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Abstract. This paper revisits the multi-user (mu) security of symmet-
ric encryption, from the perspective of delivering an analysis of the
AES-GCM-SIV AEAD scheme. Our end result shows that its mu security
is comparable to that achieved in the single-user setting. In particular,
even when instantiated with short keys (e.g., 128 bits), the security of
AES-GCM-SIV is not impacted by the collisions of two user keys, as long
as each individual nonce is not re-used by too many users. Our bounds
also improve existing analyses in the single-user setting, in particular
when messages of variable lengths are encrypted. We also validate secu-
rity against a general class of key-derivation methods, including one that
halves the complexity of the final proposal.

As an intermediate step, we consider mu security in a setting where
the data processed by every user is bounded, and where user keys are
generated according to arbitrary, possibly correlated distributions. This
viewpoint generalizes the currently adopted one in mu security, and can
be used to analyze re-keying practices.
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1 Introduction

This work continues the study of the multi-user (mu) security of symmetric
cryptography, the setting where the adversary distributes its resources to attack
multiple instances of a cryptosystem, with the end goal of compromising at least
one of them. This attack model was recently the object of extensive scrutiny [2,
9,20, 21, 25,28, 34], and its relevance stems from the en masse deployment of
symmetric cryptography, e.g., within billions of daily TLS connections. The main
goal is to study the degradation in security as the number of users increases.

OUR CONTRIBUTIONS. This paper will extend this line of work in different ways.
The most tangible contribution is a complete analysis in the mu setting of the
AES-GCM-SIV [17] scheme by Gueron, Langley, and Lindell, a scheme for authen-
ticated encryption with associated data (AEAD) which is meant to resist nonce
misuse. Our main result will show that the scheme’s security does not degrade
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in the mu setting, in a sense much stronger than what was claimed in previous
mu analyses. Also, we abstract the requirement needed for AES-GCM-SIV’s key-
derivation step, and show that a very simple KDF is sufficient for high security.
Beyond this, our analysis also delivers conceptual and technical insights of wider
interest.

Concretely, our result will highlight the benefit of ensuring limited nonce re-
use across different users (e.g., by choosing nonces randomly). We show that in
this setting AES-GCM-SIV does not suffer any impact from key-collisions, in par-
ticular allowing security to go beyond the Birthday barrier (wrt the key length)
even in the multi-user setting. The resulting analysis is particularly involved, and
calls for a precise understanding of the power of verification queries (for which
nonce re-use across multiple users cannot be restricted). Previous analyses of AE
schemes (specifically, those of [9]) do not ensure security when two users have
the same key, thus forcing either an increase of key length or a worse security
guarantee.

On the way, we analyze the building blocks of AES-GCM-SIV in a refined
model of mu security where the amount of data processed by each user is
bounded, and where keys come from arbitrary distributions. These results could
be of independent interest.

We now continue with a more detailed overview of our results.

MULTI-USER SECURITY. Multi-user (mu) security was introduced by Bellare,
Boldyreva and Micali [3] in the public-key setting as an explicit security tar-
get, although in the symmetric setting the notion had already been targeted in
attacks [10,11], and was used implicitly as a technical tool in [4].

For example, in the mu definition of encryption security under chosen-plaintext
attacks, each user ¢ is assigned a secret key K, and the attacker’s encryption
queries ENC(z, M) result in either an encryption of M under K; (in the real
world), or an equally long random ciphertext (in the ideal world). The goal is to
distinguish the real from the ideal-world.

Assessing security in this model is interesting and non-trivial. Take for exam-
ple randomized counter-mode encryption (CTR), based on a block cipher with
key length k& and block length n. The advantage of any single-user adversary
encrypting, in total, L blocks of data and making p queries to the cipher (which
we model as ideal) is upper bounded by e, (L, p) < é—j + 4% (cf. e.g. [5]). If the
attacker now adaptively distributes its queries across u users, a hybrid argument
shows that the bound is € (L, p,u) < u-eg(L,p+ L) < 2“2‘—52 + %.

Usually, we do not want to fix u, and allow the adversary to encrypt its
budget of L blocks adaptively across as many users as it sees fit. In particular,
the adversary could (1) query one message only with length L, or (2) query L
messages with length 1, each to a different user. Thus, in the worst case, the
bound becomes €,,,(L,p) < 22%3 + L’%Lz. A number of recent works [2, 20,21,
28,34] have shown that this is overly pessimistic, and the security loss can be
much smaller; in fact, often €,,,,(L, p) = €5, (L, p) holds.



BOUNDING THE PER-USER DATA COMPLEXITY. Note that even if €,,,(L,p) ~
esu(L,p) above, the matching attack could be a single-user attack, requiring a
single honest user to encrypt L ~ 2/2 blocks under the same key. For k = n =
128, this would require a single honest user to willingly encrypt multiple exabytes
of data, and there are many scenarios where we can easily enforce this not to
happen. If we enforce a per-user upper bound B on the number of encrypted
blocks, an L-block adversary would be forced to spread its effort across at least
L/B users, and the advantage could become even smaller. Indeed, tightening
existing bounds, we show below that for CTR, the advantage of such an attacker
is at most
LB L? ap
on on+k 2k *

for some constant a. This bound shows that the fewer blocks we encrypt per
user, the higher the security: Beyond-birthday security is possible, e.g., for k =
n = 128 and B = 232, the bound is of the order L/2% + p/2!28. Also, the
bound is independent of the number of users, and in particular the role of off-
line computation — captured here by p — is also independent of L. Note that
most previous results on mu security target deterministic security games, such
as PRFs/PRPs [2,20,21,28,34] or deterministic AE [9, 25], and security falls
apart when more than 25/2 users are present, and their keys collide. Here, key-
collisions are irrelevant, and security well beyond 2%/2 users is possible.

AES-GCM-SIV: OVERVIEW AND BOUNDS. The above viewpoint generalizes that
of Abdalla and Bellare [1], who were first to observe, in a simpler model, that re-
keying after encrypting B blocks increases security. The fewer data we encrypt
per key, the higher the security.

AES-GCM-SIV adapts the re-keying idea to the AEAD setting, making it in
particular nonce based — i.e., to encrypt a message M with a nonce N, we use
a key-derivation function (KDF) KD to derive a key K < KD(K, N) from the
master secret key K and the nonce N, and then encrypt the message M with
nonce N under key K using a base AE scheme AE. Now, the keys Ky can be
thought as belonging to different (virtual) users. Existing analyses [19,23] show
indeed that, assuming KD is a good PRF, a mu security bound for AE can be
lifted to a bound on the end scheme in the single-user setting, where now B is
a bound on the amount of data encrypted per nonce, rather than per user. If
nonces are not re-used, B is the maximum block length of an encrypted message.

Concretely, in AES-GCM-SIV, the underlying AE is GCM-SIV™, a slight mod-
ification of GCM-SIV [18]. This relies in turn on SIV (“synthetic IV”) [33], an
AEAD scheme which combines a PRF F and an encryption scheme SE (only
meant to be CPA secure) to achieve nonce-misuse resistance. For message M,
nonce N, and associated data A, the encryption of SIV results into a ciphertext
C obtained as

IV < F(Kg, (M, N, A)), C <« SEE(Kg, M;IV),

where K¢ and K are the two components of the secret key, and SE.E(Kg, M; V)
is the deterministic encryption function of SE run with IV IV.
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In GCM-SIV™, SE is counter mode, and F is what we call GMACT, a Wegman-
Carter MAC [37] similar to, but different from, the one used in GCM [27]. Tt
composes an xor-universal hash function with n-bit key, with a block cipher
of block length n and key length k. GMAC™’s total key length is hence k + n
bits. (As we target AES, n = 128 and k € {128,256}.) A difference from the
original SIV scheme is that the same block cipher key is used across GMACT and
counter-mode, but an appropriate domain separation is used.

For nonce-misuse resistance (so-called mrae security), the best published
bound for AES-GCM-SIV with key length 128 bits is of order

QBQ g[[laXQR p
9138 T “gizs T 9138 T (@),

for any adversary that makes at most p ideal-cipher queries, encrypts at most
B blocks per nonce, uses at most @Q < 2% nonces in encryption/verification
queries, where R is the maximum number of repetition of a nonce, and £« is
the maximal length of a verification query. Here, €(Q) is the PRF advantage of
KD against @ queries, and it is /2% for the considered instantiation.

OUR BOUNDS IN THE MU SETTING. The analysis of AES-GCM-SIV uses mu
security as a tool, but still only gives su security bounds. A valid question is
whether its security substantially degrades in the mu setting or not.
We answer this question, and show that for a large class of suitable instan-
tiations of KD, multi-user mrae security of AES-GCM-SIV is of order
LB d(p+1L)
I T
where L, B, and d are upper bounds, respectively, of the overall number of
encrypted /verified blocks, of the number of blocks encrypted per user-nonce
pair, and of the number of users that re-use a particular nonce value.
This shows a number of things: First off, our bound is an improvement even
in the single-user case, as d = 1 vacuously holds, and even if we use the KDF
considered in previous works. (Note in particular that the PRF advantage term

€(Q) disappears from the bound.) The term 2%—238 can be much smaller than gl—ij,
as in many settings @ and L can be quite close (e.g., if most messages are very
short). In fact, the point is slightly more subtle, and we elaborate on it at the
end of the introduction. Second, if d is constant (which we can safely assume if
nonces are randomly chosen), security does not degrade as the number of users
increases. In particular, the security is unaffected by key collisions. If d cannot
be bounded, we necessarily need to increase the key length to 256 bits, and in
this case the second term becomes d(;tGL ). Finally, we have no assumption on the
data amount of verification queries per user-nonce pair (other than the overall
bound L), whereas the bounds in prior works can become weak if there is a
very long verification query, and the adversary uses only a single nonce among
verification queries.

The rest of the introduction will explain some ideas behind the bound and
the techniques, which we believe to be more broadly applicable.




CHALLENGES. On the way to our end result, we give a number of results of
independent interest. Interestingly, while we will recycle ideas on the way, the
approach is less modular than one expects. First off, we analyze CTR and GMAC™
in a regime where the amount of data processed by each user is bounded. We
will then obtain an analysis of the mu security GCM-SIV™. Here, due to the key
re-use, the technique for generic composition used in the original SIV scheme
fails, but we will be able to recycle many low-level parts of the proofs for CTR
and GMACT.

At this point, however, it is unclear whether nonce-based key derivation
achieves its purpose in the mu setting, where B is now a bound on the number
of blocks encrypted per nonce-user pair. Indeed, say the master secret key K has
length k& = 128. Then, should the number of users exceed 2¥/2 = 264 with high
probability two users will end up with identical keys. If we treat KD as a PRF,
like [19,23] do, all security will vanish at this point. Indeed, the existing mu anal-
ysis of GCM succumbs to this problem [9], and the problem seem unavoidable
here too, since we are considering a deterministic security game.

BOUNDED NONCE RE-USE ACROSS USERS. The way out from this problem is to
assume a nonce is re-used by at most d users. Consider the canonical attack to
break privacy of the scheme: Fix a sufficiently long message M and nonce N,
and encrypt them over and over for different users, and if the same ciphertext
appears twice after roughly 2%/2 queries, we are likely to be in the real world,
as ciphertexts are random and independent in the ideal world. This however
requires us to re-use the same nonce across 2F/2 users. A first interesting point
we observe is that the security of KD as PRF degrades gracefully with the number
of users d that can re-use the same input/nonce.

Unfortunately, this is not enough. The catch is that a bound d on the number
of users re-using a nonce is only meaningful for encryption queries. For authen-
ticity, an attacker would attempt to issue verification queries for as many users
as it wishes, and we cannot restrict the choice of nonces. We cannot prevent
that 2%/2 verification queries for different users with the same nonce may end
up using colliding user keys. The question is how far this is an issue.

To get some intuition, consider the security of KD as a MAC, i.e., the adver-
sary issues, in a first stage, queries (i, N), getting KD(K;, N), but respecting the
constraint that no nonce is used more than d times across different i’s where d is
relatively small. Then, in a second stage, the adversary gets to ask unrestricted
verification queries with input (i, N, T'), except for the obvious requirement that
(i, N) must be previously un-queried. The adversary wins if KD(K;,N) = T
for one of these verification queries. At first glance, a collision K; = K; could
help if we have queried (¢, V) in the first stage, learnt T, and now can submit
(4, N,T) in the second. The caveat is that we need to be able to have detected
such collisions. This is hard to do during the first stage, even with many queries,
due to the constraint of reusing N only d times. Thus, the only obvious way
to exploit this would be to try, for each of the ¢ first-stage queries (i, N) with
corresponding output 7', to query (j, N, T) for many j # . This would however
require roughly 2% trials to succeed. Finally, note that while it may be that we
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ask two verification queries (¢, N,T) and (j', N',T") where K; = K, this does
not seem to give any help in succeeding, because a verification query does not
reveal the actual output of KD on that input.

Confirming this intuition is not simple. We will do so for a specific class of
natural KD constructions outlined below, and point out that the setting of AE
is harder than studying the security of KD itself as a MAC. Indeed, our KD is
used to derive keys for GMACT and CTR at the same time, and we need to prove
unpredictability of the overall encryption scheme on a new pair (IV, i) which was
previously unqueried. This is the most technically involved part of the paper.

A stMPLER KDF. Finally, let us address how we instantiate KD. The construc-
tion of KD from [17] is truncation based, and makes 4 (for k = 128), respectively
6 (for k = 256) calls to a block cipher to derive a key. A recent proposal [23]
suggests using the so-called XOR construction to achieve higher security, as mul-
tiple analyses [7, 13,24, 30, 32] confirm better bounds than for truncation [15].
Still, the resulting KD would need 4 resp. 6 calls. They also consider a faster
construction, based on CENC [22], which would require 3 resp. 4 calls. All of
these constructions are required to be good PRFs in existing analyses.

Rather than studying concrete constructions, we apply our result to a general
class of KDFs which includes in particular all of these proposals, but also simpler
ones. For instance, our bounds apply to the following simple KDF, a variant
of which was in the initial AES-GCM-SIV proposal, but was discarded due to
security concerns. Namely, given the underlying block cipher E, the KDF outputs

KD(K, N) = E(K, pad(N,0)) || E(K, pad(N, 1)) (1)

for k = n and N an nl-bit string, with nl < n — 2, and, analogously, for k = 2n,
one can extend this by additionally concatenating FE (K, pad([N,2)). Here, pad
is a mapping with the property that the sets {pad(N,0), pad(N, 1), pad(N,2)}
defined by each N are disjoint. This approach seems to contradict common
sense which was adopted in the new KDF variants for AES-GCM-SIV, because
the derived keys are not truly random. However, a crucial point of our analyses
is that we do not prove PRF security of these KDFs. Rather, we study the
distributions on keys they induce, and then (implicitly) rely on the security
of the underlying components using keys obtained from (slightly) non-uniform
distributions.?

In platforms that support AES hardware acceleration, the difference in per-
formance between the KDF in Equation (1) and the current one in AES-GCM-SIV
is not important, as demonstrated via the experiments in [17]. Still, we believe
it is important for schemes to be minimal, and thus to understand the security
of simplest possible instantiations of the KDF.

3 This key-derivation scheme is also used to derive sub-keys from tweaks in the set-
ting of FPE within the DFF construction [36]. DFF is a replacement for FF2 [35],
a scheme proposed to NIST for standardization but eventually rejected due to a
birthday-bound key-recovery attack [14]. The security of DFF is formalized and
studied in [6], but their analysis is still in the su setting, namely there is only one
master key for KD.



SUB-OPTIMALITY OF POLYVAL. We also observe that the universal hash
POLYVAL of within GMACY is somewhat suboptimal. That is, if both the
message and the associated data are the empty string, then their hash image
under POLY VAL is always 0'2%, regardless of the hash key. This does not create
any issue in the single-user setting, but substantially weakens the mu security
of GCM-SIVT and GMACT to 2%5; d(fltf)7 despite their use of 256-bit keys.
Had the padding in POLYVAL ensured that the hash image of empty strings
under a random key has a uniform distribution, the security of GCM-SIV' and
GMACT could be improved to 2%—238 + 22—5176, meaning this bound is independent
of the number d of users that reuse any particular nonce. While this issue does
not affect the concrete security bound of AES-GCM-SIV, this change becomes
necessary if GCM-SIVT or GMAC™ are used as standalone schemes.

RELATION TO EXISTING WORKS. We elaborate further on our improvements in
the su setting over recent analyses [19,23]. As mentioned above, their bound
contains a term of the order QB?2/2", which we improve to LB/2". The fact
that the latter is better is not quite obvious. Indeed, it is not hard to improve
the term QB?/2™ in [19,23] to Z?:l B2 /2", where B, is a bound on the number
of blocks encrypted with the i-th nonce. This seems to address the point that
different amounts of data can be encrypted for different nonces.

The crucial point is that we capture a far more general class of attacks by
only limiting the adversary in terms of L, p, and d. For instance, for a parameter
L, consider the following single-user adversary using @ = L/2 nonces. It will
select a random subset of the @ nonces, of size L/(2B), for which it encrypts
B blocks of data, and for the remaining L/2 — L/(2B) nonces, it only encrypts
one block of data. In our bound, we still get a term LB/2". In contrast, with
the parametrization adopted by [19,23], we can only set @ = L/2 and B; = B
for all ¢ € [Q], because any of the nonces can, a priori, be used to encrypt B
blocks. This ends up giving a term of magnitude LB?/2", however, which is
much larger. For B = 232, the difference between L/254 and L/2% is enormous.

Switching to the type of bounds is non-trivial: The adversary can adopt an
arbitrarily adaptive attack pattern. Handing such adversaries was the object of
recent works in the mu regime [2,20,21,25,28,34].

STANDARD VS IDEAL-MODEL. We also note that the bound of [23] is expressed in
the standard model, and contains a term Qe, where € is the advantage of a PRF
adversary A’ against the cipher F, making B queries. The catch is that € is very
sensitive to the time complexity of A’, which we approximate with the number
of ideal-cipher queries p. Thus, Qe is of order Q(B2%/2" + p/2¥). While [23]
argues that QB?/2" is the largest term, the ideal model makes it evident that
the hidden term Qp/2* is likely to be far more problematic in the case n = k.
Indeed, p > @ and B? < @ are both plausible (the attacker can more easily
invest local computation than obtain honest encryptions under equal nonces),

and this becomes %2 This shows security is bounded by 2%/2. The work of [25]
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on classical GCM also seemingly focuses on the standard model and thus seems
to fail to capture such hidden terms. In contrast, [19] handles this properly.

We stress that we share the sentiment that ideal-model analysis may oversim-
plify some security issues. However, we find them a necessary evil when trying
to capture the influence of local computation in multi-user attacks, which is a
fundamental part of the analysis.

OUTLINE OF THIS PAPER. We introduce basic notions and security definitions
in the multi-user setting in Section 3. Then, in Section 4, we study the security
of our basic building blocks, CTR and GMACT, in the multi-user setting. In
Section 5, we analyze SIV composition when keys are re-used across encryption
and PRF, and observe this to work in particular for the setting of GCM-SIV.
Finally, Section 6 studies our variant of AES-GCM-SIV with more general key
derivation.

