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Abstract

The dynamics of self-gravitatingfluid bodies is described by the Euler–Einstein

system of partial differential equations. The break-down of well-posedness

on the fluid–vacuum interface remains a challenging open problem, which is

manifested in simulations of oscillating or inspiraling binary neutron-stars. We

formulate and implement a well-posed canonical hydrodynamic scheme, suit-

able for neutron-star simulations in numerical general relativity. The scheme

uses a variational principle by Carter–Lichnerowicz stating that barotropic fluid

motions are conformally geodesic and Helmholtz’s third theorem stating that

initially irrotational flows remain irrotational. We apply this scheme in 3 + 1

numerical general relativity to evolve the canonical momentum of a fluid ele-

ment via the Hamilton–Jacobi equation. We explore a regularization scheme

for the Euler equations, that uses a fiducial atmosphere in hydrostatic equilib-

rium and allows the pressure to vanish,while preserving strong hyperbolicity on

the vacuum boundary. The new regularization scheme resolves a larger number

of radial oscillation modes compared to standard, non-equilibrium atmosphere

treatments.
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1. Introduction

Gravitational waves from compact binaries carry unique information on their properties and

probe physics inaccessible to terrestrial laboratories [1–3]. Although development of black-

hole gravitationalwave templates in the past 15 years has been revolutionary, the corresponding

work for double neutron-star systems has faced challenges, due to the complications in simu-

lating fluids in curved spacetime [4, 5]. The mathematical description of strongly gravitating

fluid bodies requires coupling between the Euler equations of fluid dynamics and the Ein-

stein equations of general relativity. A fundamental open problem is to develop a mathematical

framework that establishes existence, uniqueness and global regularity of solutions given some

initial conditions, and to track the moving boundary separating the fluid from vacuum, where

strong hyperbolicity (and thus well-posedness) of the Euler equation breaks down [6, 7]. In a

Newtonian context, the degenerate nature of the problem was pointed out by J von Neumann

and W Heisenberg in 1949 [8, 9]. In a relativistic context, these problems manifest themselves

in the hydrodynamic simulation of neutron-star binaries in numerical general relativity, an area

that has seen rapid recent developments over the past years [5, 10]. Ill-posedness on the vacuum

boundary prevents stable and meaningful numerical evolution [11–16].

Relativistic hydrodynamicsimulations are commonly stabilized via an artificial atmosphere,

but this introduces new artifacts, such as artificial accretion onto the surface, that can pre-

vent point-wise convergence (cf reference [17] for a scheme that replaces an atmosphere

with ‘if statements’). The resulting error in the mass estimates of ejecta from binary neutron

star mergers can be as high as ∼70% [18, 19]. However, the artificial atmosphere issue is

absent in codes which are not grid-based, e.g. the smoothed-particle hydrodynamics code of

[20].

Arnol’d has described the nonrelativistic Euler equation as the geodesic equation on the

group of volume-preserving diffeomorphisms [21]. Synge [22] and Lichnerowicz [23] have

shown that the motion of a relativistic barotropic fluid element can be described as conformally

geodesic (cf equation (9) below). Carter [24] demonstrated how this approach leads to elegant

derivations of conservation laws for neutral or charged, poorly conducting fluids, utilizing a

super-Hamiltonian formof the Euler equations in four-dimensional general relativity.Markakis

et al [25] extended Carter’s framework to perfectly conducting magnetofluids, adopting the

Bekenstein–Oron formulation of ideal magnetohydrodynamics [26, 27]. Conservation laws

that are Noether-related to helical symmetry lie at the heart of the self-consistent field method

for constructing quasi-equilibrium initial data for neutron-star binaries [28–31]. Nevertheless,

the above framework has not been used for evolving relativistic fluid flows.

To this end, Markakis [32] casted Carter’s framework to a form suitable for numerical

evolution, using (constrained)Hamiltonian descriptions of barotropicfluids in Newtonian grav-

ity and 3 + 1 general relativity. One may use this Hamiltonian or (for irrotational flows)

Hamilton–Jacobi description of fluid dynamics in order to cast the evolution equations into a

hyperbolic form, useful for evolving oscillating, rotating or binary neutron stars in the inspiral

phase in numerical general relativity. The binary inspiral phase is expected to be well-modelled

as barotropic [33], and most binary neutron star simulations start with irrotational initial data,

which is considered a good approximation tens of orbits before merger when the orbital fre-

quency is much higher than the spin frequency. In the present paper, we implement and test the

formulation for single, irrotational, radially oscillating neutron stars in the Cowling approxi-

mation, and make comparisons with the Valencia formulation [4]. Due to large perturbations

injected into the star from the stellar surface–vacuum interface, likely due to a different solution

structure there in the Hamiltonian formulation [34], we found it necessary to use the Valencia
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formulation near the surface. Our implementation of the Hamiltonian formulation is therefore

a hybrid one. Further improvements, possibly using the Hamiltonian formulation everywhere,

will be left for future work. In a companion paper, it will be shown that the Hamilton–Jacobi

formulation can be super-convergent when evolving slightly perturbed quasi-stationary flows,

but has regular convergence when evolving more dynamical flows.

In addition to comparing the Valencia and Hamilton–Jacobi formulations using the stan-

dard atmosphere, we will also demonstrate the utility of a fiducial atmosphere treatment which

we call the equilibrium atmosphere, suitable for either the Hamiltonian or Valencia formu-

lations. In section 3.5 we will describe a regularization scheme for the Euler equations that

maintains strong hyperbolicity on the vacuum boundary, where the pressure now vanishes

exactly. The scheme can be combined with the equilibrium atmosphere treatment (used here

only to impose a reflective boundary condition on the surface; but no longer needed to maintain

hyperbolicity), which avoids spurious accretion or artificial shock heating on the star surface.

We demonstrate that this combination results in significantly lower numerical noise in simu-

lations, which allows extraction of higher overtone radial pulsation modes that do not appear

using standard treatments at the same resolution. However, we find the equilibrium atmosphere

is significantly more dissipative than the standard atmosphere. Thus, our presentation of the

equilibrium atmosphere should be viewed as a preliminary exploration of a novel vacuum

regularization technique. Its usefulness in, e.g. binary neutron star simulations, remains to be

seen.

We use units in which G = c = 1 throughout, and the mostly-positive metric signature

(−,+,+,+). Spacetime indices are denoted with Greek letters, and spatial indices are denoted

with {i, j, k . . .}.

2. Hydrodynamic equations of motion

2.1. Hamiltonian formulation

In this section we review the Hamiltonian formulation for a relativistic barotropic perfect fluid

with rotation [32]. The energy–momentum tensor reads

Tµν = ρhuµuν + Pgµν, (1)

where

h = 1+

∫
dP

ρ
= 1+ e+

P

ρ
(2)

is the specific enthalpy, ρ is the rest-mass density, P is pressure, e is the specific internal energy

and uµ = dxµ/dτ is the four-velocity of a fluid element.

