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We write down and apply the linearized fluid and gravitational equations consistent with pseudo-

Newtonian simulations, whereby Newtonian hydrodynamics is used with a pseudo-Newtonian monopole

and standard Newtonian gravity for higher multipoles. We thereby eliminate the need to use mode function

matching to identify the active nonradial modes in pseudo-Newtonian core-collapse supernova simulations,

in favor of the less complex and less costly mode frequency matching method. In doing so, we are able to

measure appropriate boundary conditions for a mode calculation.
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I. INTRODUCTION

There is increasing attention to gravitational wave

asteroseismology of core-collapse supernovae (CCSNe)

from a theoretical perspective (e.g., Refs. [1–13]). One

challenge is identifying which hydrodynamical modes of

the system are producing gravitational wave (GW) emis-

sion in simulations. This requires modeling in postprocess.

One strategy is to use simulation snapshots as background

solutions for a perturbative mode calculation. Once the

perturbative mode spectrum is obtained, a matching pro-

cedure is necessary to determine which modes are actually

active in the simulation. A mode frequency matching

procedure has been used frequently [5–7], whereby the

evolution of perturbative mode frequencies are overlaid on

simulation gravitational wave spectrograms, and then

matching is judged by frequency coincidence over time.

However, some mode classes (particularly p-modes) tend

to have frequencies which are roughly constant multiples of

each other over time, with neighboring modes having

frequencies being roughly between 5% to 10% away.

Frequencymismatches between simulations and perturbative

calculations can arise due to the use of different equations of

motion in the simulations vs those used in the perturbative

calculation. For example, in Refs. [5,7], the general relativ-

istic hydrodynamic equations were used in the perturbative

calculation, with either nometric perturbations [5] or a subset

of possible metric perturbations [7]. Their simulations

correspondingly use general relativistic hydrodynamics

and a spatially conformally flat metric approximation for

spacetime. As another example, Ref. [6] uses for its pertur-

bative equations general relativistic hydrodynamics with

either no metric perturbations or only lapse perturbations,

supplemented with a Poisson equation to solve for the lapse

perturbation. Their simulations, on the other hand, use

Newtonian hydrodynamics and pseudo-Newtonian gravity.

The ensuing frequency mismatches generated by the use of

different equations may result in mode misidentification

during a mode frequency matching procedure, particularly

due the absence of the lapse function in the hydrodynamic

fluxes in the simulations.

In Refs. [8,12], a mode function matching procedure was

followed instead. This entails comparing the mode func-

tions computed perturbatively with the velocity data in the

simulation. As in Ref. [6], the simulations were pseudo-

Newtonian, whereas the perturbative calculation used the

general relativistic hydrodynamic equations in the Cowling

approximation (no metric perturbations), with the lapse

function being the only nonzero metric component. The

mode function matching procedure produced convincing

mode identification despite the use of perturbative equa-

tions that are not consistent with the simulation, because

neighboring mode functions have distinct enough morphol-

ogy that the best-fitting mode function is clearly superior to

the next-best-fitting one (provided the mode’s excitation is

large enough with respect to stochastic or nonlinear

motions). A frequency mismatch between the best-fitting

mode functions and the simulation frequencies of order

∼15% was observed in Refs. [8,12] and is large enough to

have caused a mode misidentification via mode frequency

matching. During targeted modeling of the next galactic

core-collapse supernova, this would have produced incor-

rect inferences about the source. Furthermore, mode mis-

identification in simulations can misinform analytic or

semianalytic modeling efforts of these systems.

However, mode function matching is considerably more

complex and expensive than mode frequency matching. It

is more complex because frequency masks have to be*
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determined in order to apply appropriate spectral filtering

on the velocity data from the simulation. It is more

expensive because the entire fluid data in the system must

be saved with sufficient temporal cadence such that the

spectral resolution allows a clean Fourier extraction of

individual mode activity. In Refs. [8,12], axisymmetric

simulations were performed, which alleviated the storage

issue, but one wishes to identify modes in fully three-

dimensional simulations as well. Large searches of the

CCSN progenitor parameter space would be hampered by

the need to perform mode function matching. It would

therefore be desirable to use the perturbative equations that

are consistent with simulations, which remove the need for

the expensive mode function matching procedure.

In this work, we write down and apply the consistent

linearized equations appropriate for pseudo-Newtonian

codes such as PROMETHEUS/VERTEX [2,14–17], FLASH

[18,19], FORNAX [20], and CHIMERA [21]. As long as

one does not solve for radial modes, these equations are

simply the standard Newtonian ones. During testing, we

identify and correct a mistreatment of the boundary con-

ditions [6,8,12] for the gravitational potential perturbation.

We are able to reproduce the quadrupolar mode frequencies

of an equilibrium star evolved using FLASH. When applied

to a CCSN simulation, we find the best-fitting mode

functions have the correct frequency (i.e., agreeing with

the simulation) at the 2% or sub-1% level, depending on the

boundary conditions used. We also perform a residual test

with the spherically symmetric Euler equation, showing

that the state of hydrostatic equilibrium (assumed in the

perturbative calculation) is satisfied only at the ∼5% level,

whereas the terms coming from a time-dependent or

nonsteady (v ≠ 0) background solution are negligible.

