appendix B, we generalize the detectability of a
small-amplitude, periodic signal on top of a constant
background in the IceCube detector. Based on this toy
model we derive a theoretical maximum distance for a
detection (i.e., a 30 detection 50% of the time) of,

ell a Alkpe 121 Az 12
d¥ = 1.57 kpe|© :
t ch {0.01} {30 000 ms‘l} {40 ms}

(5.2)

where € is the purity of the signal (1 in the case of our toy
model; 0.6-0.7 for our simulated signals; see Appendix B),
a is the fractional amplitude of the periodic signal, Az is the
time frame over which the signal is present, and A' k¢ is
the 1 kpc-equivalent mean steady-state neutrino rate. For
the latter, to be clear, A! ¥P° is intrinsic to the source and not
dependent on distance. It is a function of the neutrino
spectral properties through SNOwGLoBES. This formula, and
the detectability itself, is not a function of the frequency of
the variation, as long as several cycles fall within the
observing window Arz. This formula is valid for regimes
where the signal is not overwhelmed by the detector
background noise, for the conditions seen here, a few
kpc (see Fig. 10 and the discussion in Appendix B). This
also means that even next-generation neutrino detectors,
such as Hyper-Kamiokande [76] and DUNE [77], will not
be able to better measure this effect even though they are
essentially background free.

As an application of this formula, we return to the
oscillations observed in the neutrino signal for the Q. =
2.5 rads~! simulation within 10 ms after bounce. There,
A% ~ 10000 ms~!, a ~0.04, and At ~ 5 ms. This gives
maximum detectable distances of ~1 kpc as well. In practice,
the shorter window for which the oscillations are present
as well as lower overall rate (and therefore stronger impact
of the detector noise) may reduce this distance. We also
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FIG. 10. Theoretical distances where a 3¢ detection of excess
power at a particular frequency, f, would happen 50% of the time.
The underlying signals that we analysed are from sample
realizations of a flat background (with an amplitude of A' P
at 10 kpc and scaled using the inverse square law for other
distances) plus an oscillatory signal at frequency f with a
fractional amplitude of a. Detector noise from the PMTs and
statistical counting noise is included in the realization as well.

note that this formula is not in disagreement with the estimate
in [74], where itis stated that a 1 % amplitude variation should
be detectable at 10 kpc. This is because for that estimate
A'XPe ~ 135000 ms™! and Az~ 400 ms, giving a maxi-
mum detectable distance based on (5.2) of ~10.5 kpc, as
suggested in [74].

VI. OUTLOOK AND CONCLUSIONS

In this work, we simulated the core collapse and early
postbounce evolution of a 20 M, progenitor star with pre-
collapse core rotations ranging from 0.0-2.5 rads~'. We
use axisymmetry for these simulations, which is a sim-
plifying assumption, but justified for the collapse and
early postbounce phase for rotating stars given axisym-
metric initial conditions, before turbulence in the gain
region starts gaining dominance. For each simulation we
extracted the GW and neutrino signals and showed these
messengers can offer detailed asteroseismological infor-
mation on the newly born PNS. These two messengers are
complementary in that they carry information about
certain linear modes of the core from different radii, with
neutrinos probing the outer 60-80 km and GWs probing
deeper in.

To characterize the modes, we followed a strategy of
mode function matching, rather than mode frequency
matching as in [22-24]. We believe this is a more robust
approach that is less susceptible to mode misidentification,
especially given the approximations employed in both
simulations and perturbative schemes. By mode function
matching we discovered that mode frequencies are
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overestimated by ~15% in our simulations. Our findings
motivate further investigation to fully understand this
mismatch in mode frequencies.

Many other spectral peaks exist in both GW and neutrino
luminosity spectrograms along our entire sequence of
rotating models, and we focused on a dominant peak.
In [28], numerous additional modes were identified via
mode function matching between perturbation theory and
our non-rotating model, many of which are not quadru-
polar. The many modes that are active offer to explain the
additional spectral peaks in the multimessenger signals we
observe along our rotating sequence.

