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Abstract
The dynamics of self-gravitating fluid bodies is described by the Euler—Einstein
system of partial differential equations. The break-down of well-posedness
on the fluid—vacuum interface remains a challenging open problem, which is
manifested in simulations of oscillating or inspiraling binary neutron-stars. We
formulate and implement a well-posed canonical hydrodynamic scheme, suit-
able for neutron-star simulations in numerical general relativity. The scheme
uses a variational principle by Carter—Lichnerowicz stating that barotropic fluid
motions are conformally geodesic and Helmholtz’s third theorem stating that
initially irrotational flows remain irrotational. We apply this scheme in 3 + 1
numerical general relativity to evolve the canonical momentum of a fluid ele-
ment via the Hamilton—Jacobi equation. We explore a regularization scheme
for the Euler equations, that uses a fiducial atmosphere in hydrostatic equilib-
rium and allows the pressure to vanish, while preserving strong hyperbolicity on
the vacuum boundary. The new regularization scheme resolves a larger number
of radial oscillation modes compared to standard, non-equilibrium atmosphere
treatments.
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1. Introduction

Gravitational waves from compact binaries carry unique information on their properties and
probe physics inaccessible to terrestrial laboratories [1-3]. Although development of black-
hole gravitational wave templates in the past 15 years has been revolutionary, the corresponding
work for double neutron-star systems has faced challenges, due to the complications in simu-
lating fluids in curved spacetime [4, 5]. The mathematical description of strongly gravitating
fluid bodies requires coupling between the Euler equations of fluid dynamics and the Ein-
stein equations of general relativity. A fundamental open problem is to develop a mathematical
framework that establishes existence, uniqueness and global regularity of solutions given some
initial conditions, and to track the moving boundary separating the fluid from vacuum, where
strong hyperbolicity (and thus well-posedness) of the Euler equation breaks down [6, 7]. In a
Newtonian context, the degenerate nature of the problem was pointed out by J von Neumann
and W Heisenberg in 1949 [8, 9]. In a relativistic context, these problems manifest themselves
in the hydrodynamic simulation of neutron-star binaries in numerical general relativity, an area
that has seen rapid recent developments over the past years [5, 10]. Ill-posedness on the vacuum
boundary prevents stable and meaningful numerical evolution [11-16].

Relativistic hydrodynamic simulations are commonly stabilized via an artificial atmosphere,
but this introduces new artifacts, such as artificial accretion onto the surface, that can pre-
vent point-wise convergence (cf reference [17] for a scheme that replaces an atmosphere
with ‘if statements’). The resulting error in the mass estimates of ejecta from binary neutron
star mergers can be as high as ~70% [18, 19]. However, the artificial atmosphere issue is
absent in codes which are not grid-based, e.g. the smoothed-particle hydrodynamics code of
[20].

Arnol’d has described the nonrelativistic Euler equation as the geodesic equation on the
group of volume-preserving diffeomorphisms [21]. Synge [22] and Lichnerowicz [23] have
shown that the motion of a relativistic barotropic fluid element can be described as conformally
geodesic (cf equation (9) below). Carter [24] demonstrated how this approach leads to elegant
derivations of conservation laws for neutral or charged, poorly conducting fluids, utilizing a
super-Hamiltonian form of the Euler equations in four-dimensional general relativity. Markakis
et al [25] extended Carter’s framework to perfectly conducting magnetofluids, adopting the
Bekenstein—Oron formulation of ideal magnetohydrodynamics [26, 27]. Conservation laws
that are Noether-related to helical symmetry lie at the heart of the self-consistent field method
for constructing quasi-equilibrium initial data for neutron-star binaries [28—31]. Nevertheless,
the above framework has not been used for evolving relativistic fluid flows.

To this end, Markakis [32] casted Carter’s framework to a form suitable for numerical
evolution, using (constrained) Hamiltonian descriptions of barotropic fluids in Newtonian grav-
ity and 3 + 1 general relativity. One may use this Hamiltonian or (for irrotational flows)
Hamilton—Jacobi description of fluid dynamics in order to cast the evolution equations into a
hyperbolic form, useful for evolving oscillating, rotating or binary neutron stars in the inspiral
phase in numerical general relativity. The binary inspiral phase is expected to be well-modelled
as barotropic [33], and most binary neutron star simulations start with irrotational initial data,
which is considered a good approximation tens of orbits before merger when the orbital fre-
quency is much higher than the spin frequency. In the present paper, we implement and test the
formulation for single, irrotational, radially oscillating neutron stars in the Cowling approxi-
mation, and make comparisons with the Valencia formulation [4]. Due to large perturbations
injected into the star from the stellar surface—vacuum interface, likely due to a different solution
structure there in the Hamiltonian formulation [34], we found it necessary to use the Valencia
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formulation near the surface. Our implementation of the Hamiltonian formulation is therefore
a hybrid one. Further improvements, possibly using the Hamiltonian formulation everywhere,
will be left for future work. In a companion paper, it will be shown that the Hamilton—Jacobi
formulation can be super-convergent when evolving slightly perturbed quasi-stationary flows,
but has regular convergence when evolving more dynamical flows.

In addition to comparing the Valencia and Hamilton—Jacobi formulations using the stan-
dard atmosphere, we will also demonstrate the utility of a fiducial atmosphere treatment which
we call the equilibrium atmosphere, suitable for either the Hamiltonian or Valencia formu-
lations. In section 3.5 we will describe a regularization scheme for the Euler equations that
maintains strong hyperbolicity on the vacuum boundary, where the pressure now vanishes
exactly. The scheme can be combined with the equilibrium atmosphere treatment (used here
only to impose a reflective boundary condition on the surface; but no longer needed to maintain
hyperbolicity), which avoids spurious accretion or artificial shock heating on the star surface.
We demonstrate that this combination results in significantly lower numerical noise in simu-
lations, which allows extraction of higher overtone radial pulsation modes that do not appear
using standard treatments at the same resolution. However, we find the equilibrium atmosphere
is significantly more dissipative than the standard atmosphere. Thus, our presentation of the
equilibrium atmosphere should be viewed as a preliminary exploration of a novel vacuum
regularization technique. Its usefulness in, e.g. binary neutron star simulations, remains to be
seen.

We use units in which G = ¢ = 1 throughout, and the mostly-positive metric signature
(—,+,+, +). Spacetime indices are denoted with Greek letters, and spatial indices are denoted
with {i,j, k...}.