This serves as a cautionary note for future applications

of this perturbative modeling but also suggests that includ-

ing a time-dependent or nonsteady background would not

affect the calculation significantly. We find that the outer

boundary condition on the fluid variables yielding the most

precise matching with simulations (sub-1% level) is that of

Ref. [5], in which the radial displacement is taken to vanish

at the shockwave location. The agreement is so striking that

we are tempted to conclude that this is the physically

correct boundary condition in the early postbounce regime

we are considering.

Note that the consistent perturbative modeling of

pseudo-Newtonian simulations that we present here does

not answer the question of whether such simulations yield

the correct mode excitation. Previously, in Refs. [8,12], it

was shown that if the perturbative modeling does not use

the linearization of the equations being simulated then

mode function matching is necessary to correctly identify

the active modes in a simulation. In this work, we simply

use the consistent linearization to show that correct

identification of active modes in a simulation is possible

with mode frequency matching alone, and interesting

physics can then be extracted (such as the physically

correct boundary conditions for the perturbations). The

question of whether the mode excitation itself is correct in

pseudo-Newtonian simulations is left for future work.

Previous studies indicate that mode frequencies are sys-

tematically shifted with respect to general relativity (see,

e.g., Ref. [22]), and overestimated in particular [8,12,22],

but one cannot know for sure without directly identifying

the excited modes in each case (e.g., by mode function

matching). The pitfalls found in Refs. [8,12] in using

pseudo-Newtonian simulations to study mode frequencies

were anticipated clearly in Ref. [22].

We give a brief summary of the results of Refs. [8,12] in

Sec. II. We described our methods in Secs. III and

Appendix A and discuss our results in Sec. IV. Tests are

presented in Appendix B. We use geometric units

G ¼ c ¼ 1 throughout, unless units appear explicitly.

II. SIMULATIONS AND BACKGROUND

INFORMATION

We analyze the nonrotating 20 M⊙ zero-age main

sequence mass CCSN progenitor presented previously in

Refs. [8,12]. It was simulated in axisymmetry using FLASH

[18,19] until ∼100 ms postbounce. Mild excitations of

hydrodynamic modes occur at bounce, the amplitude of

which is expected to be artificially enhanced due to

asymmetries introduced during collapse by the cylindrical

computational grid. However, the strength of excitation

does not concern us here—we simply seek to demonstrate

mode identification. We defer to Ref. [12] for a more

detailed description of the simulation details. We also defer

details regarding the mode function matching method to

Ref. [8], in which they are described in the most depth. The

method involves using spectrogram filter kernels to extract

mode motions from the velocity data in the simulations,

followed by vector spherical harmonic decompositions to

extract the angular harmonic components. The resulting

fields are then normalized before their overlaps with

perturbative mode functions are computed.

Our main purpose here is to apply a consistent linear

perturbative scheme to a snapshot from the simulation at

t ∼ 40 ms postbounce, which was previously analyzed

[8,12], to study multiple quadrupolar modes (l ¼ 2,

m ¼ 0) of the system which are excited weakly at bounce.

The first mode has a peak frequency of 515 Hz.
1
This mode

was found in Refs. [8,12] to have a radial order n ¼ 4, and

we make the same conclusion here. The second quad-

rupolar mode we study has a less well-defined peak

frequency (we estimate 1241 Hz from the GW spectrum)

and was not reported in Refs. [8,12]. Note that, due to an

1
Note that the mode is described in Ref. [12] as having a

frequency of 483 Hz, which is the middle value of the spectro-
gram filter kernel used to extract it. However, 515 Hz is the
location of the peak Fourier amplitude in the GW signal.
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analysis error, perturbative mode frequencies in Ref. [8]

should be corrected by multiplying them by ∼1.5.

III. PERTURBATIVE SCHEME

We begin with the Newtonian perfect fluid and gravity

equations,

∂tρþ∇iðρviÞ ¼ 0 ð3:1Þ

∂tðρviÞ þ∇jðρvjviÞ þ ∂iP ¼ −ρ∂iΦ ð3:2Þ

∇2
Φ ¼ 4πρ: ð3:3Þ

We linearize these equations with respect to a spherically

symmetric equilibrium background solution, ρ ¼ ρðrÞ,
viðrÞ ¼ ðvrðrÞ; 0; 0Þ, P ¼ PðrÞ, Φ ¼ ΦðrÞ, ∂rP=ρ ¼
−∂rΦ. Denote Eulerian perturbations with δ and

Lagrangian ones with Δ, and substitute, e.g., ρ → ρþ δρ

into Eqs. (3.1)–(3.3). Also, use the condition of adiabatic

perturbations coming from the energy equation,

ΔP

Δρ
¼ c2s ; ð3:4Þ

where c2s ¼ PΓ1=ρ is the sound speed squared, Γ1 is the

adiabatic index for the perturbations, and, e.g.,

ΔP ¼ δPþ ξi∇iP, where ξi is the perturbative Eulerian

fluid element displacement vector. The displacement vector

ξi is related to the velocity perturbation via δvi ¼ ∂tξ
iþ

vj∇jξ
i − ξj∇jv

i, which simplifies to δvi ¼ ∂tξ
i when the

background velocity is zero.

