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Abstract—In the app releasing process, Android requires all
apps to be digitally signed with a certificate before distribution.
Android uses this certificate to identify the author and ensure
the integrity of an app. However, a number of signature issues
have been reported recently, threatening the security and privacy
of Android apps. In this paper, we present the first large-scale
systematic measurement study on issues related to Android app
signatures. We first create a taxonomy covering four types of app
signing issues (21 anti-patterns in total), including vulnerabilities,
potential attacks, release bugs and compatibility issues. Then we
developed an automated tool to characterize signature-related
issues in over 5 million app items (3 million distinct apks) crawled
from Google Play and 24 alternative Android app markets. Our
empirical findings suggest that although Google has introduced
apk-level signing schemes (V2 and V3) to overcome some of the
known security issues, more than 93% of the apps still use only
the JAR signing scheme (V1), which poses great security threats.
Besides, we also revealed that 7% to 45% of the apps in the 25
studied markets have been found containing at least one signing
issue, while a large number of apps have been exposed to security
vulnerabilities, attacks and compatibility issues. Among them a
considerable number of apps we identified are popular apps with
millions of downloads. Finally, our evolution analysis suggested
that most of the issues were not mitigated after a considerable
amount of time across markets. The results shed light on the
emergency for detecting and repairing the app signing issues.

Index Terms—Signature, Vulnerability, Mobile App, Certificate

I. INTRODUCTION

Mobile apps are distributed through app markets such as
Google Play, where users can search and download desired
apps. In the app releasing process, Android requires all apps
cryptographically signed by developers, which is known as
package signatures [1]. App signing is the primary security
mechanism that protects the integrity of an app after it is
released by the developer, for example ensuring that only the
original developer can issue an update to an already installed
app. The Android system uses this certificate to identify the
author of an app. The certificate does not need to be signed
by a certificating authority.

However, in recent years, a number of vulnerabilities related
to app signing have been disclosed from time to time, posing
great security risks to a significant number of Android apps
and mobile devices. For example, the Janus vulnerability
(CVE-2017-13156) [2] allows attackers to modify APKs with-
out breaking their original signatures, which could affect
almost all the apps signed with Android’s original JAR-
based signing scheme (V1 Signing Scheme) in mobile devices

running Android systems between v5.0 and v8.0 [3]. The
Master Key vulnerability (CVE-2013-4787) [4] was disclosed
in 2013. It was reported that 99% of Android devices (by the
date of July 2013) were affected by this vulnerability, which
could also allow attackers to modify any legitimate signed
apps without breaking their original signatures. Similarly, two
other Android Master Key vulnerabilities [5], [6] were also
discovered in Android 4.3, as malware were found using these
vulnerabilities to inject malicious payload to legitimate apps.

In addition, some attackers are selling legitimate Android
code-signing certificates to evade malware detection [7]. As
many anti-virus engines use white-lists to filter apps created
by legitimated developers, it is easy for malware to sneak into
a mobile device if the malware is signed with the purchased
certificates. Moreover, many amateur app developers (even the
ones who created popular apps) use the private keys well-
known in the community (e.g., publicly-known private keys
included within the Android Open Source Project) to sign their
apps, which makes it easy for attackers to replace the vulner-
able apps with malicious ones without users’ knowledge.

To address these issues, the signing schemes in Android
have been evolving as well. On one hand, a number of bugs
and vulnerabilities related to app signing are disclosed and
then fixed during the evolution. On the other hand, due to
numerous vulnerabilities found in the original V1 Signing
Scheme [8], which has been adopted since the first version of
Android, Android has introduced new signing schemes in its
later versions. For example, Android Nougat (v7.0) introduced
the APK Signing Scheme (i.e., V2 Signing Scheme) [9]
to provide APK-level signing. An improved version of the
APK Signing Scheme (i.e., V3 Signing Scheme) [10] was
introduced in Android Pie (v9.0).

However, the app signing issues have not been systemat-
ically studied, especially when considering that there are a
variety of severe signing issues, as well as millions of apps and
developers in the ecosystem. Although Google has introduced
new signing schemes to enhance security, it is still unclear how
many apps have been suffering from known signing issues
in the wild. Besides, as a large portion of Android devices
are running legacy Android system versions [11], little is
known on how many attackers have exploited the existing
vulnerabilities to perform possible attacks in the wild.

Contributions. In this paper, we perform the first large-
scale and systematic study of Android app signing issues. We
first compile a taxonomy of 21 anti-patterns of app signing



(cf. Section III), including 2 app-level vulnerabilities, 6 types
of possible attacks (5 of them are performed by exploiting
system-level vulnerabilities), one compatibility issue, and 12
types of releasing bugs. Based on these anti-patterns, we
developed a tool to automatically detect each type of the issues
(cf. Section IV). To measure the presence of signature-related
issues, we crawled 5.03 million app items from 25 app markets
including Google Play (over 2.95 million distinct APKs in total
due to the overlapping among markets) and applied our tool
to these apps to detect app signing issues (cf. Section V).
We studied the results to analyze the distribution of apps with
signing issues from various aspects including app markets, app
categories, app popularity and release/update time. At last, we
studied the evolution of app signing issues (cf. Section VI),
and performed a post analysis seven months later to measure
how many apps with signing issues have been removed or
mitigated. Among many interesting results and observations,
the following are the most prominent:

• 93.7% of the apps (roughly 2.7 million) studied in
this paper could be exploited on devices with Android
versions prior to 7.0, as they only adopted the V1
signing scheme, even though the V2 scheme had been
introduced for over 1.5 years by the date of our study.

• App signing issues are prevalent in both Google
Play and alternative markets. Roughly 7% to 45%
of the apps in the 25 studied markets have been found
containing at least one issues, which allow attackers to
inject malicious payloads via bypassing verification and
replacing unprotected files with malicious payloads in the
signed APKs. Such issues can even be found in many
popular apps with millions of downloads.

• A significant number of apps (over 65K) are found
to be signed with publicly-known keys, which allow
attackers to arbitrarily modify the apps without
breaking its original signatures, indicating that most of
the developers paid little attention to app signing issues,
or simply were unaware of the potential risks. These apps
have aggregated over 5.7 billion installs in total. Even
some popular apps use publicly-known private keys, e.g.,
com.shuqi.controller, with over 100 million downloads,
was found using the “testkey” to sign itself.

• 94 apps (435K installs in total) were found exploiting
the Master Key vulnerability to perform attacks, and
most of them were confirmed as malware by VirusTotal.
Over 1K apps were found being compromised, with
over 7.1 billion app downloads in total. Attackers try
to remove ad libraries or resource files to create ad-free
apps or compromise the functionalities of the apps.

• Over 90K apps were found containing release bugs
or compatibility issues that may lead to installation
failures on certain Android versions, including some apps
with billions of downloads (e.g., com.kugou.android).

• Most of the apps with signing issues have been
released years ago (e.g., more than 50% of the apps
that exploit vulnerabilities were released before 2016),
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Fig. 1. The protection chain of the V1 signing scheme.

which suggested that they may have impacted millions
of users for years. Besides, our post analysis suggested
that most markets had not removed/updated the apps
with signing issues after 7 months since our initial
study. Such findings indicate that many app markets paid
little attention to (or were unaware of) the security issues
caused by app signing, which could make these markets
an easy target to disseminate malware.