2 Preliminaries

NOTATION. Let € denote the empty string. For a finite set S, we let x s .S
denote the uniform sampling from S and assigning the value to z. Let |z| denote
the length of the string z, and for 1 <1 < j < |z|, let z[¢, j] (and also z[i : j])
denote the substring from the ith bit to the jth bit (inclusive) of x. If A is
an algorithm, we let y < A(xq,...;r) denote running A with randomness r
on inputs x1,... and assigning the output to y. In the context that we use a
blockcipher E : {0,1}* x {0,1}" — {0,1}", the block length of a string =,
denoted |zl,, is max{1, [|z|/n]}.

SYSTEMS AND TRANSCRIPTS. Following the notation from [20] (which was in
turn inspired by Maurer’s framework [26]), it is convenient to consider interac-
tions of a distinguisher A with an abstract system S which answers A’s queries.
The resulting interaction then generates a transcript 7 = ((X1,Y1),..., (X4, Yy))
of query-answer pairs. It is well known that S is entirely described by the prob-
abilities pg(7) that if we make queries in 7 to system S, we will receive the
answers as indicated in 7.

We will generally describe systems informally, or more formally in terms a set
of oracles they provide, and only use the fact that they define a corresponding
probabilities pg(7) without explicitly giving these probabilities.

THE H-COEFFICIENT TECHNIQUE. We now describe the H-coefficient technique
of Patarin [12,31]. Generically, it considers a deterministic distinguisher A, in-
teracting with system Sy or with system S;. Let Xy and &} be random variables
for the transcripts defined by these interactions with Sg and S1, and a bound on
the distinguishing advantage of A is given by the statistical distance SD(Xy, X7 ).

Lemma 1. [12,31] Supposed we can partition transcripts into good and bad
transcripts. Further, suppose that there exists € > 0 such that 1 — E:"igg <€ for
1



every good transcript T such that pg, (1) > 0. Then,

SD(X1, Xy) < e+ Pr[X) is bad] .

3 Multi-user Security of Symmetric Primitives

We revisit security definitions for basic symmetric primitives in the multi-user
setting. We will in particular extend existing security definitions to impose overall
bounds on the volume of data processed by each user, however we will relegate
this matter to theorem statements restricting the considered adversaries, rather
than hard-coding these bounds in the definitions.

3.1 Symmetric and Authenticated Encryption

We define AE syntax here, as well as natural multi-user generalizations of clas-
sical security notions for confidentiality and integrity. Since this paper will deal
both with probabilistic and deterministic schemes, we define both, following the
treatment of Namprempre, Rogaway, and Shrimpton [29]. Our notational con-
ventions are similar to those from [9].

IV-BASED ENCRYPTION. An IV-based symmetric encryption scheme SE consists
of two algorithms, the randomized encryption algorithm SE.E and the deter-
ministic decryption algorithm SE.D, and is associated with a corresponding key
length SE.kI € N and initialization-vector (IV) length SE.vl € N. Here, SE.E
takes as input a secret key K € {0,1}°5 and a plaintext M € {0,1}*. It then
samples IV <s {0, 1}5EV! deterministically computes a ciphertext core C’ from
K, M and IV, and returns C « IV || C’. We often write C +-sSE.Ex (M) or
C s SE.E(K, M). If we want to force the encryption scheme to run on a spe-
cific initialization vector 1V, then we write SE.E(K, M;1V). The corresponding
decryption algorithm SE.D takes as input a key K € {0,1}°FK and a ciphertext
C € {0,1}*, returns either a plaintext M € {0,1}*, or an error symbol L. For
correctness, we require that if C'is output by SE.Ex (M), then SE.D i (C) returns
M. We allow all algorithms to make queries to an ideal primitive I, in which
case this will be made explicit when not clear from the context, e.g., by writing
SE[II] in lieu of SE.

CHOSEN-PLAINTEXT SECURITY FOR [V-BASED ENCRYPTION. We re-define the
traditional security notion of ind-security for the multi-user setting. Our defini-
tion will however incorporate a general, stateful key-generation algorithm KeyGen
which is invoked every time a new user is spawned via a call to the NEW or-
acle. KeyGen is a parameter of the game, and it takes additionally some input
string aux which is supplied by the adversary. The traditional mu security setting
would have KeyGen simply output a random string, and ignore aux, but we will
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consider a more general setting to lift mu bounds to the key-derivation setting.
The game is further generalized to handle an arbitrary ideal primitive (an ideal
cipher, a random oracle, or a combination thereof) via an oracle PriM.* Also
note that the oracle PRIM can simply trivially provide no functionality, in which
case we revert to the standard-model definition. We note that the key-generation
algorithm KeyGen does not have access to the oracle PRIM.

Given an adversary A, the resulting game is ?Eﬁi&ilcen, 7(A), and is depicted
on the left of Figure 1. The associated advantage is

AdVrSnEu,_I'i(nec\f/Gen,H(A) =2-Pr [Grsnlg,_l'i(necilGen,H(A)] -1.

Whenever we use the canonical KeyGen which outputs a random string regardless
of its input, we will often omit it, and just write Advrsng':}?d (A) instead.

AUTHENTICATED ENCRYPTION SCHEME. An authenticated encryption scheme
AE with associated data (also referred to as an AEAD scheme), the algorithms
AE.E and AE.D are both deterministic. In particular, AE.E takes as input a
secret key K € {0, 1}2EK a nonce N € {0, 1}AE" a plaintext M € {0,1}*, and
the associated data A, and returns the ciphertext C' < AE.E(K, N, M, A). The
corresponding decryption algorithm AE.D takes as input a key K € {0, 1}AEK,
the nonce N, the ciphertext C' € {0,1}*, and the associated data A, and returns
either a plaintext M € {0,1}*, or an error symbol L. We require that if C is
output by AE.Ex (M, N, A), then AE.Dg(C, N, A) returns M.

Our security notion for AE is nonce-misuse-resistant: Ciphertexts produced
by encryptions with the same nonce are pseudorandom as long as the encryptions
are on different messages or associated data, even if they are for the same nonce.
Our formalization of AE multi-user security in terms of GRE ResGen 17(A) is that
of Bellare and Tackmann [9], with the addition of a KeyGen algorithm to handle
arbitrary correlated key distributions. It is depicted in Figure 1, at the bottom.

Given an adversary A and a key-generation algorithm KeyGen, we are then
going to define

Advxg:wg\?éen,ﬂ(A) =2-Pr [GEE,—{(“;;(e;en,H(A)} —-1.

As above, KeyGen is omitted if it is the canonical one.

We say that an adversary is d-repeating if among the encryption queries, an
adversary only uses each nonce for at most d users. We stress that we make no
assumption on how the adversary picks nonces for the verification queries, and
for each individual user, the adversary can repeat nonces in encryption queries
as often as it wishes. If nonces are chosen arbitrarily then d can be as big as the
number of encryption queries. If nonces are picked at random then d is a small
constant.

4 If PRIM is meant to handle multiple primitives, we assume they can be accessed
through the same interface by pre-pending to the query a prefix indicating which
primitive is meant to be queried.
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Game GSmEu:Pi(ne(i/Gen,H(A) M
sto < &; v+ 0; b<s{0,1} Ifi ¢ {1,...,v} then return L
b/ s ANEW,ENC,PRIM Cl s SE.EPRI]\I(Ki’M)
Return (b' = b) Co s {0,1}1!

Return Cy
Niw(aux)
vv+1

(Ko, sty) <s KeyGen(st,—_1, aux)

Game G?E:I"(neriéen,ﬂ<"4) NEW(aUX)
sto « &; v+ 0; b+s{0,1} vev+1
b s ANEW,ENC,VF,PRIM (Ko, sty) < KeyGen(sty—1, aux)

Return (b’ = b)

Vi(i, N,C, A) ENc(i, N, M, A)

Ifi ¢ {1,...,v} then return L Ifi¢{1,...,v} then return L

If (i, N,C, A) € V[i] then return true |If (4, N, M, ;)4) € U[i] then return L

RIM

If b = 0 then return false C1 <+ AEE™ (K, N, M, A)

M + AE.D"™(K; N,C, A) Co <5 {0, 1}

Return (M # 1) Ul < U[i] u{(i, N, M, A)}
VIi] < V[iJU{(E, N, Cy, A)}
Return Cp

Fig. 1: Security definitions for chosen-plaintext security of IV-based encryp-
tion (top), as well as nonce-misuse resistance for authenticated encryption
(bottom). We assume (without making this explicit) that PRIM implements the ideal-
primitive II.

A KEY-COLLISION ATTACK. We now show that for any AE scheme AE that uses
the canonical KeyGen, if an adversary can choose nonces arbitrarily then there
is an attack, using g encryption queries and no verification query, that achieves
advantage q(q — 1)/2AEK+3,

Suppose that under AE, a ciphertext is always at least as long as the cor-
responding plaintext. Fix an arbitrary message M such that |M| > AE.kl + 2.
Fix a nonce N and associated data A. The adversary A attacks ¢ users, and
for each user i, it queries ENcC(i, N, M, A) to get answer C;. If there are distinct
¢ and j such that C; = C; then it outputs 1, hoping that users ¢ and j have
the same key. For analysis, we need the following well-known result; see, for
example, [16, Chapter 5.8] for a proof.

Lemma 2 (Lower bound for birthday attack). Let ¢, N > 1 be integers
such that ¢ < V2N. Suppose that we throw q balls at random into N bins. Then
the chance that there is a bin of at least two balls is at least %.

From Lemma 2 above, in the real world, the adversary will output 1 if two users
have the same key, which happens with probability at least q(q — 1)/2/AFK+2,
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Game G?,llj'(_:;gen,H(A) NEW (aux) EvaL(i, M)

v 0; sto < 0 v v+1 Ifi ¢ {1,...,v} return L
b+s{0,1} (Ko, st,) <3 KeyGen(st,_1,aux) |Yy < FPR™(K;, M)

b s ANBW.EVALPRM | o s Func(F.il, F.ol) Yo < pi (M)

Return (b' = b) Return Y;

Fig. 2: Definitions of multi-user PRF security. Again, PRIM implements the ideal prim-
itive I1.

In contrast, since the ciphertexts are at least |M|-bit long, in the ideal world, it
outputs 1 with probability at most q(q — 1)/2/MI+1 < g(q — 1) /22843 Hence

mu-mrae gla—1) alg—1) _alg—1)
AdvRe 7 (A) = QAEKIH2  9AEK+3  QAE.KI{3

3.2 Multi-user PRF Security

We consider keyed functions F : {0, 1}7* x {0, 1}F — {0, 1} possibly making
queries to an ideal primitive II. Here, note that we allow F.il = %, indicating a
variable-input-length function. We define a variant of the standard multi-user
version of PRF security from [4] using (as in the previous section) a general
algorithm KeyGen to sample possibly correlated keys.

Concretely, let Func(il, ol) be the set of all functions {0, 1} — {0, 1}°', where,
once again, il = * is allowed. We give the multi-user PRF security game in
Figure 2. There, F’s access to II is modeled by having oracle access to PRIM,
here. For any adversary A, and key generation algorithm KeyGen, we define

u-prf u-prf
AdVEKSyGen,H(A) =2-Pr [G?,KgyGen,H(A) -1.

As usual, we will omit KeyGen when it is the canonical key generator outputting
independent random keys.

3.3 Decomposing AE Security

While the notion mu-mrae is very strong, it might be difficult to prove that
an AE scheme, say AES-GCM-SIV meets this notion, if one aims for beyond-
birthday bounds. We therefore decompose this notion into separate privacy and
authenticity notions, as defined below.

Privacy. Consider the game GFA"E'&’Z;Gen 7(A) in Fig. 3 that defines the (misuse-
resistant) privacy of an AE scheme AE, with respect to a key-generation algo-
rithm KeyGen, and an ideal primitive II. Define

AdV/TE,_IEZ;Gen,H(A) = 2Pr[GrE:IEZ;/Gen,H(A)] -1.
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Game GRE R gen, 11 (A) Game GRE R oen,11(A)
v <+ 0;sto + &; b+«s {0,1} UNFOES'COVFP&(?FO
b s ANEW,ENC,P[UM ANEW,ENG, VE, PRIM
Return (b' = b) Return (b=1)
NEW (aux) NEWw (aux)
vevt1 v v+l
(Ko, sty) <s KeyGen(st,—_1, aux) (Kv, stv) s KeyGen(sty—1, aux)
(i, N, M, 4) ENC(i, N, M, 4)
If ¢ ¢ {1,...,v} then return L Ifi ¢ {L,. - ;v} then return L
If (i, N, M, A) € Ul[i] then return 1 |C < AE.E "MK, N, M, A)
C1 + AEEP™(K; N, M, A) Vil « VIiJU{(i,N,C, A)}
Co +s{0,1}! Return C
Uli] + U] U{(i, N, M, A)} VE(i, N, C, A)
Return Cp Ifi ¢ {1,...,v} then return L
If (i, N,C, A) ¢ V[i] then
M < AE.D"*™™(K;,N,C, A)
If (M # L) then b+« 1

Fig.3: Games to define privacy(left), and authenticity (right) of an AE
scheme AE with respect to a key-generation algorithm KeyGen : K x N' —
{0, l}AE'k'. The oracle PRIM implements the ideal primitive II. In the authenticity
notion, queries to VF must be performed after all queries to ENC.

Under this notion, the adversary is given access to an encryption oracle that
either implements the true encryption or returns a random string of appropri-
ate length, but there is no decryption oracle. If the adversary repeats a prior
encryption query then this query will be ignored.

AUTHENTICITY. Consider the game GRS, ;(A) in Fig. 3 that defines the
(misuse-resistant) authenticity of an AE scheme AE, with respect to a key-
generation algorithm KeyGen, and an ideal primitive II. Define

u-auth mu-au
AdVZqE,Iie;Gen,H(A) = 2Pr[GAE,Ke§/hGen,H('A)] -1.

Under this notion, initially a bit b is set to 0 and the adversary is given an
encryption oracle that always implements the true encryption, and a verification
oracle. We require that verification queries be made after all evaluation queries.
On a verification (i, N, C, A), if there is a prior encryption query (i, N, M, A) for
an answer C, then the oracle ignores this query. Otherwise, the oracle sets b + 1
if AE.DP*™(K;, N,C, A) returns a non-_L answer. The goal of the adversary is
to set b= 1.

RELATIONS. Note that in the mrae notion, the adversary can perform encryption
and verification queries in an arbitrary order. In contrast, in the authenticity
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notion, the adversary can only call the verification oracle after it finishes querying
the encryption oracle. Still, in Proposition 1 below, we show that authenticity
and privacy tightly implies mrae security. See Appendix C.

Proposition 1. Let AE be an AE scheme associated with a key-generation al-
gorithm KeyGen and an ideal primitive I1. Suppose that a ciphertext in AE is
always at least n-bit longer than the corresponding plaintext. For any adversary
Ag that makes q, verification queries, we can construct adversaries A1 and As
such that

2qy

mu-mrae mu-priv mu-auth
AdVRE KeyGen, 17 (A0) < AVAE KoyGen 17 (A1) + AAVAE KeyGen, 17 (A2) + on

Any query of Ay or As is produced directly from Ag. If Ag is d-repeating then
so are A1 and As.

4 Multi-User Security of Basic Symmetric Schemes

4.1 Security of Counter-Mode Encryption

We study the mu-security of counter mode encryption, or CTR for short. While
this is interesting on its own right (we are not aware of any analysis achieving
a comparable bound in the literature), we will also use Theorem 1 below to
obtain security results for AES-GCM-SIV. For this reason, we introduce some
extra notions to handle the degree of generality needed for our proof. Also, our
result is general enough to suggest an efficient solution to the re-keying problem
first studied by Abdalla and Bellare [1].

GENERAL IVS. We will consider a general IV-increasing procedure add, which is
associated with some maximal message length of L., blocks, and a block length
n. In particular, add takes an n-bit string IV and an offset ¢ € {0, ..., Lyax — 1}
as inputs, and is such that add(IV, ) returns an n-bit string, and for all IV, the
strings add(1V,0),...,add(lV, Lyax — 1) are distinct. We also say that add has
min-entropy h if for a random n-bit IV, and every ¢ € Zr,___, add(IV, i) takes any
value with probability at most 27", i.e., its min-entropy is at least h.

For example, the canonical IV addition is such that add(IV,i) = IV + ¢
(mod 2™), where we identify n-bit strings with integers in Zan. Here, Lyayx = 2™.
In contrast, the AES-GCM-SIV will use CTR with L. = 232, n = 128, and
add(IV,4) = 1 1V[2,96] || (IV[97,128] + i (mod 23?)). Clearly, here, the min-
entropy is 127 bits, due to the first bit being set to one.

CTR ENCRYPTION. Let E : {0,1}* x {0,1}" — {0,1}" be a block cipher, i.e.,
E(K,-) is a permutation for all k-bit K. We denote E(K,-) = Ek(-), and Ex'
is the inverse of E. Further, let add be a general IV-increasing procedure with
maximal block length L. We define the IV-based encryption scheme CTR =
CTR[E, add] with CTR.kl = k, and where encryption operates as follows (where
we use ¢ to denote some function which pads a message M into n-bit blocks).
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CTR.E(K, M):

C[0] « IV «s{0,1}", M[1],..., M[f] & M

If / > L.y then return L

For i =1 to ¢ do C[i] < Ex(add(IV,i — 1)) @ M[i]
Return C[0] || C[1] ]| --- || C4]

Decryption CTR.D re-computes the masks Fx (add(IV,i — 1)) using C[0] = IV,
and then retrieves the message blocks by xoring the masks to the ciphertext.
Here, we assume without loss of generality messages are padded (e.g., PKCS#7),
so that they are split uniquely into full-length n-bit blocks. Our result extends
easily to the more common padding-free variant where the last block is allowed
to be shorter than n bits, and the output of Ex(add(IV,¢ — 1)) is truncated ac-
cordingly, since an adversary can simulate the padding-free version by removing
the appropriate number of bits from the received ciphertexts.

SECURITY OF CTR. We establish the (CPA) security of randomized CTR in
the ideal-cipher model for an arbitrary key-generation algorithm KeyGen which
produces keys that collide with small probability. In particular, we say that
KeyGen is a-smooth if for a sequence of keys (K7, ..., K,,) output by an arbitrary
interaction with NEW, we have Pr[K; = K| < a for all i and K € {0,1}*, and
Pr[K; = K;] < « for all i # j. The canonical KeyGen is a-smooth for o = 27,
See Appendix D for the proof.

Theorem 1. Let E be modeled as an ideal cipher, add have min-entropy h, and
KeyGen be a-smooth. Further, let L, B > 1 such that L < 21=9"=1 " for some
e € (0,1], and let A be an adversary that queries ENC for at most L n-bit blocks,
and at most B blocks for each user, and makes p PRIM queries. Then,

1 1
+ o5 ) +apa,

AdV?‘F_RiFg,add],KeyGen,E(-A) < 27’”/2 + (LB + Lza) : <2n 9h

where a 1= [%1 - 1.

