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We write down and apply the linearized fluid and gravitational equations consistent with pseudo-
Newtonian simulations, whereby Newtonian hydrodynamics is used with a pseudo-Newtonian monopole
and standard Newtonian gravity for higher multipoles. We thereby eliminate the need to use mode function
matching to identify the active nonradial modes in pseudo-Newtonian core-collapse supernova simulations,
in favor of the less complex and less costly mode frequency matching method. In doing so, we are able to
measure appropriate boundary conditions for a mode calculation.
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I. INTRODUCTION

There is increasing attention to gravitational wave
asteroseismology of core-collapse supernovae (CCSNe)
from a theoretical perspective (e.g., Refs. [1-13]). One
challenge is identifying which hydrodynamical modes of
the system are producing gravitational wave (GW) emis-
sion in simulations. This requires modeling in postprocess.
One strategy is to use simulation snapshots as background
solutions for a perturbative mode calculation. Once the
perturbative mode spectrum is obtained, a matching pro-
cedure is necessary to determine which modes are actually
active in the simulation. A mode frequency matching
procedure has been used frequently [5—7], whereby the
evolution of perturbative mode frequencies are overlaid on
simulation gravitational wave spectrograms, and then
matching is judged by frequency coincidence over time.

However, some mode classes (particularly p-modes) tend
to have frequencies which are roughly constant multiples of
each other over time, with neighboring modes having
frequencies being roughly between 5% to 10% away.
Frequency mismatches between simulations and perturbative
calculations can arise due to the use of different equations of
motion in the simulations vs those used in the perturbative
calculation. For example, in Refs. [5,7], the general relativ-
istic hydrodynamic equations were used in the perturbative
calculation, with either no metric perturbations [5] or a subset
of possible metric perturbations [7]. Their simulations
correspondingly use general relativistic hydrodynamics
and a spatially conformally flat metric approximation for
spacetime. As another example, Ref. [6] uses for its pertur-
bative equations general relativistic hydrodynamics with
either no metric perturbations or only lapse perturbations,
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supplemented with a Poisson equation to solve for the lapse
perturbation. Their simulations, on the other hand, use
Newtonian hydrodynamics and pseudo-Newtonian gravity.
The ensuing frequency mismatches generated by the use of
different equations may result in mode misidentification
during a mode frequency matching procedure, particularly
due the absence of the lapse function in the hydrodynamic
fluxes in the simulations.

In Refs. [8,12], a mode function matching procedure was
followed instead. This entails comparing the mode func-
tions computed perturbatively with the velocity data in the
simulation. As in Ref. [6], the simulations were pseudo-
Newtonian, whereas the perturbative calculation used the
general relativistic hydrodynamic equations in the Cowling
approximation (no metric perturbations), with the lapse
function being the only nonzero metric component. The
mode function matching procedure produced convincing
mode identification despite the use of perturbative equa-
tions that are not consistent with the simulation, because
neighboring mode functions have distinct enough morphol-
ogy that the best-fitting mode function is clearly superior to
the next-best-fitting one (provided the mode’s excitation is
large enough with respect to stochastic or nonlinear
motions). A frequency mismatch between the best-fitting
mode functions and the simulation frequencies of order
~15% was observed in Refs. [8,12] and is large enough to
have caused a mode misidentification via mode frequency
matching. During targeted modeling of the next galactic
core-collapse supernova, this would have produced incor-
rect inferences about the source. Furthermore, mode mis-
identification in simulations can misinform analytic or
semianalytic modeling efforts of these systems.

However, mode function matching is considerably more
complex and expensive than mode frequency matching. It
is more complex because frequency masks have to be
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determined in order to apply appropriate spectral filtering
on the velocity data from the simulation. It is more
expensive because the entire fluid data in the system must
be saved with sufficient temporal cadence such that the
spectral resolution allows a clean Fourier extraction of
individual mode activity. In Refs. [8,12], axisymmetric
simulations were performed, which alleviated the storage
issue, but one wishes to identify modes in fully three-
dimensional simulations as well. Large searches of the
CCSN progenitor parameter space would be hampered by
the need to perform mode function matching. It would
therefore be desirable to use the perturbative equations that
are consistent with simulations, which remove the need for
the expensive mode function matching procedure.

In this work, we write down and apply the consistent
linearized equations appropriate for pseudo-Newtonian
codes such as PROMETHEUS/VERTEX [2,14-17], FLASH
[18,19], FORNAX [20], and CHIMERA [21]. As long as
one does not solve for radial modes, these equations are
simply the standard Newtonian ones. During testing, we
identify and correct a mistreatment of the boundary con-
ditions [6,8,12] for the gravitational potential perturbation.
We are able to reproduce the quadrupolar mode frequencies
of an equilibrium star evolved using FLASH. When applied
to a CCSN simulation, we find the best-fitting mode
functions have the correct frequency (i.e., agreeing with
the simulation) at the 2% or sub-1% level, depending on the
boundary conditions used. We also perform a residual test
with the spherically symmetric Euler equation, showing
that the state of hydrostatic equilibrium (assumed in the
perturbative calculation) is satisfied only at the ~5% level,
whereas the terms coming from a time-dependent or
nonsteady (v # 0) background solution are negligible.
This serves as a cautionary note for future applications
of this perturbative modeling but also suggests that includ-
ing a time-dependent or nonsteady background would not
affect the calculation significantly. We find that the outer
boundary condition on the fluid variables yielding the most
precise matching with simulations (sub-1% level) is that of
Ref. [5], in which the radial displacement is taken to vanish
at the shockwave location. The agreement is so striking that
we are tempted to conclude that this is the physically
correct boundary condition in the early postbounce regime
we are considering.