2. Hydrodynamic equations of motion

2.1. Hamiltonian formulation

In this section we review the Hamiltonian formulation for a relativistic barotropic perfect fluid
with rotation [32]. The energy—momentum tensor reads

™" = phu"u” + Pgh”, ()
where
dpP P
h:1+/—:1+e+— 2)
P p

is the specific enthalpy, p is the rest-mass density, P is pressure, e is the specific internal energy
and u* = dx*/dr is the four-velocity of a fluid element.
For a relativistic fluid with a polytropic equation of state,

P=Kp". ®)
The polytropic equation of state is a special case of the equation of state for an ideal fluid,
P = pe(T —1). @

For the polytropic equation of state, equation (2) yields

P 1 KT
h=1+=—(1+——)=14—"»p""".
+ <+r—1> +tr 1P (5)
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Note that equation (3) is valid only for barotropic fluids, but equation (4) holds for barotropic
as well as baroclinic fluids. Thus, the latter can accommodate the entropy generated during
shock formation [35]. In this paper, we focus on barotropic flows without shocks. Treating
shocks within a baroclinic Hamiltonian formulation seems to give unphysical solutions, and
thus is not advisable [34]. Therefore, our restriction to the barotropic case is appropriate only
to the inspiral phase of a relativistic binary in future applications.

The equations of motion for a barotropic fluid can be chosen to consist of local rest-mass
conservation:

1
Vo) = — =0, (V=g pu") =0, (6)

which is an approximation of the conservation of baryon number, and the canonical Euler
equation:

ut (Oupy — Oupy) =0 (7
where
OL
P = Ot = huy, (3

is the canonical four-momentum of a fluid element, L is the Lagrangian and g is the space-
time metric determinant. The canonical Euler equation (7) follows from extremizing the action
functional [23-25, 32]

2 2 dx+ dxv
S= L(x,u)dr = h ,— —dr. 9
/T (x,u)dr /n \/ &u > )

1

For barotropic fluids, the canonical Euler equation amounts to covariant conservation of the
energy—momentum tensor (1),
1 A
— noo_
VNT#V - ,/—gaf‘ (\/—_gT“l,) - FNVT AT 0. (10)

In contrast to equation (10), derivatives appear in an antisymmetric combination in
equation (7), which allows one to use partial derivatives even in curved space, without the
appearance of metric connection coefficients I‘/Aw.

The temporal component of equation (7) is implied by its spatial components, so we may
take v = i in equation (7) without loss of information. To see this, first set v = i in equation (7)
to obtain

3zpi—3ipt+®jwji =0, (1D

where v :=dx’/dt = u'/u' is the Eulerian three-velocity of a fluid element measured in local
coordinates and w; = 0,p; — 0;p; is the spatial part of the canonical vorticity two-form. Next,
set v = t in the left-hand side of equation (7) to obtain

u'v' (O;p, — Opy) = —utvivjwji =0 (12)

where we used equation (11) in the first equality and the antisymmetry of wj; in the last equality.
Thus the v = i component of equation (7) implies the v = f component. In nonrelativistic limit,
equation (11) reduces to the Crocco equation [28].
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2.2. Hamilton-Jacobi formulation

In this section we review irrotational case, which permits an alternative formulation in terms
of a scalar potential [32].

For irrotational fluids, the canonical vorticity two-form w,,, :=0,p, — O,p, vanishes by
definition. Then, by virtue of the Poincaré lemma, the relativistic Euler equation (7) is satisfied
identically by a closed canonical momentum one-form

Pu=0uS (13)

where S is the velocity potential. By virtue of Helmholtz’s third theorem (a corollary to
Kelvin’s circulation theorem), initially irrotational flows remain irrotational. A remarkable
feature of Kelvin’s and Helmholtz’s theorems is that, since their derivation is independent of
the metric [33], they are exact in generic time-dependent spacetimes, with gravitational waves
carrying energy and angular momentum away from a system. Oscillating stars and radiating
binaries, if modelled as barotropic fluids with no viscosity or dissipation other than gravita-
tional radiation, exactly conserve circulation. For irrotational initial data, one may thus evolve
a Hamilton—Jacobi equation

§"0,80,8 + h* =0 (14)

in lieu of the Euler equation (7). Equation (14) was obtained by substituting equations (8) and
(13) into the constraint

g uu, = —1. (15)

Equation (15) (and consequently the Hamilton—Jacobi equation (14)), is a first integral of the
Euler equation (7) quadratic in the momenta, resulting from the fact that g*” is a Killing tensor.
This conserved quantity is Noether-related to the symmetry of the action (9) with respect to
proper-time translations, 7 — 7 + 67 [24, 25, 32].

With the standard 3 + 1 decomposition, the spacetime M = R x X is foliated by a family
of spacelike surfaces Y, and, in a chart {1, X }, its metric takes the form

ds? = g, dx" dx” = —a? d? + 7;;(dx' + B dr)(dx/ + B/ dp) (16)

where « is the lapse, 3¢ is the shift vector and v, is the spatial metric. Substituting the 3 + 1
metric into the Hamilton—Jacobi equation (14) yields a quadratic equation for 9,S. Of the two
algebraic roots, the one with the correct Newtonian limit [32] is:

S — B'OS + ay/7iD;.S0;S + h: =0 (17)

H

or, equivalently,
OS+H=0 (18)
where

H = —B'pi + ay/vipip; + h? (19)

pi = 0iS (20)
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Equations (18)—(20) amount to 3 + 1 decompositions of equations (13) and (14). Solutions
to Hamilton—Jacobi equations are non-unique, albeit viscosity solutions are unique [36, 37].
One option in a numerical scheme would be to evolve equation (18) directly, which would
guarantee the irrotationality of the flow since the canonical momentum would be computed as
the gradient of the scalar potential. Such an approach is left to future work. In this work, we
instead opt to solve for the gradient of the Hamilton—Jacobi equation (18), in the form of a
hyperbolic conservation law [38]:

Opi + OiH =0, 21
subject to the constraint
8,-pj — 8,-pj =0. (22)

This simply amounts to setting wj; = 0 in equation (11). As shown in [25, 32], the constrained
Hamiltonian (19) is opposite to the time component of the canonical four-momentum (8),

H=—p. (23)

Thus, for vanishing vorticity, equation (21) is equivalent to the canonical Euler equation (11).

We note that equation (21) is exactly flux-conservative, although no symmetry assump-
tions about the gravitational field were made. While helical symmetry (circularized orbits
due to gravitational radiation) is typically assumed along with irrotationality (negligible spin
frequency compared to the orbital frequency) when constructing initial data in late inspiral
[28-31], the two assumptions are independent. Indeed, irrotational (or spinning) binaries on
eccentric (or circular) orbits have been constructed and evolved by Moldenhauer et al [39,
40]. Here, we do not assume existence of a Killing vector field (helical or otherwise); our sole
assumption is that the initial data is irrotational. Helmholtz’s third theorem then guarantees
that the data will remain irrotational throughout the inspiral.