For a relativistic fluid with a polytropic equation of state,

P = KρΓ. (3)

The polytropic equation of state is a special case of the equation of state for an ideal fluid,

P = ρe(Γ− 1). (4)

For the polytropic equation of state, equation (2) yields

h = 1+
P

ρ

(

1+
1

Γ− 1

)

= 1+
KΓ

Γ− 1
ρΓ−1. (5)

3



Class. Quantum Grav. 37 (2020) 155005 J R Westernacher-Schneider et al

Note that equation (3) is valid only for barotropic fluids, but equation (4) holds for barotropic

as well as baroclinic fluids. Thus, the latter can accommodate the entropy generated during

shock formation [35]. In this paper, we focus on barotropic flows without shocks. Treating

shocks within a baroclinic Hamiltonian formulation seems to give unphysical solutions, and

thus is not advisable [34]. Therefore, our restriction to the barotropic case is appropriate only

to the inspiral phase of a relativistic binary in future applications.

The equations of motion for a barotropic fluid can be chosen to consist of local rest-mass

conservation:

∇µ (ρu
µ) =

1√−g∂µ
(√−g ρuµ

)
= 0, (6)

which is an approximation of the conservation of baryon number, and the canonical Euler

equation:

uµ
(
∂µpν − ∂ν pµ

)
= 0 (7)

where

pµ =
∂L

∂uµ
= huµ (8)

is the canonical four-momentum of a fluid element, L is the Lagrangian and g is the space-

time metric determinant. The canonical Euler equation (7) follows from extremizing the action

functional [23–25, 32]

S =

∫ τ2

τ1

L(x, u) dτ =

∫ τ2

τ1

h

√

gµν
dxµ

dτ

dxν

dτ
dτ. (9)

For barotropic fluids, the canonical Euler equation amounts to covariant conservation of the

energy–momentum tensor (1),

∇µT
µ
ν =

1√−g∂µ
(√−gTµ

ν

)
− Γ

λ
µνT

µ
λ = 0. (10)

In contrast to equation (10), derivatives appear in an antisymmetric combination in

equation (7), which allows one to use partial derivatives even in curved space, without the

appearance of metric connection coefficients Γλ
µν .

The temporal component of equation (7) is implied by its spatial components, so we may

take ν = i in equation (7) without loss of information. To see this, first set ν = i in equation (7)

to obtain

∂tpi − ∂ipt + v jω ji = 0, (11)

where vi := dxi/dt = ui/ut is the Eulerian three-velocity of a fluid element measured in local

coordinates and ωij = ∂ ipj − ∂ jpi is the spatial part of the canonical vorticity two-form. Next,

set ν = t in the left-hand side of equation (7) to obtain

utvi (∂ipt − ∂tpi) = −utviv jω ji = 0 (12)

where we used equation (11) in the first equality and the antisymmetry ofωji in the last equality.
Thus the ν = i component of equation (7) implies the ν = t component. In nonrelativistic limit,

equation (11) reduces to the Crocco equation [28].
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2.2. Hamilton–Jacobi formulation

In this section we review irrotational case, which permits an alternative formulation in terms

of a scalar potential [32].

For irrotational fluids, the canonical vorticity two-form ωµν := ∂µpν − ∂νpµ vanishes by

definition. Then, by virtue of the Poincaré lemma, the relativistic Euler equation (7) is satisfied

identically by a closed canonical momentum one-form

pµ = ∂µS (13)

where S is the velocity potential. By virtue of Helmholtz’s third theorem (a corollary to

Kelvin’s circulation theorem), initially irrotational flows remain irrotational. A remarkable

feature of Kelvin’s and Helmholtz’s theorems is that, since their derivation is independent of

the metric [33], they are exact in generic time-dependent spacetimes, with gravitational waves

carrying energy and angular momentum away from a system. Oscillating stars and radiating

binaries, if modelled as barotropic fluids with no viscosity or dissipation other than gravita-

tional radiation, exactly conserve circulation. For irrotational initial data, one may thus evolve

a Hamilton–Jacobi equation

gµν∂µS∂νS + h2 = 0 (14)

in lieu of the Euler equation (7). Equation (14) was obtained by substituting equations (8) and

(13) into the constraint

gµνuµuν = −1. (15)

Equation (15) (and consequently the Hamilton–Jacobi equation (14)), is a first integral of the

Euler equation (7) quadratic in the momenta, resulting from the fact that gµν is a Killing tensor.

This conserved quantity is Noether-related to the symmetry of the action (9) with respect to

proper-time translations, τ → τ + δτ [24, 25, 32].

With the standard 3 + 1 decomposition, the spacetimeM = R× Σ is foliated by a family

of spacelike surfaces Σt and, in a chart {t, xi}, its metric takes the form

ds2 = gµν dx
µ dxν = −α2 dt2 + γi j(dx

i + βi dt)(dx j + β j dt) (16)

where α is the lapse, βa is the shift vector and γab is the spatial metric. Substituting the 3 + 1

metric into the Hamilton–Jacobi equation (14) yields a quadratic equation for ∂ tS. Of the two
algebraic roots, the one with the correct Newtonian limit [32] is:

∂tS − βi∂iS + α
√

γ i j∂iS∂ jS+ h2

︸ ︷︷ ︸

H

= 0 (17)

or, equivalently,

∂tS + H = 0 (18)

where

H = −βipi + α
√

γ i jpipj + h2 (19)

pi = ∂iS (20)
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Equations (18)–(20) amount to 3 + 1 decompositions of equations (13) and (14). Solutions

to Hamilton–Jacobi equations are non-unique, albeit viscosity solutions are unique [36, 37].

One option in a numerical scheme would be to evolve equation (18) directly, which would

guarantee the irrotationality of the flow since the canonical momentum would be computed as

the gradient of the scalar potential. Such an approach is left to future work. In this work, we

instead opt to solve for the gradient of the Hamilton–Jacobi equation (18), in the form of a

hyperbolic conservation law [38]:

∂tpi + ∂iH = 0, (21)

subject to the constraint

∂ipj − ∂ipj = 0. (22)

This simply amounts to setting ωji = 0 in equation (11). As shown in [25, 32], the constrained

Hamiltonian (19) is opposite to the time component of the canonical four-momentum (8),

H = −pt. (23)

Thus, for vanishing vorticity, equation (21) is equivalent to the canonical Euler equation (11).

We note that equation (21) is exactly flux-conservative, although no symmetry assump-

tions about the gravitational field were made. While helical symmetry (circularized orbits

due to gravitational radiation) is typically assumed along with irrotationality (negligible spin

frequency compared to the orbital frequency) when constructing initial data in late inspiral

[28–31], the two assumptions are independent. Indeed, irrotational (or spinning) binaries on

eccentric (or circular) orbits have been constructed and evolved by Moldenhauer et al [39,

40]. Here, we do not assume existence of a Killing vector field (helical or otherwise); our sole

assumption is that the initial data is irrotational. Helmholtz’s third theorem then guarantees

that the data will remain irrotational throughout the inspiral.