Note that the consistent perturbative modeling of
pseudo-Newtonian simulations that we present here does
not answer the question of whether such simulations yield
the correct mode excitation. Previously, in Refs. [8,12], it
was shown that if the perturbative modeling does not use
the linearization of the equations being simulated then
mode function matching is necessary to correctly identify
the active modes in a simulation. In this work, we simply
use the consistent linearization to show that correct
identification of active modes in a simulation is possible
with mode frequency matching alone, and interesting

physics can then be extracted (such as the physically
correct boundary conditions for the perturbations). The
question of whether the mode excitation itself is correct in
pseudo-Newtonian simulations is left for future work.
Previous studies indicate that mode frequencies are sys-
tematically shifted with respect to general relativity (see,
e.g., Ref. [22]), and overestimated in particular [8,12,22],
but one cannot know for sure without directly identifying
the excited modes in each case (e.g., by mode function
matching). The pitfalls found in Refs. [8,12] in using
pseudo-Newtonian simulations to study mode frequencies
were anticipated clearly in Ref. [22].

We give a brief summary of the results of Refs. [8,12] in
Sec. II. We described our methods in Secs. III and
Appendix A and discuss our results in Sec. IV. Tests are
presented in Appendix B. We use geometric units
G = ¢ =1 throughout, unless units appear explicitly.

II. SIMULATIONS AND BACKGROUND
INFORMATION

We analyze the nonrotating 20 M, zero-age main
sequence mass CCSN progenitor presented previously in
Refs. [8,12]. It was simulated in axisymmetry using FLASH
[18,19] until ~100 ms postbounce. Mild excitations of
hydrodynamic modes occur at bounce, the amplitude of
which is expected to be artificially enhanced due to
asymmetries introduced during collapse by the cylindrical
computational grid. However, the strength of excitation
does not concern us here—we simply seek to demonstrate
mode identification. We defer to Ref. [12] for a more
detailed description of the simulation details. We also defer
details regarding the mode function matching method to
Ref. [8], in which they are described in the most depth. The
method involves using spectrogram filter kernels to extract
mode motions from the velocity data in the simulations,
followed by vector spherical harmonic decompositions to
extract the angular harmonic components. The resulting
fields are then normalized before their overlaps with
perturbative mode functions are computed.

Our main purpose here is to apply a consistent linear
perturbative scheme to a snapshot from the simulation at
t ~40 ms postbounce, which was previously analyzed
[8,12], to study multiple quadrupolar modes (I =2,
m = 0) of the system which are excited weakly at bounce.
The first mode has a peak frequency of 515 Hz.' This mode
was found in Refs. [8,12] to have a radial order n = 4, and
we make the same conclusion here. The second quad-
rupolar mode we study has a less well-defined peak
frequency (we estimate 1241 Hz from the GW spectrum)
and was not reported in Refs. [8,12]. Note that, due to an

"Note that the mode is described in Ref. [12] as having a
frequency of 483 Hz, which is the middle value of the spectro-
gram filter kernel used to extract it. However, 515 Hz is the
location of the peak Fourier amplitude in the GW signal.
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analysis error, perturbative mode frequencies in Ref. [8]
should be corrected by multiplying them by ~1.5.

III. PERTURBATIVE SCHEME

We begin with the Newtonian perfect fluid and gravity
equations,

dp + Vi(pv') =0 (3.1)
d,(pvi) + V;(pv/v;) + 9;P = —p0; @ (32)
V20 = 4zp. (3.3)

We linearize these equations with respect to a spherically
symmetric equilibrium background solution, p = p(r),
vi(r) = (v"(r),0,0), P=P(r), ®=®(r), 0,P/p=
—0,®. Denote Eulerian perturbations with § and
Lagrangian ones with A, and substitute, e.g., p — p + dp
into Egs. (3.1)—(3.3). Also, use the condition of adiabatic
perturbations coming from the energy equation,

AP
v 2, (3.4)
where ¢2 = PI'y/p is the sound speed squared, I'; is the
adiabatic index for the perturbations, and, e.g.,
AP = 6P + £V, P, where & is the perturbative Eulerian
fluid element displacement vector. The displacement vector
& is related to the velocity perturbation via §v' = 0, +
vIV;E — &IV v, which simplifies to §v' = 9,&" when the
background velocity is zero.