The fact that H(x, p) is the constrained Hamiltonian of a fluid element can be confirmed by
rewriting the action integral (9) using coordinate time ¢ as integration variable, and performing
a Legendre transform on the Lagrangian, which yields [32]

15 . %) . . —
5= / [v'ps — H(x, pldt / [ipi + Bpi — an/yipp; + I1dr. (24)
1 4l

It is common to introduce the Lorentz factor
; 1
W=au=—-—— (25)

V1 =i

where v/ = a~'(v' + ') = a (' /u' + B') is the fluid three-velocity measured by normal
observers. Equation (23) implies that the constrained Hamiltonian (19) can be written as

H=hw (a - 'y,-jyiﬂj) (26)

where we used the 3 + 1 metric (16) to lower the indices in p; = g,,p". Similarly, using the
3 + 1 metric to lower the indices in p; = g;,p", the spatial components of the canonical
momentum (8) can be written as

pi = hWry; /! (27)
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Then, the Hamilton—Jacobi conservation law (21) takes the form
O (hWiv!) + Oi[hW (a — v 7)1 = 0. (28)

The spacetime metric determinant g is related to the spatial metric determinant y via \/—g =
a,/7, where « is the lapse function. The rest-mass conservation law (6) can then be written
as

O (VAPW) + 0; [a/ApW (V' — B'/a)] = 0. (29)

This Hamilton—Jacobi formulation for the barotropic fluid therefore consists of equations (28)
and (29), with the equation of state & = h(p) given by equation (2) or, for a polytrope,
equation (5). Coupling with gravity enters through the components of the metric (16), which
satisfies the Einstein equations. Note that equations (28) and (29) are source-free in arbi-
trary dimensions. In this paper, we will consider the spacetime metric fixed, and evolve the
hydrodynamic equations only (Cowling approximation).

In the Newtonian limit, the Hamilton—Jacobi equation (17) reduces to

1 ..
OS + 570898 +h+® =0 (30)

H

where ® is the Newtonian gravitational potential [41]. This equation has typically been
obtained as a first integral to the nonrelativistic, irrotational Euler equation and has sometimes
been referred to as a ‘Bernoulli-type theorem’ for non-steady irrotational flows’; the function
H= %vz + h 4+ ® has been referred to as the ‘Bernoulli function’ or the ‘total head’ in engi-
neering literature. Blandford and Thorne [42] use the more physically motivated term ‘injection
energy’ (the energy required to bring a fluid element from infinity and inject it into a self-
gravitating fluid with the same chemical potential and velocity as the surrounding elements). In
light of the above discussion, we will refer to this function simply as the Hamiltonian of a fluid
element (which coincides with the energy of a fluid element measured in local coordinates).

2.3. Specialization to Minkowski space in 1 + 1 dimensions

In one spatial dimension, the canonical vorticity vanishes identically, and equation (11) takes
the flux-conservative form of the Hamilton—Jacobi equation (28). In flat spacetime in Cartesian
coordinates, we have

0 (WWv*) + 0, (hW) =0 3D

where we set ;; = 0, @ = 1, 5i =0and W = 1/4/1 — (v¥)? is the Lorentz factor. Similarly,
the continuity equation (29) becomes

9, (pW) + Ox (pWv*) = 0. (32)

In the case of a polytropic fluid, the Hamilton—Jacobi formulation consists of equations (31)
and (32), with the specific enthalpy i(p) given by equation (5). The conservative variables are
D = pWand p, = p* = hWo*.

7The original Bernoulli theorem is a conservation law along streamlines only and is Noether-related to a Killing
symmetry. The first integral (18) of equation (21) is constant throughout the fluid, and amounts simply to the Hamil-
ton—Jacobi equation. Equation (18) and its gradient, the conservation law (21), hold for all irrotational flows without
symmetry assumptions.
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We contrast this with the analogous Valencia formulation, where in lieu of equation (31) we
have equation (10) arising from energy—momentum conservation,

O (phW?v*) + O (phW?v™v* + Kp') =0, (33)

where we substituted u; = ' = Wo' into equation (1).
The primitive variables of the Hamilton—Jacobi formulation can be recovered from the
conservative variables by root-finding for p on the expression

(P)?p* = h(p)* (D> — p*), (34)

which is obtained by writing (p*)* = h2W?(v*)? and then using (v¥)> = (W? — 1)/W? and
W = D/p. Once p is recovered, the Lorentz factor is obtained via W = D/p and then the
velocity is recovered via v* = p*/(h(p)W).

In the case of dust, that is, a zero pressure fluid, one has 2 = 1 and equation (31) becomes

8, (Wv*) + O, W =0 (35)

This is a relativistic generalization of the inviscid Burgers equation [43], which is recovered in
the non-relativistic limit, v* < 1, whence Wo* ~ v and W ~ 1 + %(v*)z.

2.4. Specialization to curved space in spherical symmetry

In curved spacetime, in spherical symmetry, the metric can be written as
ds* = (—a® +9,0"8") A + 27, " dedr + v, dr* + ypr*dQ?, (36)

where dQ? = d6? + sin? 0 d¢2. The metric functions «, 3", 7,, and v are functions of (¢, r)

only. We then have /=g = ar?\/y,7vr (we set § = 7/2 so that sinf = 1, a choice which

is permitted in spherical symmetry). Other relations we require are u” = u'v" = u'(av” — "),

W = ou', and u, = Wv,, where v/" is the radial velocity of a fluid element measured by normal

observers and v" = dr/dtis the radial velocity of a fluid element measured in local coordinates.
With this preamble in hand, the continuity equation (29) becomes

8,.D + %3, [arzb (1/’ — ﬂ’/a)] =0, (37

where D = pW and the tilde denotes densitization with /7, yr, i.e. D=, /Y yrD. The deriva-
tives in the Euler equation in the Hamilton—Jacobi form (28) appear in an antisymmetric
combination, which allows one to forgo the introduction of metric determinants. It is simply

opr + O,H = 0(hW~nv") + O,[hW (v — 7" )] = 0. (38)

The coupling with the metric enters through the relation between the contravariant and covari-
ant forms of the canonical momentum. Namely, H = —p, = —g,,p" = hW(a — 7y, 5'v") and
pr = hu, = hWr,,v".

