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HIGHLIGHTS

® A proteomic analysis for deciphering cues from decellularized pancreatic materials for islet organoid development.
® Type V collagen induces the formation of human islet organoids that harbor all major pancreatic endocrine cell types.
® Type V collagen augments the generation of endocrine that secrete both glucose level-regulated insulin and glucagon.

ARTICLE INFO ABSTRACT

In pancreatic tissue engineering, generating human pancreatic islet organoids from stem cells has been chal-
lenging due mainly to a poor understanding of niches required for multicellular tissue self-assembly in vitro. In
this study, we aimed to identify bioactive, chemically defined niches from natural, biological materials for islet
development in vitro. We investigated the proteomics of decellularized rat pancreatic extracellular matrix
(dpECM) hydrogel using advanced bioinformatics analysis, and identified that type V collagen (ColV) is con-
stantly and abundantly present in dpECM hydrogel. Niches provided to human pluripotent stem cells (iPSCs) by
presenting ColV in matrix coating substrates permitted stem cells progression into islet-like organoids that
consist of all major pancreatic endocrine cell types, i.e. a, B, 8, and pancreatic polypeptide cells. In the presence
of ColV niches, gene expressions of all key pancreatic transcription factors and major hormone genes sig-
nificantly increased in iPSC-derived organoids. Most importantly, ColV-containing microenvironment resulted in
enhanced glucose responsive secretions of both insulin and glucagon hormone from organoids. The study de-
monstrates that ColV is a critical regulator that augments islet self-assembly from iPSCs, and it is feasible to
utilize natural biomaterials to build tissue cues essential for multicellular tissue production in vitro.
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1. Introduction had limited success, due in part to poor understanding of tissue niches
necessary for islet assembly and development. Although stepwise dif-

Human pluripotent stem cells (hPSCs), which include pluripotent ferentiation approaches have been developed to differentiate hPSCs

stem cells (iPSCs), are considered as promising self-renewable primitive
cell sources for cell replacement therapy and regenerative medicine [1].
In pancreatic tissue engineering, cadaveric islets are the only resource
of human islet organoids, and they are extremely limited resources.
Hence, it is important to generate alternatives in the forms of functional
hormone-secreting endocrine cells or islets, which will be valuable
tissue models for disease modeling, drug screening, and transplantation
for diabetes mellitus. However, human islet regeneration in vitro has

into insulin-producing cells in vitro [2-6], the generation of intact is-
lets, which comprise of multiple hormone-secreting islet cell types, i.e.
a, B, 8, and pancreatic polypeptide cells, remains challenging [2]. Re-
sults from previous studies suggest that polyhormonal cells may de-
velop into monohormonal cells following transplantation [7-9], in-
dicating that in vivo microenvironmental cues are competent for
accelerating and enhancing the development of hPSC-derived endo-
crine cells. Therefore, it is necessary to interrogate cues that mimic the
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native microenvironment to permit islet self-assembly in vitro.

Tissue extracellular matrix (ECM), a primary microenvironmental
component, has been identified as a determinant factor that regulates
numerous physiological and pathological processes, such as cell adhe-
sion [10], migration [11], proliferation [12], differentiation [13], in-
flammation [14], and cancer progression [15] etc. Decellularized pan-
creatic ECM (dpECM) is a favorable substrate for improving the survival
and function of rat islets and mouse f-cells in vitro cultures [16,17].
Narayanan et al. showed that a combination of decellularized ECM and
conditioned medium collected from a mouse p-cell line could success-
fully induce pancreatic differentiation from human embryonic stem
cells [18]. Another study conducted by Chaimov et al. demonstrated
that dpECM can be used as encapsulation material to support stem cell
viability and differentiation into insulin producing cells [19]. Further-
more, a previous study by our group has found that dpECM plays an
instructive role in islet organogenesis from hPSCs [20] and that a 3D
biomimetic scaffold environment mimicking physiological conditions in
the body also permits the formation of islet-like organoids assembled
with all four major endocrine cell types [21]. All of these findings imply
that natural tissue matrices may serve as unique niches to stem cells for
generating functional islet tissues. However, within the tissue matrix,
molecules that promote islet organoid development in vitro are largely
unidentified.

In this study, we employed proteomics and bioinformatics to iden-
tify cues that promote pancreatic islet development from hPSCs. We
hypothesized that some dpECM proteins offer instructive cues to direct
iPSC islet development. To test this hypothesis, we prepared dpECM
from rat pancreas and analyzed its protein profile through proteomics.
We discovered that protein contents in the dpECM are remarkably
distinct from those in Matrigel. In particular, we identified that type V
collagen (ColV) is constantly and abundantly present in the dpECM.
Niches provided to cells by blending ColV with Matrigel permitted
human iPSCs differentiating into islet organoids that consist of all major
pancreatic endocrine cell types, i.e. a, (3, 8, and pancreatic polypeptide
cells. The generated organoids express high levels of pancreatic genes
associated with islet identity and function. Most importantly, ColV ni-
ches lead to enhanced glucose responsive secretions of both insulin and
glucagon from iPSC-derived islet organoids. To the best of our knowl-
edge, these findings, for the first time, unveil the regulatory role of ColV
in promoting the generation of human islet organoids in vitro. The
study indicates that it is feasible to utilize natural biomaterials to build
tissue cues essential for multicellular tissue production in vitro.