The bound highlights the benefits when each user only encrypts B blocks.
In particular, assume h = n, a = 1/2%. If B = 2°, then the number L of blocks
encrypted overall by the scheme can be as high as 2"~°. (The second term has
L? in the numerator, but the denominator is much larger, i.e., 2"t .) Another
interesting feature is that the contribution of PRIM queries to the bound is
independent of the number of users and L.

MORE ON THE BOUND. Previous works [19,23] implicitly give mu security bounds
for CTR, but adopt a different model, where the adversary is a-priori constrained
in (1) the number of queries ¢, (2) a bound B; on the number of blocks encrypted
per user ¢ € [u]. The resulting bounds contain a leading term > ., B?/2",
assuming no primitive queries are made (adding primitive queries p only degrades
the bound). This is essentially what one can obtain by applying a naive hybrid
argument to the single-user analysis. We discussed the disadvantage of such a
bound in the introduction already.
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RE-KEYING, REVISITED. Also, in contrast to previous works, the above result
holds for an arbitrary KeyGen, and only requires very weak randomness from it.
This suggests a new and efficient solutions for the re-keying problem of [1]. Let
H :{0,1}*x{0,1}* — {0, 1}* be a hash function, and let KeyGen, on input aux €
{0,1}*, simply output H (K, aux) for some master secret key K, and this KeyGen
is a-smooth if H is for example POLY VAL from AES-GCM-SIV, where a = £/2F,
and /¢ is an upper bound on the length of aux. We can assume ¢ to be fixed to
something short, even 1. Indeed, aux could be a counter, or some other short
string. The resulting bound (when h = n) would be 277/2 4 2LE 4 Z%LL; +ap/2*.
Note that this solution heavily exploits the ideal-cipher model — clearly, we are
indirectly assuming some form of related-key security on E implicitly, and one
should carefully assess the security of E in this setting.

The results in the model of Abdalla and Bellare [1] are weaker in that they
only study more involved key-derivation methods (but with the benefit of a
standard-model security reduction), in a more constrained model, where the
adversary sequentially queries B blocks on a key, before moving to the next
key. Our model, however, is adaptive, as the adversary can distribute queries
as it pleases across users. But difference is not only qualitative, as quantitative
bounds in [1] are obtained via naive hybrid arguments.

4.2 Security of GMACT

This section deals with an abstraction of GMACT, the PRF used within the
AES-GCM-SIV mode of operation. We show good mu bounds for this construc-

tion. The ideas extend similarly to various Wegman-Carter type MACs [37], but
we focus here on GMACT.

THE GMACT CONSTRUCTION. The construction relies on a hash function H :
{0,1}™ x {0,1}* x {0,1}* — {0,1}", which is meant to satisfy the following
properties. (We employ the shorthand Hg (M, A) = H(K, M, A).)

Definition 1. Let H : {0,1}" x {0,1}* x {0,1}* — {0,1}". We say that H is
c-almost XOR universal if for all (M, A) # (M', A"), and all A € {0,1}™, and
K +s{0,1}",

c-max{|M|, + |Aln, |M'|, + |A"|n}

PI‘[HK(M,A)@HK(M/vAI) :A} < mn

where | X|, = max{1,[|X|/n]} is the block length of string X, as defined in
Section 2. Further, we say it is c-regular if for allY € {0,1}", M, A € {0,1}*,
and K +s{0,1}",

Pr[Hy (M, A) = Y] < % .

We say it is weakly c-regular if this is only true for (M,A) # (e,¢), and
Hg(e,e) = 0" for all K.
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Remark 1. Note that for POLY VAL as used in AES-GCM-SIV, we can set ¢ =
1.5 provided that we exclude the empty string as input. This is because the
empty string results in POLY VAL outputting 0" regardless of the key, and thus
POLY VAL is only weakly c-regular. It is easy to fix POLY VAL so that this does
not happen (as the input is padded with its length, it is sufficient to ensure that
the length padding of the empty string contains at least one bit with value 1).
See Appendix B for more details.

We also consider a generic function xor : {0,1}" x {0,1}" — {0,1}", for
nl < n, which is meant to add a nonce to a string. In particular, we require:
(1) A-regularity: For every N € {0,1}"" and Z € {0,1}", there are at most
A strings Y € {0,1}" such that xor(Y,N) = Z, (2) injectivity: For every Y,
xor(Y,-) is injective, and (3) linearity: For every Y, Y’ N, N’, we have xor(Y, N)®
xor(Y',N") =xor(Y @ Y',N & N').

Example 1. In GCM-SIV and AES-GCM-SIV, one uses
xor(Y,N) =01 (Y @ 0" "N)[2:n] .

This is clearly 2-regular, injective, and linear. Note that here it is important to
prepend 0’s to the nonce NNV; if one instead appends 0’s to N then injectivity of
xor will be destroyed.

Given H and xor, as well as a block cipher E : {0,1}¥ x {0,1}" — {0,1}", we
define GMACH = GMACT[H, E, xor] : {0, 1}*+" x ({0,1}* x {0,1}* x {0,1}") —
{0,1}" such that

GMACJr(Kin H Kouta (Ma Av N)) = EK

o (¥0r(H e, (M, A), N)) . (2)
MU-PRF SECURITY OF GMACT. We upper bound the mu prf advantage for
GMACT; see Appendix E for the proof. We stress here that the adversary’s
EvAL queries have form (i, M, A, N), and the length of such queries is implicitly
defined as |M]|, + |A],.

We also consider an arbitrary KeyGen algorithm, which outputs pairs of keys
(K, Ki,) € {0,1}" x {0,1}*. We will only require these keys to be pairwise-
close to uniform, i.e., we say that KeyGen is -pairwise almost uniform (AU)
if for every i # j, the distribution of (K}, K¢,), (K, K2,) is such that very
pair of (n—+ k)-bit strings appears with probability at most 622(71“) Clearly, the
canonical KeyGen satisfies this with 8 = 1, but we will be for instance interested
later on in cases where 5 = 1 + € for some small constant € > 0.

Theorem 2 (Security of GMAC*Y). Let H : {0,1}" x {0,1}* x {0,1}* —
{0,1}™ be c-almost zor universal and c-regular, KeyGen be B-pairwise AU, xor be
injective, linear, and \-regular, and let E : {0,1}* x {0, 1} — {0, 1}" be a block
cipher, which we model as an ideal cipher. Then, for any adversary A making q
EVAL queries of at most L n-bit blocks (with at most B blocks queries per user),
as well as p ideal-cipher queries,

(1+C)gB n CL(p+ q) + B¢

mu-prf
Adv (A) < —5 St , ®3)

GMACT[H,E xor],B,E
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where C :=c- \- f3.

Here, parameters are even better than in the case of counter-mode, but this
is in part due to the longer key. In particular, this being PRF security, it is
unavoidable that security is compromised when more than 2(:+7)/2 ygers are
involved. The interesting fact is that partial key collisions (i.e., a collision in the
hash keys or in the cipher keys) alone do not help.

For example, take k =n =128, C =3 =1, B =23 L = ¢B, q < 2%, then
the bound becomes roughly ¢/2%° +p/2128 and note that this is when processing
up to 228 blocks of data.

WEAK REGULARITY. We also provide a version of Theorem 2 for the case where
H is only weakly c-regular. We stress that the security loss is substantial here
(and thus if using GMAC™ alone, one should rather make sure H is c-regular),
but nonetheless the security is preserved in the case where a nonce N is reused
across a sufficiently small number d of users. A proof sketch is in Appendix E.1.

Theorem 3 (Security of GMACT, weak regularity). Let H : {0,1}" x
{0,1}*x{0,1}* — {0,1}™ be c-almost zor universal and weakly c-reqular, KeyGen
be B-pairwise AU, xor be injective, linear, and \-reqular, and let E : {0,1}F x
{0,1}™ — {0,1}"™ be a block cipher, which we model as an ideal cipher. Then,
for any adversary A making ¢ EVAL queries of at most L n-bit blocks (with at
most B blocks queries per user), as well as p ideal-cipher queries,

mu-prf (1+C)gB  CL(p+29) +B¢*  dp+q)
A(:IVGM/f\)CJr[H,E,xor},B,E('A) < on + on+k 2k ’ (4)

where C :=c-X- B, and d is a bound on the number of users re-using any given
nonce.

5 SIV Composition with Key Reuse

SIV WITH KEY REUSE. Let E : {0,1}* x {0,1}" — {0, 1}" be a blockcipher that
we will model as an ideal cipher. Let F : {0, 1}F< x A"x {0, 1}* x{0,1}* — {0,1}*
be a keyed function, with F.kl > k. Let SE : {0,1}* x {0,1}* — {0,1}* be an
IV-based encryption scheme of IV length n. Both F and SE are built on top of E.
In a generic SIV composition, the key Ki, | Kout of F and the key J of SE will
be chosen independently. However, for efficiency, it would be convenient if one
can reuse Koy = J, which GCM-SIV does. Formally, let AE = SIV[F, SE| be the
AE scheme as defined in Fig. 4.

REsuLTS. We consider security of the SIV construction for F = GMAC™ and SE =
CTR. We assume that GMAC™T and CTR use functions xor and add, respectively,
such that (1) xor is 2-regular, injective, and linear, and xor(X, N) € 0{0,1}"*
for every string X € {0,1}" and every nonce N € {0,1}", and (2) add has min-
entropy n— 1, and add(IV, £) € 1{0,1}"~* for every IV € {0,1}" and every ¢ € N.
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AE.E(Kin || Kout, N, M, A) AE.D(Kin || Kout, N,C, A)

IV < F(Kin || Kout, N, M, A) IV| G’ + C; M + SE.DF(Kow, C)

C « SE.EE(Kout,M; |V) T FE(Kin ” KoutaNa M7 A)

Return C If T # IV then return L else return M

Fig. 4: The SIV construction (with key reuse) AE = SIV[F, SE] that is built on
top of an ideal cipher FE.

(Those notions for add and xor can be found in Section 4.1 and Section 4.2 respec-
tively.) This assumption holds for the design choice of AES-GCM-SIV. We thus
only write CTR[E] or GMAC™[H, E] instead of CTR[E, add] or GMAC™ [H, E, xor].
Below, we show the mu-mrae security of SIV[GMAC*[H, E], CTR[E]|, with re-
spect to a pairwise AU KeyGen, and a c-regular, c-AXU hash function H; the
notion of pairwise AU for key-generation algorithms can be found in Section 4.2.
See Appendix F for the proof.

Theorem 4 (Security of SIV). Let E : {0,1}* x {0,1}" — {0,1}" be a
blockcipher that we will model as an ideal cipher. Fix 0 < € < 1. Let H :
{0,1}™ x {0,1}* x {0,1}* — {0,1}* be a c-regular, c-AXU hash. Let AE «+
SIV[GMAC™T[H, E], CTR[E]]. Then for any (-pairwise AU KeyGen and for any
adversary A that makes at most q encryption/verification queries whose total
block length is at most L < 20974 and encryption queries of at most B
blocks per user, and p < 20=9"=4 jdegl-cipher queries,

mu-mrae Bap (360 + 75)1’2 + 460Lp
AdVAE,KeyGen,E(A) < on/2 + ok on+k

(4¢8 +0.58 + 6.5)LB
+ o ,

where a = [1.5n/(n — 1)e] — 1.

REMARKS. The proof of Theorem 4 only needs to know that the mu-ind proof
of CTR and the mu-prf proof of GMACT follow some high-level structure that
we will describe below. We do not need to know any other specific details about
those two proofs. This saves us the burden of repeating the entire prior proofs
in Section 4.1 and Section 4.2. The mu-ind proof of CTR uses the H-coefficient
technique and follows this canonical structure:

(i) When the adversary finishes querying, we grant it all the keys. Note that in
the ideal world, the keys are still created but not used.

(ii) For each ideal-cipher query Ek (X) for answer Y, the transcript correspond-
ingly stores an entry (prim, K, X,Y, +). Likewise, for each query E~!(K,Y)
for answer X, the transcript stores an entry (prim, K, X,Y,—). For each
query ENC(z, M) with answer C, we store an entry (enc,i, M, C).
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(iii) When the adversary finishes querying, for each entry (enc,i, M,C), in the
real world, we grant it a table that stores all triples (K;, X, E(K;, X)) for
all queries E(K;, X) that CTR.E[E](K;, M;T) makes, where K; is the key
of user ¢ and T is the IV of C. In the ideal world, the proof generates
a corresponding fake table as follows. If we consider the version of CTR
in which messages are padded (e.g., PKCS#7), then one can first parse
V|[Cy] -+ [|Crm & Cand My || - - - || My, & M and then return (K;, X1, C1 &
M), ..., (Ki, X, Co @ M,,), where X; = add(IV,i — 1) and we use ¢~ to
denote some function that pads a message into n-bit blocks. If one uses the
well-known padding-free version of CTR where the last block of the message
is allowed to be shorter than n-bit, then one first pads C' with random bits
so that the last fragmentary block becomes n-bit long, and likewise pads M
with 0’s so that the last fragmentary block becomes n-bit long, and then
proceeds as above. (This step can be optionally omitted for the padding
version since the adversary can generate the table by itself.)

(iv) Consider a transcript 7. If there are two tables 73 and 7Tz in 7 that contain
triples (K, X,Y) and (K, X', Y”) respectively, and either X = X' or Y =Y,
then 7 must be considered bad. If there is a table 7 that contains triples
(K,X,Y) and (K,X’,Y’) such that either X = X’ or Y = Y’ then 7 is
also considered bad. In addition, if there is a table 7 that contains a triple
(K, X,Y), and there is an entry (prim, K, X’,Y”,), and either X = X’ or
Y =Y’, then 7 is considered bad. The proof may define some other criteria
for badness of transcripts.

We say that a CTR transcript is CTR-bad if it is bad according to the criteria
defined by the proof of Theorem 1. (Note that although not all of those criteria
are specified in the structure above, it is enough for our purpose, as our proof of
Theorem 4 does not need to know those specific details.) The proof of GMAC™
also follows a similar high-level structure. We say that a GMACT transcript
is GMACT-bad if it is bad according to the criteria defined by the proof of
Theorem 2.

WEAK REGULARITY. We also provide a version of Theorem 4 for the case where
H is only weakly c-regular. Again, the security loss is substantial here, but
security is preserved if each nonce is reused across a sufficiently small number d
of users. A proof sketch is given in Appendix F.1.

Theorem 5 (Security of SIV, weak regularity). Let E : {0,1}*x{0,1}" —
{0,1}™ be a blockcipher that we will model as an ideal cipher. Fiz 0 < € < 1.
Let H : {0,1}" x {0,1}* x {0,1}* — {0,1}* be a weakly c-regular, c-AXU hash.
Let AE + SIV[GMACT [H, E|, CTR[E]]. Then for any B-pairwise AU KeyGen and
for any adversary A that makes at most q encryption/verification queries whose
total block length is at most L < 20=9"=4 and encryption queries of at most B
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blocks per user, and p < 20=9"~4 jdeql-cipher queries,

mu-mrae 1 ﬁap (350 + 7ﬁ)L2 + 450LP
AdVAE,KeyGen,E(A) < W + 27 + on+k
L (B+058+65)LE  dp+ (2d+a)L

2n 2k ’

where a = [1.5n/(n—1)e] — 1, and d is a bound on the number of users re-using
any given nonce.

6 AES-GCM-SIV with A Generic Key-Derivation

In this section we consider the mu-mrae security of AES-GCM-SIV with respect to
a quite generic class of key-derivation functions. This class includes the current
KDF KDg of AES-GCM-SIV, but it contains another KDF KD; that is not only
simpler but also twice faster. This KD; was the original KDF in AES-GCM-SIV,
but then subsequently replaced by KDg. Our multi-user bound is even better
than the single-user bound of Gueron and Lindell [19]. In this section, we assume
that GMAC™T and CTR use functions xor and add, respectively, such that (1) xor
is 2-regular, injective, and linear, and xor(X, N) € 0{0,1}"~! for every string
X € {0,1}" and every nonce N € N' = {0,1}", and (2) add has min-entropy
n—1, and add(IV, ¢) € 1{0,1}"~! for every IV € {0,1}" and every ¢ € N. (Those
notions for add and xor can be found in Section 4.1 and Section 4.2 respectively.)
This assumption holds for the design choice of AES-GCM-SIV. We thus only write
CTR[E] or GMAC™T[H, E] instead of CTR[FE, add] or GMAC™ [H, E, xor].

Below, we will formalize the Key-then-Encrypt transform that captures the way
AES-GCM-SIV generates session keys for every encryption/decryption. We then
describe our class of KDFs.

THE KtE TRANSFORM. Let AE be an AE scheme of nonce space N and let KD :
K x N — {0, 1}AEX be a key-derivation function. Given KD and AE, the Key-
then-Encrypt (KtE) transform constructs another AE scheme AE = KtE[KD, AE]
as shown in Fig. 5.

E.E(K,N,M,A) E.D(K,N,C,A)
J < KD(K,N); C + AE.E(J,N,M,A) |J + KD(K,N); M + AE.D(J,N,C, A)
Return C Return M

Fig.5: The AE scheme AE = KtE[KD, AE] constructed from an AE scheme AE
and a key-derivation function KD, under the KtE transform.

NATURAL KDFs. Let n > 1 be an integer and let & € {n,2n}. Let E :

{0,1}* x {0,1}™ — {0,1}" be a blockcipher that we will model as an ideal
cipher. Let pad : N x {0,...,5} — {0,1}" be a padding mechanism such
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KDo[E](K, N) KDs[E](K, N)
For s =0 to 5 do Rs + Ex(pad(N,s)) |For s =0 to 5 do R; < Ex(pad(N,s))
For i =0 to 2 do Return (Ro || Ry || R2)[1 : n + k]

Vvi < RQi[l : n/2] H R2i+1[1 : n/2]
Return (Vo || Vi || V2)[1 : n + K]

Fig. 6: Key-derivation functions KDy (left) and KD; (right).

that pad(Ny, sg) # pad(Ny, s1) for every distinct pairs (Ng, so), (N1, s1) € N X
{0,...,5}. Let KD[E] : {0, 1}* x N — {0,1}"** be a KDF that is associated with
a deterministic algorithm KD.Map : ({0,1}")% — {0,1}"**. We say that KD[E]
is natural if on input (K, N), KD[E] first calls Ry < E(K,pad(N,0)),...,Rs +
E(K,pad(N,5)), and then returns KD.Map(Ry, . .., Rs).

It might seem arbitrary to limit the number of blockcipher calls of a natural
KDF to six. However, note that since k < 2n, the block length of each (k + n)-
bit derived key is at most three. All known good constructions, which we list
below, use at most six blockcipher calls. Using more would simply make the
performance and even the bounds worse. We therefore define a natural KDF to
use at most six blockcipher calls.