The system of hydrodynamic equations on a curved spherically symmetry background
for the barotropic fluid therefore consist of an equation of state 7 = h(p) (in particular,
equation (5) for a polytrope), and equations (37) and (38). Notice that no geometric source
terms appear in this canonical system of equations, in contrast with equation (10) stemming
from energy—momentum conservation. Geometric source terms were not able to be eliminated
in a different class of formulations considered in [44].
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2.4.1. Primitive variable recovery.  Similarly to the Minkowski case, one can recover the prim-
itive variables (p, ") from the conservative variables (D, p,) by first root-finding for p on the
function f{p) defined by

fp) = =p*p; + h(py*rr (D* = p7) . (39)

Note that the relativistic density D has been undensitized in this formula, i.e. D = D /(/YryT)-
After obtaining p, we compute W = D/p and then recover the velocity viav” = p,/(v,-m(p)W).
One could just as well solve for the enthalpy /, which would avoid division by p.

2.4.2. Characteristic structure. ~ One potentially awkward issue for studying the characteris-

tic structure of the spherically symmetric system is the presence of a 1/r? prefactor in the flux

term of equation (37) and simultaneously its absence in equation (38). We reason as follows.
By expanding the flux term, the rest mass conservation equation can be written as

0=98D+ 0, [aD (1/ — ﬂ"/a)] + %ab (1/" — ﬂ"/a) ) (40)

The last term is lower order in the sense of characteristic analysis. Thus, for the purposes of
computing the characteristic structure, the equations of motion for this system can be cast as

0=98,U+ d,F +1l.o., (41)

where U = (D, p,) are the conservative variables, the fluxes are F= (aD(v" — 3 /o), ahW),
and l.o. stands for lower order terms (that is, the non-principal part, in the sense of characteristic
analysis).

Our task is to compute the Jacobian OF / au. Taking derivatives of the fluxes with respect
to the conservative variables is potentially complicated. We can instead take derivatives with
respect to primitive variables as follows. Define § = (p, v") to be the primitive variables. Then
we can use the chain rule to write

-1

o0
i

oUu 94 oU 04

(42)

In this way, we can compute the Jacobian of the system by taking only derivatives of Fand U
with respect to primitive variables, which is an easy task, and then performing a matrix inverse
of 8U /g and multiplying on the left by OF /97.

Define T = /7,,7yr for clarity of notation in what follows. We have

B oD 9D
U _\opy v _{ W oWy, " } “3)
oG | 0pr Opr|  [OWWr By WA+ Wi,V

Opy Ov"

Note that we have written this for a general barotropic equation of state & = h(p). For the
polytrope case, substitute 9,i = KT'p' ~2. Next, we have

OF B [ YaW@ — B /a)  YTapW[l + Wy, " (v — B’/a)]] (44)

G  |@nW(a—7,B7V)  hWA W (@ — 7,8V = B']

In our numerical implementation, at each point of the grid we obtain the characteristic struc-
ture by computing equations (43) and (44) and then use equation (42) to obtain the Jacobian

9
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matrix. We then extract the eigenvalues and, if needed, the left and right eigenvectors using
numerical algorithms [45]. In spherical symmetry, this numerical overhead is acceptable, how-
ever in a higher dimensional application one ought to compute and simplify analytic formulas
for the eigenvalues and eigenvectors.

We give the analogous matrices to equations (43) and (44) for the Valencia formulation in
appendix A.

3. Numerical implementation
In this section we provide details of our numerical implementation.

3.1. Discretization

‘We use a finite volume approach. Let the integer i denote uniformly spaced cell centers and half
integers (e.g. i + 1/2) denote cell interfaces, and let n denote the time level. We regulate the
(1/r%)9, termin equation (37) in the standard way by replacing it with 39,3, which is equivalent
by the chain rule. Define the flux vector from section 2.4.2 as F = (Fp, F,,) for brevity. Then
the discretized form of equations (37) and (38) are

- = At nt1/2 nt1/2

D)t =Dy — 37A(r3)- {riz—}-l/Z(F[_))iil//z - rz'z—l/Z(FD)ijl//Z} (45)
P = (o — 2L, 2 (2 (46)
Pr)i Pr)i Ay [MPit12 prlic12 |-

The subscripts denote spatial positions, and superscripts denote times. We also define A(r?); =
(ri + Ar/2)* — (ri — Ar/2) and risy o = 1 + Ar/2.

3.2. HLL flux

We approximate the fluxes at the half time step using the Harten, Lax and van Leer (HLL)
formula,

FHLL _ srFL — sLFR + susr (Ur — UL)
SR — SL ’

(47)

Here, Ur and Uy are the conservative variables at the cell interfaces built out of primitive
variables which have been reconstructed from their cell-centered values to the right and left of
the cell interface, respectively, using the minmod slope limiter. That is,

1
UL,,-+1/2 =U; + Eminmod (Ui—i-l - U;,U; — U,'_l) (48)

1 .
Urjit12 = U1 — Emland (Uig2 — Uip1, Uiy — Uy) . 49)

The scalars sg and sp represent the fastest right- and left-moving characteristic speeds among
the Ugr and Uy, states, i.e.

sr = max (0, max ({Ar}), max ({\L})) (50)
s = min (0, min ({Ag}) ,min ({A\L})), (51)

where {\r} and {\.} represent the set of all eigenvalues of (OF/8U)|y, and (OF/d0)|y, ,
respectively.

10
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3.3. Comparison of formulations

We compare two formulations: Valencia, and a hybrid of Valencia and the Hamiltonian for-
mulation. The hybrid formulation uses the Hamiltonian formulation at all points interior to a
specified grid point iy,ix, and Valencia at all points exterior to and including ipix. We find the
hybrid scheme is necessary to stabilize the stellar surface, with iy chosen to be inside the
star so that Valencia is used at the surface. We find that stabilization of the stellar surface is
achieved even with the extreme choice of inix = Zsurfaces Where igyace 1S the last interior point of
the star. However, more stabilization is achieved with ipnix < isurface — 1, With minimal differ-
ences within that range. Using the Hamiltonian formulation around the stellar surface results
in significantly more fluctuations injected into the star by the vacuum regularization routines,
which is an issue we will explore in more depth in future work.

3.4. Ancillary code details

Here we describe some additional relevant details of our numerical implementation.