Linearization of Egs. (3.1)—(3.3) assuming axisymmetric
perturbations & = (£",&£%,0) yields

0=30p+pE0;iIn\fy +pdi& +&0,p  (3.5)
5 1 op
0= 07¢" +—0,0P + 0,600 —— 0,P (3.6)
p p
0= r2o2e + %agép + 0y (3.7)
0 = V26® — 4x6p, (3.8)

where /7y = r?sin @ is the square root of the flat 3-metric
determinant in spherical coordinates. In deriving Eq. (3.5),
we integrated in time, setting the integration constant to
zero [23]. In Eq. (3.7), note the appearance of the factor >
in front of the time derivative, which comes from raising the
index using the metric via 02&) = y;p0?E = yyp0?&? =
r?9?&9. Using the axisymmetric spherical harmonics Y,
(m =0) and harmonic time dependence, we insert a
separation of variables Ansatz,

op = op(r)Y, e
8P = 8P (r)Y e
5D = 5&(r)Y,eie!
& =n,(r)Y, e
n\r —io
g = ir(z )a(,y,e ‘. (3.9)

We will assume [ # 0. The angular frequency is ¢ = 2z f.
Note that we are using the coordinate basis {(9,),
(9p)". (9,)'} rather than the normalized coordinate basis
{#.0.¢}, which explains the last Ansatz having 7, /r*
rather than 7, /r. Plugging these Ansitze into Eq. (3.7)
gives us a relation to eliminate 5P via

6P = p(c®n, — 6D). (3.10)

The adiabatic condition then yields a relation which can be
used to eliminate dp via

) X
. o oD
op :P(?’M —7—5’%),
s

s

(3.11)

where we have defined B=0,Inp — (1/T'})0,In P as the
Schwarzschild discriminant. In what follows, we also
define G =0,P/p = —0,®, and the Brunt-Viisili fre-
quency squared is N?> = GB. The linearization of the
remaining Eqgs. (3.5), (3.6), and (3.8) yields

o,.P
0=20 - !
r”r+ |: +F1P] r
o* I(l+1) I .
|:?— r2 :|7’]J_—?(S(D (312)
N? B .
0:(9,17L— 1—72 ﬂr+Bﬂl—75¢’ (313)
o o
0=0,60-F (3.14)
2 o2
0=0,F+—F+4npBn, —4np—n,
r cs
4 (I+1)] 4
n [ ”_ ( : )}&D, (3.15)
s r

where we defined F = 9,60 to reduce the system to first
order. In obtaining these equations, we used the identity
O3Y; + cot00,Y,; = —1(1+ 1)Y,. Note these perturbative
equations are the same equations as in Ref. [24], Egs. (31)—
(33), after changing the definitions 5P o -, &
n,/r. The latter identification comes both from different
definitions of i, vs &, as well as the use of different basis
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vectors—{(0,), (0p)*. (0p)*} in our case vs {7.0.¢}
in Ref. [24].

To solve these equations, we integrate from a small
nonzero radius ry (typically dr/5, where dr is the grid
resolution), where we impose regularity conditions (see
Appendix A) in the form (assuming / # 0)

A
= Agr'™!, ’MZTOVI
b = Cyr, 0,60 = ICyr~!, (3.16)

where A, is specified as a small number (1073 in our case)
which encodes the overall amplitude of the perturbation
and C, is searched for via a root-finding algorithm such that
an outer boundary condition on @ is satisfied—see
Appendix A for a detailed description. This outer boundary
condition on 6® was not imposed in Ref. [6], in which
instead 5<i>|r0 =0= 8,5d3|,0 was used. This error was
repeated in subsequent work, including Refs. [8,12,25],
but does not affect any of the results obtained in the
Cowling approximation.

We validate our current Newtonian perturbative scheme
on a Newtonian polytropic star in Appendix B and
demonstrate that the effect of ignoring the outer boundary
condition on 5® is large mode frequency errors for modes
of low radial order.

We also demonstrate in Appendix B that our current
Newtonian perturbative scheme recovers the nonradial
modes of equilibrium stars evolved in a pseudo-Newtonian
system using FLASH. This system has a phenomenologically
modified monopole gravitational potential designed to mimic
relativistic stars (Ref. [26], Case A). This demonstrates that
we can solve for nonradial modes even though we do not have
an equation of motion for the monopole potential. Such an
equation never appears in our derivation above, because we
assumed [ # 0.

Having the consistent perturbative scheme for such
pseudo-Newtonian simulations allows us to investigate
how well other aspects of the approximation (the
assumption of equilibrium background, zero background
velocity, and spherical averaging) actually affect the mode
identification.

The other outer boundary condition concerning the fluid
variables is considerably more uncertain. In Ref. [6], it was
taken to be AP|,_p =0 for some outer boundary R
representing the protoneutron star (PNS) surface and in
Ref. [5] was taken to be 7,|gockwave = 0- With the con-
sistent perturbative equations, we can instead simply plug
in the frequency observed in the simulation and see whether
the resulting mode function matches the simulated velocity
data well. We can also try to infer an appropriate outer
boundary condition on the fluid variables in this way.
Thus, we can turn the problem around and attempt to
measure the appropriate boundary condition. Theoretically,

the boundary condition must account for the Rankine-
Hugoniot jump conditions across the accretion shock,
which in turn depend upon the state of the supersonically
accreting material upstream from the shockwave (see, e.g.,
Refs. [27,28]).