The mechanism by which the linear modes of the core
imprint themselves on the neutrino light curves appears
to be that the neutrino-emitting volume (and possibly
the local neutrino production rate) undergoes coherent
deformations in time according to the frequency and
angular harmonics of the active PNS modes in the
vicinity of the neutrinospheres. The dominant angular
harmonics are then reflected in the emission pattern of
neutrinos on the sky at those frequencies. The com-
parison of the angular structure was made possible
through the use of a grid-based two-moment transport
scheme for the neutrinos because it retains and trans-
ports the directional emission information from the
neutrinosphere region.

For the detection prospects, we focused on the Q. =
1.0 rads™! simulation. Using approximate assessment
techniques, we determined that the imprint of the dom-
inant mode of the GW signal is detectable within a
distance of ~5 kpc assuming the design sensitivity of
Advanced LIGO. Since the mode has a dual imprint,
we have used the GW signal to inform a search for the
same frequency in the neutrino signal, which we expect to
be much more difficult to detect. This constitutes a
bonafide multimessenger detection strategy, and allows
us to assign a much higher significance than if no GW
information was available, i.e., if we needed to search over
many frequencies.

We then performed a detailed assessment of the detection
prospects for the mode’s neutrino imprint by looking at the
expected signal in the IceCube Neutrino Observatory.
Given the amplitude of the mode’s imprint is ~1% of
the main neutrino signal, a detection requires very large
events rates, and therefore a very close supernova, ~1 kpc.
In the future, the proposed IceCube-Gen2 will include
twice the number of strings compared to the current
IceCube detector, which would increase the number of
detected neutrino events by a factor of 2 and increase the
range to detect this signal by a factor of \/2. Further
planned improvements in the photosensors, which should
allow for further discrimination from the inherent back-
ground rate, is actively being studied by the IceCube
collaboration and could give rise to further improvements
in the detection distances mentioned here.

Lastly, the mechanism of the multimessenger imprint
should generalize to other systems, e.g., accretion-induced
collapse of white dwarfs or binary neutron star postmerger
remnants, although their distance makes detection in
neutrinos unlikely. In these systems, the mode function
matching procedure should also be useful for identifying
the active modes in simulations, although with rapid
rotation the perturbative schemes would have to be gen-
eralized beyond spherical symmetry.
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APPENDIX A: TESTS OF
PERTURBATIVE SCHEMES

In [28] the perturbative schemes of [22,23] were tested
on a stable TOV star with polytropic equation of state
P=Kp" with =2, K=100, and central density
p. = 128 x 1073 in geometrized units. The purpose of
testing on this compact star is to show that the regime of
validity of partially-relaxed Cowling approximations
deserves independent investigation, and that the FLASH
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TABLE L

A comparison between the mode frequencies we obtain in the Cowling approximation with a boundary condition of

vanishing radial displacement at the stellar surface, and those obtained in [34,36] using different methods, for a I' = 2, K = 100,
Poe = 1.28 x 1073 TOV star (in geometrized units). The dominant error in the frequency is in the specification of location of the stellar
surface, at which the boundary condition is imposed; changing it by one grid point yields a possible modification of the frequencies

by ~1 Hz.

1f 1Pl lpz lPs 2f 2P1 2Pz 2P3 3f 3Pl 3Pz 3.1’73
From [34] (kHz) 1.335 3473 5335 17.136 1.846 4.100 6.019 7.867 2.228 4.622 6.635 8.600
From [36] (kHz) 1.890 4.130
Current work (kHz) 1.376 3469 5336 7.141 1.881 4.104 6.028 7.866 2255 4.640 6.647 8.535
% diff. with [34] 3.7 0.12 0.019  0.070 2.4 0.096 0.15 0.013 1.2 0.39 0.18 0.76
% diff. with [36] 0.48 0.63

implementation tends to overestimate mode frequencies
with respect to the full Cowling approximation. The
scheme of [23] is to allow the lapse function to vary, but
all other metric functions are fixed. This scheme is not
a priori under control, since not all terms are accounted
for at a given order. Indeed, a further relaxation of the
Cowling approximation in [24] resulted in corrections of
a similar size as those obtained when going from a fixed
spacetime to a varying lapse function. It was shown in
[28] for a TOV star that the partially-relaxed Cowling
approximation results in worse determinations of funda-
mental mode frequencies than in the full Cowling
approximation, and the radial order n of mode functions
is captured increasingly inaccurately for increasing n. The
partially-relaxed Cowling approximation was not tested in
[23], nor in a subsequent study [29].