2. Materials and Methods
2.1. Preparation of decellularized tissue matrix hydrogel from rat pancreata

Rat pancreata were obtained from the Laboratory of Animal
Resources at Binghamton University. Adult male and female Sprague
Dawley rats (Charles River) 2-12 weeks old were euthanized by CO,
asphyxiation in accordance with American Veterinary Medical
Association (AVMA) guidelines. Pancreata were harvested, pooled, and
rinsed with cold PBS twice then stored at —80 °C until use. Before
decellularization, the frozen pancreata were cut into 1.5 mm sections
using a deli-style slicer (Chef's choice 632, EdgeCraft Corporation) and
immediately rinsed with cold deionized water for 5 times at 4 °C with
gentle shaking. The entire decellularization process was performed at
4 °C with continuous shaking. The tissue sections were washed with
hypertonic solution (10% sodium chloride solution containing 0.1%
ammonium hydroxide) for 12 h and deionized water for 12 h. After 4
cycles of hyper/hypotonic washes, the tissue sections were rinsed ex-
tensively with deionized water and frozen overnight at —80 °C. The
decellularized pancreatic tissues were lyophilized using Freezone freeze
dry system (LABCONCO) and grinded using a Wiley Mini Mill (Thomas
Scientific). The DNA content of lyophilized, decellularized tissues was
quantified using a DNeasy Blood and Tissue Kit (QIAGEN) following
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manufacturer's instructions. To prepare the tissue matrix hydrogel,
40 mg of lyophilized material powder was solubilized in 2 ml of 0.02 N
acetic acid containing 4 mg of pepsin (Sigma- Aldrich, catalogue
number P6887) for 48 h at room temperature with continuous stirring,
after which the ECM powder was dissolved with very minor or no in-
soluble fraction. The resultant tissue matrix hydrogel, designated as
dpECM, was aliquoted and stored at —80 °C until use. Three biological
repeats of dpECMs prepared in separate batches from different animals
were used in this study.

2.2. Sample preparation for mass spectrometry

Growth factor reduced Matrigel (Corning Life Sciences) and dpECM
samples were prepared using a filter-assisted sample preparation
method, as described previously [22]. Briefly, samples were dissolved
in a lysis buffer containing 5% sodium deoxycholate (SDC), 50 mM Tris-
HCl (pH 7.6), and 3 mM dithiothreitol (DTT) at 60 °C. After cen-
trifugation to remove any undissolved particles, the supernatant was
transferred to a 30 kD MWCO ultra centrifugal filter (Millipore) and
centrifuged at 13,000 g for 30 min. The concentrated sample was ex-
changed with 1% SDC and 100 mM Tris-HCI (pH 7.6) buffer, then al-
kylated with 15 mM iodoacetamide in dark for 90 min. Samples were
trypsinized with sequencing grade modified trypsin at the enzyme to a
sample ratio of 1:100 overnight at 37 °C. Digested peptides were col-
lected and desalted using reversed phase stop-and-go extraction
(STAGE) tips as previously described [23]. Peptides were eluted with
80% acetonitrile, 5% ammonium hydroxide and vacuum centrifuged in
a SpeedVac (Thermo Fisher) for 1 h to remove volatile components.

2.3. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)

All samples were analyzed on a quadrupole-Orbitrap mass spec-
trometer (Q-Exactive, Thermo Fisher) by Bioproximity Inc. LC was
performed on an Easy-nLC 1000 UHPLC system (Thermo) connected
with an Easy Spray PepMap column (Thermo, 50 cm x 75 um LD.).
Mobile phase A (97.5% MilliQ water, 2% acetonitrile, and 0.5% acetic
acid) and mobile phase B (99.5% acetonitrile and 0.5% acetic acid)
were used to run a LC gradient from 0 to 25% phase B over 210 min,
then to 25-80% phase B for 30 min. The mass spectrometer was set to
acquire tandem mass spectra from the top 20 ions in the full mass scan
at mass range 400-1200 m/z. The dynamic exclusion window was set to
15 s, singly-charged ions were excluded, isolation width was set to
1.6 Da, full MS resolution was set to 70,000 and MS/MS resolution was
set to 17,500. The automatic gain control was 2e5 and the normalized
collision energy was set to 25, max fill MS was set to 20 ms, max fill
MS/MS was set to 60 ms, and the underfill ratio was set to 0.1%. Three
biological replicates for Matirgel and three biological replicates using
different batches of dpECM hydrogel were analyzed.

2.4. Data analysis

Raw data obtained after LC-MS/MS was converted to MS/MS con-
tainer files (MGF) format and searched on Amazon Web Services-based
cluster compute instances using X!Tandem with the most recent protein
sequence libraries available from UniProtKB for the appropriate or-
ganism. All searches required 10 ppm precursor mass tolerance, 0.02 Da
fragment mass tolerance, strict tryptic cleavage, up to 2 missed clea-
vages, fixed modification of cysteine alkylation, variable modification
of methionine oxidation, and protein-level expectation value scores of
0.0001 or lower. Protein identifications were accepted if they were
assigned at least two unique, validated peptides across the analyzed
samples with an E-value score of 0.0001 or less. These thresholds re-
sulted in a protein false discovery rate (FDR) of 0.1% [24]. Serum al-
bumin, keratins, and trypsin were considered as contaminants and were
excluded from analysis. Relative protein abundance was calculated as a
percentage of unweighted spectral count, assigned to each identified
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Fig. 1. Characterization and proteomic analysis of decellularized pancreatic ECM. Representative macroscopic images of rat pancreatic tissue before (A) and
after (B) decellularization. (C) DNA quantitation of dpECM in comparison to rat pancreatic tissues (fPAN), n = 3. Data are shown as mean = SD. *,p < 0.05. (D)
Average numbers of intracellular and extracellular proteins identified in Matrigel (M) and dpECM, along with the percentage of extracellular proteins in all identified
proteins. (E) Venn diagram with total numbers of intracellular (In) and extracellular (Ex) proteins identified in MG and dpECM. n (M) = 3, n (dpECM) = 3.

protein, to the total number of spectra observed in the entire sample.
Gene ontology (GO) enrichment analysis was performed using STRAP
V1.5.0.0 (Software Tool for Rapid Annotation of Proteins) [25]. Pro-
teins annotated with Gene Ontology terms GO: 0005576 (extracellular
region), GO: 0005615 (extracellular space), GO: 0005886 (plasma
membrane), and GO: 0009986 (cell surface) were classified as extra-
cellular proteins. Matrisome annotations were identified using Matri-
someDB 2.0 (http://www.matrisomedb.org) [26,27].