The fact that H(x, p) is the constrained Hamiltonian of a fluid element can be confirmed by

rewriting the action integral (9) using coordinate time t as integration variable, and performing

a Legendre transform on the Lagrangian, which yields [32]

S =

∫ t2

t1

[vipi − H(x, p)] dt =

∫ t2

t1

[vipi + βipi − α
√

γ i jpipj + h2] dt. (24)

It is common to introduce the Lorentz factor

W = αut =
1

√
1− γi jν iν j

(25)

where ν i = α−1(vi + β i) = α−1(ui/ut + βi) is the fluid three-velocity measured by normal

observers. Equation (23) implies that the constrained Hamiltonian (19) can be written as

H = hW
(
α− γi jν

iβ j
)

(26)

where we used the 3 + 1 metric (16) to lower the indices in pt = gtµp
µ. Similarly, using the

3 + 1 metric to lower the indices in pi = giµp
µ, the spatial components of the canonical

momentum (8) can be written as

pi = hWγi jν
j (27)

6
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Then, the Hamilton–Jacobi conservation law (21) takes the form

∂t(hWγi jν
j)+ ∂i[hW

(
α− γi jν

iβ j
)
] = 0. (28)

The spacetime metric determinant g is related to the spatial metric determinant γ via
√−g =

α
√
γ, where α is the lapse function. The rest-mass conservation law (6) can then be written

as

∂t
(√

γρW
)
+ ∂i

[
α
√
γρW

(
ν i − βi/α

)]
= 0. (29)

This Hamilton–Jacobi formulation for the barotropic fluid therefore consists of equations (28)

and (29), with the equation of state h = h(ρ) given by equation (2) or, for a polytrope,

equation (5). Coupling with gravity enters through the components of the metric (16), which

satisfies the Einstein equations. Note that equations (28) and (29) are source-free in arbi-

trary dimensions. In this paper, we will consider the spacetime metric fixed, and evolve the

hydrodynamic equations only (Cowling approximation).

In the Newtonian limit, the Hamilton–Jacobi equation (17) reduces to

∂tS +
1

2
γ i j∂iS∂ jS + h+Φ

︸ ︷︷ ︸

H

= 0 (30)

where Φ is the Newtonian gravitational potential [41]. This equation has typically been

obtained as a first integral to the nonrelativistic, irrotational Euler equation and has sometimes

been referred to as a ‘Bernoulli-type theorem’ for non-steady irrotational flows7; the function

H = 1
2
v2 + h+Φ has been referred to as the ‘Bernoulli function’ or the ‘total head’ in engi-

neering literature. Blandford and Thorne [42] use themore physicallymotivated term ‘injection

energy’ (the energy required to bring a fluid element from infinity and inject it into a self-

gravitating fluid with the same chemical potential and velocity as the surrounding elements). In

light of the above discussion, we will refer to this function simply as the Hamiltonian of a fluid

element (which coincides with the energy of a fluid element measured in local coordinates).

2.3. Specialization to Minkowski space in 1+ 1 dimensions

In one spatial dimension, the canonical vorticity vanishes identically, and equation (11) takes

the flux-conservative form of the Hamilton–Jacobi equation (28). In flat spacetime in Cartesian

coordinates, we have

∂t (hWvx) + ∂x (hW) = 0 (31)

where we set γ ij = δij,α = 1, βi = 0 andW = 1/
√

1− (vx)2 is the Lorentz factor. Similarly,

the continuity equation (29) becomes

∂t (ρW)+ ∂x (ρWvx) = 0. (32)

In the case of a polytropic fluid, the Hamilton–Jacobi formulation consists of equations (31)

and (32), with the specific enthalpy h(ρ) given by equation (5). The conservative variables are
D ≡ ρW and px = px = hWvx.

7The original Bernoulli theorem is a conservation law along streamlines only and is Noether-related to a Killing

symmetry. The first integral (18) of equation (21) is constant throughout the fluid, and amounts simply to the Hamil-

ton–Jacobi equation. Equation (18) and its gradient, the conservation law (21), hold for all irrotational flows without

symmetry assumptions.

7
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We contrast this with the analogous Valencia formulation, where in lieu of equation (31) we

have equation (10) arising from energy–momentum conservation,

∂t
(
ρhW2vx

)
+ ∂x

(
ρhW2vxvx + KρΓ

)
= 0, (33)

where we substituted ui = ui = Wvi into equation (1).
The primitive variables of the Hamilton–Jacobi formulation can be recovered from the

conservative variables by root-finding for ρ on the expression

(px)2ρ2 = h(ρ)2
(
D2 − ρ2

)
, (34)

which is obtained by writing (px)2 = h2W2(vx)2 and then using (vx)2 = (W2 − 1)/W2 and

W = D/ρ. Once ρ is recovered, the Lorentz factor is obtained via W = D/ρ and then the

velocity is recovered via vx = px/(h(ρ)W).

In the case of dust, that is, a zero pressure fluid, one has h = 1 and equation (31) becomes

∂t (Wvx)+ ∂xW = 0 (35)

This is a relativistic generalization of the inviscid Burgers equation [43], which is recovered in

the non-relativistic limit, vx ≪ 1, whenceWvx ≃ vx andW ≃ 1+ 1
2
(vx)2.

2.4. Specialization to curved space in spherical symmetry

In curved spacetime, in spherical symmetry, the metric can be written as

ds2 =
(
−α2 + γrrβ

rβr
)
dt2 + 2γrrβ

r dtdr + γrrdr
2 + γTr

2dΩ2, (36)

where dΩ2
= dθ2 + sin2 θ dφ2. The metric functions α, βr, γrr, and γT are functions of (t, r)

only. We then have
√−g = αr2

√
γrrγT (we set θ = π/2 so that sin θ = 1, a choice which

is permitted in spherical symmetry). Other relations we require are ur = utvr = ut(ανr − βr),
W = αut, and ur = Wνr, where ν

r is the radial velocity of a fluid element measured by normal

observers and vr = dr/dt is the radial velocity of a fluid elementmeasured in local coordinates.

With this preamble in hand, the continuity equation (29) becomes

∂tD̃+
1

r2
∂r
[
αr2D̃

(
νr − βr/α

)]
= 0, (37)

whereD ≡ ρW and the tilde denotes densitization with
√
γrrγT , i.e. D̃ =

√
γrrγTD. The deriva-

tives in the Euler equation in the Hamilton–Jacobi form (28) appear in an antisymmetric

combination, which allows one to forgo the introduction of metric determinants. It is simply

∂tpr + ∂rH = ∂t(hWγrrν
r)+ ∂r[hW (α− γrrν

rβr)] = 0. (38)

The coupling with the metric enters through the relation between the contravariant and covari-

ant forms of the canonical momentum. Namely, H = −pt = −gtµpµ = hW(α− γrrβ
rνr) and

pr = hur = hWγrrν
r.

The system of hydrodynamic equations on a curved spherically symmetry background

for the barotropic fluid therefore consist of an equation of state h = h(ρ) (in particular,

equation (5) for a polytrope), and equations (37) and (38). Notice that no geometric source

terms appear in this canonical system of equations, in contrast with equation (10) stemming

from energy–momentum conservation. Geometric source terms were not able to be eliminated

in a different class of formulations considered in [44].