We reproduce the main results of these tests in Tables I
and II. More details are provided in [28].

TABLE II. A comparison between the mode frequencies we
obtain perturbatively using the partially relaxed Cowling approxi-
mation of [23] and those obtained in [35] using full numerical
simulations in the conformal flatness approximation, for the same
I'=2, K =100, py. = 1.28 x 107 TOV star. The conformal
flatness approximation is regarded as quite accurate for these
modes [33]. The agreement with [35] is worsened considerably
for the fundamental modes, but improved for the overtones
shown, in comparison to the frequencies obtained in the full
Cowling approximation. It has been observed almost always that
the Cowling approximation tends to overestimate the true
frequencies, see e.g., [66—-70]. However, see the fundamental
radial mode appearing in Fig. 11 of [24] for an apparently glaring
exception.

2f 2171 4f 4171
1.586 3.726 2.440 4.896
2.496 3.777 3.047 4.999

From [35], GR CFC (kHz)

Current work, partial
Cowling (kHz)

Current work, Cowling (kHz) 1.881 4.104 2.565 5.112

% diff. [35] vs partial Cowling 57 1.4 25 2.1
% diff. [35] vs Cowling 19 10 5.1 4.4

1. TOV mode test in the FLASH implementation

In this study we use the FLASH [40,41] implementation of
[26], which uses Newtonian hydrodynamics and a phe-
nomenological effective gravitational potential developed
in [25,44,45], designed to mimic general relativity in
spherical symmetry. The Newtonian hydrodynamics and
effective gravitational treatment affect the mode frequen-
cies obtained in simulations. In [28] the modes of a stable
TOV star were extracted in our FLASH implementation. This
test is relevant to our study since the dominant modes of
oscillation are extracted from CCSN simulations within the
FLASH implementation.

TOV migration tests was carried out in [25,26], where a
TOV star on the unstable branch is observed to migrate to
the stable branch. Note these TOV solutions are computed
using the equations that correspond to the pseudo-
Newtonian system (i.e., case A of [25]), and therefore
are equilibrium configurations in FLASH. The ensuing
oscillations were observed to have a frequency ~2x higher
than in the general relativistic case. In [28] the funda-
mental radial (/ =0) and axisymmetric quadrupolar
(l=2, m=0) modes {F,’f} and their overtones
{H,,H,,%p,,%p,.%p3} were extracted from the same
stable TOV star studied in Sec. A. The main results are
reproduced from [28] in Table III.

The main conclusion of this test is that, except for the
fundamental radial mode, our FLASH implementation is
overestimating mode frequencies even with respect to the
Cowling approximation. Since the Cowling approxima-
tion itself overestimates frequencies, we can conclude that
the true frequencies of modes we identify in our CCSN
simulations are bounded above by the frequency corre-
sponding to the best-fit mode functions. From the per-
spective of the Nyquist frequency, this is a favorable
conclusion for detection prospects, since lower frequen-
cies can be resolved with a lower event rate. However, in
practice the detection threshold is far from the Nyquist
limit, becoming independent of frequency for fixed signal
duration (changes in frequency result in compensating
changes in the total number of periods present over the
signal duration), see Sec. V. Thus the dominant variables
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TABLE III.

A comparison between the mode frequencies we obtain from FLASH simulations and those obtained in

the Cowling approximation and in full GR in the conformal flatness approximation (GR CFC), for the same I" = 2,
K = 100, py. = 1.28 x 107 TOV star. The FLASH simulations yield frequencies overestimated with respect to full
GR in all cases. We observe an improvement in the fundamental radial mode frequency with respect to the Cowling
approximation (i.e., a downward correction), whereas all other mode frequencies obtain an erroneous upward

correction.