Linearization of Eqs. (3.1)–(3.3) assuming axisymmetric

perturbations ξi ¼ ðξr; ξθ; 0Þ yields

0 ¼ δρþ ρξi∂i ln
ffiffiffi

γ
p þ ρ∂iξ

i þ ξr∂rρ ð3:5Þ

0 ¼ ∂2
t ξ

r þ 1

ρ
∂rδPþ ∂rδΦ −

δρ

ρ2
∂rP ð3:6Þ

0 ¼ r2∂2
t ξ

θ þ 1

ρ
∂θδPþ ∂θδΦ ð3:7Þ

0 ¼ ∇2δΦ − 4πδρ; ð3:8Þ

where
ffiffiffi

γ
p ¼ r2 sin θ is the square root of the flat 3-metric

determinant in spherical coordinates. In deriving Eq. (3.5),

we integrated in time, setting the integration constant to

zero [23]. In Eq. (3.7), note the appearance of the factor r2

in front of the time derivative, which comes from raising the

index using the metric via ∂2
t ξθ ¼ γiθ∂

2
t ξ

i ¼ γθθ∂
2
t ξ

θ ¼
r2∂2

t ξ
θ. Using the axisymmetric spherical harmonics Yl

(m ¼ 0) and harmonic time dependence, we insert a

separation of variables Ansatz,

δρ ¼ δρ̂ðrÞYle
−iσt

δP ¼ δP̂ðrÞYle
−iσt

δΦ ¼ δΦ̂ðrÞYle
−iσt

ξr ¼ ηrðrÞYle
−iσt

ξθ ¼ η⊥ðrÞ
r2

∂θYle
−iσt: ð3:9Þ

We will assume l ≠ 0. The angular frequency is σ ¼ 2πf.

Note that we are using the coordinate basis fð∂rÞi;
ð∂θÞi; ð∂ϕÞig rather than the normalized coordinate basis

fr̂; θ̂; ϕ̂g, which explains the last Ansatz having η⊥=r
2

rather than η⊥=r. Plugging these Ansätze into Eq. (3.7)

gives us a relation to eliminate δP̂ via

δP̂ ¼ ρðσ2η⊥ − δΦ̂Þ: ð3:10Þ

The adiabatic condition then yields a relation which can be

used to eliminate δρ̂ via

δρ̂ ¼ ρ

�

σ2

c2s
η⊥ −

δΦ̂

c2s
− Bηr

�

; ð3:11Þ

where we have defined B≡ ∂r ln ρ − ð1=Γ1Þ∂r lnP as the

Schwarzschild discriminant. In what follows, we also

define G̃≡ ∂rP=ρ ¼ −∂rΦ, and the Brunt-Väisälä fre-

quency squared is N2 ¼ G̃B. The linearization of the

remaining Eqs. (3.5), (3.6), and (3.8) yields

0 ¼ ∂rηr þ
�

2

r
þ ∂rP

Γ1P

�

ηr

þ
�

σ2

c2s
−
lðlþ 1Þ

r2

�

η⊥ −
1

c2s
δΦ̂ ð3:12Þ

0 ¼ ∂rη⊥ −

�

1 −
N2

σ2

�

ηr þ Bη⊥ −
B

σ2
δΦ̂ ð3:13Þ

0 ¼ ∂rδΦ̂ − F ð3:14Þ

0 ¼ ∂rF þ 2

r
F þ 4πρBηr − 4πρ

σ2

c2s
η⊥

þ
�

4πρ

c2s
−
lðlþ 1Þ

r2

�

δΦ̂; ð3:15Þ

where we defined F≡ ∂rδΦ̂ to reduce the system to first

order. In obtaining these equations, we used the identity

∂2

θYl þ cot θ∂θYl ¼ −lðlþ 1ÞYl. Note these perturbative

equations are the same equations as in Ref. [24], Eqs. (31)–

(33), after changing the definitions δΦ̂ ↔ −Φ0, ξh ↔

η⊥=r. The latter identification comes both from different

definitions of η⊥ vs ξh as well as the use of different basis
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vectors—fð∂rÞa; ð∂θÞa; ð∂ϕÞag in our case vs fr̂; θ̂; ϕ̂g
in Ref. [24].

To solve these equations, we integrate from a small

nonzero radius r0 (typically dr=5, where dr is the grid

resolution), where we impose regularity conditions (see

Appendix A) in the form (assuming l ≠ 0)

ηr ¼ A0r
l−1; η⊥ ¼ A0

l
rl

δΦ̂ ¼ C0r
l; ∂rδΦ̂ ¼ lC0r

l−1; ð3:16Þ

where A0 is specified as a small number (10−5 in our case)

which encodes the overall amplitude of the perturbation

andC0 is searched for via a root-finding algorithm such that

an outer boundary condition on δΦ̂ is satisfied—see

Appendix A for a detailed description. This outer boundary

condition on δΦ̂ was not imposed in Ref. [6], in which

instead δΦ̂jr0 ¼ 0 ¼ ∂rδΦ̂jr0 was used. This error was

repeated in subsequent work, including Refs. [8,12,25],

but does not affect any of the results obtained in the

Cowling approximation.

We validate our current Newtonian perturbative scheme

on a Newtonian polytropic star in Appendix B and

demonstrate that the effect of ignoring the outer boundary

condition on δΦ̂ is large mode frequency errors for modes

of low radial order.