The current KDF KDg[E] of AES-GCM-SIV, as shown in the left panel of
Fig. 6, is natural; it is defined for even n only. For k = n, it can be implemented
using four blockcipher calls, but for £ = 2n it needs six blockcipher calls. Con-
sider the KDF KD;[E] on the right panel of Fig. 6. For k = n it can be imple-
mented using two blockcipher calls, and k = 2n it needs three blockcipher calls.
This KDF is also simpler to implement than KDg. Iwata and Seurin [23] propose
to use either the XOR construction [8,13] or the CENC construction [22]. Both
XOR and CENC constructions are natural; the former uses four blockcipher calls
for k£ = n and six blockcipher calls for k = 2n, and the latter uses three and four
blockcipher calls respectively.

For a natural key-derivation function KD[E], we say that it is y-unpredictable
if for any subset S C {0,1}" of size at least % 2" and any s € {0, 1}tk if
the random variables Ry, ..., Rs are sampled uniformly without replacement
from S then Pr[KD.Map(Ry,...,Rs) = s] < v/2""*. Lemma 3 below shows
that both KDg[E] and KD;[E] are 2-unpredictable; see Appendix G for the
proof. One might also show that both the XOR and CENC constructions are
2-unpredictable. Therefore, in the remainder of this section, we only consider
natural, 2-unpredictable KDFs.

Lemma 3. Let n > 128 be an even integer and let k € {n,2n}. Let E : {0, 1}* x
{0,1}" — {0,1}" be a blockcipher that we will model as an ideal cipher. Then
both KDg[E] and KD1[E] are 2-unpredictable.

IDEAL COUNTERPART OF NATURAL KDF. For a natural KDF KD[E], consider
its following ideal version KD[k]. The key space of KD[k] is the entire set Perm(n).
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KeyGen(st, aux)
(N,4) < aux; (m1,S1,...,Tm, Sm) < st
If(ie{l,...,m}and N € S;) or (s ¢ {1,...,m+ 1}) then
//Unexpected input, return a random key anyway
K +s{0,1}*"™; return (K, st)
Ifie{1,...,m} then S; < S; U{N}; st < (m1,S51,...,Tm, Sm)
If i = m+1 then mm41 <3 Perm(n); Sm41 < {N}; st < (71,51, -« -, Tmt1, Sm+1)
Return (KD[k](m;, N), st)

Fig. 7: Key-generation algorithm KeyGen corresponding to KD[k].

It takes as input a permutation 7 € Perm(n) and a string N € N, computes
R < w(pad(N,s)) for all s € {0,...,5}, and returns KD.Map(Ry, ..., Rs). Of
course KD[k] is impractical since its key length is huge, but it will be useful in
studying the security of the KtE transform. The following bounds the privacy
and authenticity of KtE[KDI[k], AE] via the mu-mrae security of the AE scheme
AE; the proof is in Appendix H. In light of that, in the subsequent subsections,
we will analyze the difference between security of KtE[KD[E], AE] and that of
KtE[KDI[k], AE].

Proposition 2. Let n > 8 be an integer and let k € {n,2n}. Let E : {0,1}F x
{0,1}" — {0,1}" be a blockcipher that we will model as an ideal cipher. Let
KD[E] be a natural KDF. Let AE be an AE scheme of key length k + n. Let
AE = KtE[KDIk|, AE]. Then for any adversaries Ay and As, we can construct
a key-generation algorithm KD.KeyGen as shown in Fig. 7, and an adversary A
such that
AdvZE T (A1) + Advig 3™ (A2) < 3 AdVRE RS Een () -

For any type of queries, the number of A’s queries is at most the mazximum of
that of Ay and Ay, and the similar claim holds for the total block length of the
encryption/verification queries. Moreover, the mazimum of total block length of
encryption queries per user of A is at most the maximum of that per (user,
nonce) pair of A1 and As.

The following lemma says that if KD[E] is 2-unpredictable then the con-
structed KeyGen in the theorem statement of Proposition 2 is 4-pairwise AU;
the notion of pairwise AU for key-generation algorithms can be found in Sec-
tion 4.2. The proof is in Appendix I.

Lemma 4. Let n > 8 be an integer and let k € {n,2n}. Let E : {0,1}* x
{0,1}™ — {0,1}" be a blockcipher that we will model as an ideal cipher. Let
KDI[E] be a natural, 2-unpredictable KDF. Then the corresponding key-generation
algorithm KeyGen in Fig. 7 is 4-pairwise AU.

INDISTINGUISHABILITY OF KD[E]. For an adversary A, define

Adv(lj(iEt[E] (A) = QPT[G?JSDt[E] (A)] -1
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Game Gf(isDt[E] (A) EvaL(i, N)

If 4 > v then return L

If b = 1 then return KD[E](K;, N)
Else return KD[k](m;, N)

v O; b s {07 1}7 b/ s ‘/4N1~;\\»',I~T\'AL,E,E’1
Return (b' = b)

Procedure NEW()

v v+1; K, <s{0,1}*; m, s Perm(n)

Fig.8: Game to distinguish KD[E] and its ideal counterpart KD[k].

as the advantage of A in distinguishing a natural KDF KD[E] and its ideal
counterpart KD[k] in the multi-user setting, where game GfgsDt[ ) (A) is defined
in Fig. 8. Under this notion, the adversary is given access to both E and E~!,
an oracle NEW() to initialize a new user v with a truly random master key K,
and a secret ideal permutation m,, and an evaluation oracle EVAL that either
implements KD[E] or KD[k]. We say that an adversary A is d-repeating if among
its evaluation queries, a nonce is used for at most d users.

Lemma 5 below bounds the indistinguishability advantage between KD[E] and
KD[k]. The proof is in Appendix J; it uses some technical balls-into-bins results
in Appendix A.

Lemma 5. Fiz 0 < € < 1. Let n > 16 be an integer and let k € {n,2n}. Let
E : {0,1}* x {0,1}™ — {0,1}™ be a blockcipher that we will model as an ideal
cipher. Let KD[E] be a natural KDF. For any d-repeating adversary A that makes
at most p < 2% ideal-cipher queries, and q < 2=9"=4 evaluation queries,

; 1 24pq +18¢>  ap +d(p + 3q)
dist Pq q 4 b q
Advip () (A) < on/2 ok+n ok

where a = [1.5/€]—1. The theorem statement still holds if we grant the adversary
the master keys when it finishes querying.

6.1 Privacy Analysis

Lemma 6 below reduces the privacy security of KtE[KD[E], AE] for a generic AE
scheme AE, to that of KtE[KD[k], AE]; the proof relies crucially on Lemma 5.

Lemma 6. Fiz 0 < € < 1. Let n > 16 be an integer and let k € {n,2n}. Let
E :{0,1}* x {0,1}™ — {0,1}™ be a blockcipher that we will model as an ideal
cipher. Let KD[E] be a natural KDF. Let AE be an AE scheme of key length k+n,
and let AE = KtE[KD[E], AE]. Consider a d-repeating adversary A that makes
p < 2% ideal-cipher queries and q < 20=9"* encryption queries. Suppose
that using AE to encrypt A’s encryption queries would need to make L < 277>
ideal-cipher queries. Then

u-priv u-priv 2 48(L +p)q + 36q2
Advie (A < Adviegio ae), 6 (A) + 507 D
2a(L + p) + 2d(L + p + 3q)
+ oF ,

s
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where a = [1.5/€] — 1.

Proof. We first construct an adversary A that tries to distinguish KD[E] and

KDJk]. Adversary A simulates game GZ‘E Z:'V(A), but each time it needs to gen-

erate a session key, it uses its EVAL oracle instead of KD[E]. However, if A
previously queried EVAL(é, N) for an _answer K, next time it simply uses K
without querying. Finally, adversary A outputs 1 only if the simulated game

returns true. Let b be the challenge bit in game G‘P’(isDt[ E] (A). Then

Pr[G f('E)t[E (A) = true | b=1] = Pr[G%_giv(A)], and

Pr(GyE g (A) = false | b = 0] = Pr[G;Qt“EF,;'g[k] ag5(A)] -

Subtracting, we get

AdViEE ) (A) = (Ad Vag (A1) = AdVReER g ag e (A1)

Note that A makes at most p + L < 274 ideal-cipher queries, and ¢ EVAL
queries. Moreover, A is also d-repeating. Hence using Lemma 5,

— 1 24(L +p)g +18¢%>  a(L +p) +d(L +p+ 3q)
AdVieB ) ko) (A) < 575 + S + ok :

Putting this all together,
2 N 48(L + p)q + 364>

Adv%:g“’(A) < AdVE:EFQB[ ],AE],E(A) + on/2 ok+n
2a(L +p)+2d(L+p+ 3q)
+ .
2k
This concludes the proof. a

6.2 Authenticity Analysis

In Section 6.1, we bound the privacy advantage by constructing a d-repeating ad-
versary distinguishing KD[E] and KD[k], and then using Lemma 5. This method
does not work for authenticity: the constructed adversary might be g-repeating,
because there is no restriction of the nonces in verification queries, and one
would end up with an inferior term q(L +p+ q) /2. We instead give a dedicated
analysis.

RESTRICTING TO SIMPLE ADVERSARIES. We say that an adversary is simple if for
any nonce N and user i, if the adversary uses N for an encryption query of user i,
then it will never use nonce N on verification queries for user i. Lemma 7 below
reduces the authenticity advantage of a general adversary against KtE[KD[E], AE]
to that of a simple adversary; the proof is in Appendix K, and is based on the
idea of splitting the cases of where the adversary forges on a fresh (IV,i) pair
and where it does not, and the latter can be handled using Lemma 5 above.
Handling the former is the harder part, which we deal with below. We discuss
the bound however below, and give an overview of the proof.
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Lemma 7. Let n > 16 be an integer and let k € {n,2n}. Let E : {0,1}F x
{0,1}" — {0,1}" be a blockcipher that we will model as an ideal cipher. Let
KD[E] be a natural KDF. Let AE be an AE scheme of key length n + k, and
let AE = KtE[KD[E], AE]. Let Ay be a d-repeating adversary that makes at most
g < 20—¢en—4 encryption/verification queries and p < 2" ideal-cipher queries.
Suppose that using AE to encrypt Agy’s encryption queries and decrypt its verifi-
cation queries would need to make L < 277® ideal-cipher queries. Then, we can
construct an adversary Ay and a simple adversary As, both d-repeating, such
that

AVEE S () < AVIERS ) ae) (A1) + AdVIE T ()

2 48(L + p)q + 36¢®> = 2(a+d)L + 2(a + d)p + 6dq
271/2 2n+k + 2k: ’

where a = [1.5/€] — 1. Any query of Ay or Ay is also a query of Ayp.

HANDLING SIMPLE ADVERSARIES. Lemma 8 below shows that the AE scheme
KtE[KD[E], SIV[GMACT[H, E], CTR[E]]] has good authenticity against simple
adversaries, for any 2-unpredictable, natural KDF KD[E]. The proof is in Ap-
pendix L; it also uses some technical balls-into-bins results in Appendix A. Note
that here we can handle both regular and weakly regular hash functions. (If we
instead consider just regular hash functions, we can slightly improve the bound,
but the difference is inconsequential.)

Lemma 8. Fiz 0 < e <1 and let a = [1.5/€] — 1. Let n > 128 be an integer,
and let k € {n,2n}. Let E : {0,1}* x {0,1}* — {0,1}" be a blockcipher that
we will model as an ideal cipher. Let H : {0,1}™ x {0,1}* x {0,1}* — {0,1}"
be a hash function that is either c-regular or weakly c-regular. Let KD[E] be a
natural, 2-unpredictable KDF. Let AE = SIV[GMAC* [H, E|, CTR[E]] and AE =
KtE[KD[E], AE]. Let A be a d-repeating, simple adversary that makes at most
p < 20-9n=8 jdeql-cipher queries, and ¢ < 2(1—9)n—8 encryption/verification
queries whose total block length is at most L < 2(1=)n=8  Then

11 244
Adyme-auth () < 3 11g | 288(L +p)gq + 36¢> +48¢(L +p+q)L

AE,E — 9n/2 on on+k
(8a+ T7a%? +3d)q  (na+6a+6d)L + 6(a+d)p
+ oF + ok .

DiscussioN. The bound in Lemma 8 consists of three important terms 5%, ’2’—3,

and ”Q“,CL, each corresponding to an actual attack. Let us revisit these, as this will
be helpful in explaining the proof below. First, since the IV length is only n-bit
long, even if an adversary simply outputs ¢ verification queries in a random fash-
ion, it would get an advantage about . Next, for the term g—‘,f, consider an ad-
versary that picks a long enough message M and then makes encryption queries
(1, N,M,A),...,(d,N, M, A) of the same nonce N and associated data, for an-
swers C1,...,Cy4 respectively. (Recall that the adversary is d-repeating, so it

cannot use the nonce N in encryption queries for more than d users.) By picking
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p candidate master keys K7, ..., K, and comparing C; with AE.E(K;, N, M, A)
forall 7 < d and j < p, the adversary can recover one master key with probability

about 12’—?.
Finally, for the term ’gl—k.L, consider the following attack. The adversary first
picks a nonce N and p candidate keys Ki,..., K, and then queries Ry ;

Er(Kj,pad(N,0)),...,Rs; < E(K;,pad(N,5)) for every j < p. Let K/ | K2, +
KD.Map(Ry j, ..., Rs5 ;). Now, if some K is the master key of some user ¢ then
K |Jn | K2, will be the session key of that user i for nonce N. The adversary then
picks an arbitrary ciphertext C, and then computes M; <— CTR[E].D(K}, C) and
Vi E~Y(K.,,T) for each j < p, where T is the IV of C. The goal of the adver-
sary is to make a sequence of ¢ verification queries (1, N,C, A),...,(q,N,C, A),
for an ¢-block associated data A that it will determine later. (Recall that in
verification queries, the adversary can reuse a nonce across as many Users as
it likes.) To maximize its chance of winning, the adversary will iterate through
every possible string A* of block length ¢, and let count(A*) denote the number
of j’s that xor(H (K3}, M;, A*), N) = V;. Then it picks A as the string to max-
imize count(A). The proof of Lemma 8 essentially shows that with very high
probability, we have count(A) < na({+ |C|,) < %, and thus the advantage of

this attack is bounded by ";—,CL

PROOF IDEAS. We now sketch some ideas in the proof of Lemma 8. First consider
an adversary that does not use the encryption oracle. Assume that the adver-
sary does not repeat a prior ideal-cipher query, or make redundant ideal-cipher
queries. For each query Ek (Y) of answer Y, create an entry (prim, K, X,Y,+).
Likewise, for each query Ef(l (Y) of answer X, create an entry (prim, K, X, Y, —).
Consider a verification query (i, N,C, A). Let K; be the secret master key of
user 4, and let Kj, | Kout be the session key of user ¢ for nonce N. Let T
be the IV of C. The proof examines several cases, but here we only discuss
a few selective ones. If there is no entry (prim, K;, X,Y,:) such that X €
{pad(N,0),...,pad(N,5)} then given the view of the adversary, the session
key Kin || Kout still has at least & + n — 1 bits of (conditional) min-entropy.
In this case, the chance that AE.D(Kiy, || Kout, IV, C, M) returns a non-_L answer
is roughly 1/2™. Next, suppose that there is an entry (prim, K, X,Y,—) such
that K = K; and X € {pad(N,0),...,pad(N,5)}. By using some balls-into-
bins analysis,® we can argue that it is very likely that there are at most 6a
entries (prim, K*, X* Y* —) such that X* € {pad(N,0),...,pad(N,5)}. Hence
the chance this case happens is at most 6a/2".

Now consider the case that there are entries (prim, K;, pad(N,0), Ro, +), . - .,
(prim, K;,pad(N,5), R5, +), and (prim, Kou, V, T, —), with V € 0{0,1}"~! and
Kin|| Kout < KD.Map(Ry, ..., Rs). This corresponds to the last attack in the dis-
cussion above. We need to bound Pr[Bad], where Bad is the the event (i) this case
happens, and (ii) V' = xor(H(Kn, M, A),N), where M «+ CTR[E].D(Kou, C).

® We note that this is not the classic balls-into-bins setting, because the balls are
thrown in an inter-dependent way. In Appendix A we analyze this biased balls-into-
bins setting.
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This is highly non-trivial because somehow the adversary already sees the keys
K; and K, || Kout, and can adaptively pick (C, A), as shown in the third attack
above.

To deal with this, we consider a fized (i*, N*,C*, A*). There are at most p
septets T of entries (prim, K, pad(N*,0), RS, +), ..., (prim, K, pad(N*,5), RE, +)
and (prim, J,U,T*, —), with U € 0{0,1}"~! and J' || J < KD.Map(R}, ..., R%).
We then show that the chance that there are nfa such septets 7 such that
xor(H(J'(T), M*(T), A*), N*) = U(T) is at most 2!~ (3+2n) where £ = |C*|,,+
|A*|,, > 2 and M*(T) < CTR[E].D(J(T),C*). Hence, regardless of how the ad-
versary picks (i, N, C, A) from all possible choices of (i*, N*, C*, A*), the chance
that there are na(|C|, +|A|,) septets T such that xor(H (J'(T), M(T),A),N) =
U(T), where M(T) «+ CTR[E].D(J(T),C), is at most

2: 2: 1—(3nf+2n) 2:2@4—2.1—(324—2)_2 L
2 (3n. n) < 92n n.9 n n) _ o < o
=2 (+*,N*,C*,A") =2 =2

|C* |+ A=

Thus Pr[Bad] < o + 2 B4+l

Now we consider the general case where the adversary A might use the en-
cryption oracle. Clearly if for each encryption query (i, N, M, A), we grant the
adversary the session key KD[E](K;, N), where K; is the master key of user 1,
then it only helps the adversary. Recall that here the adversary is simple, so
it cannot query ENc(i, N, M, A) and later query VF(i, N,C’, A"). We also let
the adversary compute up to L + p ideal-cipher queries, so that the encryption
oracle does not have to give the ciphertexts to the adversary. Effectively, we can
view that A is in the following game Gy. It is given access to E/E~! and an
oracle EVAL(¢, N) that generates KD[E](i, N). Then it has to generate a list of
verification queries. The game then tries to decrypt those, and returns true only
if some gives a non-_L answer.

To remove the use of the EVAL oracle, it is tempting to consider the vari-
ant G1 of game Gy where EVAL instead implements KD[k], and then bound
the gap between Gy and G by constructing a d-repeating adversary A distin-
guishing KD[E] and KD[k]. However, this approach does not work because it is
impossible for A to correctly simulate the processing of the verification queries.
Instead, we define game G; as follows. Its EVAL again implements KD[k], but
after the adversary produces its verification queries, the game tries to program
E so that the outputs of EVAL are consistent with KD[E] on random master
keys K1, Ko, - +s{0,1}""k. (But E still has to remain consistent with its
past ideal-cipher queries.) Of course it is not always possible, because the fake
EvAL might have generated some inconsistency. In this case, the game returns
false, meaning that the adversary loses. If there is no inconsistency, then after
the programming, the game processes the verification queries as in Gy.