IV. RESULTS

We show the GW spectrum in Fig. 1, which is computed
using a Bohman window with 35 ms width and averaged
over times & [30,50] ms. The gray shaded intervals
indicate the frequency extent of the spectral filters used
to extract the velocity data from the simulation. A snapshot
of those data near r =40 ms is then matched with
perturbative solutions, with the frequency as the free
parameter in the perturbative solutions. The perturbative
solutions whose mode function matches the velocity data
best have frequencies of 507 and 1238 Hz, which compares
well with the peaks in Fig. 1.

Our first finding is that plugging in the simulation
frequency f ~ 515 Hz (disregarding any outer boundary
condition on the fluid variables) yields a perturbative
solution that fits the simulation data well—see Fig. 2. In
the top two panels, we show the 515 Hz perturbative
solution (weighted by p'/#) for various boundary condi-
tions on 5@, namely, the vacuum one [Eq. (A10)] imposed
at various radii as well as the in-matter one [Eq. (A12)]
which does not depend on the outer boundary location.
Note we plot on an arbitrary linear vertical scale. The result
obtained using the vacuum boundary condition (apprevi-
ated “bc”) approaches the in-matter one rapidly as the outer
boundary moves out, because the density perturbation dp
becomes negligible for r 2 60 km (see the bottom panel).
For the rest of our results, we use the in-matter boundary
condition (A12).

101 -
= 1073 A
£
—
= —— GW spectrum
1077 A .
—— 507 Hz best-fit
—— 1238 Hz best-fit
10~ ——
10! 10? 103
f[Hz]
FIG. 1. Normalized GW spectrum averaged over t€&

[30, 50] ms postbounce, computed using a Bohman window with
35 ms width. Two frequencies of the best fit mode functions are
indicated at 507 and 1238 Hz, corresponding to weakly excited
quadrupolar modes. These compare well with the peaks in the
GW spectrum at 515 and 1241 Hz. The shaded areas indicate the
frequency extent of the spectral filter used in Refs. [8,12] to
extract the velocity data, against which perturbative mode
functions are matched.
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feo)
> simulation
S" vacuum bc at r=15 km
Q —— vacuum bc at r=30 km
—— vacuum bc at r=100 km
—-=-=- in-matter bc

0 25 50 75 100
r [km]

FIG. 2. Upper two panels: Normalized perturbative solutions
plotted on a linear vertical scale, with frequency corresponding
to the simulation, f =515 Hz, for varying outer boundary
condition on the Newtonian potential perturbation. The vacuum
boundary condition Eq. (A10) is imposed at ry = {15,
30,100} km, and is seen to approach the in-matter boundary
condition case (A11) as the boundary is placed farther out. The
perturbative solutions are a poor representation of the simulation
beyond ~10 km. Bottom panel: The density p and density
perturbation |5p| are displayed for reference. The density per-
turbation becomes negligible beyond ~60 km. The shockwave is
located at r ~ 125 km at this time 40 ms post-bounce.

Next, we do a search over frequency (again disregarding
outer boundary conditions for the fluid variables) to find the
best-fitting perturbative solution to the simulation data. The
fit quality is computed by normalizing the ,/p-weighted
velocities and computing a Frobenius norm of their differ-
ence (see Ref. [12]). The result is shown in Fig. 3. Despite
not smoothing the simulated data, the agreement is none-
theless striking. We again weight the velocity by p'/* to
allow easier visual inspection (compared to a ,/p weight-
ing). We stress that this is an unforgiving way of displaying
the agreement. The radial nodes of the best-fit perturbative
solution are consistent with those found in Refs. [8,12], i.e.,
n =4 when counted within the shockwave (which is
located at r ~ 125 km at this snapshot). Note that, since
our background is not actually in equilibrium, we have an
ambiguity in how we apply the perturbative scheme.
Namely, we can set G = 9,P/p or G = —9,®.> We show

*This is not the only ambiguity. Wherever a pressure gradient
or gravitational potential gradient appears, one could switch it out
with the other using 9,P = —p0,®.

k> - -.\\
t 0 -
HQ ~L=
0 -
(o)
S
S —— simulation, f=515 Hz
Q ——— G=0a,Plp, f=507 Hz
—— G= —3,0, f=523 Hz
T T T T
0 25 50 75 100
r [km]
FIG. 3. The best fit perturbative solutions for two different

choices G = 0,P/p and G = —0,®, which in a true spherically
symmetric equilibrium would yield the same result. These
choices yield frequencies of 507 and 523 Hz, respectively. This
is a mismatch with the simulation frequency 515 Hz by £1.6%.
These perturbative solutions have radial order n = 4 if counted
up to the shockwave location r = 125 km.

both cases in Fig. 3, which yield best-fit solutions with
frequencies of 507 and 523 Hz, respectively. Both choices
are equally accurate for this mode, but unless otherwise
specified, we will use G = 0,P/p.