2.5. Cell culture and differentiation

Undifferentiated human iPSC line IMR90 was obtained from WiCell
Research Institute and routinely cultured on Matrigel-(M, 80 pg/ml)
coated dishes in mTeSR1 medium (STEMCELL Technologies). Cells
were passaged every 4 days at ratios of 1:3 to 1:5. Differentiation was
performed as described elsewhere [20]. Briefly, undifferentiated stem
cells were harvested using Accutase (STEMCELL Technologies) and
seeded onto Matrigel or Matrigel with various amounts of human ColV
(Sigma-Aldrich, catalogue number C3657) (M + C)-coated 6-well
plates with a density of one million cells/well and cultured in mTeSR1
for 24 h at 37 °C in an incubator with 5% CO,. The ColV concentrations

used in this study are: 20 (M + C 20) and 40 (M + C 40) pg/ml.

The stepwise differentiation protocol used in this study was devel-
oped in our lab based on our previous work and those of others
[3,4,21,28]. To initiate differentiation, mTeSR1 medium was replaced
with differentiation media, as shown in Fig. 5A. Differentiation media
in Stage 1 (S1, definitive endoderm) included 50 ng/ml activin A (a
TGF-f family member to promote the formation of definitive endoderm,
PeproTech) and 1 mM sodium butyrate (NaB, a sonic Hedgehog sig-
naling inhibitor to inhibit liver cell formation, Sigma-Aldrich) in RPMI
1640 (Corning) supplemented with 1 x B27 (Gibco) for 24 h, then the
NaB was reduced to 0.5 mM for 3 days. Differentiation media for Stage
2 (S2, posterior foregut) included 250 pM ascorbic acid (Vc, Sigma-
Aldrich), 50 ng/ml keratinocyte growth factor (KGF, a FGF family
member to promote cell proliferation and differentiation, PeproTech),
50 ng/ml Noggin (a BMP signaling inhibitor, PeproTech), 1 uM retinoic
acid (RA, RA signaling for pancreatic development, Sigma-Aldrich),
300 nM (—)-indolactam V (ILV, a protein kinase C activator for pan-
creatic development, AdipoGen), and 100 nM LDN193189 (LDN, a BMP
signaling inhibitor, Sigma-Aldrich) in RPMI 1640 supplemented with 1
x B27 for 5 days. Differentiation media for Stage 3 (S3, pancreatic
progenitor) included 1 uM RA, 200 nM LDN, 300 nM ILV, 1 uM 3,3’,5-
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Fig. 2. Enrichment analysis of GO terms for proteins identified in dpECM as compared with those of Matrigel. The proteins were assigned to three main
categories: cellular component (A), molecular function (B), and biological process (C). Percentages of these proteins were calculated from protein numbers of

individual assignments in the total number of proteins. Data are shown as mean

Triiodo- L-thyronine sodium salt (T3, a thyroid hormone to potentiate
insulin signaling, Sigma-Aldrich), 10 uM ALKS5 inhibitor II (ALKi, a
TGF-p signaling inhibitor for pancreatic cell development, Enzo Life
Sciences), 10 pg/ml heparin (HP, Sigma-Aldrich) in DME/F12 (Hy-
Clone) supplemented with 1 x B27 and glucose to a final concentration
of 20 mM for 5 days. Differentiation media in Stage 4 (S4, endocrine
lineage) included 1 uM T3, 10 uM ALKi, 1 mM N-acetyl cysteine (N-Cys,
a signaling molecule to increase MAFA expression, Sigma-Aldrich),
0.5 UM R428 (a tyrosine kinase receptor AXL inhibitor to induce MAFA
expression, SelleckChem), 10 pM trolox (a vitamin E derivative for 3
cell formation, Enzo Life Sciences), 100 nM y-secretase inhibitor XX
(SiXX, a Notch pathway inhibitor for 3 cell formation, Millipore), 10 uM
zinc sulfate (Sigma-Aldrich), 10 mM nicotinamide (Nic, a poly (ADP-
ribose) synthetase inhibitor that induces endocrine cell maturation,
Sigma-Aldrich), 10 pg/ml HP in RPMI 1640 supplemented with 1 x B27
and glucose to a final concentration of 20 mM for 7 days. Differentia-
tion media in Stage 5 (S5, mature endocrine cells) included CMRL
supplement containing either 2% bovine serum albumin (BSA) (Sigma-
Aldrich) or 2% fetal bovine serum (Sigma-Aldrich), 1 uM T3, 10 uM
ALKi, 0.5 uM R428, 10 mM Nic, and 10 uM H1152 (a ROCK II pathway
inhibitor for B cell maturation, Enzo Life Sciences) for 7 days. All dif-
ferentiation media were changed every two days, unless otherwise
specified. For the suspension culture, cells at day 4 of S4 were detached
with Dispase (STEMCELL Technologies), dissociated by gentle pipet-
ting, and further cultured in 24-well ultra-low attachment plate with
the differentiation media. Half of the medium was changed daily to
avoid removing aggregates.

2.6. TagMan quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted at the end of the five-stage stepwise dif-
ferentiation using an RNeasy Mini Kit (Qiagen), and 200 pg of RNA
from each sample was analyzed using QuantiTect Multiplex PCR Kit
(Qiagen) according to manufacturer's instructions. Primer-probe sets
used in this study are listed in Table S1. QqRT-PCR was performed using
a CFX Connect Real-Time PCR system (Bio-Rad). Non-reversely tran-
scribed RNA and/or no-template samples were used to serve as negative

SD.n (M) = 3, n (dpECM) = 3.

controls, as described previously in our work [29,30]. Expression values
were normalized to cyclophilin as an internal housekeeping gene and
then calculated as fold change relative to undifferentiated IMR9O cells
cultured on Matrigel using AACt method [[28],]. RNAs extracted from
human islets (Prodo Laboratories Inc.) were used as positive controls.
For each sample, at least three independent differentiation experiments
were performed.