To the best of our knowledge, this is the first systematic
study of app signing issues at scale, longitudinally and across
various dimensions. Our results motivate the need for more
research efforts to disclose the widely unexplored app signing
issues and further improve the app ecosystem.

II. BACKGROUND

A. App Signing Keys

Android enforces a self-signed mechanism – an app should
be signed with its developer’s certificate before it is installed,
so as to prevent the apps from being tampered. The developer
holds the private key (with the extension .pk8) of the certifi-
cate, and uses it to sign the APK. The private key must be
kept secret and protected by a password. The public key is
used to verify its signature, which is visible to everyone.

B. App Signing Schemes in Android

There are three signing schemes used in Android [1].
• JAR signing scheme (V1) : The V1 scheme, introduced

since Android 1.0, is based on JAR signing [8]. It has
been introduced since the first version of Android.

• APK signing scheme (V2): The V2 scheme (APK-level
signing) [9] was introduced in Android 7.0. The contents
of an APK file are hashed and signed, and then the
resulting signing block is inserted into the APK.

• APK signing scheme (V3): This is an improved ver-
sion [10] of V2, introduced in Android 9.0. It contains
additional information in the signing block.

For compatibility and security concerns, it is recommended
by Google to sign apps with all the three schemes, first
with V1, then V2, and finally V3. Devices running out-of-
date Android systems typically ignore the V2 and the V3
signatures, thus V1 signatures should always be included.

1) JAR Signing Scheme (V1): A JAR-signed APK must
contain the exact files listed in META-INF/MANIFEST.MF
and all the files must be signed by the same set of
certificates. All signature-related files are stored in
the META-INFO/ directory, including MANIFEST.MF,
CERT.SF, and CERT.(RSA|DSA|EC) (Note that the *.SF



and *.(RSA|DSA|EC) can be any signer-customized strings).
These files form the protection chain, as shown in Figure 1.

MANIFEST.MF contains the hash results of all source files
in the APK file to prevent them from being tampered.

CERT.SF contains a file-level hash value of the MANI-
FEST.MF and hash values of each section of MANIFEST.MF.
In the Android system, the framework first verifies the file-
level hash value of the MANIFEST.MF. If that fails, the hash
value of each MANIFEST.MF section is verified instead.

CERT.(RSA|DSA|EC) Android supports three signature al-
gorithms: RSA, DSA, and ECDSA (introduced in Android
4.3). CERT.(RSA|DSA|EC) is used to verify the signature
of “CERT.SF”. It includes the certificate meta info (subject,
issuer, series number, etc.), the signature of “CERT.SF” signed
by developers’ private keys, and the public key.

2) APK Signing (V2 & V3 Schemes): V1 signatures does
not protect some parts of the APK, such as ZIP metadata and
the files located in the META-INF directory. Only uncom-
pressed file contents are verified in V1 (not the whole APK),
which allows modifications to be made to the APK file after
signing (e.g., Janus and Master Key vulnerabilities).

To overcome the limitation of V1, the V2 and V3 schemes
consider all the binary contents of the whole APK file. V2
and V3 signing insert a Signing Block into the APK file
immediately before the ZIP Central Directory section, which
is located at the end of the file. Any modifications to the
APK, including ZIP metadata modifications, will invalidate the
APK signature. The new formats are backwards compatible, so
APKs signed with the new signature schemes can be installed
on legacy Android devices (which simply ignore the extra data
added to the APK), as long as these APKs are also V1-signed.

III. A TAXONOMY OF APP SIGNING ISSUES

To the best of our knowledge, no previous work has
compiled a taxonomy of app signing issues because the
relevant issues have not been studied systematically. In or-
der to provide an extensive taxonomy covering most of the
signing issues, we have investigated app signing issues in
the following means. First, we resort to Common Vulnera-
bilities and Exposures (CVE) and Android Vulnerability [12]
for searching related vulnerabilities using keywords such as
“Android” and “signature”. We have identified 5 vulnerabilities
(CVE-2013-4787, ANDROID-9695860, ANDROID-9950697,
FakeID, CVE-2017-13156) related to the Android app signing
process. All of them are system-level vulnerabilities that
could be exploited by attackers. Second, we manually inspect
the verification process in the Android framework (mainly
for checking the release bugs and the compatibility issues
related to app signing), search signature-related questions
(using keywords including APK, signing, signature, etc.) from
StackOverflow, and summarize the issues found in technical
reports. As a result, we compiled a taxonomy of 21 anti-
patterns of app signing, as shown in Table I. We have classified
them into 4 categories based on the severity levels and impacts:

• Vulnerabilities. Apps have known signing vulnerabili-
ties, or they could be potentially exploited by attackers.

• Exploits. Apps are tampered or exploited by attackers
using known vulnerabilities (both system-level and app-
level). Note that all the CVEs we summarized are system-
level vulnerabilities that could be exploited by attackers.

• Compatibility issues. This type is usually introduced
by using unsupported digest/signature algorithms, which
could lead to installation failures in certain Android ver-
sions (based on its supported minimum SDK versions).

• Release bugs. This type of issues are generally caused
by the developers in the apps’ release process (e.g., use
the packing tools or releasing tools improperly), which
could lead to app installation failures in most cases.

A. App Vulnerabilities
We have found two types of app-level signature vulnerabil-

ities, including (1) signing apps with a publicly-known private
key and (2) unprotected contents in the META-INF folder.

1) Vul-1 - Signing Apps with publicly-known Private
Keys: In general, private keys should be kept secret in order
to prevent unauthorized modifications to the original app.
However, many privacy keys are well known in the Android
development community. The most famous set of keys are the
publicly-known private keys included in the AOSP project.
The standard Android build uses four known keys, all of which
can be found at build/target/product/security.
For example, TestKey is the generic default key for packages
that do not otherwise specify a key. Other publicly-known keys
include Platform (key), Shared (key) and Media (key).

For apps signed with the publicly-known keys, it is easy
for attackers to replace this vulnerable app with another one
(possible with malicious payloads), without user’s knowledge.

2) Vul-2 - Unprotected Contents in the META-INF:
The V1 scheme verifies the integrity of all files in the APK
except those inside the META-INFO directory, which could
introduce security issues. On one hand, malicious payloads
can be hidden in this directory, and dynamically loaded at
runtime (e.g., an app may implement the logic to iterate the
META-INFO directory). On the other hand, for the legitimate
apps that put unprotected contents in the directory, attackers
could easily modify the APK through simply replacing the files
inside META-INFO with malicious payloads. Note that the
security risks caused by this vulnerability usually depend on
the type and the content of the unprotected files. For example,
if developers put unprotected libraries under this directory, it
is easy for attackers to replace them with malicious ones.

B. Security Exploits

1) Attack-1: Exploiting Master Key Vulnerability: MAN-
IFEST.MF contains a digitally signed list of checksums for
the rest of the archive. Before app installation, the files
in the APK are extracted and their digests are compared
with the corresponding checksums in this list. If there is a
mismatch, the verification will fail and the installation will
be rejected. However, if the developer puts two files of the
same name into the APK, the verifying process will verify
the first file, but install and use the second file [4], which is



TABLE I
A TAXONOMY OF 21 ANTI-PATTERNS RELATED TO APP SIGNING.