In Fig. 4, we show the analogous plot for the 1241 Hz
frequency mode, showing a similar level of agreement. The
best-fitting perturbative solutions have frequencies of 1238
and 1245 Hz for the cases G = 9,P/p and G = —0,®,
respectively. This is 0.24% and 0.32% disagreement,
respectively.

—— simulation, f~ 1241 Hz
-—— G=0,Plp, f=1238 Hz

Q —— G=—3®,f=1245Hz
< | :
HQ
0 -
T T T T
0 20 40 60 80 100
r [km]

FIG. 4. Same as Fig. 3 but for the ~1240 Hz peak.
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1016 _;IP\ — P i
Ell | —--— |AP| (arb. scaling), G = a,P/p
1015 \ ) .
’\ N | |AP| (arb. scaling), G = — 3,0
— 14 }
mE 10 '_ \\
S 1013 4 \
2 \ ZTTN
Q 1012 - VTS
] Y N
] \
101t 3 \_'l .\‘['I/
1010 Il;L
3 | | | I
0 25 50 75 100
r[km]
FIG. 5. Lagrangian pressure perturbation |AP| corresponding

to the best fit perturbative solutions in Fig. 3 displayed on an
arbitrary (arb.) logarithmic scale. The rest mass density of the
spherically averaged background is also displayed on an accurate
logarithmic scale. Zeros of the Lagrangian pressure perturbation
are indicated, which suggest appropriate values of p at which
AP = 0 should be enforced during a mode search.

We now reinstate outer boundary conditions for the fluid
variables. Our purpose is to “measure” the boundary
conditions which will yield a mode function spectrum
such that the best-fit mode function has a frequency which
is (at least similar to) the simulation. If such a boundary
condition existed, then one could safely identify modes in
pseudo-Newtonian simulations by doing frequency match-
ing alone, removing the need for the complicated and
expensive mode function matching procedure described in
Refs. [8,12].

In Fig. 5, we plot the absolute value of the Lagrangian
pressure perturbation corresponding to the best-fitting
perturbative solutions for the 515 Hz mode in Fig. 3 on
an arbitrary logarithmic scale. The analogous plot for the
1241 Hz mode is displayed in Fig. 6. The Lagrangian
pressure perturbation is overlaid on the background density

1006 1 T F
i/ L |AP| (arb. scaling), G = 3,P/p
1015 4 §77 —— |OP| (arb. scaling), G = — 8,0
—_ E ] v
"= 1014 4 '.li VA 3
£ ! J \{/ A
S 1013 ] I v \ V"*‘\ R
<] \i VIV
1012 __: ‘ ’ ‘ ‘
3 ] ‘
E ]
10% 5 : :
7 ] 1
1010 ] T T : T T L
0 25 50 75 100
r [km]

FIG. 6. Same as Fig. 5 but for the ~1240 Hz mode. The zeros
of AP occurring near p = 10'2, 10" gcm™ are shown.

TABLE I. Modes with nearest (fp.) and next-nearest (f..)
frequencies to the simulation value of 515 Hz, for varying
boundary conditions. We use G = 0,P/p. The subscripts on
AP (eg. AP|, i) indicate density in units of gem™. The
nearest modes are highlighted in bold.

Boundary fbest (HZ), fnext

condition diff Mpest (Hz), diff Npext
AP|/,~1012 =0 504, -2.1% 4 381, —26% 4
AP|,,N1011 =0 504, -2.1% 4 436, —15% 5
AP|/,N1010 =0 503, -2.3% 4 463, —10% 5
nr|shockwave - 0 513a _O~4% 4 491, —4.7% 5

TABLE II.  Same as Table I but for the ~1240 Hz mode. Nodes
are counted up to the shockwave at r = 125 km.

Boundary fbest (HZ)’ fnext (HZ)’
condition diff Mpest diff Mpext
AP|leolz =0 1101, —-11% 8 1532, +23% 12
AP|p~loll =0 1239, —0.2% 9 1073, —14% 8
AP|/,~,010 =0 1235, —=0.5% 9 1357, +9.3% 10
Nrlshockwave = 0 1248, —=0.6% 9 1137, —8.4% 8

profile, which is plotted on a faithful logarithmic scale. We
indicate the location of the zero crossings of AP with dotted
lines and also indicate the corresponding density value
there. Zero crossings for the 515 Hz case occur near
{6 x 103,102, 10", 10'°} gecm™. A common definition
for the PNS surface is, e.g., p = 10" gcm™, and a zero
crossing at that location also occurs for the 1241 Hz mode
in Fig. 6. These zero crossings are not enforced, and if they
are not mere coincidences, then they could be physically
meaningful if they work for different modes.