2.7. Immunofluorescence microscopy

At the end of stepwise differentiation, organoids were rinsed with
PBS for three times and fixed with 4% PFA for 1 h on ice, followed by an
overnight incubation in 30% sucrose solution (w/v) at 4 °C, after which
the samples were embedded in optimal cutting temperature compound
solution (OCT) (ThermoFisher Scientific) and sectioned at 7 pm thick-
ness. The sections were mounted on TruBond™ Adhesion Slides
(Electron Microscopy Sciences) for permeabilization and blocking with
Foxp3/Transcription Factor Fixation/Permeabilization  solution
(ThermoFisher Scientific) according to manufacturer's instruction. The
sections were stained with antibodies as described elsewhere [[20]]. In
brief, the sectioned samples were incubated with primary antibodies
diluted in blocking buffer overnight at 4 °C and washed with blocking
buffer for three times at room temperature. Secondary antibodies were
then applied for 1 h at room temperature in the dark, after which the
sections were washed, counterstained, and mounted with Vectashield
Mounting Medium containing DAPI (Vector Laboratories). Images were
captured using a Zeiss 880 multiphoton laser scanning microscope. The
images (n = 17-52) of aggregates containing positive endocrine cells
(> 3000 cells) under each treatment were quantified to calculate the
percentage of each type of endocrine cells in the organoids using the
ImageJ software (Version 1.50b, National Institutes of Health). Human
islets (Prodo Laboratories Inc.) processed with the same protocol were
used as positive controls. All antibodies used in this study are listed in
Table S2.
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Fig. 3. Matrisome subcategories of extracellular proteins in dpECM and Matrigel. (A) Percentages of proteins under different matrisome subcategories were
calculated by dividing the protein numbers of individual matrisome subcategories by the total number of extracellular proteins. (B) Percentage of protein abundance
under different matrisome subcategories in the total abundance of extracellular proteins. Data are shown as mean = SD.n (M) = 3, n (dpECM) = 3. (C) A list of
high abundant proteins in each matrisome protein subcategory. Proteins identified in at least two batches of dpECM samples were listed, color coded, and sorted by
their average percentage of total extracellular protein abundance. The length of red color bars represent the average percentage of each protein in total extracellular
proteins, proportional to the percentage. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

2.8. Detection of insulin and glucagon secretion

To measure insulin secretion, serum-free differentiation media were
applied for stepwise differentiation. The 2% serum was replaced with
2% BSA in the differentiation medium of Stage 5 to rule out any po-
tential interference from the serum. At the end of differentiation, or-
ganoids were washed twice with PBS and preincubated in Krebs-Ringer
buffer (KRB) (120 mM sodium chloride, 5 mM potassium chloride,
2 mM calcium chloride, 1 mM magnesium chloride, 5.5 mM HEPES,
and 1 mM D-glucose) for 4 h at 37 °C to remove any residual insulin.
After rinsing twice with KRB, the cells were separately incubated with
KRB containing 2 mM D-glucose, 20 mM D-glucose, or 2 mM D-glucose
with 30 mM KCl at 37 °C for 30 min. The respective supernatants were
collected and human insulin levels were measured with a human insulin
enzyme-link immunosorbent assay (ELISA) kit (ALPCO Diagnostics)
according to manufacturer's instructions. Total DNA was extracted from
each sample using a DNeasy Blood and Tissue Kit (Qiagen) for nor-
malization. Human islets were used as a positive control.

To measure glucagon secretion, the organoids cultured in S5
medium supplemented with 20 mM glucose for 7 days were washed

twice with KRB containing 20 mM glucose and then incubated in the
same solution at 37 °C for 4 h. Then the organoids were separately
incubated with KRB containing 2 mM D-glucose, 20 mM D-glucose, or
2 mM D-glucose with 30 mM KClI at 37 °C for 30 min. The respective
supernatants were collected and human glucagon levels were measured
using a human glucagon chemiluminescent ELISA kit (Millipore) ac-
cording to manufacturer's instructions. Total DNA content from each
sample was determined for normalization. Human islets were used as a
positive control.

2.9. Statistical analysis
Data are presented as means *+ standard deviation (SD) of at least

three independent experiments. Statistical analysis was calculated by
Student's t-test and significance level was set at p values < 0.05.
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this article.)

3. Results
3.1. Proteomic characterization of dpECM materials

The dpECM hydrogel was generated by a detergent-free decel-
lularization method as described in Materials and Methods. After de-
cellularization, the removal of the cellular components was reflected in
the color change of pancreatic tissues from cardinal red into clear white
(Fig. 1A-B). To evaluate decellularization efficacy, DNA from each
batch of dpECM was quantified (Fig. 1C). The residual DNA content in
dpECM was only 0.8% of native pancreatic tissue level (61 * 23 ng/
mg in dpECM versus 7567 = 647 ng/mg in native tissues), which
indicates a complete removal of cellular component in the decellular-
ized tissue matrix.