Issue Type Issue V1 V2 System Versions Impact

Vulnerabilities Signing apps with publicly known private keys Y Y All Version Modify app without breaking its signature
Unprotected Contents in the META-INF Y - Before v7.0 Replace the unprotected files

Exploits

Exploiting Master Key Vulnerability Y - Before V4.3 Modify app without breaking its signature
Compromise the Integrity of APK Y - Before v6.0 Remove files without breaking its signature
Exploiting Janus Vulnerability Y - Before v7.0 Modify app without breaking its signature
Exploiting Unsigned Shorts Vulnerability Y - Before v4.3 Modify app without breaking its signature
Exploiting Unchecked Name Vulnerability Y - Before v4.4 Modify app without breaking its signature
Exploiting the Fake ID Vulnerability Y - Before v4.4 Modify app without breaking its signature

Release Bugs

Mismatch between signature and *.SF Y - All version Installation Failure
Mismatch between *.SF and *.MF Y - All versions Installation Failure
Incomplete *.SF Y - All versions Installation Failure
Incomplete *.MF Y - All versions Installation Failure
Without *.MF Y - All versions Installation Failure
Mismatch between *.MF and JAR Entry Y - All versions Installation Failure
Cannot find any signature Y Y All versions Installation Failure
Signed by different signature groups Y - All versions Installation Failure
Rollback protection issue Y - After v7.0 Installation Failure
V2-related bug - Y After v7.0 Installation Failure
Extra byte at the end of Zip file Y Y All versions Installation Failure
Cannot extract files from Zip Y Y All versions Installation Failure

Compatibility Unsupported digest algorithm Y - Specific Version Installation Failure

the underlying reason leading to the master key vulnerability.
This vulnerability allows attackers to insert malicious payloads
in the package. The attacker can exploit the original apps by
adding an additional malicious classes.dex file and also an
additional Android manifest file. Such exploits were found in
many real attack cases [13]. It was patched by Google in Jelly
Bean, and affects Android systems between 1.6 and 4.2.

2) Attack-2: Compromise the Integrity of APK Files : In
general, all the files should be protected by MANIFEST.MF
to prevent them from being tampered with. If there are some
missing files in MANIFEST.MF, it is possible that (1) the
APK has been modified by the attackers, as the attackers could
remove files from the zip file without breaking the signature
protected by the JAR signing scheme, or (2) it incurs certain
bugs during the APK packing process. Thus, we categorize
this type of issues into the attack category since it indicates
the integrity of the APK has been compromised. Android has
fixed this attack surface by improving StrictJarFile to
better handle the issue of missing files and ensure that all
manifest files are present in the jar since Android v6.0. Thus,
this attack could only target Android OS versions prior to 6.0.

3) Attack-3: Exploiting Janus Vulnerability: APK files
could contain arbitrary bytes (also called padding) at the start,
before its zip entries. The V1 scheme only takes into account
the zip entries, and ignores any extra bytes when computing
or verifying the app’s signature. Thus, a file can be both a
valid APK file and a valid dex file. As a result, attackers can
pretend a malicious dex file as an APK file, without affecting
its signature. The Android runtime then accepts the APK as a
valid update of an earlier legitimate version of the app.

The Janus vulnerability affects V1-signed apps running on
Android OS 5.0 to 8.0 [3]. Apps signed with the V2 and
V3 schemes and running on the devices supporting the latest
signature schemes are protected against this vulnerability.

4) Attack-4: Exploiting Unsigned Shorts Vulnerability:
Discovered in 2013, it is also known as the “second Mas-
terkey” vulnerability [14]. The underlying reason is that the file
offsets in zips are supposed to be unsigned but are interpreted
as signed, causing that the contents to be verified differ from
the content to be executed. Several different techniques [5]
can exploit this vulnerability. It is much more powerful than
the “MasterKey” vulnerability, as “MasterKey” only allows
attackers to replace the file contents present in the original
signed zip, while this vulnerability could allow attackers to
insert arbitrary new files that did not exist in the original zip
previously. It was patched in Android Jelly Bean, and thus
affects Android prior to 4.3.

5) Attack-5: Exploiting Unchecked Name Vulnerability:
The signature verification process in Android prior to v4.4
does not check the lengths of file names correctly [15]. It
assumes that the lengths of the file names are the same in both
the local file header section as well as the central directory
section of the Zip file header. To exploit this vulnerability, the
attackers woould first generate a difference between how the
zip files are verified compared with how they are extracted, so
that it allows files in an existing APK to be replaced with new
ones. For example, one could set the length of the file name
in the local file header section to a size large enough to skip
the length of the real name (which was defined in the central
directory) and the data that will be used, and then insert the
malicious code after the data that will be verified.

6) Attack-6: Exploiting the Fake ID Vulnerability: The
underlying reason of this vulnerability is that the Android
package installer (e.g., createChain() and findCert() methods
of the Android JarUtils class) does not properly validate an
app’s certificate chain [16]. A malicious app can claim to be
issued by another identity and impersonates a privileged app to
gain access to vendor-specific privilege resources. This attack
could affect Android OS versions between 2.1 and 4.4.



C. Release Bugs

We have summarized 12 types of signing-related release
bugs, which are classified into three categories.

1) V1-related Bugs: The verification process of the V1
scheme follows a protection chain (cf. Fig. 1). MANIFEST.MF
contains the message digests of all source files in the APK to
prevent their integrity from tampering. There must be at least
one SF file (e.g., CERT.SF) that stores the base64-encoded
codes of the message digest of MANIFEST.MF, and the
message digests of all the digests stored in MANIFEST.MF.
For each SF file, there must be a corresponding signature file
(e.g., CERT.RSA or CERT.DSA or CERT.EC) that stores the
digital signature of the SF file, and its signing certificate.
Thus, any inconsistency in the protection chain will lead
to bugs, which will make the app installation process fail.
In general, these bugs are introduced when developers pack
the apps, which should be avoided, since apps with these
bugs could not be installed successfully. By analyzing the
protection chain, we have identified 9 types of V1-related
release bugs: (1) Verification failure between the signature file
and the SF file, (2) Verification failure between the SF file
and MANIFEST.MF, (3) Incomplete or missing SF files, (4)
Incomplete MANIFEST.MF, (5) Missing MANIFEST.MF, (6)
Verification failure between MANIFEST.MF and JAR entry, (7)
No signature files, (8) The files signed by different signature
groups, and (9) Rollback protection issue.

For rollback protection, Android requires that the V2-
signed APKs that are also V1-signed must contain an
X-Android-APK-Signed attribute in the main section of
their SF files. When verifying the V1 signature, the APK
verifier is required to reject APK files that do not have a
signature for the APK signature scheme (e.g., V2 scheme).

Apps with rollback protection issues cannot be installed on
Android 7.0 and newer versions. Apps with other V1-related
issues cannot be installed on all Android versions.

2) V2-related Bugs: For APK-level protection, a V2-signed
APK consists of four sections, including (1) Contents of ZIP
entries, (2) APK Signing Block, (3) ZIP Central Directory
and (4) ZIP End of Central Directory. These sections form a
protect chain [9]. Any verification failures during the process
would lead to V2-related bugs. Apps with such bugs cannot
be installed on Android 7.0 and up.