We also demonstrate in Appendix B that our current

Newtonian perturbative scheme recovers the nonradial

modes of equilibrium stars evolved in a pseudo-Newtonian

system using FLASH. This system has a phenomenologically

modifiedmonopole gravitational potential designed tomimic

relativistic stars (Ref. [26], Case A). This demonstrates that

we can solve for nonradialmodes even thoughwedonot have

an equation of motion for the monopole potential. Such an

equation never appears in our derivation above, because we

assumed l ≠ 0.

Having the consistent perturbative scheme for such

pseudo-Newtonian simulations allows us to investigate

how well other aspects of the approximation (the

assumption of equilibrium background, zero background

velocity, and spherical averaging) actually affect the mode

identification.

The other outer boundary condition concerning the fluid

variables is considerably more uncertain. In Ref. [6], it was

taken to be ΔPjr¼R ¼ 0 for some outer boundary R
representing the protoneutron star (PNS) surface and in

Ref. [5] was taken to be ηrjshockwave ¼ 0. With the con-

sistent perturbative equations, we can instead simply plug

in the frequency observed in the simulation and see whether

the resulting mode function matches the simulated velocity

data well. We can also try to infer an appropriate outer

boundary condition on the fluid variables in this way.

Thus, we can turn the problem around and attempt to

measure the appropriate boundary condition. Theoretically,

the boundary condition must account for the Rankine-

Hugoniot jump conditions across the accretion shock,

which in turn depend upon the state of the supersonically

accreting material upstream from the shockwave (see, e.g.,

Refs. [27,28]).

IV. RESULTS

We show the GW spectrum in Fig. 1, which is computed

using a Bohman window with 35 ms width and averaged

over times t ∈ ½30; 50� ms. The gray shaded intervals

indicate the frequency extent of the spectral filters used

to extract the velocity data from the simulation. A snapshot

of those data near t ¼ 40 ms is then matched with

perturbative solutions, with the frequency as the free

parameter in the perturbative solutions. The perturbative

solutions whose mode function matches the velocity data

best have frequencies of 507 and 1238 Hz, which compares

well with the peaks in Fig. 1.

Our first finding is that plugging in the simulation

frequency f ∼ 515 Hz (disregarding any outer boundary

condition on the fluid variables) yields a perturbative

solution that fits the simulation data well—see Fig. 2. In

the top two panels, we show the 515 Hz perturbative

solution (weighted by ρ1=4) for various boundary condi-

tions on δΦ̂, namely, the vacuum one [Eq. (A10)] imposed

at various radii as well as the in-matter one [Eq. (A12)]

which does not depend on the outer boundary location.

Note we plot on an arbitrary linear vertical scale. The result

obtained using the vacuum boundary condition (apprevi-

ated “bc”) approaches the in-matter one rapidly as the outer

boundary moves out, because the density perturbation δρ̂

becomes negligible for r≳ 60 km (see the bottom panel).

For the rest of our results, we use the in-matter boundary

condition (A12).

FIG. 1. Normalized GW spectrum averaged over t ∈
½30; 50� ms postbounce, computed using a Bohman window with

35 ms width. Two frequencies of the best fit mode functions are

indicated at 507 and 1238 Hz, corresponding to weakly excited

quadrupolar modes. These compare well with the peaks in the

GW spectrum at 515 and 1241 Hz. The shaded areas indicate the

frequency extent of the spectral filter used in Refs. [8,12] to

extract the velocity data, against which perturbative mode

functions are matched.
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Next, we do a search over frequency (again disregarding

outer boundary conditions for the fluid variables) to find the

best-fitting perturbative solution to the simulation data. The

fit quality is computed by normalizing the
ffiffiffi

ρ
p

-weighted

velocities and computing a Frobenius norm of their differ-

ence (see Ref. [12]). The result is shown in Fig. 3. Despite

not smoothing the simulated data, the agreement is none-

theless striking. We again weight the velocity by ρ1=4 to

allow easier visual inspection (compared to a
ffiffiffi

ρ
p

weight-

ing). We stress that this is an unforgiving way of displaying

the agreement. The radial nodes of the best-fit perturbative

solution are consistent with those found in Refs. [8,12], i.e.,

n ¼ 4 when counted within the shockwave (which is

located at r ∼ 125 km at this snapshot). Note that, since

our background is not actually in equilibrium, we have an

ambiguity in how we apply the perturbative scheme.

Namely, we can set G̃ ¼ ∂rP=ρ or G̃ ¼ −∂rΦ.
2
We show

both cases in Fig. 3, which yield best-fit solutions with

frequencies of 507 and 523 Hz, respectively. Both choices

are equally accurate for this mode, but unless otherwise

specified, we will use G̃ ¼ ∂rP=ρ.
In Fig. 4, we show the analogous plot for the 1241 Hz

frequency mode, showing a similar level of agreement. The

best-fitting perturbative solutions have frequencies of 1238

and 1245 Hz for the cases G̃ ¼ ∂rP=ρ and G̃ ¼ −∂rΦ,

respectively. This is 0.24% and 0.32% disagreement,

respectively.