To bound the gap between G and G, we will construct a d-repeating adver-
sary A distinguishing KD[E] and KD[k], but additionally, it wants to be granted
the master keys after it finishes querying. Note that Lemma 5 applies to this
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key-revealing setting. Now, after the adversary A finishes querying, it is granted
the master keys and checks for inconsistency between the outputs of EVAL and
the ideal-cipher queries. If there is inconsistency then A outputs 0, indicating
that it has been dealing with KD[k]. Otherwise, it has to simulate the process-
ing of the verification queries. However, although it knows the keys now, it can
no longer queries E. Instead, A tries to sample an independent blockcipher E,
subject to (1) E and E agree on the outputs of the past ideal-cipher queries,
and the outputs of EVAL are consistent with KD[E] on master keys K1, Ko, .. ..
It then processes the verification queries using this blockcipher E instead of E.

Although the game G; above does not completely remove the use of the
EvVAL oracle, it still creates some sort of independence between the sampling of
the master keys, and the outputs that the adversary A receives, allowing us to
repeat several proof ideas above.

HANDLING GENERAL ADVERSARIES. Combining Lemmas 7 and 8, we immedi-
ately obtain the following result.

Lemma 9. Fiz 0 < e <1 and let a = [1.5/€] — 1. Let n > 128 be an integer,
and let k € {n,2n}. Let E : {0,1}* x {0,1}" — {0,1}" be a blockcipher that
we will model as an ideal cipher. Let H : {0,1}"™ x {0,1}* x {0,1}* — {0,1}"
be a hash function that is either c-regular hash or weakly c-reqular. Let KD[FE]
be a natural, 2-unpredictable KDF. Let AE = SIV[GMACT[H, E],CTR[E]] and
AE = KtE[KDI[E],AE]. Let A be a d-repeating adversary that makes at most
p < 20=9n=8 jdeql-cipher queries, and ¢ < 2(1—9)n—8 encryption/verification
queries whose total block length is at most L < 20=9)"=8_ Then we can construct
a d-repeating adversary A such that

— 5 11q | 336(L +p)q + 72¢°

mu-auth mu-auth
AdVﬁJa; (A) < AdViEiKD ik A, B (A) + oz T o otk
N 48¢(L+p+q)L N (8a+ 7a® 4+ 9d)q + (na + 8a + 8d)L + 8(a + d)p
on+k 2k '

Moreover, any query of A is also a query of A.

6.3 Unwinding Mu-Mrae Security

The following Theorem 6 concludes the mu-mrae security of AE scheme AE =
KtE[KDI[E], SIV[GMACT [H, E], CTR[E]]]; the proof is in Appendix M. Note that
here we can handle both regular and weakly regular hash functions. (If we instead
consider just regular hash functions, we can slightly improve the bound, but the
difference is inconsequential.)

Theorem 6 (Security of AES-GCM-SIV). Let n > 128 be an integer, and
let k € {n,2n}. Fiz 0 < e < 1 and let a = [1.5n/(n — 1)e] — 1. Let E :
{0,1}* x {0,1}™ — {0,1}" be a blockcipher that we will model as an ideal cipher.
Let H : {0,1}"x{0,1}*x{0,1}* — {0,1}" be a c-AXU hash function. Moreover,
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either H is c-regular, or weakly c-regular. Let KD[E] be a natural, 2-unpredictable
KDF. Let AE = SIV[GMAC™* [H, E], CTR[E]] and AE = KtE[KD[E], AE]. Let A be
a d-repeating adversary that makes at most p < 2(2=9"=8 jdeql-cipher queries,
and g < 2(—)n—8 encryption/verification queries whose total block length is at
most L < 20=9"=8 qnd encryption queries of at most B blocks per (user, nonce)
pair. Then,

10 (17a+ 4a® + 24d + na)L + (22a + 13d)p

Adv%,-grae(A> = on/2 + 2k
(48¢+30)LB (303 + 108¢)L2 + (192 + 96¢) Lp
+ on + 2n+k: :

We note that one way that d can be kept small is by choosing nonces randomly,
or at least with sufficient entropy. Then, by a classical balls-into-bins analysis, if
q is quite smaller than 2", where nl is the nonce length, which holds in practice
for nl = 96, then the value d is bounded by a constant with high probability.
We also point out that if d cannot be bounded, then our security bound still
gives very meaningful security guarantees if k& = 2n (i.e., this would have us
use AES-256). As there is a matching attack in the unbounded d case, which
just exploits key collisions, this suggests the need to increase keys to 256 in the
multi-user case. However, many uses in practice will have d bounded, and for
these 128-bit keys will suffice.
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A Biased Balls-Into-Bins

Consider the following game in which we throw ¢ balls into 2™ bins. The throws
can be inter-dependent, but for each i-th throw, conditioning on the result of
the prior throws, the conditional probability that the i-th ball falls into any
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particular bin is at most 2'=™. Let Balls(q,m) denote the random variable for
the number of balls in the heaviest bin in this game. The following result gives
a strong concentration bound on Balls(g, m) when ¢ is quite smaller than 2™.

Lemma 10. Fiz 0 < e < 1. Let m,q € N such that ¢ < 20=9"=1 Then

Pr[BaHs(q,m) > [1.5/6]] <2 m/?

Proof. Let s = m — 1 and r = [1.5/€]. Since the adversary throws at most ¢

balls, there are
T T
N
r) —rl 7 2

sets of r balls. For each set, the chance that all balls in the set land in the same
bin is at most 2-("~Ds. Hence the chance that there are r balls landing in the
same bin is at most
r r(l—e)s
q < 2
2. 2(7“71)5 — 9. 2(7”71)8

— 2—1—(67‘—1)8 S 2—(8/2+1) S 2—m/2 .

This concludes the proof. a

Next, we give a concentration bound on Balls(g, m) when g might be quite bigger
than 2™.

Lemma 11. Fizx 0 < e < 1 and m € N such that m > 128. Let m,f,c,q € N
such that £ > 2 and q < c¢-2™. Then

Pr [Balls(q,m) > [cﬂm/ﬂ} < 9= (B2m

Proof. Let s = m — 1 and r = [cfm/2] > 128c. Since the adversary throws at
most ¢ balls, there are

9\ _ 4

r) — rl

sets of r balls. For each set, the chance that all balls in the set land in the same
bin is at most 2~ ("~Ds_ Hence the chance that there are r balls landing in the
same bin is at most

q" (2¢c)27¢ (2¢)72° _ (2¢)72m 2™

pl.20r=1s = pl.o(r=Ds — pl = (r/e)r  (r/2ec)"

am am
< < < 9—(3t+2)m
= (64/e) = {8/ s = |

where the second inequality is due to the fact that n! > (n/e)™ for every integer
n > 1, and the second last inequality is due to the hypothesis that £ > 2. This
concludes the proof. a
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PolyVal[F|(K, M, A)

X A0 | MO" | [Allnsz | [M][]nz

X1+ Xm + X // Each | X;| =n

// Interpret K and Xi,..., X, as elements in F
Y XioeK"0Xoe K™ '@ @ X0 K
Return Y

Fig.9: The POLY VAL hash function. For a string Z, we write Z0* to denote the
string obtained by padding 0’s to Z until the next n-bit boundary. In particular, if | Z|
is divisible by n then Z0* = Z || 0". For a number ¢ € {0,...,2"/% — 1}, we write [t],
to denote an r-bit representation of ¢.

B The POLYVAL Hash Function

Let n > 2 be an even integer. Let F be a finite field of 2™ elements, meaning
that we can interpret a string in {0,1}™ as an element in F, and vice versa.
Assume that the string 0™ is interpreted as the zero element of F, and the
addition operator in F is equivalent to xor in {0,1}". Let e denote the mul-
tiplication operator of F. The POLYVAL hash function PolyVal[F] : {0,1}"™ x
{0,1}* x {0,1}* — {0,1}™ is defined as in Fig. 9. Note that if M = A = ¢ then
PolyVal[F|(K, M, A) = 0" for any key K.

WEAK REGULARITY OF POLYVAL. We first show that PolyVal is weakly 1.5-
regular. Consider arbitrary (M,A) € ({0,1}*)*\(e,e) and Z € {0,1}". Let
X < A0* || MO* || [|Alln/2 |l [[M]|]n/2, where Z0* denotes the string obtained
by padding 0’s to Z until the next n-bit boundary, and [t],, /o denotes an n/2-bit
representation of the number ¢. Note that

m = |X|n, = [Aln + M|, +1 < L5(|Aln + [M]n),
since |Al,, |M|, > 1. Let Xy --- X, + X, where each | X;| = n. Let
f(fc):Xl‘xm@X2°$m71®~~®Xmox@Z .

Note that f is a polynomial of degree at most m, and since (M, A) # (g,¢), f
is non-zero. Hence f has at most m roots. If we pick K <s{0,1}", the chance
that K is one of those m roots is at most m/2"™ < 1.5(|M|,, + |A|,)/2"™. Hence
Hence

P PolyVal[F|(K, M, A) = Z] = K)=0"
o Pr o PoVAIEI(K M A) = Z) = Py [£(K) = 0]
< LMl + A1)

and thus PolyVal is weakly 1.5-regular.

XOR UNIVERSALITY OF POLYVAL. Next, we show that PolyVal is 1.5-AXU.
Consider distinct (M, A) and (M’, A’) in ({0,1}*)2, and fix Z € {0,1}". Let
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X = A0™ [| MO* | [|Al]nj2 | [[M [} /2, and X" <= A0* | MO [[[|A[J1, /2 | [[M"[]5/2-
Without loss of generality, assume that m = | X|,, > |X’|,, = ¢. Note that

m = | X[, = |Aln + M|, +1 < L5(JA]n + [ M),

since |Al,, |M|, > 1. Let X;---X,,, < X and X/ --- X, < X', where |X;| =
| X} = n. Let

gx)=(X,02m D DX 02)D(X| 0z’ D--- DX, 02)B 7 .

Note that g(x) is a polynomial of degree at most m, and since (M, A) # (M, A’),
g is non-zero. Hence g has at most m roots. If we pick K «s{0,1}", the chance
that K is one of those m roots is at most m /2" < 1.5(|M|,, + |A]|,)/2"™. Hence

Pr  [PolyVal[F|(K, M, A) & PolyVal[F|(K, M, A') = Z
K@{gyl}n[oy al[F|(K, M, A) & PolyVal[F|(K, M', A') = Z]

< L5(M], +|Al,)

= P lg(K) =07) .

K« {B,1}n g
and thus PolyVal is 1.5-AXU.

FIXING THE WEAK REGULARITY OF POLYVAL. As shown above, PolyVal is
just weakly regular. There are several ways to make PolyVal regular. For example,
instead of padding M and A with 0’s, one can pad them with 1’s. The resulting
construction would be 1.5-regular and 1.5-AXU.

C Proof of Proposition 1

Without loss of generality, assume that if a verification query returns true then
the adversary Ay will simply terminate and return 1. This can only increase its
advantage. Assume that 4y never repeats an encryption query, and if it queries
(i, N, M, A) to ENC for a ciphertext C, then subsequently, it will not query
(i,N,C, A) to VF.

We now construct an adversary A attacking the mrae security of AE, but it
only calls VF after finishing querying ENc. Adversary A runs Ay, and uses its
ENC and NEW oracles to respond to the latter’s queries accordingly. For each
verification query of Ay, adversary A simply returns false, but stores the query
in a set S. When Aj terminates and outputs a bit &', adversary A will iterate
over queries in its set S. For each query (i, N, C, A) in S, if there is an encryption
query (i, N, M, A) with answer C (that is made after Ay queries VF(i, N, C, A)),
then A will terminate and output 1. Otherwise, it will query V¥ (i, N, C, A), and
if the answer is true, it will again terminate and output 1. If all verification
queries return false then A outputs b’. Let a and b be the challenge bits of game
GREweee o (A) and GReRree 1 (Ag) respectively. Then

Pr[GREReyGen, ir(A) | @ = 1] = Pr[GRERSEen 11(Ao) [ b=1] .
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Indeed, in the real world, if some verification query (i, N,C, A) of Ag can re-
turn true then Ao will output 1, and so does A: either A will eventually query
(i, N,C, A) to get answer true, or later there is an encryption query (i, N, M, A)
of answer C' that makes A outputs 1. If no verification query of Ay can return
true then A correctly simulates the verification oracle for Ag, and both will give
the same answer b'. On the other hand,

2qy

Pr[GREReGen,11(A) | @ = 0] = Pr{GREREEen 1r(Ao) | b= 0] — o7

Indeed, in the ideal world, adversary A correctly simulates the verification or-
acle for Ag. The answer of the two adversaries will be different only if there is
a verification query (i, N,C, A) and a subsequent encryption query (i, N, M, A)
with the same answer C. For each verification query (i, N, C, A), it can be “tar-
geted” by at most 2°F! encryption queries, where s = |C| — n, but the chance
that some such encryption query can result in the same ciphertext C' is at most
2511 /21€1 = 2/2™  Summing this over ¢, verification queries gives us the bound
2¢, /2™. Hence

AGVEE R 1 (A) > AVRERSE 11 (Ao) —

Recall that A always makes verification queries after all encryption queries.
We now construct adversaries A; and As. Adversary A; runs A, and uses its
Enc and NEw oracles to respond to the latter’s queries accordingly. For the
verification queries of A, adversary A; simply answers false. When A outputs a
bit a’, A; also output a’. Adversary A, runs A and uses its oracles NEW and
ENC to respond to the latter’s queries accordingly. For each verification query
of A, adversary A, queries it to its VF oracle, but always returns false to A. Let
game G correspond to game GZ‘E{{”SEen H(Z) with challenge bit a = 1. Let G,
be identical to game G1, except that the verification oracle will always return
false. Let G5 be identical to game G4, except that now the encryption oracle will
always return a fresh random answer of appropriate length. Then

AdVRE KeGen 17 (A2) > Pr[G1] — Pr[G))]

because it is impossible for A to distinguish G; and G, unless it manages to
trigger the verification oracle to return a true answer in game G;. On the other
hand, _

AdVAE RevGen 17 (A1) = Pr[G2] — Pr[G3] .

Summing up,
Adv:;:lzrei;Gen,H(Al) + AdVZ]E:IiLel;%en,H(AQ) > Pr[Gl] - PI’[Gg]
= Advxg:ger;(e;en,ﬂ(A)
24y
2”

mu-mrae
> AdVAE,KeyGen,H(AO) -

This concludes the proof.
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D Proof of Theorem 1

Our proof uses the H-coefficient method. We let Sy and S; be two systems
which models the oracles accessed by A in the game GEE:};d(A) in the cases
where ciphertexts are real (b = 1) or random (b = 0), respectively. Here, A is
deterministic without loss of generality, and transcripts only contain two types

of queries:

1. Encryption queries have form (enc,i, M, (IV,C)), where i indicates the
user for which the query has been made, M € {0,1}* is the plaintext, IV €
{0,1}™ is the first block of the ciphertext, whereas C' are the remaining
blocks. We will normally think of C' as made of n-bit blocks C[1],...,C[{]
and M of blocks M[1],..., M[¢].

2. Ideal-cipher queries have form (prim, K, u,v), and correspond to the ad-
versary making a query to the ideal cipher, either (K, ) (in the forward
direction) or (K,v) in the backward direction, returning u and v, respec-
tively.5

We do not record A’s NEW queries explicitly, but add the resulting keys K1, ..., K,
to the transcript (note that such keys are generated even in the ideal case, just
never used). We also assume without loss of generality that if an encryption
query for user ¢ appears, then v has been previously increased beyond ¢ using
NEW queries.

Further, let us fix a transcript 7 be a transcript with v keys Ky, ..., K,, and
let K = K(7) = {K1,...,K,}.” Also, let q = (enc,i, M, (IV,C)) € 7 such that
M and C are made of the n-bit blocks M[1],..., M[{] and C[1],...,C[f]. Then,
we define the following multi-sets (i.e., elements are allowed to be repeated)

U ={IV+1,...,IV+ ¢},
V(q) = {C[1] & M[1],...,C[f] & M},

as well as K(q) = K;. Then, for any K € K, we let

ViK)= |J V@, UK)= |J Ul).

a:K(q)=K a:K(q)=K

Here, union is on multisets. Finally, for each K € {0,1}*, we also define P(K)
as the set of inputs U such that there exists V with (prim, K,U,V) € 7.

GOOD TRANSCRIPTS, AND RATIO ANALYSIS. With this notation, we can give a
definition of good/bad transcripts.

Definition 2 (Good and bad transcripts). We say that 7 is good if the
following conditions are satisfied, for all K € K:

5 It will not be necessary for the transcript to record the direction of ideal-cipher
queries, i.e., whether the query is in the forward or backward direction.
" Note that as keys may be repeated, we can only ensure |K| < u.
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(a) Fach element in U(K) appears once, i.e., there are no repetitions.

(b) Each element in V(K) appears once, i.e., there are no repetitions.
(¢c) P(K)NU(K) = 0.

If T is not good, then it is bad.

In the following, we prove that for all good transcript 7, we have pg, (7) > ps, (7).
First off, define by pkeyGen(K1,...,K,) the probability that NEW query asked
indeed generate these keys. Now, with N = 2", and ¢ the number of encryption
queries,

|P(K)[+|U(K)|-1 1

N —1

1
pSO (T) = m : pKeyGen (Kla ey Ku) : Keg[l}k p

where the first term takes into account the random choice of the IVs, the sec-
ond the choice of the keys, the third the ideal-cipher evaluations within the
encryption and direct primitive queries. Note that EKe{OJ}k |P(K)| = p and
Y kex [U(K)| = L. On the other hand, in the ideal world,

|P(K)|—1 1

1
pSl(T):m'pKeyGen(KIa---vKu)'ﬁ' H H N—il
Ke{01}r =0

since ciphertexts are random. Therefore, pg,(7)/ps,(7) > 1, and we can use
the H-coefficient technique with ¢ = 0, and only need the probability that a
transcript generated in an ideal execution is bad.

PROBABILITY OF A BAD TRANSCRIPT. We now turn to computing the proba-
bility of a transcript being bad in S;. In particular, denote by X} the transcript
generated by A’s interaction, and let B,, B, and B. be the sets of transcripts
which violate (a), (b), or (c) in Definition 2. Then, by the union bound,

Pr[Xl c B] < Pr[Xl S Ba} + Pr[Xl S Bb] + PI'[Xl S Bc] .

We now upper bound the three probabilities separately. Note that because we are
in the ideal world, and NEW queries do not return any output and the generated
keys are not used, we can think of KeyGen without loss of generality being run
at the end of the execution, and generating the resulting keys.

CASE A). We let L1, Lo, Ls, . . . be the individual lengths of each query performed
by the attacker, which can be chosen adaptively. Also let B, ; for i € [¢] the set
of transcripts where the i-th query, of length L;, generates an input to the ideal
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cipher which is used in one of the previous queries using the same key. Then,

LB L?