In Tables I and II, for various outer boundary conditions
on the fluid variables, we show the mode properties with
nearest and next-nearest frequencies to the simulation
(subscripts e and ., respectively). All choices listed,
aside from AP|,_;y2 =0, which fails to reproduce the
1241 Hz mode, yield a clear relative distinction between the
best-fit and the next-best one and could therefore be
regarded as safe to use during a mode frequency matching
procedure. However, the boundary condition of Ref. [5],
Nrlshockwave = 0, yields remarkable sub-1% agreement for
both modes, suggesting it is the physically correct one in
this regime.

V. CONCLUSIONS

In this work, we presented and tested perturbative
equations, which are the consistent linear approximation
of pseudo-Newtonian systems whereby one uses Newtonian
hydrodynamics, standard Newtonian gravity for nonradial
components of the potential, and some nonstandard monop-
ole potential such as that of Ref. [26], Case A. This system of
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equations allows one to solve for nonradial modes, thereby
allowing identification of active modes in pseudo-
Newtonian simulations (e.g., PROMETHEUS/VERTEX
[2,14-17], [18,19], FORNAX [20], and CHIMERA [21])
using mode frequency matching. This alleviates the need to
perform the complex and expensive mode function match-
ing procedure of Refs. [8,12].

We found that the imposing vanishing radial displace-
ment as an outer boundary condition (as in Ref. [5]) yields
remarkable sub-1% agreement between perturbative mode
frequencies and the simulation, suggesting that this is the
physically correct choice. However, imposing a vanishing
Lagrangian pressure perturbation at the radii where p =
{10'1,10'°} gem™ (the last value being used in Ref. [6])
should also prevent mode misidentification. These con-
clusions ought to be tested in other regimes, e.g., later times
t > 100 ms and different progenitor stars.
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APPENDIX A: BOUNDARY CONDITIONS

In this Appendix, we give details of how boundary
conditions are derived, for the purpose of being pedagogi-
cal. We use the strategy of Ref. [33], except applied directly
to our Egs. (3.12)—(3.15).

We wish to determine the behavior of {5,,7, 5&)} in a
neighborhood of the origin r = 0. For this purpose, we
make the Ansatz

nr= raZAnr
n=0

T
n=0

b = rczcnr”,
n=0

where A,, B,, C, are constant coefficients nonzero when
n = 0 (do not confuse 7 in this context with the radial order
of modes) and a, b, ¢ are constant exponents to be
determined. We require a, b, ¢ > 0 by regularity at the
origin. This Ansatz is a generalization of the Frobenius
method to a system of equations. The derivatives we need
are

[Se]

0,60 = r Z (n+c)C,r*!
n=0

(A1)

26D = rCZ(n—l—c)(n—l—c— 1C,r"2  (A2)
n=0

and similar expressions for 0,1,, 0,7 .

Plugging these Ansitze into our Egs. (3.12)—(3.15) and
collecting terms proportional to 7%, P, r, we schematically
obtain

0= 0, + Qpr" + Qr*
0=R,r"+Ryr” +R.r¢

0=S8,r+S,r* +8.r, (A3)
where the coefficients are
- 24+a 0Pl
_ -1 r
0, = ;nAnr” + { ; +F1P] ;Anr”
ot I(I+1)] &
Qf{g_rz};mﬂ
1 o0
Qc = ——ZZCnr”
Cs =0
N3 &
R, =— 1—?] > A
n=0
R, :inB =t {b+6} iB r"
n r n
n=0 n=0
B [s+]
RL = —TZC,J"
o n=0
S, = 47zpBZAnr”
n=0
02 &
S, = —4ﬂp—ZZBnr”
€5 =0
S, = ancnr” 2 [ et } ZnCnr”_l
n=0 r n=0
n c(c+1)—l(l—|—1)+47rp i": o (Ad)
r? ="

Since Egs. (A4) hold in a neighborhood of the origin, the
full coefficients in front of each power of » (once collected)
must vanish independently. We are interested in the
vanishing of the lowest-order terms.

In the Frobenius method, only one equation is being
solved. This means only one unknown exponent (e.g., a
above) appears in the equation once the Ansatz is plugged
in. This makes identifying orders in r straightforward.
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In our case, we have a system of equations, and multiple
unknown exponents a, b, ¢ appear in each equation. This
makes identifying orders in » more complicated, but we can
proceed by considering all possible cases and systemati-
cally eliminating them. This is what we do next.