8
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2.4.1. Primitive variable recovery. Similarly to theMinkowski case, one can recover the prim-

itive variables (ρ, νr) from the conservative variables (D̃, pr) by first root-finding for ρ on the

function f(ρ) defined by

f (ρ) = −ρ2p2r + h(ρ)2γrr
(
D2 − ρ2

)
. (39)

Note that the relativistic density D̃ has been undensitized in this formula, i.e.D = D̃/(
√
γrrγT).

After obtaining ρ, we computeW = D/ρ and then recover the velocity via νr = pr/(γrrh(ρ)W).

One could just as well solve for the enthalpy h, which would avoid division by ρ.

2.4.2. Characteristic structure. One potentially awkward issue for studying the characteris-

tic structure of the spherically symmetric system is the presence of a 1/r2 prefactor in the flux
term of equation (37) and simultaneously its absence in equation (38). We reason as follows.

By expanding the flux term, the rest mass conservation equation can be written as

0 = ∂tD̃+ ∂r
[
αD̃

(
νr − βr/α

)]
+

2

r
αD̃

(
νr − βr/α

)
. (40)

The last term is lower order in the sense of characteristic analysis. Thus, for the purposes of

computing the characteristic structure, the equations of motion for this system can be cast as

0 = ∂t�U + ∂r�F + l.o., (41)

where �U = (D̃, pr) are the conservative variables, the fluxes are �F = (αD̃(νr − βr/α),αhW),

and l.o. stands for lower order terms (that is, the non-principal part, in the sense of characteristic

analysis).

Our task is to compute the Jacobian ∂�F/∂�U. Taking derivatives of the fluxes with respect

to the conservative variables is potentially complicated. We can instead take derivatives with

respect to primitive variables as follows. Define �q = (ρ, νr) to be the primitive variables. Then

we can use the chain rule to write

∂�F

∂�U
=

∂�F

∂�q
· ∂�q

∂�U
=

∂�F

∂�q
·
[

∂�U

∂�q

]−1

. (42)

In this way, we can compute the Jacobian of the system by taking only derivatives of �F and �U
with respect to primitive variables, which is an easy task, and then performing a matrix inverse

of ∂�U/∂�q and multiplying on the left by ∂�F/∂�q.
Define Υ ≡ √

γrrγT for clarity of notation in what follows. We have

∂�U

∂�q
=







∂D̃

∂ρ0

∂D̃

∂νr
∂pr
∂ρ0

∂pr
∂νr






=

[
ΥW ΥρW3γrrν

r

(∂ρh)Wγrrν
r hγrrW(1+W2γrrν

rνr)

]

(43)

Note that we have written this for a general barotropic equation of state h = h(ρ). For the
polytrope case, substitute ∂ρh = KΓρΓ−2. Next, we have

∂�F

∂�q
=

[
ΥαW(νr − βr/α) ΥαρW[1+W2γrrν

r(νr − βr/α)]
(∂ρh)W(α− γrrβ

rνr) hWγrr[W
2νr(α− γrrβ

rνr)− βr]

]

(44)

In our numerical implementation, at each point of the grid we obtain the characteristic struc-

ture by computing equations (43) and (44) and then use equation (42) to obtain the Jacobian

9



Class. Quantum Grav. 37 (2020) 155005 J R Westernacher-Schneider et al

matrix. We then extract the eigenvalues and, if needed, the left and right eigenvectors using

numerical algorithms [45]. In spherical symmetry, this numerical overhead is acceptable, how-

ever in a higher dimensional application one ought to compute and simplify analytic formulas

for the eigenvalues and eigenvectors.

We give the analogous matrices to equations (43) and (44) for the Valencia formulation in

appendix A.

3. Numerical implementation

In this section we provide details of our numerical implementation.

3.1. Discretization

We use a finite volume approach. Let the integer i denote uniformly spaced cell centers and half

integers (e.g. i+ 1/2) denote cell interfaces, and let n denote the time level. We regulate the

(1/r2)∂r term in equation (37) in the standardway by replacing it with 3∂r3 , which is equivalent
by the chain rule. Define the flux vector from section 2.4.2 as �F = (FD̃,Fpr ) for brevity. Then

the discretized form of equations (37) and (38) are

(D̃)n+1
i = (D̃)ni − 3

∆t

∆(r3)i

[

r2i+1/2(FD̃)
n+1/2
i+1/2 − r2i−1/2(FD̃)

n+1/2
i−1/2

]

(45)

(pr)
n+1
i = (pr)

n
i −

∆t

∆r

[

(Fpr )
n+1/2
i+1/2 − (Fpr )

n+1/2
i−1/2

]

. (46)

The subscripts denote spatial positions, and superscripts denote times. We also define∆(r3)i ≡
(ri +∆r/2)3 − (ri −∆r/2)3 and ri±1/2 ≡ ri ±∆r/2.

3.2. HLL flux

We approximate the fluxes at the half time step using the Harten, Lax and van Leer (HLL)

formula,

FHLL =
sRFL − sLFR + sLsR (UR − UL)

sR − sL
. (47)

Here, UR and UL are the conservative variables at the cell interfaces built out of primitive

variables which have been reconstructed from their cell-centered values to the right and left of

the cell interface, respectively, using the minmod slope limiter. That is,

UL,i+1/2 = Ui +
1

2
minmod

(
Ui+1 − Ui,Ui − Ui−1

)
(48)

UR,i+1/2 = Ui+1 −
1

2
minmod

(
Ui+2 − Ui+1,Ui+1 − Ui

)
. (49)

The scalars sR and sL represent the fastest right- and left-moving characteristic speeds among

the UR and UL states, i.e.

sR = max
(
0,max

(
{λR}

)
, max

(
{λL}

))
(50)

sL = min
(
0,min

(
{λR}

)
, min

(
{λL}

))
, (51)

where {λR} and {λL} represent the set of all eigenvalues of (∂�F/∂�U)|UR
and (∂�F/∂�U)|UL

,

respectively.
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3.3. Comparison of formulations

We compare two formulations: Valencia, and a hybrid of Valencia and the Hamiltonian for-

mulation. The hybrid formulation uses the Hamiltonian formulation at all points interior to a

specified grid point imix, and Valencia at all points exterior to and including imix. We find the

hybrid scheme is necessary to stabilize the stellar surface, with imix chosen to be inside the

star so that Valencia is used at the surface. We find that stabilization of the stellar surface is

achieved even with the extreme choice of imix = isurface, where isurface is the last interior point of

the star. However, more stabilization is achieved with imix � isurface − 1, with minimal differ-

ences within that range. Using the Hamiltonian formulation around the stellar surface results

in significantly more fluctuations injected into the star by the vacuum regularization routines,

which is an issue we will explore in more depth in future work.

3.4. Ancillary code details

Here we describe some additional relevant details of our numerical implementation.