We use a third-order total variation diminishing Runge—Kutta time integrator [46]. For
a system of equations of motion written schematically as 9,U = L(U) where L is a spatial
differential operator, the update is described sequentially by

Uy =U"+ AtL(U") (52)
301
U2:ZU +Z(U1+AIE(U1)) (53)
n+1 1 n 2

As is standard practice for grid-based computational fluid dynamics, we regularize vacuum
regions by imposing an artificial atmosphere there. This amounts to defining a ‘floor’ value
of the rest mass density paoor > 0. Whenever primitive variables are computed, either after a
conservative-to-primitive variable transformation or after reconstructing the primitive variables
at the cell interfaces, we impose a minimum value on p given by pgeer. In the conservative-to-
primitive variable transformation routine, the conserved density D is prepared at the outset by
the enforcement of D > pgoor. This bound is implied by p > pgoor. If p (or D) is found to have
a value below pgoor, then we set p = poor and " = 0 (or D = pgoor and p, = 0). During evo-
lution, these adjustments tend to be necessary at stellar surfaces, for example. We also impose
a maximum speed /7, V"V < Umax = 0.99, although this is never invoked in the evolutions
we present in this work. With this atmosphere treatment (herein referred to as the standard
atmosphere), we find less noisy evolution at high resolution if we do not recompute the con-
servative variables following these atmosphere adjustments, and so this is what we do. This
amounts to imposing the vacuum regularization only on the fluxes. This is due to the location
of the outer boundary; if placed farther away, recomputing the conservative variables does not
introduce noise. Our standard setting is poor = 10~13, This is to be compared with the central
density of our TOV star p|,—o = p. = 1.28 x 1072 in code units.

When rootfinding on equation (39), we use Brent’s method with hyperbolic extrapolation
[47]. This is a bracketing method, which therefore requires an initial bracket of the root. We
guess the initial bracket to be [(1.1)~! x Proors 1.1 X D]. If this guess does not bracket the
root, then new bracket guesses are generated by widening the initial guess. If this procedure
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fails to generate a valid bracket, the code aborts. For the evolutions in this work we find the ini-
tial bracket guess to be adequate. We set the rootfinder’s absolute and relative tolerance param-
eters to 107%° and 1013, respectively. In practice, in our simulations this means recovering
the primitive variables close to machine precision. We establish this by taking primitive vari-
able snapshots from our simulations, computing the corresponding conservative variables, then
passing those conservative variables through the conservative-to-primitive recovery routine and
comparing the result with what we started with.

We impose reflecting boundary conditions at r = 0, namely p,|,—o = 0 by odd parity, and we
use an even-parity extrapolation from r = {Ar, 2Ar} for D: D|,.:o = (4D|,.:A, - D|,.:2A,) /3.
At the outer boundary r = 12 (in code units), we freeze the variables to p, = 0 and D = ppoor.

The spacetime metric is a fixed TOV solution in Schwarzschild-like coordinates, thus the
evolutions are performed in the Cowling approximation.

3.5. Regularization of the Euler equations on the vacuum boundary: equilibrium atmosphere

Simulations of oscillating or binary neutron stars in numerical general relativity have almost
always incorporated an artificial atmosphere, to address issues that arise on the stellar surface.
The reasons an atmosphere is needed include:

(a) The Valencia formulation requires division of 7! = phu'u; by pu' to recover the vari-
able hu; and the primitive variables in each time step. The density vanishes on the stel-
lar surface, where division by zero occurs. An atmosphere keeps the density p positive
everywhere and avoids division by zero on the stellar surface.

(b) When the sound speed vanishes, the Euler equations become ill-posed due to loss of
strong hyperbolicity at the vacuum boundary [8, 9, 12—16]. Well-posedness is maintained
via an atmosphere which keeps the density, pressure and thus the sound speed, strictly
positive.

(c) Boundary conditions on the neutron-star surface must be that of a free surface in order to
obtain the correct oscillation modes [33]. Past studies of fluid—vacuum interfaces suggest
that this behavior is recovered in the limit as the atmosphere density tends toward zero
[48, 49].

The Hamiltonian formulation avoids issue (a) above, as it directly evolves the variable
pi = hu;. Since h =1 on the stellar surface, no division by zero occurs. However, it does
not avoid issues (b) and (c). In this work, we introduce an equation of state regularization
scheme that keeps the density and sound speed positive when the pressure vanishes (i.e. on
the stellar surface). This will eliminate issues (a) and (b) from the above list. Thus, an atmo-
sphere is no longer required to maintain strong hyperbolicity, and we are moreover able to
reach zero pressure on the stellar surface. We will still use a fiducial atmosphere in order to
impose reflective boundary condition and obtain the correct mode frequencies, per reason (c)
above.

In particular, we demonstrate the utility of a fiducial atmosphere treatment which we call
the equilibrium atmosphere. The benefits of this alternative treatment also extend to both the
Valencia and the Hamiltonian formulation, but are easier to understand in the latter. The basic
idea of the equilibrium atmosphere is to use an equation of state on the entire domain (including
the star) which yields a constant Hamiltonian everywhere. A constant Hamiltonian (and zero
velocity) implies an equilibrium configuration (see equations (37) and (38)).

In order for the v = 0 Hamiltonian H = «h to remain constant beyond the stellar radius,
we must allow the specific enthalpy 4 to become less than 1. We will achieve this in such a
way that the pressure becomes negative, but the rest-mass density stays positive. We will use
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two generalized polytropes attached piecewise at & = 1,

h—1 "

h-lta . h>1

K +n)

h—1+d\"

h—l+a ., h<1

K'(1+n"
The constant a < 1 is a small regularization parameter that keeps the rest-mass density and
the sound speed finite when & = 1 (or P = 0). This addresses points (a) and (b) above, as it
avoids the division by zero (in the Valencia formulation) and retains the strong hyperbolicity
of the Euler equations on the stellar surface. The 4 < 1 piece of the equation of state has three
free parameters, which can be used to enforce continuity and differentiability across 2 = 1. In
this work we will focus on the choice @’ = n’ = 1 and K’ being used to enforce only continuity
of p(h) across h = 1. Continuity gives K' = (1/2)(K(1 4+ n)/a)", then the exterior equation
of state is p(h) = h/(2K’). This atmosphere equation of state corresponds to a stiff fluid with

sound speed equal to the speed of light in vacuum, ¢ = 1. The pressure is determined by the
indefinite integral

p(h) = (55)

r

Ko¥ — —, h>1
p(h) = / pydh = 4K , (56)
Kp——, h<1
4K’

where I' = 1 + 1/n. The integration constant, which amounts to a cosmological constant, was
fixed by enforcing p(1) = 0, that is, the pressure vanishes on the stellar surface, 7 = 1. Finally,
we choose a according to a specified value of rest mass density at the stellar surface. Let this
rest mass value be p;, then a = K(1 + n)p}/".