Since we are interested in the lowest nontrivial order, it
suffices to truncate every sum after the first nonzero term.
We also need to consider the order carried by the back-
ground quantities. In particular, since the pressure and
density are spherically symmetric quantities with even
parity, we have P~ P|,+ P"r*/2 and p ~p|, + p"r?/2,
where we use a double prime superscript to denote a second
radial derivative evaluated at the origin, to avoid cumber-
some notation. This means 0,P = P"r = O(r) and 0,p =
p'r=0(r). Thus, B=20,p/p—0,P/(T\P)=Ip"/p-
P"/(T\P)lr = O(r). Similarly, G =09,P/p=~P'r/p=
O(r), and so by extension, N> = GB = O(r?). Inserting
these expansions into Egs. (A4) and keeping lowest-order
terms for each of the r%, r?, r¢ terms separately, we obtain

C
0= (2+a)Agr*" = Byl(l+ 1)r"2 - C—Sr"

(AS)

p TP

+[e(c+ 1) = I(1+ 1)]Cyre2. (A7)

At this stage, we do not know whether we have kept
consistent orders in r, since we do not know the relation-
ship between the exponents a, b, c¢. However, when
considering Eq. (A7), notice that the exponents will not
depend upon the background solution if and only if the r¢~2
term is the lowest-order one. Independence from the
background solution is a property we desire’; thus, we
demand that the =2 term must vanish, i.e., ¢ = [. This also
implies c—2 <a+1and ¢ -2 < b.

The same consideration applied to Eq. (A5) means that
one or both of the 7*~! and r*~2 terms must be lowest order.
If the r*=2 term is lowest order by itself, that implies / = 0.
If we are not interested in radial modes (in this work, we are
not), then we can discard this possibility. On the other hand,
if the ! term is lowest order by itself, that implies
a = —2, which would violate regularity at the origin. Thus,
we must conclude that both terms are lowest order, i.e.,
a=b—1and (2+a)A;, =Byl(l+1).

Lastly, consider Eq. (A6). If the exponents are to be
independent of the background quantities, then one or both

3Although it would be interesting to know whether “special”
perturbations of stars with exponents depending upon the back-
ground solution are ever relevant in practice.

of the r* and r’~! terms must be lowest order. But we
already established that a = b — 1; thus, they are both
lowest order. This yields Ay = bBj. Combining this rela-
tion with the one obtained previously from Eq. (AS) and
using a = b — 1, we finally find

a=1-1, b=1, c=1. (A8)
Therefore, in a neighborhood of the origin,
A
= Agr'™", ’M—TO !
b = Cyrl, 9,60 = ICyr'~!. (A9)

Beware that we are not using the normalized coordinate
basis. In the normalized basis, one instead has
ny = (Ag/Dr' .

In the numerical integration, we begin a small distance
away from the origin (e.g., dr/5, where dr is the grid
resolution) and use Eqgs. (A9) as initial conditions. This
requires specification of Ay, Cy and the angular frequency
0. The choice of A, amounts to an arbitrary amplitude,
which we choose to be Ay = 107>,

For each value of angular frequency o, we perform a
root-finding procedure to converge upon the value of C,
such that at the outer boundary r = R we have [24]

[+1

{a,éé + 5@] =0. (A10)
r r=R

This relation can be derived from the solution for the /th
spherical harmonic moment of the Poisson equation [23]

A 1

b =——"
21+ 1 R

/ p(FFAE, (Al
0

valid when 8p(r) = 0 for r > R. In the case of our CCSN
system, /th moment rest mass perturbations Jp likely
escape out through r = R, but to the extent that it is of
small amplitude and leaks into different harmonics I’ # [, it
can be ignored. If it cannot be ignored, then one should
instead integrate the perturbative system beyond r = R and
then impose

{a,aé + H—la‘cb] (A12)
r

© 5D
— —4zR-! / L dr,
r=R R T

where the infinite upper limit of integration is understood to
be replaced by an appropriate outermost radius, e.g., the
grid boundary or the CCSN shockwave. When using
Eq. (A12), one must integrate past R in order to obtain
op over the domain of interest. The choice of R is irrelevant.
Note that
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) A
5ﬁ=ﬂ(6—2m—5§—6m>. (A13)
CS CS

Also, it is advisable to enforce Eq. (A10) at the outer
boundary rather than Eq. (A11), in order to get control of
the first derivative 9,6®.

The root-finding loop for Cj, is nested inside a root finder
for the angular frequency o, which yields either vanishing
Lagrangian pressure perturbation at the outer boundary

AP|R = [PUZ’M _pé(i) + nrarP”R = 07 (A14)

corresponding to a free surface, or vanishing radial dis-
placement

g =0, (A15)

depending on one’s choice.

APPENDIX B: TESTS OF PERTURBATIVE
SCHEME

In this section, we demonstrate the accuracy of our mode
solver on both a Newtonian polytropic star and a pseudo-
Newtonian “Tolman-Oppenheimer-Volkoff” star.

1. Newtonian polytropic star

Figure 7 displays a comparison between / = 1 and [ = 2
mode frequencies we obtain for a I' = 5/3 Newtonian
polytropic star. The polytropic constant k, where P = xp",
is arbitrary, and we display the frequencies in dimension-
less form

62

4zGp,’

S
Il

(B1)

where 6 = 2z f is the angular frequency and p.. is the central
rest mass density. We impose a vanishing Lagrangian
pressure perturbation at the surface, Eq. (A14). We terminate
the frequency search when the update becomes smaller than
0.5 Hz (we set the stellar mass to M = 1.4 M, and radius to
R = 12 km, yielding mode frequencies roughly greater than
or equal to 2 kHz. The frequencies compare favorably with
past work (Ref. [34], p. 387, and references therein), except
when the outer boundary condition for the Newtonian
potential is disregarded (setting 6® = 9,60 = 0 at the
starting point of outward integration), as done in Ref. [6]
and repeated in subsequent work, including Refs. [8,12,25].