We hypothesized that dpECM hydrogel material contains protein
molecules that can function as microenvironmental cues for islet or-
ganogenesis. Hence, we characterized the protein composition of
dpECM. Growth factor reduced Matrigel, which is commonly used as a
supportive substrate for hPSC culture and differentiation, was used for
comparison. Throughout mass spectrometry (MS) analysis, we identi-
fied an average of 956 proteins from Matrigel samples and 155 proteins

from dpECM samples (Fig. 1D, Table S3). All identified proteins were
categorized as either intracellular or extracellular proteins. As expected,
Matrigel was dominated by intracellular proteins since Matrigel is a
reconstituted extract prepared from basement membrane-rich sarcoma
without decellularization (Fig. 1D and E) [32]. On the contrary, d(pECM
showed a significantly higher proportion of extracellular proteins
(42.3%) as compared to Matrigel (25.4%), although the average
number of proteins identified in dpECM was limited (Fig. 1D). Collec-
tively, 1637 proteins were identified from three Matrigel samples, in-
cluding 408 different extracellular proteins (Fig. 1E and Table S4).
Among three batches of dpECM samples, 526 proteins were identified,
including 134 extracellular proteins (Fig. 1E and Table S4). Matrigel
and dpECM only shared 91 proteins in common, out of which 59 were
intracellular proteins and 32 were extracellular proteins (Fig. 1E).
Taken together, these proteomic results showed distinct protein com-
positions between Matrigel and dpECM.

3.2. Gene oncology enrichment analysis of the matrix materials

Throughout gene oncology (GO) analysis, we found that the ma-
jority of differentially identified proteins enriched in dpECM was
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Fig. 5. Enhancement of islet organoid development in the presence of ColV substrates. iPSCs were induced to differentiate to endocrine tissues on Matrigel (M)-
coated, or Matrigel and ColV (M + C) mixed substrates-coated plates at indicated ColV concentrations following a five-stage differentiation protocol. (A) Culture
method and key signaling molecules used are shown at each stage of differentiation. (B) At the end of five-stage differentiation, organoids were characterized for the
expression levels of islet marker genes. The expression levels were normalized to undifferentiated IMR9O0 cells. Results are from three independent differentiation
experiments and shown as mean + SD. *,p < 0.05; **, p < 0.01; and ***, p < 0.001 compared to M group. Different letters above the bars represent that the
bars are significantly different from each other. Human islet RNA was used as a positive control.

located in the extracellular space and the plasma membrane, while
proteins located in cell organelles and the nucleus were highly enriched
in Matrigel (Fig. 2A). This is consistent with our finding, noted in
Fig. 1D, that Matrigel contained a large quantity of intracellular pro-
teins and showed a smaller extracellular protein proportion than
dpECM. In the category of molecular function, a higher percentage of
proteins annotated with catalytic activity (GO: 0003824) and structural
molecule activity (GO: 0005198) was identified in dpECM samples
(Fig. 2B), which indicates that dpECM potentially engages in regulatory
activities in pancreatic tissues. A further GO analysis of biological
processes showed that proteins associated with biological regulation,
cellular process, cell interaction, developmental and metabolic process
were significantly enriched in dpECM (Fig. 2C), suggesting that d(pECM
is closely related to cell behavior and tissue development control.
Collectively, the data highlight that, although structurally important
proteins for cell binding constitute the bulk of both Matrigel and
dpECM, extracellular proteins involved in biological control are higher
concentrated in dpECM than in Matrigel.

3.3. Matrisome composition of matrix materials

To better characterize extracellular proteins in dpECM hydrogel, we
employed an ECM-specific categorization database, MatrisomeDB 2.0
[33], to analyze the biochemical properties of ECM and ECM-associated
proteins (Table S5). Compared with the extracellular proteins in Ma-
trigel, dpECM had larger proportions of glycoproteins, collagens, and a
slightly higher proportion of secreted factors in the total number of
proteins identified (Fig. 3A). We found consistent results, in that col-
lagens and secreted factors were significantly enriched in dpECM, by
comparing the average relative abundances of extracellular proteins in
dpECM and Matrigel (Fig. 3B). However, the relative abundance of
glycoproteins in Matrigel was higher than that in dpECM, indicating the
existence of highly abundant glycoproteins in Matrigel. These ob-
servations were validated and illustrated in Fig. 3C, where we listed up
to the top 10 abundant proteins attributed to each matrisome sub-
category. As expected, we found that major basement membrane gly-
coproteins such as laminin and nidogen were enriched in Matrigel,
while collagens and secreted proteins related to digestive functions of
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Fig. 6. Comparison of endocrine marker gene expressions in islet organoids developed in the presence of ColV or dpECM substrates. iPSCs were induced to
differentiate to endocrine tissues on Matrigel (M)-coated, Matrigel and ColV (M + C) mixed substrates-coated, or Matrigel and dpECM (M + d) mixed substrates-
coated plates at indicated concentrations following a five-stage differentiation protocol. At the end of differentiation, the expression levels of endocrine marker genes
in the organoids were quantified by qRT-PCR and normalized to undifferentiated IMR90 cells. Results are from three independent differentiation experiments and
shown as mean = SD. *, p < 0.05; **, p < 0.01; and ***, p < 0.001 compared to M group. Different letters above the bars represent that the groups are
significantly different from each other. Human islet RNA was used as a positive control.

the pancreas were proportionally higher in dpECM as compared to that
in Matrigel (Fig. 3C).

3.4. ColV exists exclusively in dpECM but not in Matrigel

As noted above, a major difference that we found between the
compositions of Matrigel and dpECM was the relatively high abundance
of collagens and secreted proteins in dpECM. Since the secreted proteins
identified in dpECM were digestive enzymes, which would have
minimum effect on stem cell differentiation, we then focused our ana-
lysis on the differentially existing collagen contents between Matrigel
and dpECM. Our comparative analysis demonstrated that the relative
abundance of all the collagen chains identified in dpECM replicates
were higher than that in Matrigel samples (Fig. 4A). Likewise, we found
that the relative proportions of collagen type II, III, V, and VI in the
extracellular proteins of dpECM were significantly higher as compared
with those of Matrigel (Fig. 4B). Notably, ColV was the only collagen
with all known types of a chain subunits found in dpECM samples in
relatively high abundance among the extracellular proteins. Upon
comparison of the types of collagen identified in Matrigel and dpECM,
we observed that eight types of collagen exclusively exist in dpECM
samples, in which type II, III, and V were identified from all three
batches of dpECM hydrogel (Fig. 4C). In addition, the proportions of
these three types of collagen in extracellular proteins were also rela-
tively high among the proteins found exclusively in dpECM (Fig. 4D). It
should be noted that ColV was reported to be present in islets of Lan-
gerhans [34] and is indispensable for the proper development and
function of B-cells [35]. Furthermore, since only al subunits were
identified for other collagens such as Col II and III, given that different
a chain subunits may interact with different receptors and trigger

different signaling pathways [34,36], we hypothesized that ColV may
play a more important regulative role and can be beneficial or critical
for pancreatic islet development from induced differentiation of stem
cells. Hence, ColV became the major focus for further investigation in
this study.