This equation of state supports 72 < 1, which allows us to initialize our simulations with
the star and atmosphere both in equilibrium. We initialize & via H = ah = constant = a(r =
0)h(r = 0) = Hy, i.e. h(r) = Hy/a(r). This specific enthalpy smoothly crosses & = 1 at the
stellar surface, becoming < 1 outside the star. This smooth behavior of the specific enthalpy
makes it a natural choice of a reconstruction variable (instead of p). Thus, when using the
equilibrium atmosphere, we choose to reconstruct z and v at the cell interfaces.

The enforced rest mass density floor in this case varies in space. We use

| pla=1, r<R,
Plloor(r) = {P(")z_o, r>R, (57

where R, is the stellar surface. If p(r) (or D(r)) becomes less than pgoor(7), then we reset p(r) =
Piioor(r) (0 D(r) = ppioor) and v/ (r) = 0 (or p, = 0). We choose pl|,—; = 107! in code units,
which should be compared with the stellar central density p. = 1.28 x 1073, The outer bound-
ary at 7 = 12 in code units corresponds to ~ 1.26R,. We evolve the star for 10 ms at spatial res-
olutions dr = {0.2,0.1,0.05,0.025} in code units (or {0.296, 0.148, 0.074, 0.037} km). Since
we wish to observe the spatial convergence, we use a fixed time step across these resolutions.
This is achieved by using the corresponding CFL factors {0.11875,0.2375,0.475,0.95}.

‘We note that the fiducial atmosphere is meant to be used only in the hydrodynamic sector of a
numerical code. In the gravitational sector, a ‘mask’ must be applied to the energy—momentum
tensor T}, before solving the Einstein equations, such that 7, = 0 when & < 1. In this work,
we use the Cowling approximation, so no mask is required.

Most neutron star simulation codes readily implement piecewise polytropes as a barotropic
or ‘cold” EOS to approximate candidate neutron star equations of state. A ‘hot” EOS term
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is often added (or, less often, the polytropic constants K are made temperature-dependent) in
order to obtain a baroclinic EOS. In all of the above cases, the outermost piece(s) of the cold
polytrope can be replaced with the generalized polytrope given by equations (55) and (56). A
parametrization that uses generalized piecewise polytropes with continuous, strictly positive
sound speed for all pieces is part of an upcoming paper [50]. Hence, the regularization scheme
described above is applicable to a wide class of barotropic or baroclinic equations of state.
Moreover, a typical nuclear EOS, such as SLy4, has approximately constant sound speed in
the outer ~ 1 km of a neutron star, which is beneficial for hyperbolicity. One can extrapolate
this constant sound speed out to the surface, or match to the equation of state of iron, keeping
the temperature and sound-speed finite on the surface [51].

4. Results

4.1. Valencia vs hybrid formulation

In this comparison, we evolve an equilibrium TOV star with a fixed spacetime (Cowling
approximation). The initial central density of the star is p. = 1.28 x 1073, and we use a poly-
tropic equation of state P = Kp' with I' = 2 and K = 100. This is a simplistic model of a cold
neutron star with gravitational mass 1.4M,, baryonic mass 1.5M,, and radius R, ~ 14.15 km.
For the hybrid scheme, Valencia is used at the last two interior stellar points and all points
exterior to those, i.€. imix = isurface — 1.

The results are displayed in figure 1. The left column displays the hybrid scheme, and
the right column displays the Valencia scheme. In the first row we display the global L,-
convergence of the Hamiltonian H = Wah over time. Both schemes give a similar convergence
order of ~2. In the second row we display the local residual of H averaged over the last 2 ms of
the evolution. In the third row we display the normalized central rest mass density over time. In
the fourth row we display the frequency spectrum of the central density oscillations. To gener-
ate these spectra, we apply a Gaussian window exp[—(¢ — 5 ms)?/(202)] of width ¢ = 1.2 ms
to p.()/p:(0) — 1 before computing the Fourier transform. In all of these comparisons, both
schemes produce similar results.

Since the equilibrium flux H is constant in the Hamilton—Jacobi conservation law (21), one
may have expected instead that the hybrid formulation would preserve the equilibrium configu-
ration of the star to a greater degree than the Valencia formulation. In the Valencia formulation,
the pressure gradient and source terms in the Euler equation must balance in hydrostatic equi-
librium, but since they are discretized differently they do not balance at the numerical level.
On the other hand, the Hamilton—Jacobi conservation law (21) is balanced without any source
terms. In our experimentation we found that the use of the HLL flux is chiefly responsible for
the failure of this expectation. Notwithstanding the perturbations injected into the star from
the surface, using simple finite differences for the Hamilton—Jacobi flux preserves the stellar
equilibrium to a much greater degree than using the finite volume scheme with the HLL flux
formula. In light of this, we will be exploring more optimized numerical approaches for the
Hamiltonian formulation in future work.

4.2. Standard vs equilibrium atmosphere

In this section we explore an alternative vacuum regularization consisting of a modified
equation of state which extends to 4 < 1, allowing the artificial atmosphere to have a con-
stant Hamiltonian coinciding initially with the Hamiltonian inside the star. The atmosphere
and star are therefore initially in equilibrium.
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Figure 1. A comparison between the Valencia formulation (right column) and the hybrid
formulation (left column) with ipix = isurface — 1. We evolve an equilibrium TOV star
with central rest mass density p(r = 0,1 = 0) = p.(t = 0) = 1.28 x 1073 and equation
of state P = 100p? for a total time T = 2027 in code units. With G = ¢ = M, = 1,
this corresponds to a star with gravitational mass 1.4M, rest mass ~ 1.5M, and radius
~14.15 km [52] evolved for ~ 10 ms. The time step is kept fixed across all resolutions in
order to isolate the spatial error. The Courant factor in the highest resolved case is 0.95.
Our choice of ipix = isurface — 1 18 quite extreme (i.e. close to the surface); choosing inix
instead such that 7; = 13 km (i.e. using the Hamiltonian formulation in the interior
~92% of the star by areal radius) yields evolution that’s almost indistinguishable from
Valencia.