SW—’_ﬁa’

because upon generating a new IV for a query encrypting ¢; blocks, there is
probability at most ¢; B/2" that one of the ¢; offsets add(IV,0), ..., add(IV, ¢; —1)
will collide with one of the offsets to encrypt a previous message for the same
user, and probability ¢; - L/2" that there is a collision with one of the offsets used
by some other user. In the latter case, however, such a collision only contributes
to the bad event if the keys associated with the two users also collide, thus
incurring an additional o multiplicative factor.

CASE B). The argument is very similar to the one for Case a). Instead of looking
at the offsets add(IV, i) generated during an encryption, and checking collisions
with previously used offsets, we look at the actual ciphertext blocks which are
output (independently and randomly), and make sure they do not provoke the
transcript to be in By. This gives us a bound of

L2

+ . (5)

LB
Pr[Xl S Bb] < 2n0¢

on
CASE C). Recall that when sampling X;, the keys K7, ..., K, are sampled at the
end of the execution, independently of it. For a transcript 7, we define by Z(7,U)

to be the maximal number of encryption queries q € 7 such that U € U(q). Also,
let Z = max, Z(X1,x). Then,

Pr[X; € B.] < ZPr[Z =z]-zpa + Pr[Z > a

z<a

<apa+Pr[Z > d

because for every query (prim, K,U, V), out of p potential ones, there are at
most Z(X1,U) < Z queries q = (enc, i, M, (IV,C)) such that U € U(q). Thus,
the probability (over the choice of K7, ..., K,) that K = K; is . We have then
decided to cut the sum at z = a = [%1 — 1, as we are going to justify next
that the probability that Z exceeds this is negligible.

This follows from the following lemma, whose proof is found below, and
which follows a classical balls-into-bins approach, with some extra care needed

to handle the adaptivity of the adversary.
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Lemma 12. Let L < 200=92=1 Thep,
Pr [Z > PS"H <272,
eh

This concludes the proof.

Proof (Of Lemma 12). One can without loss of generality consider the following
adaptive balls-into-bins game. There are N = 2" bins, corresponding to the
block-cipher inputs. At each query, the attacker chooses adaptively a length £,
then a random IV «s {0, 1}"™ is chosen, and a ball is placed into the bins add(1V, %)
fori=0,...,¢ — 1. We assume without loss of generality the attacker’s lengths
always sum up to L, as this only increases Z. Then, we let Z; be the load of bin
i, and Z = max; Z;.

Fix some bin 7 € [N]. We will now upper bound Z;, for an arbitrary strategy.
Note that with respect to the goal of maximizing Z;, without loss of generality,
the adversary needs only to know whether a ball was thrown into bin ¢ or not
after each move. (It can simulate the rest consistently.) Note that when the
adversary chooses a random IV and some length ¢, we have

*

Prfi € {add(IV,0). ... add(IV, £ ~ 1)}] < 57,

because each individual item has min-entropy h, and is equal ¢ with probability
at most 1/2". Imagine we modify the game so that when the adversary selects
¢, we make 2 x £ independent attempts to throw a ball into bin 4, each of them
succeeding with probability 1/2", and if any of this lands into bin 4, the adversary
learns this (for now, we will not reveal how many balls land in bin 7, only none,
or at least one). Then, the probability that one ball lands in i is

2¢
(1= 2 seH s L
2" 2

where we have used the fact that e™® < 1 — 5 whenever x < 1, and % < 1.
Therefore, let Z! be load of ¢ in the modified game, we clearly have Pr[Z; >
m] < Pr[Z] > m)] for every m.

But note that because all balls are thrown independently, the latter probabil-
ity does not become smaller if we consider the setting where 2L balls are thrown
independently, each hitting i with probability 1/2". Call the resulting value Z/
denoting the load of i, we thus have Pr[Z; > m] < Pr[Z! > m]. By repeatedly

applying the union bound, we have

M‘N)
EHIESS
~

N
Pr[Z >m] < ZPI[ZZ{I > m]

2L 1\™ 2L\ ™
N - N[ Z= < 2n—ehm
) () < () =
where we have used the fact that (Z) < ab and L < 2(=9h=1, Now, set m =
(%1 Then, the above is upper bounded by 27"/2. O

IA



41

E Proof of Theorem 2

We shall use H-coefficient technique to prove the claimed bound. We define two
systems Sg and S; that represents the real game (b = 1) and ideal (b = 0) game
of GZ:A‘A'”CZ[H’ 5).5.2(A). Also, without loss of generality we assume that our
adversary A is deterministic and it does not repeat queries. After the adversary
finishes querying, we grant the adversary the key pairs {K},, K& }iz1,... 4 for all
u users spawned by calls to NEw. (Note that in the ideal world, these keys do
not influence the behavior of the system and can be thought as being generated
at the end, consistent with the earlier inputs to the NEW queries.) In addition
to the key pairs granted to the adversary, a mu-prf transcript 7 contains the
following two types of queries:

— Evaluation queries are the entries of type (eval,i, M, A, N,T), where i
indicates the user that this query targets, M is message, A the associated
data, N is the nonce, and T is corresponding tag.

— Primitive queries are of type (prim, K, U, V'), which result from a forward
ideal-cipher query (K,U) returning V, or a backward ideal-cipher query
(K, V) returning U.

Again, for a query q, we write q € 7 to denote its appearance in the transcript.
Also, for each K € {0,1}* we define the following numbers:

q(K) = |{(eval,i,M,A,N,T) € 7 | K., = K}|

p(K) = [{(prim, K",U,V) € 7 | K' = K}

DEFINING BAD TRANSCRIPTS. We say a transcript 7 is bad if it satisfies one of
the following constraints (it is called good otherwise).

1. There exist two entries (eval, i, My, Ay, Ni,T1) and (eval,j, My, Ao, No, T5)
such that (i7M17A17N1) 7é (]a M27A27N2) ) Kiut = Kgut and

(o]

XOI’(HKi?'(Ml,Al),Nl) :Xor(HKi{‘(M%AQ)’NQ) . (6)

2. There exist two entries (eval,i, My, A1, Ny, T1) and (eval, j, M2, Ag, No, T5)
such that T} = Ty and K, = K.

3. There exist entries (prim, K, U, V) and (eval,i, M, A, N, T) such that K}, =
K and xor(HK;-n(M7 A),N)="U.

TRANSCRIPT RATIO. We now need to compare pg, (7) and pg, (7) for a good tran-
script 7. First off, note that in the ideal world, all queries are replied randomly
and independently, and moreover, keys are also chosen independently of the rest
of the transcript, with a certain probability p* = pKeyGen({Kiin,Kéut}izlp_,’u).
Further, ideal-cipher queries are also answered independently of evaluation queries.
Therefore,

p(K)—-1 1
s,y =2 ] ]

J 2n — g
Ke{0,1}k i=0
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In the real world, note that because the transcript 7 is good, no two queries
to the ideal cipher within EVAL queries with the same outer key K are on the
same input, and moreover, such inputs do not appear as inputs of direct PRIM
queries (even though the outer key itself might). The keys are also generated
with probability p*. For this reason,

p(K)+q(K)—1 1

pSo(T):p*' H H on _

Ke{0,1}* =0

and thus in particular, because ), ¢(K) = ¢, we see that ps,(7) replaces the
q factors 27" in the product in ps, (7) with other factors of form 57— > S for
some i > 0, and therefore, pg,(7) > ps, (7). Thus, we can use the H-coefficient
technique with ¢ = 0, and only need to upper bound the probability that an

ideal transcript is bad, which we do next.

PROBABILITY OF BAD TRANSCRIPTS. Let X; be the random variable for the
transcript in the ideal system. Let By, Bs, B3 be the sets of transcripts that
satisfies (1), (2) and (3) according to the definition of bad transcripts. Then by
the union bound,

PI[Xl S B} < PI‘[Xl S Bl] + PI[Xl S BQ] + PI"[X1 € 83]

We now upper bound the three probabilities on the RHS separately.

For (1) and (3), we can assume wlog that the execution has terminated, and
the transcript so far is fixed, and the keys K., K}, K2, K2, ... are generated,
independently of the execution, and are the only random variables. Assume in
particular the execution has involved u users and there are ¢; evaluation queries

for user i, and thus > 1 ; ¢; < g. Also, assume that the ¢; queries intended for

user 7 have each lengths ¢; 1,%;2,...,¢; 4, blocks where we intentionally arrange
them to be sorted as ;1 < ¢; 2 < ... < ¥; 4. Clearly, for all 4, Z‘;i:l ¢ ; < B.

We define two subsets Bi; and Bis of By. The first consists of transcripts in
which there are two entries (eval,i, M1, Ny, A;,T1) and (eval,i, Mo, No, As, T5)
Wlth (Ml,Al,Nl) # (MQ,AQ,NQ), and

XOF(I{K:;| (Ml, Al),Nl) = XOI’(HKiz;‘ (MQ, A2)7N2) .

The second set consists of the transcripts with two entries (eval, i1, My, Ay, N1, T1)
and (eval, iQ,Mg,AQ, NQ,TQ) with il ;é ig, Kczzbt = Kéﬁta and

XOI’(HK_il (Ml,Al),Nl) :XOI’(H (MQ,AQ),NQ) .

i2
Kin
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Note that here (M7, A1, N1) = (Ms, Ay, No) is allowed.

We start with By1. Then, for any two (M7, Ay, N1) # (Ma, As, No) with (M1, A1) #
(M23A2)a

Prxor(H i (My, A1), N1) = xor(Hg: (M2, Az), N2)]
= PT[XOI'(HKiz‘" (Ml? Al) D HKlln (M27 A2)7 Nl @ NQ) = On]

L CAB max{| M|, + [A1]n, |Ma|n + |A2]n}

— 2” )
for the following reasons. The first equality follows by linearity of xor. Then, by
A-regularity of xor, there are at most A strings A such that xor(A, N1 @ N3) = 0™.
By c¢-xor-universality, for any such A, the number of keys k in {0, 1}" that make
the xor of the hashes equal A is at most ¢-max{|Mi|,+|A1|n, |M2|n+|A2|n}. By
B-AU, the probability of each such key is at most 3/2". Clearly, if (M7, Ay) =
(Ms, As), but N1 # No, then the upper bound also holds vacuously by injectivity
of xor.

Therefore, by taking the union bound, and exploiting our ordering of queries
according to their lengths (recall C := fc]),

ud -l v g 0
pnemsy Y Cuooy Sy

i=11<5'<j<qi i=1 j=1
u qi N
4 j @B _C¢B
<O ay S <0y So<o
i=1  j—=1 i—1

We move on to Bis. Note that for any two relevant entries, we have that

out T out] —

C’ min{| M|, + |Ail|n, [Mal, + |Az], }
2n+k:

PT[XOI’(I‘IK?1 (MhAl)»Nl) = XOI’(H 12 (M2’A2) ) A Ku = K2

because of the following reasons: Assume wlog |Mi|, + [A1|, > [Mal, + |Asz]n
(otherwise the argument is symmetric). Then, for every for every K|}, there are
at most A values Y such that xor(H i, (M1, A1), N1) = xor(Y, N2) by A-regularity
of xor, and for each such Y, by c-regularity of H, at most ¢-(|Ma|,, +|As|,,) values

of K2 are such that H K (M3, Az) =Y. Thus there are at most C - (|Ma], +

|As|,) - 2"FF tuples (Kfnl,KZ,}Jt,Kf,f,Kf,ﬂt) of keys that provoke the event, and
each one of them appears with probability at most 3/22(»*+*) by 3-AU. Thus,
overall

X q-4i; CqL
Pr[d, € Bio| < CZZ 2n+kj on+k

=1 j=1

Hence, we conclude that

CqB CqL
PI‘[Xl € B]] S 27 + 2n+k (7)
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Now, for B3, we use a similar argument. For any one of the p PRIM queries
(prim, K, U, V) and any of the ¢ EVAL queries (eval,i, M, A, N, T), we have

(M, +141,)

Pr(Kg,. = K Axor(Hyi (M, A),N) = U] < I

Taking a union bound over all p and ¢ queries, yields

w  qi gi,j CpL
Pr[X; € B3] < C'p'zz on+k < ontk -
i=1 j=1

Finally, we turn to Bz. We partition the set of transcripts into two subsets By
and Bos. The first subset By consists of the transcripts which contain two entries
(eval,i, My, Ay, N1, T1) and (eval, i, My, Ay, Na, Tp) such that T} = Ts. The sec-
ond subset Bao consists of transcripts with two entries (eval, iy, M1, Ay, N1, T1)
and (eval, iy, My, As, No, To) such that Ty = Ts, i1 # ia, and K}y = K2;. Then,
for each new query, the probability that the output collides with one of the pre-
viously issued queries for the same user is at most B/2". Therefore, by the union
bound,
PI‘[Xl S 821] < (1275;.

In contrast, to enter the second set, note that for each new query, there is proba-
bility at most ¢/2™ that the output collides with one of the previous queries, and
the probability that additionally the outer keys collide is at most 3/2%. Thus,

Be?
PI"[Xl S BQQ] < otk

Summing up we get,
9B Bq°

PI‘[Xl € BQ] < 27 + otk

This concludes the proof.

E.1 Proof of Theorem 3

We merely discuss how to adapt the proof of Theorem 2 to accommodate the case
that Hg, (¢,€) = 0™ for all keys Kj,, where € denotes the empty string. Further,
this yields a proof for Theorem 3. The bad transcripts are exactly the same as in
Theorem 2, the changes are the probabilities that these bad transcripts occur,
specifically for the events Bis and Bs. Note that we assume an upper bound d
on the number of users re-using a particular nonce N, and this is going to be
used below.
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ANALYSIS OF Bis. Recall that we are looking at the probability that there are
two transcript entries (eval, iy, My, Ay, N1, T1) and (eval, iz, M, A, N2, Tz) with
i1 # iz, Koy = Koiy, and

XOI’(HK_il (Ml,Al),Nl) :XOI’(H MQ,AQ),NQ) .

Kz

Note that here (M7, A1, N1) = (Ma, Ag, No) is allowed. There are three sub-cases
resulting in three different probability terms:

— If (My, Ay) # (g,¢), (Mg, As) # (g,¢), then we are in the same situation as

CqL
in Theorem 2 above, and get an upper bound 2nq+k'

— If (M3, Ay) = (g,¢e) and (Ms, As) # (g,¢€), then

Prxor(H i, (M, A1), N1) = xor(H i5 (Ma, Az), N2) A Kl =K2]<
_ O (1Ma] + |4s]n)

— 27l+k) )

where we have used the regularity of the function output on (Ms, As). Taking

a union bound over all such pairs, this results in a term ik

— Finally, we consider the case of (M7, A1) = (M3, A2) = (g,¢). Here, the prob-
ability Prixor(H i (M, Ar), Ni) = xor(H i» (Ma, Az), No) A Kol = Kol is
either zero if N1 # Na, or 27k if Ny = Ns. (This follows from the injective
property of xor.) Let now gy be the number of queries (g, ) with nonce N,
and thus in particular ) gy < ¢, and further gn < d. Then, the overall
probability that Bys occurs due to such a pair is at most

dq
S s Y/ < 3
N N

ANALYSIS OF Bs. As in Theorem 2, the probability that for one of the p PRIM
queries (prim, K,U, V) and one of the ¢ EVAL queries (eval, i, M, A, N,T) with
(M, A) # (g,¢) we have K¢, = K and xor(Hpi (M, A), N) = U is at most QC,ﬂLk

In contrast, for a nonce N, let N’ = xor(0™, N). Then, for every PRIM query
(prim, K, N', V), there are at most d EVAL queries (eval,i,e,e, N,T), and the
probability that Ki = K for any of these is 27%. Therefore, the overall proba-
bility that the transcript is in Bs because of such a pair is at most g—f.

F Proof of Theorem 4

We will use the H-coefficient technique. The real system Sy and ideal system
S; implement game AdVAE KeyGen, 2(A) With challenge bit 1 and 0 respectively.
Assume that A does not repeat a prior query (except for NEW ones), and it does

not make redundant ideal-cipher queries. Assume that if the adversary makes
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an encryption query (i, N, M, A) for an answer C then later it will not make
a verification query (i, N, C, A). Since we consider computationally unbounded
adversaries, without loss of generality, assume that the adversary is deterministic.
When the adversary finishes querying, we grant it all the keys Kj, Ko, ---. This
should only help the adversary. Beside the revealed keys and the information of
the NEW queries, the transcript stores the following information:

— Ideal-cipher queries: for each query E(K, X) with answer Y, create an
entry (prim, K, X,Y,+). Likewise, for each query E~!(K,Y) with answer
X, create an entry (prim, K, X,Y, —).

— Encryption queries: for each encryption query (i, N, M, A) with answer
C, store an entry (enc,i, N, M, A, C). Additionally, in the real world, grant
the adversary the table of triples (K, X, Ex (X)) for any query E(K, X) that
CTR[E].E(J;, M;T) makes, where J; is the k-bit suffix of the key K; of user i,
and T is the IV of C. In the ideal world, generate the corresponding fake
table as described in Section 5. The extra information in the table will only
help the adversary.

— Verification queries: for each verification query (i, N, C, A) with answer b,
store an entry (vf,i, N,C, A, D).

Now, from such a transcript 7, we can extract a transcript %;(7) for GMACT,
and another transcript %»(7) for CTR as follows. The transcript Z#1(7) con-
sists of the revealed keys, information of the NEW queries, and all prim entries
of 7, and for each entry (enc,i, N, M, A, C) of T, we accordingly store an entry
(eval,i, N, M, A, T) in %, (7), where T is the IV of C. The transcript %-(7) con-
sists of the k-bit suffixes of the revealed keys, information of the NEW queries,
and all prim entries of 7, and for each entry (enc,i, N, M, A, C) of T, we accord-
ingly store an entry (enc,i, M,C) in %Zs(7). If (1) %, (7) is GMACT-good and
H5(7) is CTR-good, and (2) 7 contains no verification query of answer true, then
we additionally grant the adversary the following information:

— In the real world, for each entry (vf, i, N, C, A, false), we run CTR[E].D(J;, C),
where J; is the k-bit suffix of K;, and grant the adversary the decrypted mes-
sage M. For each query E(K, X) of answer Y that CTR[E].D makes, if there
is no entry (prim, K, X,Y,-) or no triple (K, X,Y) in all tables then we grant
the adversary an entry (dec, K, X, Y).

— In the ideal world, create a blockcipher E : {0,1}* x {0,1}* — {0,1}"
as follows. For each K € {0,1}*, sample E(K,-) uniformly random from
Perm(n), subject to the constraint that (i) for any entry (prim, K, X,Y,")
in %5(1), we must have E(K,X) =Y, and (ii) for any triple (K, X’,Y”) in
the tables of % (1), we must have E(K, X') = Y". This blockcipher can be
generated, because %»(7) is CTR-good. For each entry (vf,i, N, C, A, false),
we run CTR[E].D(J;, C), where J; is the k-bit suffix of K; and grant the
adversary the decrypted message M, and the entries (dec, K, X,Y’) as above.

DEFINING BAD TRANSCRIPTS. A transcript 7 is bad if one of the following hap-
pens:
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1. The GMAC*-transcript %1 (7) of 7 is GMAC*-bad.