3.5. ColV promotes islet development from induced differentiation of iPSCs

To validate our hypothesis, we developed five-stage stepwise islet
development procedures with a combination of 2D and suspension
culture to generate islet-like organoids from iPSCs (Fig. 5A). ColV was
used as a coating substrate for seeding cells in tissue culture plates to
initiate iPSC differentiation. Since ColV alone as a coating substrate was
reported to be antiadhesive toward many cell types [37-39], we
blended ColV with Matrigel in a coating solution at the concentrations
indicated in Fig. 5B to provide cells with tissue specific cues for endo-
crine development. At the end of five-stage differentiation, expressions
of key endocrine marker genes were detected. Cells that differentiated
in the presence of ColV substrate showed significantly higher expres-
sion levels of all the endocrine markers examined than those cultured in
Matrigel-alone coated plates (Fig. 5B). These markers include key
transcription factors PDX1, NKX6.1, MAFA, MAFB, UCN3, and ARX, as
well as all the major islet hormone genes insulin, glucagon, somatos-
tatin, and pancreatic polypeptide. Importantly, the increase of ColV
concentrations from 20 to 40 pg/ml further, significantly augmented
the expressions of glucagon, somatostatin, MAFA, UCN3, and ARX,
suggesting that ColV affects endocrine development in a dose-depen-
dent manner (Fig. 5B).

To investigate whether ColV exerts the major regulatory function of
dpECM during pancreatic differentiation, we compared the major
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Fig. 7. Enhancement of organogenesis of iPSC-derived islet organoids in the presence of ColV substrates. iPSCs were induced to differentiate to endocrine
tissues on Matrigel (M)-coated, or Matrigel and ColV (M + C) mixed substrates-coated plates at the indicated ColV concentrations following a five-stage differ-
entiation protocol. At the end of differentiation, the organoid tissues were immunofluorescently labeled for (A) C-peptide (CP, green) and glucagon (GCG, red); (B)
somatostatin (SST, green) and pancreatic polypeptide (PPY, red); (C) MAF bZIP transcription factor A (MAFA, green) and CP (red); and (D) MAF bZIP transcription
factor B (MAFB, green) and GCG (red). Cells were counterstained with DAPI (blue). Scale bars, 20 pm. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)

endocrine marker gene expressions of Stage 5 aggregates developed on
dpECM-containing substrates with those developed on collagen V
(ColV)-containing coating substrates (Fig. 6). The experimental results
revealed that the expressions of NKX6.1, somatostatin, MAFA, MAFB,
and ARX were significantly enhanced in the presence of intensified
ColV, as compared to their expressions in dpECM environments. These
results were expected, as dpECM only entails very trace amounts of
ColV. On the contrary, PDX1 and glucagon gene expressions showed
less improvement in ColV cues as compared to dpECM (Fig. 6), sug-
gesting that other components in dpECM might be crucial for inducing
the expression of these genes.

To validate the unique role that ColV plays in islet development, we
also investigated type I collagen (Col I), another type of collagen
identified abundantly in dpECM as shown in Fig. 4A-B. We compared
gene expressions of endocrine markers in iPSCs differentiated with
M + Col I and M + ColV and found that there were no significant

differences on the gene expression levels of insulin, glucagon, soma-
tostatin, and pancreatic polypeptide between M + Col I and Matrigel-
alone coating groups, while the M + ColV group showed a significant
enhancement (Fig. S1), which indicates type-dependent regulation of
collagens in pancreatic differentiation.

3.6. ColV induces the recapitulation of human islet organoids harboring all
major pancreatic endocrine cell types from iPSC-derived endocrine cells

To characterize the cellularity and architecture of islet organoids
generated, immunofluorescence microscopy was performed to detect all
major hormone secreting endocrine cells and their localizations. It
should be pointed out that there are no reliable markers that can be
used to separate islet organoids from other cell aggregates through flow
cytometry. Besides, the efficiency of the generation of islet-like orga-
noids remains low. Therefore, we had difficulty correctly and reliably
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Fig. 8. Characterization of the architecture and glucose-responsive secretions of insulin and glucagon of iPSC-derived islet organoids in the presence of
ColV substrates. At the end of differentiation, (A) the organoid structures generated under varied experimental conditions were examined by immunofluorescence
staining, followed by semi-quantitative imaging analysis using ImageJ as described in Materials and Methods. Images were quantified to estimate approximate
populations of each cell subtype (n = 17-52). Results are shown as mean + SD. Different letters above the bars represent that the groups are significantly different
from each other. Human islets (hislet) were used as positive controls. (B) Insulin secretions upon glucose challenge were measured by challenging organoids with low
(2 mM) and high (20 mM) concentrations of glucose solution (n = 5 for M group, n = 4 for M + C groups). Fold change was calculated as the ratio of insulin secreted
in high glucose conditions to that in low glucose conditions. *, p < 0.05; (C) Glucose-stimulated glucagon secretion was assessed by challenging organoids with low
(2 mM) and high (20 mM) concentrations of glucose solution (n = 5). Fold change was calculated as the ratio of glucagon secreted in low glucose conditions to that in
high glucose conditions. Human donor islets (hislet, n = 4) were used as controls. *, p < 0.05; NS, not significant.