In figure 2 we compare 10 ms evolutions of the stationary star using the standard atmo-
sphere and the equilibrium atmosphere. No explicit perturbations are added to the star, thus
the oscillations are excited by numerical truncation error. The top left panel shows that the
stellar surface is equally sharp around the final 2 ms for both atmospheres. The top right panel
shows the ratio of the local Hamiltonian residual Wah — (Wah)|,—o averaged over the final
2 ms, with the equilibrium atmosphere in the denominator. The residual in the equilibrium
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Figure 2. A comparison between the standard atmosphere and equilibrium atmosphere
for the Valencia formulation. (Top left): the rest mass density is displayed on log scale
near the stellar surface, where the equilibrium atmosphere (solid lines) is found to have
an equally sharp profile as the standard atmosphere (dotted lines). (Top right): ratios of
the local residual of Wah averaged over the last 2 ms, comparing the equilibrium and
standard atmosphere treatments. The equilibrium atmosphere treatment yields a ~70%
lower error at low resolution, with this advantage diminishing to ~50% as resolution is
increased. (Middle and bottom panels): similar to figure 1, comparing the equilibrium
atmosphere (left column) to the standard atmosphere (right column). The central density
oscillations are significantly smaller for the equilibrium atmosphere treatment, and the
stellar oscillation frequencies are captured correctly. At high resolution (red), the central
density oscillation spectra appear to have more modes resolved. We do not have exact
frequencies in those cases, so we linearly extrapolate them using the first seven mode fre-
quencies, obtaining {15431, 17248, 19 066, 20 884, 22 702,24 519} Hz. The time step
is fixed in all runs, with a Courant factor of 0.95 for dr = 0.025.
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Figure 3. A comparison between the standard atmosphere and equilibrium atmosphere
for a TOV star initialized with a density perturbation (left) and a velocity perturbation
(right), in the Valencia formulation. (Top panel): the oscillation amplitude of the cen-
tral rest mass density residual over time, computed by extracting the local maxima in
time. The equilibrium atmosphere treatment results in a ~¢~% decay of the oscillations,
steepening in the case of a velocity perturbation to ~¢~1-7 around 50 ms. (Middle panel):
the total relativistic rest mass on the grid over time. On the left, the equilibrium atmo-
sphere treatment rapidly sheds much of the initial excess mass, whereas the standard
atmosphere treatment retains it for a longer period of time. On the right there is also
10x more mass loss for the equilibrium atmosphere. (Bottom panel): the total kinetic
energy over time. The kinetic energy density is taken to be pa(W? — 1). The equilibrium
atmosphere produces decay, whereas the standard atmosphere produces gradual growth.
This suggests that the more sustained central density oscillations observed in the top
panel for the standard atmosphere are due to the injection of kinetic energy into the star
by the vacuum regularization treatment at the surface.

atmosphere case is ~70% smaller than the standard atmosphere case at lower resolutions,
with the benefit reducing to ~50% at higher resolution. Note that the lowest resolution has 47
points across one radius of the star, which is a similar resolution to that typically used in binary
neutron star simulations. The middle panel compares the central density evolutions, with the
equilibrium atmosphere exhibiting much smaller oscillations for all resolutions. The bottom
panel compares the central density oscillation spectra. In the highest resolved case (red), the
equilibrium atmosphere appears to resolve several more high frequency modes than the stan-
dard atmosphere case. Although we do not have exact mode frequencies to compare to for
those high overtones, we linearly extrapolate them using the first seven mode frequencies. The
extrapolated frequencies are {15431, 17248, 19066, 20884,22702,24519} Hz, rounded to
the nearest 1 Hz. The linear fit of the first seven mode frequencies has an £;-norm disagreement
with those frequencies of ~8 Hz.
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In figure 3 we compare 100 ms evolutions at low-moderate dx = 0.1 resolution initialized
with explicit density (left column) or velocity (right column) perturbations. There are ~94
points across one radius of the star at this resolution. The initial perturbations are given in code
units by

—3)2
dp(r) = 0.05p. exp |:_(2r*02)2:| -
_2\2
§0'(r) = 0.05 exp [—(2:0.32)2] ' .

Note that R, ~9.56 in code units. These perturbations are rather extreme in comparison
to those expected in the inspiral phase of an NSNS or BHNS binary. However, our main pur-
pose here is to compare the stability of the equilibrium and standard atmosphere treatments.
In the top row we plot the amplitude envelope of the central density fluctuations. The standard
atmosphere roughly maintains a certain amplitude of fluctuations, whereas the equilibrium
atmosphere treatment yields decaying oscillations with ~ =% behavior for both types of per-
turbation, hastening to ~ ¢~ after 50 ms in the case of a velocity perturbation. The middle
panel displays the total relativistic rest mass residual over time. The equilibrium atmosphere
does significantly worse, ~40x for the density perturbation and ~ 8 x so for the velocity per-
turbation, although remaining below the 10~ level. Given the extreme amplitude of these
perturbations, this may not be a significant issue during the inspiral phase in future applica-
tions, although that remains to be seen. The bottom panel shows the total relativistic kinetic
energy over time, which we define as ph(W2 — 1). The standard atmosphere treatment settles
to a much larger value than the equilibrium atmosphere, before increasing moderately. This
indicates that the standard atmosphere injects much larger perturbations into the star than the
equilibrium atmosphere. The kinetic energy in the equilibrium atmosphere case decays and
settles down to a level ~100x less than the standard atmosphere case. For comparison, in the
stationary star evolutions at this same resolution, the total mass decays for both atmosphere
treatments but is preserved at the 107 level. Therefore we expect the mass preservation in a
binary simulation would be comparable for both atmosphere treatments, with the main dif-
ference being the reduced amplitude of fluctuations when using the equilibrium atmosphere
treatment.

Our intent is to illustrate this equilibrium atmosphere as an initial exploration of an alter-
native vacuum regularization method. Our results show some promising features, namely the
greater preservation of the equilibrium star and the resolution of more overtone modes com-
pared to the standard atmosphere treatment. On the other hand, the decay of perturbations
in spherical symmetry is not necessarily desired if the perturbations are physically sourced,
because the only physical mechanism to damp them would be viscosity. Thus, in our results
the equilibrium atmosphere exhibits an artificially high level of dissipation. Further exploration
of these ideas, together with more optimized numerical approaches for the Hamilton—Jacobi
conservation law (21), will be explored in future work.

5. Summary

Hydrodynamic simulations in numerical general relativity typically employ the Valencia
scheme in combination with a shock-capturing discretization method. During the inspiral phase
of binary neutron star evolution, the flow can be well-modelled as barotropic and shocks are
absent, so Kelvin’s theorem holds. Most simulations start with irrotational initial data, which
is considered a good approximation tens of orbits before merger, when the orbital frequency is
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much higher than the spin frequency. Then, Kelvin’s theorem guarantees that no canonical vor-
ticity will develop during inspiral. Since the flow remains irrotational and barotropic until tidal
disruption and merger, one may use a Hamilton—Jacobi formulation to simulate the inspiral
phase.