3) Zip-related Bugs: We have identified two types of zip-
related bugs. The first is “extra bytes at the end of Zip file”. As
the legacy Android systems enforce loose zip verification, apps
with this type of bug could be installed on Android systems
with versions prior to v5.0. Android introduces “libziparchive”
to verify zip files since v5.0, which is stricter than the original
libdvm library used for extracting zip files. The second type is
“failed to extract certain files from the zip file”, which occurs
during the extraction process of the zip files. Apps with this
bug cannot be installed on any Android devices.

D. Compatibility Issues

The supported digest/signature algorithms are updated when
Android OS evolves. For example, SHA256withRSA is avail-

able for minimum SDK 18 (Android v4.3) and up, while
SHA256withDSA could only be used for minimum SDK 21
(Android v5.0) and up, and SHA256withEC for minimum
SDK 18 and up. As a result, JAR signatures containing
unsupported digest algorithms will lead to compatibility issues.
In this paper, we resort to APKSigner to get the JAR signing
digest algorithm used for signing an APK using the provided
key, and compare with the minSdkVersion (minimum API
Level) of the platform on which the APK may be installed.

IV. STUDY METHODOLOGY

We present the details of our characterization study on app
signatures in this section. We first describe the dataset used
for our study. Then, we present the study design and research
questions we focus in this paper. At last, we present the tool
we developed for conducting the study on the dataset.

A. Dataset

To measure the presence of signature-related issues, we first
make efforts to implement different crawlers to harvest mobile
apps from 25 popular Android app stores, as listed in Table II.
Note that besides Google Play, we also crawled 24 popular
alternative markets in order to understand the distribution of
APK signing issues globally. As Google Play is restricted in
some countries (e.g., China), Android users have to resort to
various alternative app markets.

As shown in Table II, we have crawled 5.03 million app
items (with all the metadata and APKs) during December
2017 and January 2018. Over 200K of them are crawled
from Google Play, while the remaining 4.8 million apps are
crawled from major Chinese app markets. Since developers
could release the same apps (with the same package name
and hashing value) to multiple markets, our dataset contains
2,951,017 distinct APKs (with different hashing value) in total.
We believe our dataset is large enough to study the presence
of app signing issues and perform comparative studies across
Google Play and alternative app markets.

Post Analysis. After 7 months (August 2018), we launched
a second, two-day crawling campaign for analyzing whether
any of the studied apps with signing issues have been removed
or updated from each individual market (cf. Section VI).

B. Study Design

In this paper, we focus on the following research questions:
• RQ1: What is the distribution of V1 and V2 signatures

in the wild1? By the date of our first crawling, the APK
signing scheme (V2) had been released for 1.5 years. As
the V1 signing scheme is known to be less secure, it is
interesting to study how the developers have adopted the
more secure V2 signing scheme.

• RQ2: How many apps are exposed to the security
risks introduced by APK signing issues? Are there any
correlation between app popularity and app categories?
Are there any differences across app markets?

1Note that the V3 signing scheme was introduced with Android Pie (v9.0)
in August 2018, thus our dataset contains no V3-signed apps.
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Fig. 2. The workflow of our app signing analysis tool.

• RQ3: The evolution of app signing issues. How long
have these vulnerable apps been released to the markets?
Have the apps with signing issues been removed or
updated during the evolution?

C. Methodology

We have developed an automated tool to check the
signature-related issues in Android apps. As shown in Fig-
ure 2, our tool is comprised of the following five main parts.

1) Zip Analysis: The main purpose of Zip analysis is to
check the integrity of a Zip file and extract all the necessary
files. First, we search the End of Central Directory (EOCD)
record from the tail of Zip, in order to verify whether it is
a valid Zip file. Based on the position of EOCD, we could
analyze whether there are extra bytes at the end of Zip file (cf.
Zip-bug-1). Then, we parse each item in the Central Directory,
and locate the corresponding local file header (LFH). We
then check the consistence between the metadata of the files
in CD an LFH to verify whether the Zip file has exploited
the “unchecked name length” vulnerability. (cf. Attack-5) We
further analyze the File Offset of CD and LFH to see whether
they are exploited to perform attacks. (cf. Attack-4) After this
step, we extract files from Zip based on the information listed
in CD and LFH, and then verify them. (cf. Zip-bug-2) To
identify attacks that exploit the Janus vulnerability, we check
the Zip heading to see whether there exist dex file paddings
(cf. Attack-3). To identify the attacks that exploit Master Key
vulnerability, we iterate all the files and verify whether there
are duplicate file names (cf. Attack-1). Note that as the attacks
could only be triggered at specific system versions (cf. Table I),
we also combine the following manifest analysis results (e.g.,
minimum API level) to measure whether such attacks could
be successfully performed.

2) Manifest Analysis: AndroidManifest can be extracted
during Zip analysis. By analyzing AndroidManifest, we could
get the basic information of the app, including its package
name and the minimum supported API level. The information
of the minimum Android API level could offer insights about
whether app developers are trying to target top-end users. Note
that the detection of compatibility issues will use the informa-
tion of the minimum Android API level (cf. Compatibility).

3) Verifying V2 Signatures: We first identify the APK
Signing Block, parse it and extract the APK Signature Scheme
v2 block (ASSB) from it. Then we extract all the Signers from

ASSB. For each Signer, we parse it and get all the signed data,
the list of signatures and the corresponding public key. For
each signature, we analyze its digest algorithm and pick the
signature with the strongest algorithm (out of SHA-512, SHA-
384, SHA-256, SHA-1). Then we use the Public Key and the
selected Signature to verity Signed Data, and further extract
Certificates and Digests from the Signed Data, and verify the
integrity of the APK file (cf. V2-bug).

4) Verifying V1 Signatures: We first identify and parse
META-INF and MANIFEST.MF (cf. Vul-2). We check if
each of the hashing value listed in MANIFEST.MF is con-
sistent with the corresponding file (cf. V1-bug-5, V1-bug-6,
ATTACK-2), and make sure that each item listed in MANI-
FEST.MF exist in the APK (cf. V1-bug-4). For each signature
file (i.e., RSA/DSA/EC), we first identify the corresponding
SF file (cf. V1-bug-1, V1-bug-3). To identify attacks that
exploit the Fake ID vulnerability, we use the method [17]
patched by the Android framework to check the certificate
chain signatures (cf. ATTACK-6). For each SignerInfo in
the signature, we check the corresponding SF file and verify
whether the digest algorithm is supported in the corresponding
API level (cf. COMPATIBILITY). If the SF file is protected
by V2 but we cannot find the V2 signature, we will report it
as a releasing bug (cf. V1-bug-9). We use the SF file to verify
MANIFEST.MF and analyze if MANIFEST.MF is modified
(cf. V1-bug-2). Then we verify whether each file is signed by
the same signature group (cf. V1-bug-8).

5) Signature Analysis: At last, we extract all the signature
files (both V1 and V2), compare them with publicly known
signatures (cf. Vul-1), and further analyze the consistency
between signatures (e.g., apps signed by multiple signatures).

Implementation. The implementation of verifying V2/V1
signatures of the tool is based on APKSigner [18], a widely
used tool to sign APKs and to confirm that an APK’s signature
will be verified successfully. As APKSigner is only able to
identify the bugs that lead to unsuccessful app installation, we
have implemented our own code to identify the vulnerabilities
and attacks as mentioned above.