FIG. 2. Upper two panels: Normalized perturbative solutions

plotted on a linear vertical scale, with frequency corresponding

to the simulation, f ¼ 515 Hz, for varying outer boundary

condition on the Newtonian potential perturbation. The vacuum

boundary condition Eq. (A10) is imposed at rbc ¼ f15;
30; 100g km, and is seen to approach the in-matter boundary

condition case (A11) as the boundary is placed farther out. The

perturbative solutions are a poor representation of the simulation

beyond ∼10 km. Bottom panel: The density ρ and density

perturbation jδρ̂j are displayed for reference. The density per-

turbation becomes negligible beyond ∼60 km. The shockwave is

located at r ∼ 125 km at this time 40 ms post-bounce.

FIG. 3. The best fit perturbative solutions for two different

choices G̃ ¼ ∂rP=ρ and G̃ ¼ −∂rΦ, which in a true spherically

symmetric equilibrium would yield the same result. These

choices yield frequencies of 507 and 523 Hz, respectively. This

is a mismatch with the simulation frequency 515 Hz by �1.6%.

These perturbative solutions have radial order n ¼ 4 if counted

up to the shockwave location r ¼ 125 km.

FIG. 4. Same as Fig. 3 but for the ∼1240 Hz peak.

2
This is not the only ambiguity. Wherever a pressure gradient

or gravitational potential gradient appears, one could switch it out
with the other using ∂rP ¼ −ρ∂rΦ.
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We now reinstate outer boundary conditions for the fluid

variables. Our purpose is to “measure” the boundary

conditions which will yield a mode function spectrum

such that the best-fit mode function has a frequency which

is (at least similar to) the simulation. If such a boundary

condition existed, then one could safely identify modes in

pseudo-Newtonian simulations by doing frequency match-

ing alone, removing the need for the complicated and

expensive mode function matching procedure described in

Refs. [8,12].

In Fig. 5, we plot the absolute value of the Lagrangian

pressure perturbation corresponding to the best-fitting

perturbative solutions for the 515 Hz mode in Fig. 3 on

an arbitrary logarithmic scale. The analogous plot for the

1241 Hz mode is displayed in Fig. 6. The Lagrangian

pressure perturbation is overlaid on the background density

profile, which is plotted on a faithful logarithmic scale. We

indicate the location of the zero crossings ofΔPwith dotted

lines and also indicate the corresponding density value

there. Zero crossings for the 515 Hz case occur near

f6 × 1013; 1012; 1011; 1010g g cm−3. A common definition

for the PNS surface is, e.g., ρ ¼ 1011 g cm−3, and a zero

crossing at that location also occurs for the 1241 Hz mode

in Fig. 6. These zero crossings are not enforced, and if they

are not mere coincidences, then they could be physically

meaningful if they work for different modes.

In Tables I and II, for various outer boundary conditions

on the fluid variables, we show the mode properties with

nearest and next-nearest frequencies to the simulation

(subscripts best and next, respectively). All choices listed,

aside from ΔPjρ¼10
12 ¼ 0, which fails to reproduce the

1241 Hz mode, yield a clear relative distinction between the

best-fit and the next-best one and could therefore be

regarded as safe to use during a mode frequency matching

procedure. However, the boundary condition of Ref. [5],

ηrjshockwave ¼ 0, yields remarkable sub-1% agreement for

both modes, suggesting it is the physically correct one in

this regime.

V. CONCLUSIONS

In this work, we presented and tested perturbative

equations, which are the consistent linear approximation

of pseudo-Newtonian systemswhereby one uses Newtonian

hydrodynamics, standard Newtonian gravity for nonradial

components of the potential, and some nonstandard monop-

ole potential such as that of Ref. [26], CaseA. This systemof

FIG. 5. Lagrangian pressure perturbation jΔPj corresponding
to the best fit perturbative solutions in Fig. 3 displayed on an

arbitrary (arb.) logarithmic scale. The rest mass density of the

spherically averaged background is also displayed on an accurate

logarithmic scale. Zeros of the Lagrangian pressure perturbation

are indicated, which suggest appropriate values of ρ at which

ΔP ¼ 0 should be enforced during a mode search.

FIG. 6. Same as Fig. 5 but for the ∼1240 Hz mode. The zeros

of ΔP occurring near ρ ¼ 1012; 1011 g cm−3 are shown.

TABLE I. Modes with nearest (fbest) and next-nearest (fnext)
frequencies to the simulation value of 515 Hz, for varying

boundary conditions. We use G̃ ¼ ∂rP=ρ. The subscripts on

ΔP (eg. ΔPjρ∼1012 ) indicate density in units of g cm−3. The

nearest modes are highlighted in bold.

Boundary

condition

fbest (Hz),
diff nbest

fnext
(Hz), diff nnext

ΔPjρ∼1012 ¼ 0 504, −2.1% 4 381, −26% 4

ΔPjρ∼1011 ¼ 0 504, −2.1% 4 436, −15% 5

ΔPjρ∼1010 ¼ 0 503, −2.3% 4 463, −10% 5

ηrjshockwave ¼ 0 513, −0.4% 4 491, −4.7% 5

TABLE II. Same as Table I but for the ∼1240 Hz mode. Nodes

are counted up to the shockwave at r ¼ 125 km.