We use a third-order total variation diminishing Runge–Kutta time integrator [46]. For

a system of equations of motion written schematically as ∂tU = L(U) where L is a spatial

differential operator, the update is described sequentially by

U1 = Un +∆tL (Un) (52)

U2 =
3

4
Un

+
1

4
(U1 +∆tL (U1)) (53)

Un+1 =
1

3
Un +

2

3
(U2 +∆tL (U2)) . (54)

As is standard practice for grid-based computational fluid dynamics, we regularize vacuum

regions by imposing an artificial atmosphere there. This amounts to defining a ‘floor’ value

of the rest mass density ρfloor > 0. Whenever primitive variables are computed, either after a

conservative-to-primitivevariable transformationor after reconstructing the primitive variables

at the cell interfaces, we impose a minimum value on ρ given by ρfloor. In the conservative-to-
primitive variable transformation routine, the conserved density D is prepared at the outset by

the enforcement of D > ρfloor. This bound is implied by ρ > ρfloor. If ρ (or D) is found to have

a value below ρfloor, then we set ρ = ρfloor and νr = 0 (or D = ρfloor and pr = 0). During evo-

lution, these adjustments tend to be necessary at stellar surfaces, for example. We also impose

a maximum speed
√
γrrνrνr < νmax = 0.99, although this is never invoked in the evolutions

we present in this work. With this atmosphere treatment (herein referred to as the standard

atmosphere), we find less noisy evolution at high resolution if we do not recompute the con-

servative variables following these atmosphere adjustments, and so this is what we do. This

amounts to imposing the vacuum regularization only on the fluxes. This is due to the location

of the outer boundary; if placed farther away, recomputing the conservative variables does not

introduce noise. Our standard setting is ρfloor = 10−13. This is to be compared with the central

density of our TOV star ρ|r=0 ≡ ρc = 1.28× 10−3 in code units.

When rootfinding on equation (39), we use Brent’s method with hyperbolic extrapolation

[47]. This is a bracketing method, which therefore requires an initial bracket of the root. We

guess the initial bracket to be [(1.1)−1 × ρfloor, 1.1× D]. If this guess does not bracket the

root, then new bracket guesses are generated by widening the initial guess. If this procedure
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fails to generate a valid bracket, the code aborts. For the evolutions in this work we find the ini-

tial bracket guess to be adequate.We set the rootfinder’s absolute and relative tolerance param-

eters to 10−60 and 10−15, respectively. In practice, in our simulations this means recovering

the primitive variables close to machine precision. We establish this by taking primitive vari-

able snapshots from our simulations, computing the corresponding conservative variables, then

passing those conservativevariables through the conservative-to-primitiverecovery routine and

comparing the result with what we started with.

We impose reflecting boundaryconditions at r = 0, namelypr|r=0 = 0 by odd parity, andwe

use an even-parity extrapolation from r = {∆r, 2∆r} for D̃: D̃|r=0 = (4D̃|r=∆r − D̃|r=2∆r)/3.
At the outer boundary r = 12 (in code units), we freeze the variables to pr = 0 and D̃ = ρfloor.

The spacetime metric is a fixed TOV solution in Schwarzschild-like coordinates, thus the

evolutions are performed in the Cowling approximation.

3.5. Regularization of the Euler equations on the vacuum boundary: equilibrium atmosphere

Simulations of oscillating or binary neutron stars in numerical general relativity have almost

always incorporated an artificial atmosphere, to address issues that arise on the stellar surface.

The reasons an atmosphere is needed include:

(a) The Valencia formulation requires division of T ti = ρhutui by ρut to recover the vari-

able hui and the primitive variables in each time step. The density vanishes on the stel-

lar surface, where division by zero occurs. An atmosphere keeps the density ρ positive

everywhere and avoids division by zero on the stellar surface.

(b) When the sound speed vanishes, the Euler equations become ill-posed due to loss of

strong hyperbolicity at the vacuum boundary [8, 9, 12–16]. Well-posedness is maintained

via an atmosphere which keeps the density, pressure and thus the sound speed, strictly

positive.

(c) Boundary conditions on the neutron-star surface must be that of a free surface in order to

obtain the correct oscillation modes [33]. Past studies of fluid–vacuum interfaces suggest

that this behavior is recovered in the limit as the atmosphere density tends toward zero

[48, 49].

The Hamiltonian formulation avoids issue (a) above, as it directly evolves the variable

pi = hui. Since h = 1 on the stellar surface, no division by zero occurs. However, it does

not avoid issues (b) and (c). In this work, we introduce an equation of state regularization

scheme that keeps the density and sound speed positive when the pressure vanishes (i.e. on

the stellar surface). This will eliminate issues (a) and (b) from the above list. Thus, an atmo-

sphere is no longer required to maintain strong hyperbolicity, and we are moreover able to

reach zero pressure on the stellar surface. We will still use a fiducial atmosphere in order to

impose reflective boundary condition and obtain the correct mode frequencies, per reason (c)

above.

In particular, we demonstrate the utility of a fiducial atmosphere treatment which we call

the equilibrium atmosphere. The benefits of this alternative treatment also extend to both the

Valencia and the Hamiltonian formulation, but are easier to understand in the latter. The basic

idea of the equilibriumatmosphere is to use an equation of state on the entire domain (including

the star) which yields a constant Hamiltonian everywhere. A constant Hamiltonian (and zero

velocity) implies an equilibrium configuration (see equations (37) and (38)).

In order for the νr = 0 Hamiltonian H = αh to remain constant beyond the stellar radius,

we must allow the specific enthalpy h to become less than 1. We will achieve this in such a

way that the pressure becomes negative, but the rest-mass density stays positive. We will use
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two generalized polytropes attached piecewise at h = 1,

ρ(h) =







(
h− 1+ a

K(1+ n)

)n

, h > 1

(
h− 1+ a′

K′(1+ n′)

)n′

, h � 1

(55)

The constant a≪ 1 is a small regularization parameter that keeps the rest-mass density and

the sound speed finite when h = 1 (or P = 0). This addresses points (a) and (b) above, as it

avoids the division by zero (in the Valencia formulation) and retains the strong hyperbolicity

of the Euler equations on the stellar surface. The h � 1 piece of the equation of state has three

free parameters, which can be used to enforce continuity and differentiability across h = 1. In

this work we will focus on the choice a′ = n′ = 1 and K′ being used to enforce only continuity
of ρ(h) across h = 1. Continuity gives K′ = (1/2)(K(1+ n)/a)n, then the exterior equation

of state is ρ(h) = h/(2K′). This atmosphere equation of state corresponds to a stiff fluid with

sound speed equal to the speed of light in vacuum, cs = 1. The pressure is determined by the

indefinite integral

p(h) =

∫

ρ(h)dh =







KρΓ − 1

4K′ , h > 1

K′ρ2 − 1

4K′ , h � 1
, (56)

where Γ = 1+ 1/n. The integration constant, which amounts to a cosmological constant, was

fixed by enforcing p(1) = 0, that is, the pressure vanishes on the stellar surface, h = 1. Finally,

we choose a according to a specified value of rest mass density at the stellar surface. Let this

rest mass value be ρ1, then a = K(1+ n)ρ
1/n
1 .