V. RESULTS AND ANALYSIS

In this section, we first provide some general statistics to
understand the distribution of V1 and V2 signatures in the
wild (RQ1). Then we seek to investigate the detailed signing
issues for the 5 millions apps we collected (RQ2).

A. RQ1: The Distribution of Signing Schemes.

V1 Signing Scheme vs. V2 Signing Scheme We have
analyzed 2,951,017 distinct APKs in total. Although the V2
scheme has been introduced for 1.5 years prior to our crawling
process, it is surprising to see that more than 93.7% of APKs
(2,765,752) still use only the V1 signing scheme, while only
6.3% of APKs (185,150 in total) in our dataset have adopted
the V2 signing scheme. Note that 185,139 apps use both sign-
ing schemes, which means 11 apps use only the V2 signatures.
This result suggests that most of the apps in our dataset are
exposed to the attack surfaces of V1 signatures, e.g., attackers



TABLE II
OVERALL RESULTS OF OUR MEASUREMENT STUDY.

Market #Apps Vulnerability Attack Compat. Developing Bug Total Percentage
Vul-1 Vul-2 Attack-1 Attack-2 C1 Zip Bug V1 Bug V2 Bug - -

Google Play 219,944 11 15,510 7 55 418 0 81 0 16,084 7.31%
Tencent 636,665 19,066 27,601 24 159 1,202 38,637 149 43 85,109 13.34%
Baidu 381,419 10,651 83,898 14 165 669 929 659 130 96,985 25.43%
360 162,584 2,713 9,478 9 91 795 272 32 10 13,363 8.22%
Huawei 106,672 157 45,324 0 10 580 9 95 52 46,191 43.3%
Xiaomi 169,502 1,321 53,147 0 142 698 8,904 7,313 1,834 72,980 43.06%
Wandoujia 560,662 6,916 33,641 17 178 1,215 1,073 254 67 43,174 7.70%
HiAPK 238,787 10,409 15,116 21 56 394 74 110 29 26,151 10.95%
AnZhi 225,659 21,590 21,843 6 90 607 247 455 52 44,739 19.8%
91 11,822 369 808 0 5 15 13 3 1 1,212 10.25%
OPPO 483,201 7,064 56,531 31 73 1,370 6,890 177 43 71,622 14.82%
25PP 1,060,464 11,860 55,477 33 289 22,58 1909 364 95 71,999 6.79%
Sougou 201,041 4,326 44,175 6 112 831 6,398 8,181 514 63,908 31.79%
Gfan 11,121 283 1,141 0 3 30 5 6 0 1,466 13.18%
Meizu 80,179 923 15,717 3 15 286 260 100 38 17,269 21.54%
DCN 18,796 769 4,612 0 5 199 11 35 5 5,588 29.73%
LIQUCN 198,034 3,931 23,707 6 112 1,214 357 152 36 29,426 14.86%
APPChina 39,092 809 4,925 1 14 116 77 46 14 5,970 15.27%
10086 4,640 97 369 0 1 10 5 12 0 493 10.63%
Lenovo MM 36,293 886 9,478 0 15 169 25 87 24 10,649 29.34%
ZOL 6,412 64 2,788 0 3 32 2 11 1 2,900 45.23%
NDUO 19,331 262 1,854 0 21 55 23 68 11 2,287 11.83%
CNMO 4,893 289 364 0 9 9 26 12 7 711 14.53%
PCOnline 140,905 5,131 9,372 0 55 340 1,734 80 24 16,524 11.73%
APPCool 12,769 130 965 0 4 38 28 34 17 1,212 9.49%
Total - 65,374 370,138 94 1,110 8,518 62,311 17,836 2,849 - -

could exploit various V1 vulnerabilities to perform attacks on
devices with Android system versions prior to 7.0.

Apps with Multiple Signatures. Another interesting ob-
servation is that some apps have been signed by multiple
certificates. For example, 128 apps in our dataset are signed
by 2 signatures, 2,003 apps are signed by 3 signatures, 15
apps are signed by 4 signatures, and 39 apps are signed by 5
signatures. Note that Google Play does not accept APKs with
multiple signatures, thus all these apps are found in alternative
markets. One possible reason is that they tried to use multiple
signatures to distinguish app versions or app release channels.

B. RQ2: App Signing Issues

1) Overall Results: We present our primary exploration
results on the 21 anti-patterns in Table II. Around 6.79% to
45.25% of apps in each market have been found containing
at least one issue. Even in Google Play, roughly 7.3% of our
crawled apps have various signing issues. For three alternative
markets (Huawei, Xiaomi and ZOL), over 40% of the apps are
exposed to signing risks. This result suggests that the signing
issues are prevalent across markets.

The two vulnerabilities are most popular across markets,
accounting for more than 80% of the apps with signing issues.
To our surprise, over 65K apps were found using public
known keys, which allow attackers to arbitrarily modify the
apps without breaking its signatures. More than 370K apps
contain unprotected contents, which offer opportunities for
attackers to modify and replace them without developers’
knowledge. 94 apps were found exploiting the Master Key
vulnerability to perform attacks, and most of them were

TABLE III
THE TOP 5 APPS USING testkey IN OUR DATASET.

Package Name (MD5) App Installs Market
com.shuqi.controller
(04B8E1ED1F724E210BBBE6EBF75308A5) 100,000,000 Baidu

com.kiloo.subwaysurf
(CFBAE893E9B7B25928C62BDEED8B3CEF) 100,000,000 Baidu

com.aiyou.mhsjuu
(EE345CB5A869D27471ED40FAE4ED5BDF) 77,840,000 Tencent

com.cheercode.phonegame1
(AE976AA9669FBA6D42C8808D8B8F8456) 76,690,000 Tencent

com.mango.sanguo15.ruanyou
(778A75DF40AE339B0796B6597FBE3BA1) 72,720,000 Tencent

confirmed as malicious apps. Over 1,000 apps were found
being compromised. Roughly 90K apps include release bugs or
compatibility issues that may lead to unsuccessful installation.

C. Detailed Results

1) Vulnerabilities: Over 65K apps were found using the
known keys to sign apps. Although the four keys provided
by AOSP (“media”, “platform”, “shared” and “testkey”) were
released 10 years ago, all of them were found still being used
in our dataset. There are 24 apps using the “media” key, 746
apps using the “platform” key, 23,619 apps using the “shared”
key and 40,985 apps using the ”testkey”. These apps have
aggregated 5.8 billion app installs in total. To our surprise,
even some popular apps (with millions of downloads) use
these publicly known keys, which expose them to great
security risks, e.g., attackers could arbitrarily modify the
app without developers’ knowledge. Table III lists the top



5 apps ordered by app installs that use testkey. For example,
app “com.shuqi.controller” is a famous novel reading app, and
“com.kiloo.subwaysurf” is a popular game app. But they were
found using “testkey” to sign themselves.

More than 553K apps in our dataset include some kind of
unprotected contents in the META-INF directory. Note that it
does not mean that all of them could be seriously attacked by
hackers, as some of the unprotected contents are resource files
that cannot incur serious security risks. However, it is still not
recommended by Android to list unprotected files in META-
INF, as attackers could easily tamper with the app and
modify it to replace the unprotected files without breaking
the V1 signature. The severity of risks introduced by this
vulnerability depends on the content of the unprotected files.