estimating the islet cell subpopulations from the entire population aggregates formed on Matrigel alone substrates (Figs. 7B and 8A). To
containing many non-islet cells. In order to characterize cell archi- examine the maturity of these endocrine cells, two critical transcription
tecture to determine heterogeneity and estimate the organoids’ cell factors expressed in adult islets, MAFA and MAFB, were dual-stained
composition, we performed cryo-sectioning, immunostaining, and with CP and GCG, respectively, and imaging analyzed [41,42]. As
fluorescence microscopy, followed by calculating the percentage of displayed in Fig. 7C-D and Fig. 8A, elevated proportions of CP*/
each type of endocrine cells in the organoids using the ImageJ software MAFA™ and GCG*/MAFB™* cells were found in the organoids gener-
as reported previously [40]. The images (n = 17-52) of each subtype of ated in the M + C 40 group, while cells in the aggregates that formed in
islet cells were quantified. We discovered that, in the presence of ColV the Matrigel alone group scarcely expressed these transcription factors
as a substrate in the early stages of differentiation, iPSC-derived orga- (Fig. 8A). These experimental results clearly indicated that ColV plays
noids exhibited distributions of insulin-secreting [-cells comparable to an important role in recapitulating islet organogenesis during iPSC
that found in human islets (Fig. 7A and Fig. 8A M + C 40 and hislet), pancreatic differentiation.

where the M + C 40 group yielded 34.7 = 6.5% c-peptide (CP)-po-
sitive cells compare to 54.7 *+ 22.5% CP * cells in human islets. No-
tably, the percentage of glucagon (GCG)-secreting a-cells in the M + C
40 group was 17.6 * 6.5%, which was very close to the population in
human islets (18.9 = 8.6%) (Figs. 7A and 8A). In contrast, cell ag-

gregates formed on Matrigel alone substrates showed significantly less Having characterized the instructive role ColV played in islet or-
CP* and GCG* cells (Figs. 7A and 8A M, 20.5 * 7.4% and ganogenesis, we next evaluated the potential of the in vitro generated

8.8 * 5.0%, respectively). In addition, both somatostatin-secreting &- organoids in controlling glycemic homeostasis under glucose challenge.
cells and pancreatic polypeptide-secreting PP-cells were detected in the As Sho"fm in Fig. 8B, orgar'101ds that differentiated in the presence f’f the
organoids formed on ColV and Matrigel mixed substrates (Figs. 7B and ColV niche showed considerably more glucose-responsive insulin se-

8A M + C 20, M + C 40), while no PP-cells were found in the cretion (p < 0.05), while the aggregates cultured on Matrigel alone
substrates showed poor responsiveness to sugar level changes. n M + C

3.7. ColV augments glucose-responsive hormone production in iPSC-derived
islet organoids

10
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40, the insulin fold change in high and low glucose levels is similar to
that in human donor islets (Fig. 8B). Another primary glucoregulatory
hormone secreted by islets is glucagon, whose secretory response is
triggered by hypoglycemia. To evaluate whether the iPSC-derived islet
organoids are capable of secreting glucagon in response to glucose le-
vels, we performed glucose-stimulated glucagon secretion (GSGS). We
observed that glucose-regulated glucagon secretion from the organoids
cultured in the M + C 40 group improved as compared to the control
group (p < 0.05) (Fig. 8C). The iPSC-derived organoids showed glu-
cose-regulated glucagon secretion, similar to human islets (Fig. 8C).
Taken together, these experimental results revealed that ColV augments
the in vitro generation of islet organoids with glucoregulatory secretion
of both insulin and glucagon.

4. Discussion

Existing protocols for generating endocrine cells focused on mi-
micking sequential signaling by using small molecules and growth
factors to control differentiation pathways in islet cell development.
However, the highly regulated pancreas organogenesis not only relies
on proper intracellular signaling, but also requires extracellular niches.
The role of an ECM on hPSC differentiation is incomplete, perhaps due
partly to its ultra-soft mechanical properties and instable nature. In this
study, we have systematically characterized dpECM hydrogel materials
to identify unique ECM factors exclusively enriched in the pancreata
using advanced proteomics and bioinformatics analyses. Through
comprehensive profiling of extracellular proteins in the dpECM mate-
rial and in vitro islet development approaches, we revealed that ColV
acts as an imperative factor that enables the recapitulation and self-
assembly of islet organoids from iPSCs. To the best of our knowledge,
we discovered, for the first time, that ColV, serving as a substrate
coating material, promotes the self-assembly of islet architecture har-
boring all major pancreatic endocrine cell types. A more important,
novel development is that, we were able to acquire both glucose level-
regulated insulin and glucagon secretions from iPSC-derived organoids
in the presence of ColV stimulation.

ECM is a complex network with tissue-specific composition and a
distribution of collagenous and non-collagenous proteins, such as gly-
coproteins and proteoglycans, which surround cells and influence a
variety of biological processes [43]. We used a detergent-free approach
to remove all cellular components to maximally preserve the native
ECM proteins in the pancreas. Upon decellularization, we reconstituted
the dpECM for high resolution MS. To achieve high fidelity (> 99.9%),
only proteins with at least 2 unique peptides and < 0.0001 E-value
score [24] were analyzed in this study. With these criteria, we obtained
a protein list (Table. S4) of 134 extracellular proteins from our dpECM
samples (Fig. 1E), more than the previously identified 120 ECM-related
proteins in the human pancreas [44], and 11 folds greater than what
has been described in the porcine pancreas [45]. The characterization
of well-retained dpECM proteins achieved by the combination of our
detergent-free decellularization method and high throughput proteomic
analysis enabled accurate and sensitive assessment of ECM components
including some relatively low abundant proteins that have been uni-
dentified previously.