2. FLASH Tolman-Oppenheimer-Volkoff star

Figure 8 displays a comparison between [ =2 modes
computed perturbatively in this work with those extracted in
Refs. [8,12] from a fully nonlinear FLASH simulation of an
equilibrium I" = 2 star with k = 100 and p, = 1.28 x 1073
in geometrized units. We impose vanishing Lagrangian

3
_ 2 [=2 %
%)) b g
g L 7" e wrong bc
< 17 * T X  past work
2 M current work
go
9]
£
S =1 ¥
3 1- *
r Y  past work
» current work
_ 109~; ?
R .
S 10 "
g 100 s
i *
R 101 A
[ ] Py v 2
T T T T T T T
0 1 2 3 4 5 6

radial overtone number n

FIG. 7. Comparison between axisymmetric / =1 and [ =2
mode frequencies obtained in this work vs past work (Ref. [34],
p. 387) foral" = 5/3 polytrope. The frequencies are displayed in
dimensionless form o = \/6?/4xGp,, where ¢ = 2zf is the
angular frequency and p. is the central density. The wrong
boundary condition 6@\,0 =0= 8,6<i>|,0 (green dots) has a large
error for the lower overtones. With the correct boundary con-
ditions [Egs. (A9)], we obtain at worst ~0.4% residual for the
fundamental » = 0 mode.

10 - x
— i =2
E 8 *
xz 67 *
Y- 4 A -
X  perturbative
2 A * + evolutions
X
< 1.0 4
=}
S
n
Q 05 - x
X X
OO B T >I< T T
0 1 2 3
radial overtone number n
FIG. 8. Comparison between axisymmetric /=2 mode

frequencies obtained perturbatively in this work vs using full
nonlinear FLASH evolutions in past work [8,12], for a I' =2
polytropic star with P = xp', p. = 1.28 x 1073, and x = 100 in
geometrized units.
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pressure perturbation at the surface, Eq. (A14). The frequency
search terminates when the update is less than 0.5 Hz.

This test demonstrates that the nonradial modes of
pseudo-Newtonian systems, as simulated in, e.g., FLASH
[18,19], FORNAX [20], and CHIMERA [21], are determined
by a purely Newtonian perturbative calculation. Radial
perturbations of the gravitational potential, which would
require knowledge of an equation of motion determining
the “effectively GR” monopole (Ref. [26], Case A), do not
arise anywhere when one solves for nonradial modes.

3. CCSN system

We know based on the previous tests that the perturbative
system is the consistent linearization of the equations of
motion being simulated. However, when applying it to the
CCSN system, we are dealing with a nonspherical system,
which we subject to a spherical averaging before perform-
ing the perturbative calculation, and it is not in hydrostatic
equilibrium. In Fig. 9, we compare the magnitude of
different terms in the spherically symmetric Euler equation

1
0= 0,(pv") + 5 0,(Ppv'v") + 9,P + p3,®.  (B2)
r

as a percentage comparison to |0,P|. The equilibrium
condition 0,P + pd,® is satisfied at the ~5% level.
Note that neutrino pressure gradients should also have a
contribution to this balance, but their perturbations would
introduce additional equations of motion, so we have
decided to neglect them. Furthermore, neutrino pressure
gradients should gradually decouple from the fluid as one
moves away from the PNS center, so introducing them into
the background solution requires care. The level of

T 20
S — [8P + p3,0|
2 151 === |ae(pv")|
5 == [(1/r*)ar?pv'v")|
»
-
@®©
Q.
€
S -
RNl
O\o T T T T T
0 25 50 75 100 125
r [km]

FIG.9. A comparison between the magnitude of different terms
in the spherically symmetric Euler equation, as applied to the
spherically averaged snapshot of the CCSN system at 40 ms. The
equilibrium condition 0,P + pd,® = 0 is only satisfied at the
~5% level, which is commensurate with the frequency mismatch
between the simulation and the best fit perturbative solution. The
nonequilibrium terms 9, (pv") and 29, (pv"v") give a negligible
contribution to the balance at r < 50 km (sub-0.1%), and rises to
~1% around r = 100 km.

violation of the hydrostatic equilibrium condition should
be taken as a cautionary note when applying this perturba-
tive calculation to dynamical systems such as CCSNe.

By comparison, the other terms which encode time
dependence of the background solution [9,(pv")] or its
nonsteadiness (v” = constant # () are not large enough to
account for the degree of nonequilibrium (sub-0.1% for
r < 50 km rising to 1% around r = 100 km). This sug-
gests that generalizing the perturbative scheme to a time-
dependent or unsteady background would not yield sig-
nificant improvements in the perturbative calculations
presented in this work.
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