This equation of state supports h < 1, which allows us to initialize our simulations with

the star and atmosphere both in equilibrium. We initialize h via H = αh = constant = α(r =
0)h(r = 0) ≡ H0, i.e. h(r) = H0/α(r). This specific enthalpy smoothly crosses h = 1 at the

stellar surface, becoming < 1 outside the star. This smooth behavior of the specific enthalpy

makes it a natural choice of a reconstruction variable (instead of ρ). Thus, when using the

equilibrium atmosphere, we choose to reconstruct h and νr at the cell interfaces.
The enforced rest mass density floor in this case varies in space. We use

ρfloor(r) =

{
ρ|h=1, r < R∗
ρ(r)|t=0, r � R∗

, (57)

where R∗ is the stellar surface. If ρ(r) (orD(r)) becomes less than ρfloor(r), then we reset ρ(r) =
ρfloor(r) (or D(r) = ρfloor) and νr(r) = 0 (or pr = 0). We choose ρ|h=1 = 10−13 in code units,

which should be compared with the stellar central density ρc = 1.28× 10−3. The outer bound-

ary at r = 12 in code units corresponds to∼1.26R∗. We evolve the star for 10 ms at spatial res-

olutions dr = {0.2, 0.1, 0.05, 0.025} in code units (or {0.296, 0.148, 0.074, 0.037} km). Since

we wish to observe the spatial convergence, we use a fixed time step across these resolutions.

This is achieved by using the corresponding CFL factors {0.11875, 0.2375, 0.475, 0.95}.
We note that the fiducial atmosphere ismeant to be used only in the hydrodynamicsector of a

numerical code. In the gravitational sector, a ‘mask’ must be applied to the energy–momentum

tensor Tµν before solving the Einstein equations, such that Tµν = 0 when h < 1. In this work,

we use the Cowling approximation, so no mask is required.

Most neutron star simulation codes readily implement piecewise polytropes as a barotropic

or ‘cold’ EOS to approximate candidate neutron star equations of state. A ‘hot’ EOS term
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is often added (or, less often, the polytropic constants K are made temperature-dependent) in

order to obtain a baroclinic EOS. In all of the above cases, the outermost piece(s) of the cold

polytrope can be replaced with the generalized polytrope given by equations (55) and (56). A

parametrization that uses generalized piecewise polytropes with continuous, strictly positive

sound speed for all pieces is part of an upcoming paper [50]. Hence, the regularization scheme

described above is applicable to a wide class of barotropic or baroclinic equations of state.

Moreover, a typical nuclear EOS, such as SLy4, has approximately constant sound speed in

the outer ∼1 km of a neutron star, which is beneficial for hyperbolicity. One can extrapolate

this constant sound speed out to the surface, or match to the equation of state of iron, keeping

the temperature and sound-speed finite on the surface [51].

4. Results

4.1. Valencia vs hybrid formulation

In this comparison, we evolve an equilibrium TOV star with a fixed spacetime (Cowling

approximation). The initial central density of the star is ρc = 1.28× 10−3, and we use a poly-

tropic equation of state P = KρΓ with Γ = 2 and K = 100. This is a simplistic model of a cold

neutron star with gravitational mass 1.4M⊙, baryonic mass 1.5M⊙, and radius R∗ ≈ 14.15 km.

For the hybrid scheme, Valencia is used at the last two interior stellar points and all points

exterior to those, i.e. imix = isurface − 1.

The results are displayed in figure 1. The left column displays the hybrid scheme, and

the right column displays the Valencia scheme. In the first row we display the global L2-

convergenceof the HamiltonianH = Wαh over time. Both schemes give a similar convergence

order of∼2. In the second rowwe display the local residual ofH averaged over the last 2 ms of

the evolution. In the third rowwe display the normalized central rest mass density over time. In

the fourth row we display the frequency spectrum of the central density oscillations. To gener-

ate these spectra, we apply a Gaussian window exp[−(t− 5 ms)2/(2σ2)] of width σ = 1.2 ms

to ρc(t)/ρc(0)− 1 before computing the Fourier transform. In all of these comparisons, both

schemes produce similar results.

Since the equilibrium flux H is constant in the Hamilton–Jacobi conservation law (21), one

may have expected instead that the hybrid formulationwould preserve the equilibrium configu-

ration of the star to a greater degree than the Valencia formulation. In the Valencia formulation,

the pressure gradient and source terms in the Euler equation must balance in hydrostatic equi-

librium, but since they are discretized differently they do not balance at the numerical level.

On the other hand, the Hamilton–Jacobi conservation law (21) is balanced without any source

terms. In our experimentation we found that the use of the HLL flux is chiefly responsible for

the failure of this expectation. Notwithstanding the perturbations injected into the star from

the surface, using simple finite differences for the Hamilton–Jacobi flux preserves the stellar

equilibrium to a much greater degree than using the finite volume scheme with the HLL flux

formula. In light of this, we will be exploring more optimized numerical approaches for the

Hamiltonian formulation in future work.

4.2. Standard vs equilibrium atmosphere

In this section we explore an alternative vacuum regularization consisting of a modified

equation of state which extends to h < 1, allowing the artificial atmosphere to have a con-

stant Hamiltonian coinciding initially with the Hamiltonian inside the star. The atmosphere

and star are therefore initially in equilibrium.
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Figure 1. A comparison between the Valencia formulation (right column) and the hybrid
formulation (left column) with imix = isurface − 1. We evolve an equilibrium TOV star
with central rest mass density ρ(r = 0, t = 0) ≡ ρc(t = 0) = 1.28× 10−3 and equation
of state P = 100ρ2 for a total time T = 2027 in code units. With G = c = M⊙ = 1,
this corresponds to a star with gravitational mass 1.4M⊙, rest mass∼1.5M⊙, and radius
∼14.15 km [52] evolved for∼10 ms. The time step is kept fixed across all resolutions in
order to isolate the spatial error. The Courant factor in the highest resolved case is 0.95.
Our choice of imix = isurface − 1 is quite extreme (i.e. close to the surface); choosing imix

instead such that rimix
= 13 km (i.e. using the Hamiltonian formulation in the interior

∼92% of the star by areal radius) yields evolution that’s almost indistinguishable from
Valencia.