In addition, our proteomic analysis revealed that the growth-factor-
reduced Matrigel contains a significantly lower proportion of ECM
proteins compared to dpECM (Fig. 1D). This implies that the prepara-
tional procedure of Matrigel, which lacks a decellularization step, leads
to the extraction of both structural proteins and large quantities of in-
tracellular proteins. This was confirmed by our GO analysis that nu-
merous cytoplasmic and nuclear proteins were greatly enriched in
Matrigel (Fig. 2A). Compared to Matrigel, dpECM was found to be
substantially enriched with proteins localized in the extracellular space
and on the plasma membrane (Fig. 2A), where most of them were
classified as cell-ECM binding proteins such as collagens and junction
proteins, and biochemical catalytic enzymes involved in pancreatic
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digestion such as triacylglycerol lipase and colipase (Figs. 2B and 3C).
Interestingly, dpECM also contains more proteins that regulate cellular
process, including but not limited to the control of gene expression,
protein modification and interaction, cell communication, prolifera-
tion, and differentiation etc. (Fig. 2C) [46]. It should be pointed out that
there are a number of proteins unique to each Matrigel or dpECM
sample. We speculate that this is due to the presence of numerous low-
abundance proteins and the variability of components from different
batches of animals, not due to the reproducibility of decellularization
and MS characterization, since variations among donor tissues have
been reported in a study comparing six patients’ tissue matrices [47].
To diminish the variance of low-abundance proteins, we focused data
analysis on proteins identified from at least two batches of hydrogel
materials prepared from completely different animal donors (Fig. 3C),
where a distinct signatures of collagen composition were observed from
Matrigel and dpECM materials (Fig. 4). This is consistent with previous
studies that collagen is not a major component of Matrigel [48-50], and
in sharp contrast to studies where a broad variety of collagen types
were identified in ECMs from different tissue/organ sources [49,51,52].

Among the collagens characterized, eight types of collagen were
dpECM-exclusive, and type II, III, and V collagens were found in all
three batches of dpECM materials in relatively high abundance (Fig. 4C
and D). Interestingly, ColV was the only collagen type with all different
parent a-chains identified, i.e. a1(V), a2(V), and a3(V) (Fig. 4A and B).
ColV is a relatively minor collagen type in ECM with tissue-specific
distribution in the body, including the pancreas [53]. We and the Vigier
group [45] identified ColV from rat and porcine pancreatic matrices,
which indicates that it is highly conserved in the pancreas across spe-
cies. In islets of Langerhans, a3(V) is a predominant isoform that is
preferentially distributed in the pericellular area adjacent to a- and f3-
cells [54], implying its close relationship to the function of islets. One
direct evidence by Huang et al. demonstrated that Col5a3 ™/~ mutant
mice are glucose-intolerant, insulin-resistant, hyperglycemic, and hy-
poinsulinemic with decreased islets [35]. In addition, ColVal null
mutant mice died in utero at approximately embryonic day 10, earlier
than the type I and III collagen null mice, suggesting the vital role that
ColV plays in the early stages of development [55]. These findings
suggest that the in vivo ColV niche is critical for islet development and
function, although the role of ColV in vitro tissue/organ development is
largely elusive.

During in vitro culture, ColV is reported to be antiadhesive toward
many cell types, such as vascular endothelial cells [37], dermal fibro-
blasts [38], and hepatic stellate cells [39]. We also found that ColV
alone as a coating substrate cannot support the attachment of hPSCs
(data not shown), while mixing ColV with Matrigel effectively in-
creased hPSC attachment for differentiation. With our five-stage dif-
ferentiation procedures, we have demonstrated that the expression of
key endocrine marker genes were elevated in the presence of ColV
(Fig. 5). Of particular interest in islet organogenesis, the cellularity and
localization of different types of endocrine cells in organoids generated
in the presence of ColV were similar to those of adult islets, indicating
that ColV is a unique ECM protein that plays a crucial role in re-
capitulating islet architecture. Notably, the islet organoids generated by
ColV stimulation contained all four types of endocrine cells — a, B, 8,
and PP cells, which are closely associated with each other (Fig. 7A-B).
Such unique heterotypic contacts of endocrine cells in human islets play
a central role in regulating B-cell function and maintaining normogly-
cemia [56]. For example, Rodriguez-Diaz et al. demonstrated that a-
cells are capable of releasing paracrine cholinergic signal to the
neighboring B-cells, which in turn sensitizes the insulin release of f3-
cells in response to a subsequent increase in glucose concentration [57].
This paracrine interaction is only possible when all the endocrine cells
are present in the islet organoid, with a unique cellular arrangement
allowing for close association among the cells even after dispersion of
the islet [58]. This might be one reason for the enhanced glucose-re-
sponsive insulin production from the organoids generated in the
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presence of the ColV niche. Upon glucose challenges, no glucose re-
sponsive insulin secretion could be detected from the aggregates in the
absence of ColV, suggesting a low degree of functionality (Fig. 8B).

In addition, this study demonstrated that organoids generated under
ColV niche also secreted glucose-responsive glucagon similar to human
islets (Fig. 8C). Our experimental results validated that ColV stimula-
tion facilitates the augmentation of islet organoids’ maturity and
function. With all the characterizations performed through this work,
our experimental data revealed that ColV is a critical regulator that
augments in vitro islet development, which benefits the biomaterial
society by providing a new understanding of the role of ColV in vitro
pancreatic development. Our further investigation will focus on de-
monstrating the utility of these organoids in islet transplantation for a
more direct proof-of-principle of function of the islet organoids.

Taken together, this study discovered ColV as a crucial ECM protein
that permits hPSC-derived islet organogenesis, which assembles all
major endocrine cells into islet architecture with glucose level-regu-
lated functional hormone secretions. Our experimental results demon-
strated that using ColV is a novel strategy for in vitro pancreatic en-
docrine development and maturation. Knowledge gained from this
work will facilitate future developments of clinically relevant islets for
disease modeling, drug testing, and transplantation.
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