F H, H, 2f py *ps 21’3
From [35] & [66], GR CFC (kHz) 1.442 3.955 5.916 1.586 3.726
Current work, Cowling (kHz) 2.696 4.534 6.346 1.881 4.104 6.028 7.866
Current work, FLASH (kHz) 2.174 5.522 8.295 2.024 5.122 7.920 10.593
% diff. FLAsH vs GR CFC +51 +40 +40 +28 +37
% diff. FLASH vs Cowling -19 +22 +31 +8 +25 +31 +35

for detection prospects are instead the signal amplitude
and duration.

APPENDIX B: MODEL NEUTRINO
DETECTION DISTANCES

The varying detectability distances in the different order-
ing scenarios seen in Fig. 9 stem from the different
amplitudes of the oscillations in the 7, (~ £ 1%) and v,
(~ £ 0.5%). In order to generalize the determination of the
detectability of arbitrary amplitude signals embedded in
IceCube CCSN data we adopt a simple model. The model is a
flat and steady-state detection rate with a magnitude of A' kP
at 1 kpc, an oscillatory component with relative amplitude a,
and frequency f. For the fiducial distance of 1 kpc, we
take both A = 30000 ms~! and A = 60000 ms™!, these are
similar to the rates seen in Fig. 2. We take f = 300 Hz and
600 Hz and vary a from 1073 to 107%3. We also explore
varying the Fourier transform window function width, Ar.

Using the same technique as above, for each A, a, f,
and Ar, we determine the maximum distance at which
we would recover a 2¢ or 3¢ discovery potential. Note,
we keep the intrinsic CCSN luminosity fixed, therefore we
adjust A with distance following the inverse square law, i.e.,
A =30000/ms(1 kpc/r)?. We show the results in Fig. 10,
where we plot the distances at which we achieve a 3¢
discovery potential for a given fractional signal amplitude
a. At closer distances the fraction of 3¢ detections quickly
increases, as seen in Fig. 9. Generally, we need close by
sources (where the detector signal is high) in order to
identify small amplitude signals, while large fractional
amplitudes can be detected out to much larger distances. At
nearby distances (d < 2-3 kpc) the dark noise rate in the
detector does not impact the maximum detectable distance.
For larger distances, where the rate in the detector is small,
the detector photomultiplier noise inhibits this detection.

We make the following observations. Doubling the
window over which we search for a given frequency (or
taken another way, the length over which an oscillatory
signal is present in the data) increases the maximum

distance by a factor V2 (solid black — dashed orange)

as does doubling in the intrinsic rate (solid black — dashed
green). Of these two, doubling the rate gives larger
maximum distances for the largest amplitudes because
the smaller window size limits the impact of the detector
photomultiplier noise. Doubling both the intrinsic rate and
the window leads to a factor of 2 increase in the maximum
distance (solid black — red dashed). Lastly, doubling the
frequency of the oscillatory mode, while keeping the
fractional amplitude and time range over which it is present
fixed, has no impact on the maximum distance (solid
black — dashed purple). These curves are consistent with
our results in Sec. V B and motivate Eq. (5.2), repeated here
for completeness,

ell a 121 Az 712
43 = 1.57 kpe|S .
th P CH {0.01} {30000 ms‘l} {40 ms}
(B1)

Al kpc

We note that for the Q.= 1.0 rads™' case explored
above, with an observer positioned on the equatorial plane,
A ¥ = 30000 ms™!, Az ~ 40 ms, and a fractional ampli-
tude of a = 1% (for no oscillations) and a = 0.5% (for
inverted ordering), these results suggest a maximum dis-
tance to which these oscillation are detectable of 1.57 kpc
and 0.79 kpc, respectively. These compare to our actual
distances determined above of 1.12 kpc and 0.46 kpc for
the no oscillation scenario and the inverted ordering,
respectively. The discrepancy that is present sets the purity
(with values around 0.6-0.7) since the simulated signals are
not pure oscillatory stationary signals on a flat background.