The CTR-transcript %#»(7) of 7 is CTR-bad.

3. There is a table in %5(7) that contains a triple (K, X,Y), and there is an
entry (eval,i, N, M, A, T) in %:(7) such that K = Ky, and Y = T, where
Kin || Kout is the key K of user .

4. There is an entry (dec, K, X,Y) in 7 and an entry (eval,i, N, M, A,T) in
%, (1) such that K = Ko and Y = T, where Kj, || Kout is the key K; of
user 1.

5. There is an entry (vf, i, N, C, A, false) in 7 and an entry (eval, j, N', M’ , A", T')
in %1 (7) such that T is the IV of C, Kow = K., and xor(H (Ki,, M, A), N) =
xor(H(K/,,M', A"), N'), where Ki, || Kowt and K/, || K, are the keys K; and
K; of users i and j respectively, and M is the decrypted message associated
with the vf entry above.

6. There are entries (prim, K, X,Y) and (vf,i, N,C, A, false) in 7 such that
K = Kow,Y =T, and xor(H(K;,, M, A),N) = X, where Kj, || Koy is the
key K; of user i, and T is the IV of C, and M is the decrypted message
associated with the vf entry above.

o

If a transcript is not bad then we say that it is good. Below, let €; be the number
that the GMACY proof uses to upper bound the probability of bad transcripts,
for any adversary A that makes at most ¢ evaluation queries whose total block
length is at most L, at most B-block queries per user, and p ideal-cipher queries,
and for any f-pairwise AU key-generation algorithm. Applying Theorem 2 with
A =2, and note that ¢ < L,

2
o < (1+ 22€c)LB N 2BcLp —&—2(n2ﬁcc + /)L (®)

Define e for CTR similarly, for a %—smooth key-generation algorithm, where
the notion of smoothness can be found in Section 4.1. Applying Theorem 1 with

a = (/2F and h = n — 1, and note that ¢ < L,

1 3LB 3BL?> PBap
€ = on/2 on + ontk ' 9k (9)

PROBABILITY OF BAD TRANSCRIPTS. Let &} be the random variable for the
transcript in the ideal system. Let B; denote the set of transcripts that vio-
lates the jth constraint in badness. For the first constraint of badness, consider
the following adversary A attacking the mu-prf security of GMACT [H, E], with
respect to the key-generation algorithm KeyGen. It runs A and uses its NEwW
oracle to respond to the latter’s queries of the same type. For each encryption
query (i, N, M, A) of A, adversary A queries EVAL(i, N, M, A) to get an answer
T, generates a ciphertext core C’ of appropriate length, and then returns 7' || C’
to A. For each verification query of A, adversary A simply returns false. When
A finishes querying and asks for the keys, A also finishes querying and gives
A what it receives. Then the transcript of A in the ideal world has the same
distribution as %;(X;). Since adversary A uses at most ¢ evaluation queries
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whose total block length is at most L, at most B-block queries per user, and p
ideal-cipher queries,
PI‘[Xl € Bl] <e€ .

Next, for the second constraint of badness, let KeyGen[k] be the key-generation
algorithm such that, on input (st,aux), runs (K,st’) + KeyGen(st,aux), and
then outputs (J,st’), where J is the k-bit suffix of K. Then KeyGenl[k] is 2%—
smooth. Consider the following adversary A* attacking the mu-ind security of
SE, with respect to the key-generation algorithm KeyGenl[k]. It runs A and uses
its oracle NEw and ENC to respond to the latter’s queries of the same type. For
each verification query of A, adversary A* simply returns false. When A finishes
querying and asks for the keys, then A* also finishes querying and gives A the
keys that it receives. Then the transcript of A* in the ideal world has the same
distribution as %5(X;). Since adversary A* uses at most ¢ encryption queries
whose total block length is at most L, at most B-block queries per user, and p
ideal-cipher queries,
Pr[Xl € 82] <€y .

For the third constraint of badness, consider a sequence of encryption queries
(i1, My, N1, A1), ..., (ig, My, Ny, A,) with answers Cy,...,Cq respectively. Fix
1 <rs < q Let Ky || Kour and Kj, || K/, be the keys of users i, and is
respectively. Consider the table generated by the r-th encryption query, and
the eval entry generated by the s-th encryption query. Recall that this table is
generated by (1) padding C, with random bits to have full block length, and
padding M, to have full block length, (2) parsing IV || Cy1 || -+ || Crm < Ch,
and M,1 || --- || Mym < M,, with |C, | = |M, ¢ = n, and (3) producing
(Kout, X1,Cr1 & My 1), ..., (Kout, Xn, Crom & M, ), with X, < add(IV, € — 1).
We now compute the probability that Koy = K., and C, ¢® M, o = T. Consider
the following cases.

Case 1: 7 > s. Hence C,. ¢ is picked at random, independent of M, , and T'. Since
KeyGen is S-pairwise AU, the chance that Ko« = K. and Cpp @ M,y = T is
at most 3/2F+™ if i, # iy, and at most 27" if i, = 4.

Case 2: r < s. Then T is picked at random, independent of M, , and C; . Since
KeyGen is S-pairwise AU, the chance that Ko« = K., and Cpp @ M, = T is
at most 3/2%+™ if i, # iy, and at most 27" if i, = 4.
Thus in any case, the chance that Ko = K., and C, 0 & M, o = T is at most
6/2’”" if 4, # i, and at most 27" if 7,, = i4. Since the total number of triples in
all tables is at most L, and there are at most B eval entries created due to encryp-
tion queries for user ig, and note that ¢ < L/2 (as each encryption/verification
query consists of at least two blocks, one due to the associated data, and another
due to the message/ ciphertex’c)7

Z _ BlLg N BaB _ BL2 N 0.53LB .

2k+n 2n 2k+n an  — 9k+n omn

Pr Xlesg

1<s5<q

For the fourth constraint of badness, fix an entry (dec, K, X,Y") created by de-
crypting a verification query of user j. Consider an entry (eval,i, N, M, A, T).
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Let Koyt be the k-bit suffix of the key K; of user i, and note that K is the k-bit
suffix of the key K; of user j. There are two cases:

Case 1: The verification query above is made before the the encryption query
corresponding to the eval entry. Then T is a random string, independent of Y.
If i = j then K = Ky, and the chance that Y = T is 27", If 4 £ j then since
KeyGen is (-pairwise AU, the chance that K = Ky, and Y = T is at most
5/2k+n.

Case 2: The verification query above is made after the the encryption query
corresponding to the eval entry. Since there are at most L dec entries and at
most L triples in the tables, given T, there are still at least 27 — 2L —p > 27!
equally likely choices of Y. Hence if i = j then K = K, and the chance that
Y = T is at most 2/2". On the other hand, since KeyGen is S-pairwise AU, if
i # j then the chance that K = Koy and Y = T is at most 23/2F+".

Thus in both cases, the chance that K = Ky, and Y = T is at most 26/2’“"’” if
i # j, and at most 2/2™ if ¢ = j. Summing this over at most ¢ eval entries and
at most L dec entries, and note that there are at most B eval entries per user,

2LB 25Lq<2LB 25 L2

PI[XI € 64] S on 2k+n - 9n 2k+n

For the fifth constraint of badness, consider an entry (vf,i, N, C, A, false) in X7,
and let T be the IV of C' and M be the associated decrypted message. Note that
if X; € Bs then %, (X)) is GMACT-good and %> (X)) is CTR-good. Fix j < g¢.
There is at most one entry (eval,j, N', M’ A", T) in %1(7); otherwise Z1(X1)
is not good, and thus X; ¢ Bs. Let K; = Kin || Kour and K; = K || K.
If j # 4 then the probability that K/, = Ko and xor(H(Kn, M, A),N) =
xor(H(K! ,M’', A"),N’) is at most %, because H is c-regular, xor
is 2-regular, and KeyGen is B-pairwise AU. If ¢ = j then K, || Kout = K, || K},
and we consider three following cases.

Case 1: (M,N,A) = (M',N’, A"). Let C’ be the answer of ENC(j, N', M’ A") as
indicated in X;. For the blockcipher E above, since ¢ = CTR[E].E(Kou, M';T),
we also have C' = CTR[E].E(Kou, M';T), due to the consistency between E
and E. On the other hand, recall that M is generated by running SE.D¥(Koy, O).
Since M = M’ and C and C’ share the same IV, we must have C' = C’. This
means that the adversary queries VF(i, N,C, A) first, and then later queries
Enc(i, N', M'; A") and accidentally gets the same answer C. This case happens
with probability at most 2~1€1 < 2-7,

Case 2: (M, A) = (M', A’), but N # N’. Due to the injectivity of xor, this case
cannot happen.

Case 3: (M, A) # (M’, A’). Since KeyGen is S-pairwise AU, H is ¢-AXU and
xor is 2-regular and linear and injective,

ut’

Pr[xor(H (Kin, M, A), N) = xor(H (K, M'; A"), N")]
- 2n - A
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As the three cases above are mutually exclusive, if ¢ = j then the chance that

xor (H (K, M, 4), N) = xor(H (K, M’, '), N') is at most 2~ (Z+E (M +141])
Sum over all 5 < ¢, and then over all g vf entries, and note that B > 2 and
q < L/2 (as each encryption/verification query consists of at least two blocks,
one due to the associated data, and another due to the message/ciphertext),

2¢BqL  2¢B(L + gB) < cBL? 2cSLB

Pr [Xl € 65] — 2n+k on — 2n+k omn

Finally, for the last constraint, consider an entry (vf,i, N, C, A, false) and let M
be the decrypted message associated with this entry. Let K, || Kou be the key
of user 4, and let T be the IV of C. Consider one entry (prim, K, X,T,-). Since
KeyGen is S-pairwise AU, H is c-regular, and xor is 2-regular, the chance that
K = Koy and X = xor(H(Ki,, M, A), N) is at most % Sum that
over all vf entries and p prim entries,

2cBLp

P[X1€B6]_2HT

Summing up,
6
Pr[A; is bad] < Z r[X; € B

(2¢f+0.58+2)LB N B(c+ 3)L? + 2¢BLp

sate+ mn on+k
- 1 Bap  (3cB+TB)L? +4BcLp  (4¢f+0.58 +6)LB
— 9on/2 + QT + on+k + on :

BOUNDING TRANSCRIPT RATIO. Fix a good transcript 7 such that pg, (7) > 0.
In particular, this means that there is no vf of answer true. Create the multisets
S1,...,S5 as follows.

— For each entry (prim, K, X,Y,) in 7, add a triple (K, X,Y) to S;.

— For each triple (K, X,Y) in tables of 7, add it to Ss.

— For each entry (dec, K, X,Y), if (K,X,Y) & S5 then add (K, X,Y) to Ss.

— For each entry (eval,i, N, M, A, T) in % (1), add (Kou, X,T) to Sy, where
Kin || Kout is the key of user ¢ in 7, and X = xor(H (Ki,, M, A), N).

— For each entry (vf,i, N, C, A,false) in 7, if (Kou, X,T) ¢ S5 then add this
triple to S5, where T is the IV of C, Kj, || Kout is the key of user i in 7,
M is the decrypted message associated with this entry indicated by 7, and
X =xor(H(Kin, M,A),N).

Due to (1) the goodness of 7, (2) the fact that add can only produce outputs
starting with 1 but xor produces output starting with 0, and (3) the way we
generate dec entries,

— For each j < 5, the multiset S; contains no item twice, meaning that it is
actually a set.
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— The sets Sy, -+, S5 are pairwise disjoint.
— There are no triples (K, X,Y) and (K, X’,Y’) in S; US2US3U.S, such that
X=X orY=Y"

Now, the probability ps,(7) is the chance that all the following events happen:

— Samp: If we query NEW using the queries as indicated in 7, the generated
keys will be the values indicated by 7.

— Realy, for 1 < j < 4: For each (K, X,Y) € 5j, querying Ex (X) returns Y.

— Reals: For each (K, X,Y) € S5, querying Ex (X) does not return Y.

On the other hand, the probability ps, (7) is the chance Samp and Real; and the
following events happen:

— ldeal;: For the padding version of CTR, let Ci,...,Cy be the ciphertexts
indicated by 7. For the padding-free version of CTR, let C1, ..., C; be the pre-
truncated ciphertexts indicated by 7.8 Then, if we sample ¢ random strings of
length |C4|,- -, |Cy| respectively, then we get C4, ..., C, respectively. Note
that [C1] + -+ +|Cy| = n(|S2| + |S4l).

— ldealy: Create a blockcipher E : {0,1}* x {0,1}" — {0,1}" as follows: for
every K € {0,1}%, sample E(K,-) s Perm(n), subject to the constraint

that for every (K,X,Y) € S; U Sy, we have E(K) = Y. Now, for every
(K', X', Y') € Ss, if we query E(K', X’) then we get Y.

For each 2 < j <5, let P; denote Pr[Real; | Real; N-- - Real;_1]. As KeyGen does
not use F, event Samp is independent of other events, and thus

ps,(7)  Pr[Reals N---NReal] Py-Py-Py-Ps

ps,(7)  Pr[ldeal; Nldeal; N Real;]  Pr[ldeal; Nldealy | Realy]

In the last ratio, since ldeal; is independent of other events, the denominator
can be factored to Pr[ldeal;] - Pr[ldeals | Real;]. Moreover, note that Pr[ldeals |
Real;] = Pr[Real; | Real; N Reals] = P5. Hence

ps, (7) _ D Py Ps
ps, (T) Pr[ldeal; ]

For each K € {0,1}*, let Z1(K), Z2(K), Z3(K), Z4(K) denote the number of
triples (K, X,Y) in Sy, S, S1 U S3 U S3, Sy respectively. Then

Z1(K)+Z3(K)—1 J=Z3(K)+Z4(K)—-1

1 1
p-p= ] 11 TR 11 5
Ke{0,1}k i=21(K) J=Z3(K)
> H 9= (Z2(K)+Z4(K)) — g—n(|S2]+]Sa]) — Pr[ldeal;] .
Ke{0,1}F

8 Given a table 7 and a message M, the pre-truncated ciphertext can be obtained
as follows. Suppose that 7 contains (K, X1,Y1),..., (K, Xm,Ym). Then the pre-
truncated ciphertext is (Y1 || -+ || Yim) @ M’, where M’ is obtained by padding 0’s
to M to have full block length.
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Thus
Ps, (T)
ps, (7)
We now give a lower bound for Ps. Note that [S;U---USy| < p+L+q <
2"~1 because (i) there are p ideal-cipher queries in 7, contributing p triples in
Sy, (ii) each encryption query (i, N, M, A) contributes one triple in Sy, and at
most (|M], + |A]n) triples in Sa, and (iii) each verification query (i, N, C, A)
contributes at most (|C|, + |A|,) triples in S5. Now, for each (K,X,Y) € Ss,
there are only two cases.
Case 1: There is a triple (K, X', Y’) € Sy U---U Sy such that either (i) X' = X
but Y #Y, or (ii) Y =Y but X’ # X. In this case, given that F is consistent
Sy U---U Sy, if we query Ex(X) then the answer will not be Y.
Case 2: There is no triple (K, X’,Y’) € S; U---U Sy such that either X = X’
or Y = Y’. Hence, conditioning that E is consistent with S; U --- U Sy, since
there are at least 2" — |S; U -+ U Sy| > 2"71 equally likely choices for Fx(X),
the conditional probability that F(K,X) =Y is at most 2/2".

> P .

Hence in both case, conditioning that E is consistent with S; U --- U Sy, if we
query Ex(X) then the conditional probability that we get Y is at most 2/2".
By union bound, Ps > 1 — |S5|-2/2™ > 1 — 2¢/2". Hence

ps, (T) S 2q 0.5L

1- 2 >q-
ps,(7) — 2n on

F.1 Proof of Theorem 5

We now discuss how to adapt the proof of Theorem 4 to deal with a weakly
regular hash H. The definition of bad transcripts is exactly the same, and so
is the bound on the transcript ratio; the changes are the probabilities that bad
transcripts occur, specifically for events By, Bs, and Bg. Note that we assume an
upper bound d on the number of users re-using a particular nonce N, and this
is going to be used below. Let X} is the random variable for the transcript in
the ideal system.

ANALYSIS OF B;. Let €; be the value that the GMAC™ proof uses to upper-bound
the probability of bad transcripts, for any adversary A that makes at most ¢
evaluation queries whose total block length is at most L, at most B-block queries
per user, and p ideal-cipher queries, and for any §-pairwise AU key-generation
algorithm, assuming that each nonce is reused across at most d users. As in the
proof of Theorem 4,

PI'[Xl € 81] <e€ .

The only change here is that now we need to use Theorem 3 (instead of Theo-
rem 2) to obtain €;. In particular, applying Theorem 3 with A = 2 and note that
q<L/2,

(1+2B¢)LB N 2BcLp + (2Bc + B)L? N dlp+ L)

€1 S on 2n+k 2k
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ANALYSIS OF Bs. First, consider the case that X; falls into Bs due to some en-
tries (vf, i, N, C, A, false) and (eval, j, N, M’ A’, T) such that either (1) (M, A) #
(g,e) or (2) (M',A") # (g,¢) or (3) (M,A) = (M',A’) and i = j, where M is
the decrypted message of the verification entry. As in the proof of Theorem 4,

this case happens with probability at most ;{fﬁ + 205#.

Next consider an entry (vf, 7, N, C, A, false) such that both decrypted message
M and associated data A are empty. Consider an entry (eval,j, N', M’ A" T)
such that (M, A") = (e,e), j # i, and T is the IV of C. Let Kj, || Kout and
K! || K., be the keys of users i and j respectively. Since H is weakly regular,
H(Kin, M,A) = H(K],,M', A") = 0™. For these pair of entries to cause A3 to fall
into Bs, we must have xor(0™, N) = xor(0", N'), meaning that N = N’ due to
the injectivity of xor. Since the nonce N is used across at most d users, there are
at most d choices for the index j. On the other hand, the chance that Ko = K.
is at most 27%. Summing this over d choices of j, and over ¢ verification queries,

we obtain a bound ¢d/2* < Ld/2*. Hence

c¢BL? 2¢BLB Ld

Pr[Xl S 85] < ontk on ok
ANALYSIS OF Bg. First consider the case that some verification entry, in which
either the decrypted message or the associated data is non-empty, causes X; to
fall into Bg. As in the proof of Theorem 4, one can bound the chance that this
case happens by 225,? fkp . Next, consider an entry (vf,i, N, C, A, false), in which
both the decrypted message M and the associated data A are the empty string.
For each entry (prim, K, X, Y, +), view it as throwing a ball into bin Y. Likewise,
for each entry (prim, K, XY, —), view it as throwing a ball into bin X. Thus
there are at most p < 21=97=1 throws. For each j-th throw, given the result
of the prior throws, the conditional probability that the j-th ball lands into
any particular bin is at most 2'~". From Lemma 10, with probability at least
1 —27"/2 each bin contains at most a balls.