Boundary

condition

fbest (Hz),
diff nbest

fnext (Hz),
diff nnext

ΔPjρ∼1012 ¼ 0 1101, −11% 8 1532, þ23% 12

ΔPjρ∼1011 ¼ 0 1239, −0.2% 9 1073, −14% 8

ΔPjρ∼1010 ¼ 0 1235, −0.5% 9 1357, þ9.3% 10

ηrjshockwave ¼ 0 1248, −0.6% 9 1137, −8.4% 8
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equations allows one to solve for nonradial modes, thereby

allowing identification of active modes in pseudo-

Newtonian simulations (e.g., PROMETHEUS/VERTEX

[2,14–17], [18,19], FORNAX [20], and CHIMERA [21])

using mode frequency matching. This alleviates the need to

perform the complex and expensive mode function match-

ing procedure of Refs. [8,12].

We found that the imposing vanishing radial displace-

ment as an outer boundary condition (as in Ref. [5]) yields

remarkable sub-1% agreement between perturbative mode

frequencies and the simulation, suggesting that this is the

physically correct choice. However, imposing a vanishing

Lagrangian pressure perturbation at the radii where ρ ¼
f1011; 1010g g cm−3 (the last value being used in Ref. [6])

should also prevent mode misidentification. These con-

clusions ought to be tested in other regimes, e.g., later times

t > 100 ms and different progenitor stars.
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APPENDIX A: BOUNDARY CONDITIONS

In this Appendix, we give details of how boundary

conditions are derived, for the purpose of being pedagogi-

cal. We use the strategy of Ref. [33], except applied directly

to our Eqs. (3.12)–(3.15).

We wish to determine the behavior of fηr; η⊥; δΦ̂g in a

neighborhood of the origin r ¼ 0. For this purpose, we

make the Ansatz

ηr ¼ ra
X

∞

n¼0

Anr
n

η⊥ ¼ rb
X

∞

n¼0

Bnr
n

δΦ̂ ¼ rc
X

∞

n¼0

Cnr
n;

where An, Bn, Cn are constant coefficients nonzero when

n ¼ 0 (do not confuse n in this context with the radial order

of modes) and a, b, c are constant exponents to be

determined. We require a, b, c ≥ 0 by regularity at the

origin. This Ansatz is a generalization of the Frobenius

method to a system of equations. The derivatives we need

are

∂rδΦ̂ ¼ rc
X

∞

n¼0

ðnþ cÞCnr
n−1 ðA1Þ

∂2
rδΦ̂ ¼ rc

X

∞

n¼0

ðnþ cÞðnþ c − 1ÞCnr
n−2 ðA2Þ

and similar expressions for ∂rηr; ∂rη⊥.

Plugging these Ansätze into our Eqs. (3.12)–(3.15) and

collecting terms proportional to ra, rb, rc, we schematically

obtain

0 ¼ Qar
a þQbr

b þQcr
c

0 ¼ Rar
a þ Rbr

b þ Rcr
c

0 ¼ Sar
a þ Sbr

b þ Scr
c; ðA3Þ

where the coefficients are

Qa ¼
X

∞

n¼0

nAnr
n−1 þ

�

2þ a

r
þ ∂rP

Γ1P

�

X

∞

n¼0

Anr
n

Qb ¼
�

σ2

c2s
−
lðlþ 1Þ

r2

�

X

∞

n¼0

Bnr
n

Qc ¼ −
1

c2s

X

∞

n¼0

Cnr
n

Ra ¼ −

�

1 −
N2

σ2

�

X

∞

n¼0

Anr
n

Rb ¼
X

∞

n¼0

nBnr
n−1 þ

�

b

r
þ B

�

X

∞

n¼0

Bnr
n

Rc ¼ −
B

σ2

X

∞

n¼0

Cnr
n

Sa ¼ 4πρB
X

∞

n¼0

Anr
n

Sb ¼ −4πρ
σ2

c2s

X

∞

n¼0

Bnr
n

Sc ¼
X

∞

n¼0

n2Cnr
n−2 þ

�

2cþ 1

r

�

X

∞

n¼0

nCnr
n−1

þ
�

cðcþ 1Þ − lðlþ 1Þ
r2

þ 4πρ

c2s

�

X

∞

n¼0

Cnr
n: ðA4Þ

Since Eqs. (A4) hold in a neighborhood of the origin, the

full coefficients in front of each power of r (once collected)
must vanish independently. We are interested in the

vanishing of the lowest-order terms.

In the Frobenius method, only one equation is being

solved. This means only one unknown exponent (e.g., a
above) appears in the equation once the Ansatz is plugged

in. This makes identifying orders in r straightforward.
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In our case, we have a system of equations, and multiple

unknown exponents a, b, c appear in each equation. This

makes identifying orders in rmore complicated, but we can

proceed by considering all possible cases and systemati-

cally eliminating them. This is what we do next.

Since we are interested in the lowest nontrivial order, it

suffices to truncate every sum after the first nonzero term.