In figure 2 we compare 10 ms evolutions of the stationary star using the standard atmo-

sphere and the equilibrium atmosphere. No explicit perturbations are added to the star, thus

the oscillations are excited by numerical truncation error. The top left panel shows that the

stellar surface is equally sharp around the final 2 ms for both atmospheres. The top right panel

shows the ratio of the local Hamiltonian residual Wαh − (Wαh)|t=0 averaged over the final

2 ms, with the equilibrium atmosphere in the denominator. The residual in the equilibrium
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Figure 2. A comparison between the standard atmosphere and equilibrium atmosphere
for the Valencia formulation. (Top left): the rest mass density is displayed on log scale
near the stellar surface, where the equilibrium atmosphere (solid lines) is found to have
an equally sharp profile as the standard atmosphere (dotted lines). (Top right): ratios of
the local residual of Wαh averaged over the last 2 ms, comparing the equilibrium and
standard atmosphere treatments. The equilibrium atmosphere treatment yields a ∼70%
lower error at low resolution, with this advantage diminishing to ∼50% as resolution is
increased. (Middle and bottom panels): similar to figure 1, comparing the equilibrium
atmosphere (left column) to the standard atmosphere (right column). The central density
oscillations are significantly smaller for the equilibrium atmosphere treatment, and the
stellar oscillation frequencies are captured correctly. At high resolution (red), the central
density oscillation spectra appear to have more modes resolved. We do not have exact
frequencies in those cases, so we linearly extrapolate them using the first seven mode fre-
quencies, obtaining {15 431, 17 248, 19 066, 20 884, 22 702, 24 519} Hz. The time step
is fixed in all runs, with a Courant factor of 0.95 for dr = 0.025.
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Figure 3. A comparison between the standard atmosphere and equilibrium atmosphere
for a TOV star initialized with a density perturbation (left) and a velocity perturbation
(right), in the Valencia formulation. (Top panel): the oscillation amplitude of the cen-
tral rest mass density residual over time, computed by extracting the local maxima in
time. The equilibrium atmosphere treatment results in a∼t−0.6 decay of the oscillations,
steepening in the case of a velocity perturbation to∼t−1.7 around 50 ms. (Middle panel):
the total relativistic rest mass on the grid over time. On the left, the equilibrium atmo-
sphere treatment rapidly sheds much of the initial excess mass, whereas the standard
atmosphere treatment retains it for a longer period of time. On the right there is also
10× more mass loss for the equilibrium atmosphere. (Bottom panel): the total kinetic
energy over time. The kinetic energy density is taken to be ρh(W2 − 1). The equilibrium
atmosphere produces decay, whereas the standard atmosphere produces gradual growth.
This suggests that the more sustained central density oscillations observed in the top
panel for the standard atmosphere are due to the injection of kinetic energy into the star
by the vacuum regularization treatment at the surface.

atmosphere case is ∼70% smaller than the standard atmosphere case at lower resolutions,

with the benefit reducing to ∼50% at higher resolution. Note that the lowest resolution has 47

points across one radius of the star, which is a similar resolution to that typically used in binary

neutron star simulations. The middle panel compares the central density evolutions, with the

equilibrium atmosphere exhibiting much smaller oscillations for all resolutions. The bottom

panel compares the central density oscillation spectra. In the highest resolved case (red), the

equilibrium atmosphere appears to resolve several more high frequency modes than the stan-

dard atmosphere case. Although we do not have exact mode frequencies to compare to for

those high overtones, we linearly extrapolate them using the first seven mode frequencies. The

extrapolated frequencies are {15 431, 17248, 19066, 20884, 22702, 24519} Hz, rounded to

the nearest 1 Hz. The linear fit of the first sevenmode frequencies has anL2-normdisagreement

with those frequencies of ∼8 Hz.
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In figure 3 we compare 100 ms evolutions at low-moderate dx = 0.1 resolution initialized

with explicit density (left column) or velocity (right column) perturbations. There are ∼94

points across one radius of the star at this resolution. The initial perturbations are given in code

units by

δρ(r) = 0.05ρc exp

[

− (r − 3)2

2 ∗ 0.22
]

(58)

δvr(r) = 0.05 exp

[

− (r− 3)2

2 ∗ 0.22
]

. (59)

Note that R∗ ∼9.56 in code units. These perturbations are rather extreme in comparison

to those expected in the inspiral phase of an NSNS or BHNS binary. However, our main pur-

pose here is to compare the stability of the equilibrium and standard atmosphere treatments.

In the top row we plot the amplitude envelope of the central density fluctuations. The standard

atmosphere roughly maintains a certain amplitude of fluctuations, whereas the equilibrium

atmosphere treatment yields decaying oscillations with ∼ t−0.6 behavior for both types of per-

turbation, hastening to ∼ t−1.7 after 50 ms in the case of a velocity perturbation. The middle

panel displays the total relativistic rest mass residual over time. The equilibrium atmosphere

does significantly worse, ∼40× for the density perturbation and∼8× so for the velocity per-

turbation, although remaining below the 10−3 level. Given the extreme amplitude of these

perturbations, this may not be a significant issue during the inspiral phase in future applica-

tions, although that remains to be seen. The bottom panel shows the total relativistic kinetic

energy over time, which we define as ρh(W2 − 1). The standard atmosphere treatment settles

to a much larger value than the equilibrium atmosphere, before increasing moderately. This

indicates that the standard atmosphere injects much larger perturbations into the star than the

equilibrium atmosphere. The kinetic energy in the equilibrium atmosphere case decays and

settles down to a level ∼100× less than the standard atmosphere case. For comparison, in the

stationary star evolutions at this same resolution, the total mass decays for both atmosphere

treatments but is preserved at the 10−7 level. Therefore we expect the mass preservation in a

binary simulation would be comparable for both atmosphere treatments, with the main dif-

ference being the reduced amplitude of fluctuations when using the equilibrium atmosphere

treatment.

Our intent is to illustrate this equilibrium atmosphere as an initial exploration of an alter-

native vacuum regularization method. Our results show some promising features, namely the

greater preservation of the equilibrium star and the resolution of more overtone modes com-

pared to the standard atmosphere treatment. On the other hand, the decay of perturbations

in spherical symmetry is not necessarily desired if the perturbations are physically sourced,

because the only physical mechanism to damp them would be viscosity. Thus, in our results

the equilibrium atmosphere exhibits an artificially high level of dissipation. Further exploration

of these ideas, together with more optimized numerical approaches for the Hamilton–Jacobi

conservation law (21), will be explored in future work.

5. Summary

Hydrodynamic simulations in numerical general relativity typically employ the Valencia

scheme in combinationwith a shock-capturingdiscretizationmethod.During the inspiral phase

of binary neutron star evolution, the flow can be well-modelled as barotropic and shocks are

absent, so Kelvin’s theorem holds. Most simulations start with irrotational initial data, which

is considered a good approximation tens of orbits before merger, when the orbital frequency is
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much higher than the spin frequency. Then, Kelvin’s theorem guarantees that no canonical vor-

ticity will develop during inspiral. Since the flow remains irrotational and barotropic until tidal

disruption and merger, one may use a Hamilton–Jacobi formulation to simulate the inspiral

phase.