2) Exploits: Although we have categorized 6 kinds of
exploits and developed a tool to detect them, only two kinds
of exploits have been found in our dataset. 94 apps (435K
app installs in total) exploit the Master Key vulnerability to
perform possible attacks. We further upload these apps to
VirusTotal, an online malware detection service that embed
more than 60 anti-virus engines. The result suggests that 85 of
them are labelled as “Virus:Android.Masterkey” or “CVE-
2013-4787”. Table IV lists top 3 such apps ordered by the
number of flagged engines on VirusTotal.

The integrity of 1,110 apps were found being com-
promised, i.e., missing files listed in the MANIFEST.MF.
These apps have aggregated over 7.1 billion down-
loads in total. We further investigate this issue, and
found 156 of them with removed code, and the remaining
ones with removed resource files. For example, the Baidu
ad library “biduad_plugin/__pasys_remote_banner.jar” in app
“com.aew.vbsz” has been removed. One possible reason is
that attackers try to remove ad libraries to create an ad-
free app or compromise the functionalities of the apps.
These attacks could be successfully performed on systems
prior to 6.0 (cf. Section 2.3). Roughly 40% of them have
been flagged by at least one VirusTotal engine, and over 13%
of them have been flagged by at least 10 anti-virus engines.

To identify attacks that exploit the Janus vulnerability, our
tool automatically checks whether any of the apps add extra
bytes to the start of Zip file. Although 4 such apps are found
with this behavior, none of them attach the dex file. Thus, we
did not find any cases that exploit the Janus Vulnerability.

Besides, we found 6 apps with long extra field lengths and
41 apps with inconsistent file name lengths between CD and
LFH. However, all of them are breaking the resource files,
while none of them break the classes.dex files. Furthermore,
we did not identify apps that break the certificate chain.

3) Compatibility Issue: We analyzed the distribution of
the digest/signature algorithms in our dataset, as shown in
Figure 3. Most of the apps (over 90%) use SHA1WITHRSA
and SHA256WITHRSA algorithms. We have identified 8,518
apps with compatibility issues in our dataset, and found that
most of them are introduced by the SHA256WITHRSA algo-
rithm. As SHA256WITHRSA is supported on API levels higher
than 18, apps that declared minsdkversion lower than 18 will

TABLE IV
APPS THAT EXPLOIT THE MASTER KEY VULNERABILITY.

Package Name (MD5) App Installs VT (# Engines, Flag)
air.com.baobaogame.MathBearAndroid.EN
(53BD19EEED64F1182C993DB01CB11000) 500 23, MasterKey

air.com.shuchao.app.A36house
(E4359956968BD988478652EB63F6D6B8) 96 14, CVE-2013-4787

air.GreenCloudSmasherFree
(135EE5428EF595E8FB95581BC5F5F101) 10000 12, MasterKey, Revmob
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Fig. 3. The distribution of used digest algorithms.

have compatibility issues, leading to installation failures on
devices with lower API levels. We even found many popular
apps (with billions of downloads) with compatibility issues.
For example, “com.autonavi.minimap” is a popular app with
over 1 billion installs that were found with compatibility
issues, such that it cannot be installed on devices with earlier
Android versions, although many old devices are still popular
in countries such as China.

4) Release Bugs: Most of the apps with release bugs were
found in alternative markets. V2-related bugs and Zip bugs
were not found in Google Play. 81 apps in Google Play have
V1 bugs, and all of them belong to the Rollback Protection
issue, i.e., the JAR signature file indicates that the APK is
supposed to be signed with the V2 signature scheme (in
addition to V1) but no V2 signature was found in the APK,
which will lead to installation failure in the systems supporting
V2 signatures. A large portion of apps with Zip bugs were
found in Tencent Myapp, Xiaomi and OPPO markets,
which suggests that these markets do not enforce strict app
regulation, as these apps are definitely low-quality apps
that cannot be installed on any Android devices. 17,836
apps in total have V1 bugs, and most of them (over 80%)
belong to the issue that “mismatch between *.MF and JAR
entry”, which will lead to installation failure too. V2 related
bugs were found in 2,849 apps, as only over 185K apps have
adopted V2 signatures, over 1.5% of them have release bugs,
which will lead to installation failures on devices with system
versions higher than 7.0. This result suggested that many low-
quality developers have little experiences in releasing apps and
they were not even aware that their apps cannot be installed
on any devices successfully.

D. The Distribution of App Signing Issues

We then analyze the distribution of app signing issues
according to app category and app popularity (downloads).



VUL-1 VUL-2 ATK-1 ATK-2 CMPT-1 BUG-V1 BUG-V2 BUG-Zip

READING 0.01 0.02 0.00 0.01 0.02 0.02 0.02 0.02 
BROWSER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

BUSINESS 0.01 0.06 0.00 0.03 0.05 0.03 0.05 0.02 

COMMUNICATION 0.01 0.04 0.01 0.02 0.03 0.03 0.03 0.02 

EDUCATION 0.00 0.07 0.02 0.03 0.10 0.07 0.15 0.03 

ENTERTAINMENT 0.00 0.02 0.02 0.01 0.01 0.00 0.00 0.01 

FINANCE 0.01 0.05 0.00 0.02 0.06 0.05 0.13 0.02 

GAME 0.31 0.11 0.58 0.46 0.23 0.26 0.01 0.21 

HEALTH 0.00 0.04 0.00 0.01 0.03 0.04 0.07 0.01 

INPUT METHOD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LIFE 0.07 0.14 0.07 0.06 0.11 0.13 0.15 0.09 

LOCATION 0.00 0.04 0.00 0.02 0.03 0.03 0.06 0.02 

MUSIC 0.00 0.02 0.00 0.01 0.01 0.01 0.01 0.01 

NEWS 0.01 0.03 0.00 0.01 0.02 0.02 0.03 0.02 

PERSONALIZATION 0.36 0.01 0.00 0.01 0.02 0.09 0.00 0.05 

PHOTO 0.01 0.02 0.00 0.01 0.02 0.03 0.02 0.02 

SECURITY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SHOPPING 0.02 0.06 0.00 0.03 0.04 0.07 0.10 0.02 

SOCIAL 0.00 0.03 0.01 0.01 0.03 0.03 0.07 0.01 

TOOLS 0.04 0.06 0.00 0.03 0.05 0.03 0.04 0.04 

VIDEO 0.00 0.02 0.00 0.01 0.02 0.01 0.03 0.02 

OTHER 0.12 0.15 0.28 0.19 0.14 0.02 0.00 0.36 

Fig. 4. The distribution of app signing related issues across app categories.
Each column adds up to 100%.
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Fig. 5. The distribution of downloads for the apps with signing issues.

1) Category: Note that each Android market implements its
own app taxonomy. For example, Google Play defines 33 app
categories (excluding subcategories for Game), while Huawei
Market only has 18 categories. In order to understand the
general distribution of app signing issues across categories,
we manually developed a consolidated taxonomy containing
22 app categories, and map all the categories of 25 app markets
to this taxonomy, as shown in Figure 4.

As shown in Figure 4, most app signing issues were
found in categories including GAME, LIFE, PERSONAL-
IZATION, and EDUCATION. One possible reason is that
these categories are most popular across markets. For example,
roughly 50% of the apps that exploit existing vulnerabilities
to perform attacks were found in the GAME category, while
roughly 36% of apps with publicly known signature were
found in PERSONALIZATION. Most of the V2 related bugs
were found in EDUCATION, LIFE and FINANCE, while Zip
and V1 related bugs were found mostly in the GAME category.