We also need to consider the order carried by the back-

ground quantities. In particular, since the pressure and

density are spherically symmetric quantities with even

parity, we have P ≃ Pj0 þ P00r2=2 and ρ ≃ ρj0 þ ρ00r2=2,
where we use a double prime superscript to denote a second

radial derivative evaluated at the origin, to avoid cumber-

some notation. This means ∂rP ¼ P00r ¼ OðrÞ and ∂rρ ¼
ρ00r ¼ OðrÞ. Thus, B ¼ ∂rρ=ρ − ∂rP=ðΓ1PÞ ≃ ½ρ00=ρ−
P00=ðΓ1PÞ�r ¼ OðrÞ. Similarly, G̃ ¼ ∂rP=ρ ≃ P00r=ρ ¼
OðrÞ, and so by extension, N2 ¼ G̃B ¼ Oðr2Þ. Inserting
these expansions into Eqs. (A4) and keeping lowest-order

terms for each of the ra, rb, rc terms separately, we obtain

0 ¼ ð2þ aÞA0r
a−1 − B0lðlþ 1Þrb−2 − C0

c2s
rc ðA5Þ

0 ¼ −A0r
a þ B0br

b−1 −
C0

c2s

�

ρ00

ρ
−

P00

ΓrP

�

rcþ1 ðA6Þ

0 ¼ 4πρ

�

ρ00
ρ
−

P00
Γ1P

�

A0r
aþ1 − 4πρ

σ2

c2s
B0r

b

þ ½cðcþ 1Þ − lðlþ 1Þ�C0r
c−2: ðA7Þ

At this stage, we do not know whether we have kept

consistent orders in r, since we do not know the relation-

ship between the exponents a, b, c. However, when

considering Eq. (A7), notice that the exponents will not

depend upon the background solution if and only if the rc−2

term is the lowest-order one. Independence from the

background solution is a property we desire
3
; thus, we

demand that the rc−2 term must vanish, i.e., c ¼ l. This also
implies c − 2 < aþ 1 and c − 2 < b.
The same consideration applied to Eq. (A5) means that

one or both of the ra−1 and rb−2 terms must be lowest order.

If the rb−2 term is lowest order by itself, that implies l ¼ 0.

If we are not interested in radial modes (in this work, we are

not), then we can discard this possibility. On the other hand,

if the ra−1 term is lowest order by itself, that implies

a ¼ −2, which would violate regularity at the origin. Thus,

we must conclude that both terms are lowest order, i.e.,

a ¼ b − 1 and ð2þ aÞA0 ¼ B0lðlþ 1Þ.
Lastly, consider Eq. (A6). If the exponents are to be

independent of the background quantities, then one or both

of the ra and rb−1 terms must be lowest order. But we

already established that a ¼ b − 1; thus, they are both

lowest order. This yields A0 ¼ bB0. Combining this rela-

tion with the one obtained previously from Eq. (A5) and

using a ¼ b − 1, we finally find

a ¼ l − 1; b ¼ l; c ¼ l: ðA8Þ

Therefore, in a neighborhood of the origin,

ηr ¼ A0r
l−1; η⊥ ¼ A0

l
rl

δΦ̂ ¼ C0r
l; ∂rδΦ̂ ¼ lC0r

l−1: ðA9Þ

Beware that we are not using the normalized coordinate

basis. In the normalized basis, one instead has

η⊥ ¼ ðA0=lÞrl−1.
In the numerical integration, we begin a small distance

away from the origin (e.g., dr=5, where dr is the grid

resolution) and use Eqs. (A9) as initial conditions. This

requires specification of A0, C0 and the angular frequency

σ. The choice of A0 amounts to an arbitrary amplitude,

which we choose to be A0 ¼ 10−5.

For each value of angular frequency σ, we perform a

root-finding procedure to converge upon the value of C0

such that at the outer boundary r ¼ R we have [24]

�

∂rδΦ̂þ lþ 1

r
δΦ̂

��

�

�

�

r¼R

¼ 0: ðA10Þ

This relation can be derived from the solution for the lth
spherical harmonic moment of the Poisson equation [23]

δΦ̂ ¼ −
4π

2lþ 1

1

Rlþ1

Z

r

0

δρ̂ðr̃Þr̃lþ2dr̃; ðA11Þ

valid when δρ̂ðrÞ ¼ 0 for r > R. In the case of our CCSN

system, lth moment rest mass perturbations δρ̂ likely

escape out through r ¼ R, but to the extent that it is of

small amplitude and leaks into different harmonics l0 ≠ l, it
can be ignored. If it cannot be ignored, then one should

instead integrate the perturbative system beyond r ¼ R and

then impose

�

∂rδΦ̂þ lþ 1

r
δΦ̂

��

�

�

�

r¼R

¼ −4πRl−1

Z

∞

R

δρ̂

rl−1
dr; ðA12Þ

where the infinite upper limit of integration is understood to

be replaced by an appropriate outermost radius, e.g., the

grid boundary or the CCSN shockwave. When using

Eq. (A12), one must integrate past R in order to obtain

δρ̂ over the domain of interest. The choice of R is irrelevant.

Note that

3
Although it would be interesting to know whether “special”

perturbations of stars with exponents depending upon the back-
ground solution are ever relevant in practice.
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δρ̂ ¼ ρ

�

σ2

c2s
η⊥ −

δΦ̂

c2s
− Bηr

�

: ðA13Þ

Also, it is advisable to enforce Eq. (A10) at the outer

boundary rather than Eq. (A11), in order to get control of

the first derivative ∂rδΦ̂.