APPENDIX C: DEPENDENCE OF MODE
IDENTIFICATION ON BOUNDARY CONDITIONS

In this section, we show that the mode identified via
mode function matching in Sec. III B does not depend
sensitively on different choices of boundary conditions,
aside from the existence of an additional node at large
radius (r ~ 120 km) when placing the outer boundary
condition at the shockwave location. The number of nodes
more clearly within the PNS is 2 in all cases. The main
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FIG. 11.

Modefunction mismatch A [see Eq. (3.1)] between the perturbative mode spectrum and the simulation data using different

boundary conditions. The simulation data being matched corresponds to the nonrotating model around 40 ms after bounce. Mode
frequencies are indicated with crosses, and the best-fit mode frequency is indicated with a circle.

reason for this independence is that our mode function
matching is performed on a density-weighted basis. The
different boundary conditions produce variations in the
mode function morphology primarily at larger radii, which
is suppressed by the ,/p-weighting we use for the matching
procedure. Despite this suppression, the mode functions in
each spectrum are distinct enough at smaller radii to allow
for a convincing match with the simulation data.

We consider 4 boundary conditions, all using the full
Cowling approximation. First, the outer boundary condition
can be imposed at different radii. In this work we imposed it
at the shockwave location, which we take to be where the
radial derivative of the spherically averaged radial velocity is
maximally negative, whereas in [23] it was imposed at
the approximate location of the PNS surface (where
p = 10" gcm™). In our case, the PNS surface is not well
defined because we focus on a much earlier postbounce
phase than [23]. Another choice to make is whether to impose
the vanishing of the radial displacement, 7, |poundary = 0, as

p1/4 v

done in [22] and in this work, or to impose the vanishing of
the Lagrangian pressure perturbation, APlyngey = 0, as
done in [23]. The latter corresponds to a free surface.

In Fig. 11 we plot the mismatch A [see Eq. (3.1)]
between the perturbative mode spectrum and simulation
data for the 4 boundary conditions just mentioned. The
simulation data being matched is a snapshot from the
nonrotating model around 40 ms. Mode frequencies are
indicated with crosses, and the best-fit mode frequency is
indicated with a circle. The frequency of the best-fit mode
functions all cluster around 420 Hz. When imposing the
boundary condition at p = 10'" gcm™, there are no mode
functions that compete with the quality of fit of the best-
fitting one. When the boundary condition is at the shock-
wave, there appears to be one mode function around
405 Hz with a similar quality fit. This competing mode
function has an additional node at r ~ 24 km (see Fig. 12),
whereas the simulation data does not indicate zero-crossing
behavior there. We therefore reject that mode by inspection.

p1/4 V@

Normalized
Linear Scale

40 ms, Q.= 0.0 rad/s, simulation
----- nr=0 at shockwave
————— AP = 0 at shockwave

0 30 60 90 120

r [km]

0 30 60 90 120
r[km]

FIG. 12. Second best modefunction match in the Cowling approximation when the outer boundary condition is placed at the

shockwave.
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Cowling Approximation

plAyr pl/4 0

@ 0

R O = TSSO [V e

O

[9)]

o 40 ms, Q.= 0.0 rad/s, simulation

5 N N R R Bt nr=0atp=10""gcm3

s 0 0 |y ---- nr= 0 at shockwave

N

o]

(0]

N

W 0T X cimee =AY M AL CE v

g

o

o | < 0 0 3V | y----- AP=0atp=10'gcm3

z | ] e AP =0 at shockwave

0 30 60 90 120 0 30 60 90 120

r [km] r [km]

FIG. 13.
condition at p = 10" gcm
modefunction morphologies are similar.

-3

We also compare the best-fit mode functions for all
4 boundary conditions in Fig. 13. The density weighting
used for these plots is p'/*, which is weaker than the
\/p-weighting used for the modefunction matching and
allows for easier visual inspection of the zero-crossing
behavior at large radius. Compared to imposing the outer
boundary condition at p = 10'° gcm™, when imposing
the outer boundary condition at the shockwave there is an
additional node at large radius (r ~ 120 km). Otherwise,
the mode function morphologies are similar.