Towards this goal, we presented a first implementation of Hamilton–Jacobi hydrodynam-

ics in numerical relativity, focusing here on radially pulsating neutron stars. Obtaining stable,

convergent evolutions with the correct mode frequencies is a nontrivial test, as it requires a

well-posed (strongly hyperbolic) formulation, with suitable treatment of the vacuum bound-

ary. In particular, for a perfect fluid (no fluid viscosity) in spherical symmetry (no gravitational

wave dissipation), perturbations traveling outward must be completely reflected inward at the

free surface in order to obtain the correct mode frequencies. We further demonstrated that a

simple regularization of the Euler equations on the vacuum boundary, that preserves hyperbol-

icity, can be accomplished by preserving sound-speed positivity at the EOS level. This allows

the pressure (but not the density) to be exactly zero on the stellar surface in hydrodynamic

simulations, which has not been possible before. Notwithstanding the possible relevance of a

physical low-density atmosphere around neutron stars, an artificial one is no longer required

for preserving hyperbolicity at the surface. Nevertheless, in this work, we opted to still use

a (fiducial) equilibrium atmosphere, in order to obtain reflections at the vacuum boundary

and obtain the correct frequency modes. We found that the equilibrium atmosphere is dissi-

pative and less noisy and allows one to compute higher frequency modes than the standard

atmosphere treatment. Kastaun [53] developed a flux-balanced scheme (where the Valencia

source terms are recast as fluxes, using a priori information about the equilibrium solutions

of stars). This scheme, combined with an alternative surface treatment, was also found to be

dissipative.

Although a shock-capturingmethod is in principle not necessary during the inspiral, current

binary neutron star simulation codes, with the standard atmosphere treatment, see the stellar

surface as a shock discontinuity, and shock-capturing schemes appear to be needed in order to

obtain the correctmode frequencies.We found that, although the Hamilton–Jacobi formulation

can be used with the HLL scheme, errors are higher near the surface compared to the Valencia

formulation.Alternative discretization tests, comparisonswith well-balanced schemes [54, 55]

and improved vacuum boundary treatment [48, 56] are the subject of future work.

In the current scheme, perturbations that travel outward are partially reflected inward and

partially transmitted outside when they reach the stellar surface (h = 1). The vacuum variables

are reset only if they drop below the floor, but are allowed to evolve otherwise. Thus, some

oscillatory energy escapes into the fiducial atmosphere, which is responsible for the observed

dissipation of radial oscillations. If this dissipative treatment is used and compared in a quasi-

circular inspiral to a standard non-dissipative treatment, one could potentially disentangle the

gravitational-wave phase accumulation due to tidal effects from the phase accumulation due

to (tidally excited) f-mode oscillations during inspiral [57]. Measuring the phase accumulation

due to these two effects separately would enable better comparison and calibration with semi-

analytical gravitational wave models of binary neutron-star inspiral.

If one evolved the velocity potential S directly, via the Hamilton–Jacobi equation, the flow

would be numerically guaranteed to remain irrotational, satisfying the theorems of Kelvin

and Helmholtz exactly. In this work, we instead evolve the gradient of the Hamilton–Jacobi

equation, which has a hyperbolic flux-conservative form, allowing use of standard shock-

capturing schemes. However, evolving the gradient of the Hamilton–Jacobi equation means

that the irrotationality constraints (20) and (22) may be numerically violated. In a companion

paper we will explore the use of constraint damping to alleviate this problem, ensuring that the
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third Helmholtz theorem is numerically satisfied. This constraint damping scheme is feasible

within the Hamilton–Jacobi formulation but not the Valencia formulation.

While the Hamiltonian and Valencia formulations are equivalent for differentiable solu-

tions, this need not be the case for weak solutions. The fact that the stellar surface is treated as

a ‘shock’ discontinuity by theHLL scheme is related to the issues near the surface that we faced

with the Hamiltonian formulation, which we remedied using a hybrid scheme near the surface

[34]. Finally, this work focused on barotropic flows, which are applicable throughout the inspi-

ral phase of a binary. During tidal discruption and merger, shock heating generates entropy,

and the barotropic Hamiltonian formulation no longer applies. In a companion paper [34],

baroclinic Hamiltonian formulations are explored and found to admit unphysical shock solu-

tions. Thus, pending a possible innovative remedy, it is advisable to use an explicitly barotropic

Hamiltonian formulation during the inspiral phase, and then switch to the baroclinic Valencia

formulation just prior to merger.
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Appendix A. Valencia formulation

For completeness, in this section we provide the details of the Valencia formulation, in par-

ticular the equations of motion in spherical symmetry and the corresponding characteristic

structure and discretization. Explicit formulas for the characteristic structure in the Valencia

formulation are well-known, but for modularity of our numerical implementation we instead

solve for the eigenstructure numerically at each point, in the same way as when using the

Hamiltonian formulation.

The conservative variables are �U = (D̃, S̃r) = (ΥρW,ΥρhW2γrrν
r). The equations of

motion read

0 = ∂tD̃+
1

r2
∂r
[
αr2D̃

(
νr − β2/α

)]
(A.1)

0 = ∂tS̃r +
1

r2
∂r

[

αr2S̃r
(
νr − βr/α

)]

+ ∂r [αΥP]− S, (A.2)
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where the source term S is given by

S = α

[

∂r ln γTPΥ− (∂r ln α)
(
τ̃ + D̃

)
+

1

2
(∂r ln γrr)

(

S̃rν
r + PΥ

)

+
(∂rβ

r)

α
S̃r

]

,

(A.3)

where we have defined τ̃ = Υ
(
ρhW2 − P− ρW

)
.

For the purposes of characteristic analysis, the fluxes are �F = (FD̃,FS̃r + αΥP) = (αD̃(νr −
βr/α),αS̃r(ν

r − βr/α)+ αΥP). Then the matrices analogous to equations (43) and (44) are

∂�U

∂�q
=

[
W ΥρW3γrrν

r

(h+ ρ∂ρh)ΥW
2γrrν

r ΥρhγrrW
2(1+ 2W2γrrν

rνr)

]

(A.4)

∂�F

∂�q
=

[
αW(νr − βr/α) ΥαρW[1+W2γrrν

r(νr − βr/α)]
∂ρFS̃r + αΥ∂ρP ∂νrFS̃r

]

(A.5)

with

∂ρFS̃r = Υα
(
h+ ρ∂ρh

)
W2γrrν

r
(
νr − βr/α

)

∂νrFS̃r = ΥαρhγrrW
2
[
2νr − βr/α+ 2W2γrrν

rνr
(
νr − βr/α

)]
. (A.6)

The discretized equations of motion are

(D̃)n+1
i = (D̃)ni − 3

∆t

∆(r3)i

[

r2i+1/2(FD̃)
n+1/2
i+1/2 − r2i−1/2(FD̃)

n+1/2
i−1/2

]

(A.7)

(S̃r)
n+1
i = (S̃r)

n
i − 3

∆t

∆(r3)i

[

r2i+1/2(FS̃r )
n+1/2
i+1/2 − r2i−1/2(FS̃r )

n+1/2
i−1/2

]

− ∆t

∆r

[

(αΥP)
n+1/2
i+1/2 − (αΥP)

n+1/2
i−1/2

]

+ Sn
i , (A.8)

where ri±1/2 = ri ±∆r/2.

For the fluxes FD̃ and FS̃r , we use the HLL flux equation (47), whereas for the split flux we

omit the correction term, i.e. we use

αΥP =
sR(αΥP)L − sL(αΥP)R

sR − sL
. (A.9)

This ensures that the correction term∝UR − UL is not used twice. The source term Sn
i is com-

puted using cell-centered values, which is an approximation since it should be a cell-averaged

quantity.
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