Towards this goal, we presented a first implementation of Hamilton—Jacobi hydrodynam-
ics in numerical relativity, focusing here on radially pulsating neutron stars. Obtaining stable,
convergent evolutions with the correct mode frequencies is a nontrivial test, as it requires a
well-posed (strongly hyperbolic) formulation, with suitable treatment of the vacuum bound-
ary. In particular, for a perfect fluid (no fluid viscosity) in spherical symmetry (no gravitational
wave dissipation), perturbations traveling outward must be completely reflected inward at the
free surface in order to obtain the correct mode frequencies. We further demonstrated that a
simple regularization of the Euler equations on the vacuum boundary, that preserves hyperbol-
icity, can be accomplished by preserving sound-speed positivity at the EOS level. This allows
the pressure (but not the density) to be exactly zero on the stellar surface in hydrodynamic
simulations, which has not been possible before. Notwithstanding the possible relevance of a
physical low-density atmosphere around neutron stars, an artificial one is no longer required
for preserving hyperbolicity at the surface. Nevertheless, in this work, we opted to still use
a (fiducial) equilibrium atmosphere, in order to obtain reflections at the vacuum boundary
and obtain the correct frequency modes. We found that the equilibrium atmosphere is dissi-
pative and less noisy and allows one to compute higher frequency modes than the standard
atmosphere treatment. Kastaun [53] developed a flux-balanced scheme (where the Valencia
source terms are recast as fluxes, using a priori information about the equilibrium solutions
of stars). This scheme, combined with an alternative surface treatment, was also found to be
dissipative.

Although a shock-capturing method is in principle not necessary during the inspiral, current
binary neutron star simulation codes, with the standard atmosphere treatment, see the stellar
surface as a shock discontinuity, and shock-capturing schemes appear to be needed in order to
obtain the correct mode frequencies. We found that, although the Hamilton—Jacobi formulation
can be used with the HLL scheme, errors are higher near the surface compared to the Valencia
formulation. Alternative discretization tests, comparisons with well-balanced schemes [54, 55]
and improved vacuum boundary treatment [48, 56] are the subject of future work.

In the current scheme, perturbations that travel outward are partially reflected inward and
partially transmitted outside when they reach the stellar surface (7 = 1). The vacuum variables
are reset only if they drop below the floor, but are allowed to evolve otherwise. Thus, some
oscillatory energy escapes into the fiducial atmosphere, which is responsible for the observed
dissipation of radial oscillations. If this dissipative treatment is used and compared in a quasi-
circular inspiral to a standard non-dissipative treatment, one could potentially disentangle the
gravitational-wave phase accumulation due to tidal effects from the phase accumulation due
to (tidally excited) f-mode oscillations during inspiral [57]. Measuring the phase accumulation
due to these two effects separately would enable better comparison and calibration with semi-
analytical gravitational wave models of binary neutron-star inspiral.

If one evolved the velocity potential S directly, via the Hamilton—Jacobi equation, the flow
would be numerically guaranteed to remain irrotational, satisfying the theorems of Kelvin
and Helmholtz exactly. In this work, we instead evolve the gradient of the Hamilton—Jacobi
equation, which has a hyperbolic flux-conservative form, allowing use of standard shock-
capturing schemes. However, evolving the gradient of the Hamilton—Jacobi equation means
that the irrotationality constraints (20) and (22) may be numerically violated. In a companion
paper we will explore the use of constraint damping to alleviate this problem, ensuring that the
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third Helmholtz theorem is numerically satisfied. This constraint damping scheme is feasible
within the Hamilton—Jacobi formulation but not the Valencia formulation.

While the Hamiltonian and Valencia formulations are equivalent for differentiable solu-
tions, this need not be the case for weak solutions. The fact that the stellar surface is treated as
a ‘shock’ discontinuity by the HLL scheme is related to the issues near the surface that we faced
with the Hamiltonian formulation, which we remedied using a hybrid scheme near the surface
[34]. Finally, this work focused on barotropic flows, which are applicable throughout the inspi-
ral phase of a binary. During tidal discruption and merger, shock heating generates entropy,
and the barotropic Hamiltonian formulation no longer applies. In a companion paper [34],
baroclinic Hamiltonian formulations are explored and found to admit unphysical shock solu-
tions. Thus, pending a possible innovative remedy, it is advisable to use an explicitly barotropic
Hamiltonian formulation during the inspiral phase, and then switch to the baroclinic Valencia
formulation just prior to merger.
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Appendix A. Valencia formulation

For completeness, in this section we provide the details of the Valencia formulation, in par-
ticular the equations of motion in spherical symmetry and the corresponding characteristic
structure and discretization. Explicit formulas for the characteristic structure in the Valencia
formulation are well-known, but for modularity of our numerical implementation we instead
solve for the eigenstructure numerically at each point, in the same way as when using the
Hamiltonian formulation.

The conservative variables are U = (D, S,) = (YpW, Y phW?y,,v"). The equations of
motion read

0=0D+ %a, [ar’D (v — B*/a)] (A.1)
0=05,+ %a, (a8, (v = §"/a)] + 0, 1aPI - 5, (A2)
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where the source term S is given by

1 o B) -
S=a|d, In 3PT — @ In @) (7+D) + 5@ In 7, (57 +PY) + © f )S,} :
(A3)
where we have defined 7 = Y (phW? — P — pW).

For the purposes of characteristic analysis, the fluxes are F= (Fp, F5 + aYP) = (aD(v" —
B/ ), aS,(v" — B" /a) + oL P). Then the matrices analogous to equations (43) and (44) are

@ = W TPWS’VWZ/r (A4)
oG |(h+ pd,W) YW, Y phy,, W21 + 2W2y,,0" ") :
3_ﬁ _ aW@W" — B /a) YTapW[l + Wy, (V" — B /a)] (AS5)
03  |0,F5, +aYo,P O Fs, :
with
0,F; =Ta (h + paph) Wy, 0" (1/’ — B’/a)
Oy Fy = Y aphy, W? [2V’ — B a4 2W " (1/’ — ﬁr/oz)] . (A.6)
The discretized equations of motion are
. - At n n
D) = D) =355 [ AR sl (A7)
P P At n+1/2 n+1/2
(Sr)l-Jrl =(S)! — 3m [71'2+1/2(F§,)i+1//2 - ”:‘271/2(173,)1'71//2}
At rpy+/2 rpy+12] 4 gn A
N E[(a PR~ (@ P)H/z}+ " (A.8)

where Tix1/2 = Ti + Ar/Z

For the fluxes F; and F 5,» We use the HLL flux equation (47), whereas for the split flux we
omit the correction term, i.e. we use

_ sR(@YP)L — sL.(@TP)r

SR —SL

aYP

(A9)
This ensures that the correction term oc Ur — Uy, is not used twice. The source term S} is com-
puted using cell-centered values, which is an approximation since it should be a cell-averaged

quantity.
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