The root-finding loop for C0 is nested inside a root finder

for the angular frequency σ, which yields either vanishing

Lagrangian pressure perturbation at the outer boundary

ΔPjR ¼ ½ρσ2η⊥ − ρδΦ̂þ ηr∂rP�jR ¼ 0; ðA14Þ

corresponding to a free surface, or vanishing radial dis-

placement

ηrjR ¼ 0; ðA15Þ

depending on one’s choice.

APPENDIX B: TESTS OF PERTURBATIVE

SCHEME

In this section, we demonstrate the accuracy of our mode

solver on both a Newtonian polytropic star and a pseudo-

Newtonian “Tolman-Oppenheimer-Volkoff” star.

1. Newtonian polytropic star

Figure 7 displays a comparison between l ¼ 1 and l ¼ 2

mode frequencies we obtain for a Γ ¼ 5=3 Newtonian

polytropic star. The polytropic constant κ, where P ¼ κρΓ,

is arbitrary, and we display the frequencies in dimension-

less form

ω≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2

4πGρc

s

; ðB1Þ

where σ ¼ 2πf is the angular frequency and ρc is the central
rest mass density. We impose a vanishing Lagrangian

pressure perturbation at the surface, Eq. (A14).We terminate

the frequency search when the update becomes smaller than

0.5 Hz (we set the stellar mass toM ¼ 1.4 M⊙ and radius to

R ¼ 12 km, yieldingmode frequencies roughly greater than

or equal to 2 kHz. The frequencies compare favorably with

past work (Ref. [34], p. 387, and references therein), except

when the outer boundary condition for the Newtonian

potential is disregarded (setting δΦ̂ ¼ ∂rδΦ̂ ¼ 0 at the

starting point of outward integration), as done in Ref. [6]

and repeated in subsequent work, including Refs. [8,12,25].

2. FLASH Tolman-Oppenheimer-Volkoff star

Figure 8 displays a comparison between l ¼ 2 modes

computed perturbatively in this work with those extracted in

Refs. [8,12] from a fully nonlinear FLASH simulation of an

equilibrium Γ ¼ 2 star with κ ¼ 100 and ρc ¼ 1.28 × 10−3

in geometrized units. We impose vanishing Lagrangian

FIG. 7. Comparison between axisymmetric l ¼ 1 and l ¼ 2

mode frequencies obtained in this work vs past work (Ref. [34],

p. 387) for a Γ ¼ 5=3 polytrope. The frequencies are displayed in

dimensionless form ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2=4πGρc
p

, where σ ¼ 2πf is the

angular frequency and ρc is the central density. The wrong

boundary condition δΦ̂jr0 ¼ 0 ¼ ∂rδΦ̂jr0 (green dots) has a large
error for the lower overtones. With the correct boundary con-

ditions [Eqs. (A9)], we obtain at worst ∼0.4% residual for the

fundamental n ¼ 0 mode.

FIG. 8. Comparison between axisymmetric l ¼ 2 mode

frequencies obtained perturbatively in this work vs using full

nonlinear FLASH evolutions in past work [8,12], for a Γ ¼ 2

polytropic star with P ¼ κρΓ, ρc ¼ 1.28 × 10−3, and κ ¼ 100 in

geometrized units.
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pressure perturbation at the surface, Eq. (A14). The frequency

search terminates when the update is less than 0.5 Hz.

This test demonstrates that the nonradial modes of

pseudo-Newtonian systems, as simulated in, e.g., FLASH

[18,19], FORNAX [20], and CHIMERA [21], are determined

by a purely Newtonian perturbative calculation. Radial

perturbations of the gravitational potential, which would

require knowledge of an equation of motion determining

the “effectively GR” monopole (Ref. [26], Case A), do not

arise anywhere when one solves for nonradial modes.

3. CCSN system

We know based on the previous tests that the perturbative

system is the consistent linearization of the equations of

motion being simulated. However, when applying it to the

CCSN system, we are dealing with a nonspherical system,

which we subject to a spherical averaging before perform-

ing the perturbative calculation, and it is not in hydrostatic

equilibrium. In Fig. 9, we compare the magnitude of

different terms in the spherically symmetric Euler equation

0 ¼ ∂tðρvrÞ þ
1

r2
∂rðr2ρvrvrÞ þ ∂rPþ ρ∂rΦ; ðB2Þ

as a percentage comparison to j∂rPj. The equilibrium

condition ∂rPþ ρ∂rΦ is satisfied at the ∼5% level.

Note that neutrino pressure gradients should also have a

contribution to this balance, but their perturbations would

introduce additional equations of motion, so we have

decided to neglect them. Furthermore, neutrino pressure

gradients should gradually decouple from the fluid as one

moves away from the PNS center, so introducing them into

the background solution requires care. The level of

violation of the hydrostatic equilibrium condition should

be taken as a cautionary note when applying this perturba-

tive calculation to dynamical systems such as CCSNe.

By comparison, the other terms which encode time

dependence of the background solution [∂tðρvrÞ] or its

nonsteadiness (vr ¼ constant ≠ 0) are not large enough to

account for the degree of nonequilibrium (sub-0.1% for

r < 50 km rising to 1% around r ¼ 100 km). This sug-

gests that generalizing the perturbative scheme to a time-

dependent or unsteady background would not yield sig-

nificant improvements in the perturbative calculations

presented in this work.
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