Best-fit modefunctions from Fig. 11. Radial nodes are indicated with crosses. Compared with imposing the outer boundary
, imposing it at the shockwave results in one additional node near r = 120 km. Otherwise, the

Notice that the boundary condition yielding the best fit
seems t0 be 7, poundary at p = 10'® gem™. However, one
should not read too much into this, since the perturbative
scheme being applied is not the consistent linearization
of the simulated equations. The main observation we make
here is the degree of independence of choice of boundary
condition. We refrain from inferring which boundary con-
dition is more correct from these comparisons. By contrast,
in [31] boundary conditions were assessed in this manner,
even though the perturbative scheme is not consistent with

Partial Cowling Approximation

2.00 |
1.75 1
1.50 1
< 1.25 4
1.00 1
0.75 ]
——— n,=0atp=101%gcm3 AP=0atp=10"gcm3
0.50 1 —— n,=0 at shockwave AP =0 at shockwave
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0
f[kHz] f[kHz]

FIG. 14. Same as Fig. 11 except using the partial Cowling approximation of [23]. For the boundary condition used in [23] (AP =0
where p = 10'° g cm™3), the best-fit mode function has a frequency of 465 Hz, quite close to our simulation value of 490 Hz. However,
the best-fit mode function in that case is a poor fit compared to the Cowling mode functions, and exhibits one additional node.
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Partial Cowling Approximation

p1/4 v p1/4 Vo
——TEER //::({‘ \\ e N D
0 ] s \\,\v\ v/ 7\1\ \)\ e :M_ —; APA 6”/\‘«;1\7\ :,:": —,‘—":—
e \\ \~_?’M V \/ \/ l’/‘\‘___v_’,’ id V' ~——-
—— 40 ms, Q; =0.0 rad/s, simulation

n-=0atp=10"Ygcm3
nr= 0 at shockwave

Normalized Linear Scale

0' _/'>-¢_"\//~/-—\/ v\\\\\__’ Z V "/\\\\ :’/, V'w g
= ----- AP=0atp=10gcm3
----- AP =0 at shockwave
0 30 60 90 120 O 30 60 90 120
r [km] r [km]
FIG. 15. Best-fit modefunctions from Fig. 14. Radial nodes are indicated with crosses.

their full-GR simulations (and one actually expects sys-
tematic overestimation of mode frequencies by their
Cowling perturbative spectra).

1. Cowling versus partial Cowling approximations

In Fig. 14 we plot the mismatch A for the mode-
functions obtained using the partial Cowling approxima-
tion of [23]. When the outer boundary is placed at
p =10" gecm™, the best-fit modefunction has a fre-
quency closer to the simulation than when using the full
Cowling approximation, although the quality of the
modefunction fit is significantly worse. One can therefore
be mislead by mode frequency matching to believe that

viatr=12km, 6 =nm/2

2000

1500
N

I 1000
Y

500

0 - .
0 20 40 60 80
tob [Ms]

the fit has improved when partially relaxing the Cowling
approximation, when in fact it has become worse. The
corresponding mode functions for the different boundary
conditions are plotted in Fig. 15.

APPENDIX D: SPECTRAL FILTER KERNELS

For the interested reader, we plot the spectral filter kernel
masks used in our modefunction matching analysis in
Fig. 16, on top of a sampling of velocity spectrograms. In
[28], shrinking these kernels in their frequency extent by a
factor of 2 was found not to affect the mode function
matching.

vl atr=12km, 6 =n/4

1.0
0.90 0.9
0.75 0.8
0.7
0.60
0.6
0.45 05
0.30 [lSS==gmTT e 0.4
015 | <1112 03
0.2
0.00
0.1
0 20 40 60 80
tob [Ms]

FIG. 16. A sampling of velocity spectrograms from the Q. = 1.0 rad/s simulation, with overlaid filtering kernels (dashed lines). The
velocity spectrograms are normalized to 1 and displayed on a log;, scale.
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