2) App Popularity: We further investigate the correlation
between signing issues and app popularity (the number of app
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Fig. 6. The distribution of release/update time for all the identified apps.

downloads). Note that, as the app downloads across different
app markets vary greatly, we perform per-market analysis here.
Figure 5 listed the distribution of signing issues in each of the
4 top app markets due to space limitation.

To our surprise, although the apps with less popularity
(< 10K) account for a large portion of the issues, a con-
siderable number of them are popular apps with millions
of downloads. For example, over 10% of the apps with issues
found in Google Play have downloads higher than 1 million.
The result is more prevalent on popular apps of the alternative
markets, roughly 20% apps with V1 bugs and V2 bugs in the
Baidu market have more than 1 million app installs, suggesting
that these apps could introduce installation failure issues (at
least in some system versions), which will greatly affect users’
experience and the market’s reputation as well.

The apps with vulnerability and compatibility issues were
distributed across different app download ranges. In Google
Play, roughly 10% of the apps with known signatures have
installs higher than 100K, and roughly 10% of the apps with
compatibility issues have installs higher than 1 million. The
exploited apps (attacks) in general have fewer app downloads.
For example, all of the apps utilize Janus vulnerabilities have
less than 1K installs in Google Play. More than 97% of apps
with Zip bugs have less than 1K app downloads in Tencent and
OPPO markets, while the numbers in Baidu and Wandoujia
markets are outliers, which are 39% and 45% respectively.

VI. THE EVOLUTION OF SIGNING ISSUES

In this section, we study the evolution of signing issues
(RQ3). We first analyzed the release/update time of these apps
with signing issues. As most of the issues would lead to great
security risks or installation failures, we want to examine how
long they have been staying in the markets. Then we perform
a post analysis seven months later to measure how many apps
with signing issues have been removed or mitigated.

1) Release/Update Time: As shown in Figure 6, we have
investigated the distribution of release/update time for all the
issues we identified across four categories. Over half of
the bugs and attacks were released before 2016, which
means that they have affected millions of users for at least
two years (2 years prior to our first crawling process).
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VUL-1 0.36 0.83 0.75 0.28 0.63 0.54 0.51 0.79 1.00 0.97 0.99 0.60 1.00 0.68 1.00 0.75 0.91 1.00 0.98 0.63 0.98 0.95 0.97 1.00 0.98 

VUL-2 0.79 0.91 0.23 0.77 0.15 0.26 0.66 0.29 1.00 0.51 0.82 0.27 0.99 0.80 0.71 0.50 0.71 0.97 0.95 0.89 0.38 0.88 0.90 0.97 0.89 

ATTACK-1 0.29 0.67 0.93 0.33 n/a n/a 0.41 0.50 n/a 1.00 1.00 0.33 n/a 0.67 n/a n/a 0.83 1.00 n/a n/a n/a n/a n/a n/a n/a

ATTACK-2 0.42 0.94 0.48 0.32 0.50 0.61 0.38 0.22 1.00 0.96 0.98 0.56 1.00 0.60 1.00 1.00 0.86 0.93 1.00 0.47 1.00 0.95 0.78 0.95 1.00 

COMPATIBILITY 0.71 0.91 0.50 0.70 0.21 0.26 0.55 0.21 1.00 0.67 0.91 0.34 1.00 0.84 1.00 0.87 0.81 0.99 0.80 0.92 0.41 0.93 0.67 0.98 0.89 

BUG-V1 0.72 0.87 0.25 0.56 0.28 0.69 0.55 0.35 1.00 0.62 0.86 0.78 1.00 0.74 n/a 0.66 0.82 0.96 0.93 0.86 0.55 0.97 1.00 0.99 1.00 

BUG-V2 n/a 0.91 0.19 0.70 0.37 0.68 0.55 0.13 1.00 0.77 0.79 0.53 n/a 0.68 n/a 0.20 0.81 1.00 n/a 0.92 0.00 0.91 0.71 0.96 0.65 

BUG-ZIP n/a 0.96 0.55 0.57 0.67 0.69 0.43 0.43 1.00 1.00 0.99 0.70 1.00 0.65 n/a 1.00 0.89 1.00 0.80 0.80 0.00 0.96 0.96 1.00 0.96 

VUL-1 0.64 0.04 0.20 0.69 0.12 0.23 0.47 0.20 0.00 0.00 0.00 0.29 0.00 0.32 0.00 0.04 0.09 0.00 0.00 0.36 0.00 0.05 0.00 0.00 0.00 

VUL-2 0.20 0.02 0.04 0.10 0.07 0.08 0.25 0.11 0.00 0.00 0.00 0.06 0.00 0.15 0.00 0.17 0.02 0.00 0.00 0.05 0.00 0.10 0.00 0.00 0.00 

ATTACK-1 0.71 0.04 0.00 0.67 n/a n/a 0.59 0.50 n/a 0.00 0.00 0.50 n/a 0.33 n/a n/a 0.17 0.00 n/a n/a n/a n/a n/a n/a n/a

ATTACK-2 0.58 0.02 0.15 0.65 0.20 0.19 0.57 0.74 0.00 0.00 0.00 0.17 0.00 0.40 0.00 0.00 0.12 0.00 0.00 0.53 0.00 0.05 0.00 0.00 0.00 

COMPATIBILITY 0.29 0.02 0.08 0.23 0.09 0.14 0.40 0.47 0.00 0.00 0.00 0.10 0.00 0.15 0.00 0.06 0.05 0.00 0.00 0.04 0.00 0.07 0.00 0.00 0.00 

BUG-V1 0.28 0.02 0.04 0.25 0.08 0.11 0.36 0.34 0.00 0.00 0.00 0.11 0.00 0.24 n/a 0.14 0.05 0.00 0.00 0.10 0.09 0.01 0.00 0.00 0.00 

BUG-V2 n/a 0.07 0.02 0.30 0.10 0.10 0.33 0.25 0.00 0.00 0.00 0.05 n/a 0.32 n/a 0.20 0.00 0.00 n/a 0.04 0.00 0.09 0.00 0.00 0.00 

BUG-ZIP n/a 0.01 0.30 0.38 0.33 0.09 0.52 0.38 0.00 0.00 0.00 0.18 0.00 0.35 n/a 0.00 0.09 0.00 0.00 0.20 0.00 0.04 0.00 0.00 0.00 

(2) The Percentage of Removed Apps with Signing-related Issues across Markets

(1) The Percentage of Remaining Apps with Signing-related Issues across Markets

Fig. 7. The percentage of remaining/removed apps with signing related issues across markets after 7 months.

Over 70% of the vulnerabilities and compatibility issues were
released during 2016 and 2018.

This result suggested that, on one hand, the developers of
these apps usually paid little attention to the signing issues,
and some of them are even unaware whether their apps could
be successfully installed on users’ devices. On the other hand,
although each app market claims to enforce app inspection
on malicious code and app clones, they do not enforce
strict/any app inspection on signing issues, especially for
alternative markets (e.g., Tencent, Baidu and Xiaomi) with a
large number of low-quality apps with signing issues.

2) Post Analysis: Our results reveal that each market hosts a
significant number of apps with signing issues. We performed
a second app crawling on each app store about 7 months after
the first one in order to quantify: (1) whether the app markets
made any effort to remove those samples and (2) whether the
app developers identified the issues and updated the apps.

For each market, we crawled the apps with signing issues
and labeled them as: (1) remaining unchanged (identical APK
MD5 hashing), (2) removed, and (3) updated (to a newer
version). Note that we exclude HiAPK from the analysis as it
has discontinued its services before our second crawling.

Figure 7 shows the percentage of the remaining and re-
moved apps with signing issues. To our surprise, for 11 out
of 25 markets, more than 90% of the apps with signing
issues still remain in the market without any updates, as
shown in Figure 7(1). The situation is the worst for the 91,
Gfan, AppChina and PC Online markets, almost all of the
apps with signing issues remained in the markets without any
updates. Anzhi, Huawei and Google Play addressed part of the
vulnerable apps, but more than 50% of the apps with signing
issues still remained in the markets. By further analyzing the
removed vulnerable apps (cf. Figure 7(2)), it is interesting to
see that almost none of the apps with signing issues were

removed in 12 alternative markets (e.g., 91, OPPO, 25PP).
Google Play, 360 market, Wandoujia and Anzhi have removed
the most number of the apps with signing issues. On a per-
issue basis, most of the apps that are vulnerable to attacks (cf.
Section III-B) have been removed in Google Play, 360 and
Anzhi. However, most of the apps with compatibility issues,
V1 bug issues, and V2 bug issues did not get any updates.

This result suggests that the app regulation and app
maintenance behaviors across markets differ significantly.
Most of the alternative markets do not even remove the
risky apps, which could lead to severe consequences such
as compromising app users’ security and privacy and having
negatively impacts on the brands of the app markets.

VII. DISCUSSIONS

A. Implication

We believe that our efforts can positively contribute to
different stakeholders in the mobile app ecosystem.

App Markets. We found most markets paid little attention
to security issues introduced in the app signing process.
These markets host a large number of low-quality apps and
developers, and are even exploited by malicious developers to
disseminate malware. Thus, app markets should (1) improve
their app regulation process to eliminate apps with signing
issues before they enter the market, and (2) deploy automated
tools to identify/remove apps with signing issues, remove
low-quality developers, identify signing-related attacks, and
improve the app ecosystem.

App Developers. Experiment results suggested that many
app developers are unaware of the signing issues. Very few
developers have adopted the V2 signatures, while many devel-
opers use publicly-known private keys. Even some popular app
developers cannot deal with app signing correctly and many
of them suffer from compatibility issues. Our work could help



app developers identify and eliminate these signing issues, thus
helping improve app quality.

App Users. As most of the issues listed in this paper were
focused on the V1 signing scheme, a majority of them cannot
cause serious security issues on Android systems that support
V2 and V3 signing schemes (after 7.0). Our work could help
app users be aware of the severity of signing issues, and further
eliminate the issues by updating their devices to up-to-date
system versions and choose apps from high-quality markets.

Research Community. Our work could help encourage
more research on app signing issues, such as additional
app signing issues and advanced approach to identify them.
Besides, further studies could focus on the new signing
mechanisms and third-party signing frameworks (e.g., Baidu
OASP [19]), as well as automated exploitation of apps with
signing issues and how to identify such attacks.

B. Threats to Validity

To the best of our knowledge, this work is the first attempt
in the community towards characterizing app signing issues in
large scale. Our study, however, carries several limitations.

First, we focus on 21 kinds of signing issues, which were
summarized from CVE and existing technical reports. This
taxonomy might be incomplete, and we did not identify new
app signing vulnerabilities or anti-patterns. Nevertheless, it
is surprising to see that a large number of apps have been
exposed to security issues, although these issues were known
to the community for a long time. Besides, our measurement
study is limited by our dataset. On one hand, our dataset is a
bit outdated and does not cover the V3 signing scheme. On the
other hand, most of the apps in our dataset were crawled from
Chinese alternative app markets, which is not representative
enough to characterize the global app signing issues.

VIII. RELATED WORK

Measurement Study of App Security Issues. A number
of studies have measured the mobile app ecosystem in large
scale from different angles, including malware [20], [21], [22],
[23], repackaged apps [24], [25], [26], low-quality apps [27],
[28], permission issues [29], [30], [31], [32], third-party track-
ing [33], [34], [35], [36], [37], [30], fraudulent behaviors [38],
[39], [40], [41], and promotion attacks [42], [43], [44], etc.
Besides, cryptography APIs have been widely studied in the
mobile app ecosystem [45], [46], [47], [48], [49]. For example,
Egele et al. [45] empirically analyzed cryptographic misuses in
Android apps and found that over 88% of apps make at least
one mistake. iCryptoTracer [46] investigated the iOS app’s
usage of cryptographic APIs and observed that more than
65% of iOS apps contain various security flaws caused by
cryptographic misuses. Backes et al. [47] observed the misuse
of cryptographic APIs in mobile ad libraries. Wang et al. [49]
proposed a framework to investigate OAuth implementation
issues and found that 86.2% of the apps incorporating OAuth
services are vulnerable. Many other studies are focused on
analyzing vulnerabilities including the SSL/TLS issues [50],

[51], [52], the open port vulnerability [53] and the ICC
issues [54], [55], [56], [57], etc.

App Authorship/Developer Analysis. Oltrogge et al. [58]
have investigated online app generators and found that they are
suffering from well-known security issues, while developers
are unaware of these hidden problems. CredMiner [59] studied
the prevalence of unsafe developer credentials and found that
over half of them using free email services and Amazon
AWS are vulnerable. Gonzalez et al. [60] proposed to analyze
the authorship attribution of Android apps based on a set of
features extracted from the decompiled binary. Their results
suggested that they could achieve 97.5% accuracy on identi-
fying developers. Wang et al. [61] performed the first large
scale study of the mobile app ecosystem from the perspective
of app developers. The results suggested that over 70% of the
apps with severe privacy risks are created by 1% developers.
The follow-up work [62] has analyzed over 1 million Android
app developers across Google Play and 16 popular alternative
markets, from different angles including developing, releasing,
app maintenance and malicious behaviors.

App Signing for Securing App Installation. Barrera et
al. [63] conducted a detailed analysis of the app installation
process to study the update integrity and UID assignment.
They found empirical evidence that Android’s current signing
architecture does not encourage best security practices, and the
limitations of Android’s UID sharing method force developers
to write custom code for secure data transfer. Baton [64],
provides a mechanism to enable transparent key updates or
certificate renewals. These work were focused on exposing
the limitations of the signing architecture, while our work
conducted a systematic study to identify issues in existing apps
and shed light on attacks on the apps.

IX. CONCLUSION

In this work, we have conducted a large-scale measurement
study of Android app signing issues in the wild. We first
created a taxonomy of 21 anti-patterns, and then developed
an automated tool for conducting the characterization study.
We have studied over 5 million apps across 25 markets, and
revealed that various signing issues are prevalent in Google
Play and alternative markets. Furthermore, evolution analysis
suggested that most app markets have paid little attention to the
security issues caused by app signing, as almost all the apps
with signing issues were not removed/mitigated. We believe
that our research efforts can positively contribute to bring
developer and mobile user awareness of signing issues, attract
the interests of the research community and regulators, and
promote best operational practices across market operators.
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