Let T be the IV of C and let Kj, | Kout be the key of user i. Since H is
weakly regular, H(K;,, M, A) = 0". From the balls-into-bins result above, there
are at most a balls in bin T, and also at most a balls in bin xor(0™, N'). Thus
there are at most 2a entries (prim, K, xor(0", N), T, ). For each such entry, the
chance that K = K, is at most 2~%. Hence the chance that the verification
entry above causes X to fall into Bg is at most 2a/2*. Summing this across at
most ¢ verification queries, we obtain a bound 2aq/2* < aL/2*. Hence

2cBLp  alL

PI‘[Xl S BG] < W 27

G Proof of Lemma 3

Let r = k/n € {1,2}. Suppose that Ry,..., Rs are sampled uniformly without
replacement from a set S of size at least % - 2", Pick an arbitrary string K €
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{0,1}"+*. Since KD;.Map outputs (Rg || Ry || R2)[1 : n + k], the chance that
KD;.Map(Ry, ..., R5) = K is at most

1 1 1 2
(E Son Q)+l < (% - Qn)r+l < (7/8)3 - on(r+1) = ok+n -

On the other hand, the chance that KDg.Map(Ry, ..., R5) = K is at most

1 1 1 2
< < < .
(L(% .9on _ 5)/2n/2J )2(r+1) = (% . 2n/2)2(r+1) - (29/32)6 .on(r+1) = 9k+n

This concludes the proof.

H Proof of Proposition 2

We will first construct adversaries A; and A, such that

AdvIE P (A1) < AdVRE Reseen, (A1), and

)

AdVRE S (A2) < 2AdVRE KeyGen, i (A2) -
If we can do that, one can construct A as follows. It picks a number a <s {0, 1, 2}.
If a = 0 then it runs A5, uses its oracles to answer the latter’s queries accordingly,
and outputs the same bit that .4; outputs. If a € {1,2} then it runs As, uses its
oracles to answer the the latter’s queries accordingly, and outputs the same bit
that As outputs. Then

1 2
mu-mrae _ mu-mrae mu-mrae
AdvAE,KeyGen,E(~A) Y AdVAE,KeyGen,E(*Al) +3 AdVAE,KeyGen,E(‘AQ)

3 3
1 mu-priv /1 1 mu- 'y
> 3 Advﬁ’z (A1) + 3 AdVA*E;uth(Ag) .

We now construct A4;. Without loss of generality, assume that A; does not re-
peat a prior query, and assumes that for each encryption query (i, N, M, A),
it must call NEW(-) at least ¢ times before, so that user i was initialized. Ad-
versary A; initializes a counter v < 0 and a map V = L, and then runs A;.
For each encryption query (i, N, M,A) of Ay, if V[i, N] = L then A; calls
NEw (aux) with aux = (i, N), updates V[i, N] <~ v + 1, and increments v. It
returns ENc(j, N, M, A) to A, with j < V[i, N]. Finally, when A; outputs a
bit then A; outputs the same bit. Then

AV (A1) < AdVRE RtsGen (A1) -

Next, we construct A, as follows. Without loss of generality, assume that A,
does not repeat a prior query, and assumes that for each encryption/verification
query (i, N,-, A), it must call NEwW(:) at least i times before, so that user i
was initialized. Adversary A, initializes a counter v < 0 and a map V = 1,
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and then runs A,. For each encryption /verification query (i, N, X, A) of As, if
Vi, N] = L then Aj calls NEw(aux) with aux = (i, N), updates V[i, N] < v+1,
and increments v. If this is an encryption query then it returns ENc(j, N, X, A)
to Ay with j < V[i, N]. Otherwise it calls VF(j, N, X, A), with j < V[i, N].
Finally, Ao will output 1 if and only if some verification query returns true. Let

¢ be the challenge bit of game G%‘E“th (Asz). Then

Pr[GRERGEen £(A2) | ¢ = 1] = Pr{GRE 3" (Ay))] -

On the other hand, if ¢ = 0 then A, always receives false for any verification

query. Thus

. 1
PrGREReyGen (A2) [ ¢ = 0] = 5 .

Summing up,

u-mr. 1 u-au A
AdVZ‘E,ITeyaéemE(AQ) = 5 Adv%;g th(A2)

as claimed.

I Proof of Lemma 4

For two outputs K and K’ generated by KeyGen, by symmetry, there are only
four cases.
Case 1: K and K’ are independent, random strings. For any two strings (J, J') €
({0,1}*+7)2 the chance that (K, K') = (J,J') is 1/22(+7),
Case 2: K = KDIk|(m;, N) for some 7; s Perm(n), and K’ <s {0, 1}*+". For
any two strings (J, J') € ({0, 1}**7)2 since KD[E] is 2-unpredictable, the chance
that (K, K') = (J,J') is at most

2 1 2

2k+n ’ 2k+n = 22(k+n) °

Case 3: K = KD[k](m;, N) for some m; <—s Perm(n), and K’ <—s KD[k](m;, N'),
with N # N’. For any two strings (J,J') € ({0,1}**")2  since KD[E] is 2-
unpredictable, the chance that K = J is at most 2/2"**. For s € {0,...,5}, let
Rs + pad(N, s) and R, + pad(N’,s). Given (Ry,m;(Rp)),. .., (Rs,m(R5)), the
values of m;(RY), ..., m;(RE) are sampled uniformly without replacement from a
set of at least 2" — 6 > %2 -2™. Since KD[E] is 2-unpredictable, given that K = J,
the conditional probability that K’ = J’ is at most 2/2**". Hence the chance
that K = J and K’/ = J’ is at most

2 2 4

9k+n ’ ok+n "~ 92(k+n) -

Case 4: K = KD[k](m;, N) and K’ <—s KD[k](7;, N'), for m;, mj <—s Perm(n). For
any two strings (J, J') € ({0,1}**7)2, since KD[E] is 2-unpredictable, the chance
that (K, K') = (J,J') is at most

2 2 4

2k+n ) 2k+n - 22(k+n) .

Combining all cases, KeyGen is indeed 4-pairwise AU.
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J Proof of Lemma 5

We shall use the H-coefficient technique. Let the real system implement game
Gﬂigt[ ] for challenge bit b = 1 (meaning EVAL is always implemented via KD[E]),
and let the ideal system implement game G‘ﬂ(isDt[ B for challenge bit b = 0, (mean-
ing EvAL is always implemented via KD[k]). Without loss of generality, sup-
pose that A never repeats a prior query. Since we consider computationally
unbounded adversaries, without loss of generality, assume that the adversary is
deterministic. Assume that 4 makes no redundant queries, meaning that if A
queries (K, z) to E to get y, then it will not query (K,y) to E~! to get z, and
vice versa. Assume that for each evaluation query (i, N), the adversary called
NEW() at least 7 times before, so that the key K; was initialized.

When the adversary finishes querying, in the real world, we grant it the keys
K1, Ky, --. In the ideal world, we instead grant it strings K, Ko, --- s {0,1}*
independent of anything else. This can only help the adversary. Besides the
revealed keys, a transcript consists of the following information:

— Evaluation queries: For each query (i, V) to EVAL, we will store six entries
(eval,i,20,0),---,, (eval, i, x5,ys5), where each x5 = pad(N, s). For each s €
{0,...,5}, in the real world, y; = Fk,(zs), and in the ideal world, ys =
m;(xs), where m; is the secret permutation of user 7. Clearly, the answer for
this query in both worlds is KD.Map(yo, ..., ¥ys). Thus we may grant the
adversary more information that what it is supposed to receive, but this
only helps the adversary. There are 6¢ eval entries.

— Ideal-cipher queries: For each query (K, z) to E for answer y, we store a
corresponding entry (prim, K,,y,+). Likewise, for a query (K,y) to B!
for answer z, we store a corresponding entry (prim, K, z,y, —).

A transcript does not explicitly record the NEw() queries of A, because the
adversary is deterministic, and NEW returns no output.

DEFINING BAD TRANSCRIPTS. We say that a transcript is bad if one of the
following happens:

1. There are entries (eval,i,2’,y’) and (prim, K, x,y,+) such that K is the key
of user 7 as indicated by the transcript, and = = z’.

2. There are entries (eval,4,2’,y’) and (prim, K, z,y,—) such that K is the key
of user ¢ as indicated by the transcript, and z = .

3. There are entries (eval,i,2’,y’) and (prim, K, x,y, +) such that K is the key
of user ¢ as indicated by the transcript, and y = 1/

4. There are entries (eval,4,2’,3") and (prim, K, z,y, —) such that K is the key
of user ¢ as indicated by the transcript, and y = 3/.

5. There are entries (eval,i,x,y) and (eval, j, x,y’) of the same input x, with
i # 7, such that according to the transcript, users i and j have the same key.

6. There are entries (eval, i, z,y) and (eval, j,2’,y) of the same output y, with
i # 7, such that according to the transcript, users 7 and j have the same key.
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If a transcript is not bad then we say that it is good.

PROBABILITY OF BAD TRANSCRIPTS. Let X; be the random variable for the
transcript in the ideal system. We now bound the probability that X; is bad.
Let B; be the set of transcripts that violates the jth constraint of badness.
We first bound the probability that X7 meets the first constraint of badness.
Consider an entry (prim, K, z,y,+) in X;. Since the adversary is d-repeating,
there are at most d entries (eval,i,xz,y’) of the same input z, and for such an
entry, the chance that K; = K in the ideal system, is exactly 27%. Summing this
over at most p ideal-cipher queries, we have
PI‘[Xl S Bﬂ < ;iff .

Next, we bound the probability that X7 meets the second constraint of bad-
ness. View each entry (eval,i,z,y) as throwing a ball into bin y. Note that our
6g < 200-97=1 throws are inter-dependent, but for each j-th throw, condition-
ing on the result of the prior throws, the chance that the j-th ball falls into any
particular bin is at most 1/(2" — 6¢) < 2!7™. Suppose that each bin contains
at most a balls, which happens with probability at least 1 — 27"/2, according
to Lemma 10. Consider an entry (prim, K,x,y, —) in X;. There are at most a
entries (eval,i,2’,y) of the same output y, and for such an entry, the chance
that K; = K in the ideal system, is exactly 27%. Summing this over at most p
ideal-cipher queries, we have

Pr[XleBg}S#—F;ff .

Next, for the third constraint of badness, consider entries (prim, K, x,y,+) and
(eval,i,2’,y') in X;. If the ideal-cipher query is made after the evaluation query
then given ¢/, the random variable y can take at least 2" —6g —p > 2"~ ! equally
likely values. If the ideal-cipher query is made before the evaluation query then
given 7, the random variable 3’ can take at least 2" — 6¢ — p > 2"! equally
likely values. In either case, the chance that y = ¢y’ and K = K; in the ideal
system is at most 2/28*". Summing this over at most p ideal-cipher queries and
6¢ evaluation entries,

PI‘[Xl € Bg] < ;3% .

For the fourth constraint of badness, consider entries (prim, K,z,y,—) and
(eval,i,2’',y") in X;. If the ideal-cipher query is made after the evaluation query
then given 2/, the random variable z can take at least 2" —6q—p > 2"~ ! equally
likely values. If the ideal-cipher query is made before the evaluation query then
given z, the random variable 2’ can take at least 2" — 6¢q — p > 2"~ ! equally
likely values. In either case, the chance that © = 2’ and K = K; in the ideal
system is at most 2/2F*". Summing this over at most p ideal-cipher queries and
6¢ evaluation entries,

12pq
PI‘[Xl S 84] < otk
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For the fifth constraint of badness, consider a nonce N. For each N € {0,1}",
let @n < d be the random variable for the number of evaluation queries that
use nonce N. For each x € {pad(N,0),...,pad(N,5)}, there are at most

2
Qn) _ (@n) < QN
2 - 2 = 2
pairs of entries (eval,i,z,y) and (eval, j,x,y’), with ¢ # j. For each such pair,
the chance that K; = K; in the ideal system is 2% Hence

Pr[X; € Bs] <Z [QN}.Q%:%'E{ZQN}S%,
N

where the last inequality is due to the fact that ), Qn is exactly the total
number of evaluation queries. For the last constraint of badness, note that for
any entries (eval, i, z,y) and (eval, j,2’,y"), if i # j then y and y’ are independent,
uniformly distributed over {0,1}". For each such pair, the chance that K; = K
and y = ¢/ is 2~ (¥t Summing over at most

6q 2
<18

18¢2
— 2k+n

pairs of eval entries,

Pr[&; € Bs] <

Summing up,

1 24pq +18¢*>  ap +d(p + 3q)
n/2 ok+n ok

6
Pr[X, is bad] < Z [ € B;] _2

TRANSCRIPT RATIO. Let Sy be the real system, and S; be the ideal system. We
now show that

Ps, (T) > ps; (T)

for any good transcript 7 such that pg,(7) > 0. Fix such a transcript 7. Note
that in computing pg(7), for S € {Sp, S1}, we can ignore the sign of the ideal-
cipher entries, and treat that as a forward query. For a key K € {0,1}*, let
S1(K) = {(eval,i,z,y) | K; = K}, and S2(K) = {(prim, K,x,y,-)}. Since 7 is
good, |S;(K)| is divisible by 6 for every K € {0,1}*. Suppose that T contains
exactly u users, ¢ evaluation queries, and p ideal-cipher queries. Then

[S2(K)|-1

() =2t [ ] 5

(2n"'(2n*5))q Ke{0,1}* =0
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In the real world, because the transcript is good, for each key K, the sets Sy (K)
and So(K) call Ex on different inputs, and thus

[S1(K)|+[S2(K) -1 1

PSo (T) = 2—ku H H n g

Ke{0,1}* i=0
[S2(K)|-1

i 1 1
Z2k H H omn g "

[S1(K)|/6
Ke{0,1}k (2” S (2m — 5)) i=0

Since

> I5i(K)| = 6q,

Ke{0,1}k

it follows that ps,(7) > ps, (7).

K Proof of Lemma 7

Without loss of generality, assume that if Ay queries ENc(i, N, M, A) for an
answer C, then later it will not query VF(i, N,C, A). We now construct A;.
Adversary A; runs Ay, and uses its ENC and NEW oracles to respond to the
latter’s queries accordingly. For each verification query (i, N, C, A) of Ay, if there
is no prior encryption query (i, N, M, A’) then A; simply ignores it. Otherwise,
A1 uses its VF oracle to respond. Finally, when Ay outputs a bit b, A; outputs
the same bit. Next, we construct As. Adversary A, runs Ap, and uses its ENC and
NEW oracles to respond to the latter’s queries accordingly. For each verification
query (i, N,C, A) of Ay, if there is some prior encryption query (i, N, M, A")
then Ay simply ignores it. Otherwise, Az uses its VF oracle to respond. When
Ap outputs a bit, A, outputs the same bit. Then

AdvIEE2 () < AV (A ) 4 AdvEE2 (Ay)

AE,E AE,E AE,E
We now bound Adv%’aE“th(Al) by building an adversary A for distinguishing
KD[E] and KD[k]. Adversary A simulates game G™U-2uth(4;) but each time it

AE,E
needs to generate a session key, it uses its EVAL oracle instead of KD[E]. However,
if A previously queried EVAL(i, N) for an answer K, next time it simply uses
K without querying. When A; outputs a bit, adversary A outputs the same

answer. Let ¢ be the challenge bit in game G‘,‘(iSDt[E] (A). Then

Pr[GyE 5 (A) = true | ¢ = 1] = PriGRe™"(4,)], and

Pr[GE'JEt[E] (A) = false | ¢ = 0] = PT[GWE-WQ[M,AE],E(AQ] .

Subtracting, we get

is a 1 mu-au mu-au
AdviE ) (A) = §(AdvﬁyEth(A1) — AdVRERD kAR 2 (A1) -
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Note that A makes at most p + L < 274 jdeal-cipher queries, and ¢ EVAL
queries. Moreover, A is d-repeating. Hence using Lemma 5,

1 24(L +p)qg+18¢®>  a(L +p)+d(L+p+ 3q)
+ 2k+n + 2k .

AdV&isf)t[E] (A) < /2

Putting this all together,

Adv%j;th(fto) < Aanqué?;g][k],AE],E(Al) + Adv%:;’th (A2)

2 48(L+p)g+36¢> 2(a+d)L+2(a+d)p+ 6dg
on/2 2k+n + 2k '

This concludes the proof.

L Proof of Lemma 8

Without loss of generality, assume that if the adversary makes an encryption
query (i, N, M, A) for an answer C, then later it will not query VF(i, N, C, A).
Assume that it always calls all ¢ NEW() queries at the beginning. Assume that
the adversary does not repeat prior queries, and does not make redudant ideal-
cipher queries.

TRANSITION TO GAME Gy. We will construct from A another adversary A that
plays game G as shown in Fig. 10. The adversary is given oracle access to E
and its inverse, and NEwW() as usual; the latter initializes a user v with mas-
ter key K, s {0,1}" upon each call. It is also given another evaluation or-
acle EVAL(4, N) that implements KD[E](K;, N). The adversary has to output
a tuple (I,N,C,A) of vectors. We require that I[j] € {1,...,v} for every
Jj, and if the adversary previously queried EvAL(i, N) and then (I[j], N[j]) #
(i, N) for all j < |I|. The game then iterates through every verification query
(I[j], N[j],Cljl, A[j]), and try to decrypt AE.D¥ (Ky;), N[j], C[j], A[]). If some
verification query results in a non-_L answer then the game returns true, meaning
the adversary wins the game. Otherwise the game returns false.

We now construct the adversary A as shown in Fig. 11. It runs A and uses its
NEW oracle to respond to the latter’s queries of the same type, and maintains a
counter v starting at 0. For each encryption query (i, N, M, A) of A, adversary
A will first query EVAL(i, N) to get the session key K, and then computes C' <
AE.EF(K,N, M, A) and returns the answer C to A. (However, if it previously
queried EVAL(i, N) before then it simply reuses the prior answer as K.) For
each decryption query (i, N, C, A) of A, adversary A increments v, and updates
(I[v], N[v],C[v], Alv]) + (i, N,C, A). Finally, when A terminates, A outputs
(I, N,C, A) that it has maintained. Since A is simple, A does not violate the
requirements of game Gy. Moreover, .4 makes at most ¢ evaluation queries, L+p
ideal-cipher queries (but only p of them are backward queries), and ¢ verification
queries. For this constructed adversary A,

Pr[Go] = AdVEE 2™ (A)
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Game Go New()
v 0; Ss@; (I, N,C,A) s TEWEALEET g 415 K, s {0, 1}
For 7 =1 to |I| do EvAL(i, N)

If ITj] € {1,...,v} then return false //Implement KD[E](K:, N)
. If (I[]l],N[]I])dE S then return false Ifi ¢ {1,...,v} then return L

orj=1t%
j 7(;3\ | do o K + KD[E|(K;, N)
If M # 1 then return true Return K

Return false

Fig.10: Game Gy in the proof of Lemma 8.

—\IEW,EV,A‘L,E,E*1

Adversary A ENc(i, N, M, A)

v+ 0; ANEV\',ENC,VF,E,E71 m)
Return (I, N,C, A) C + AE.EF(K,N, M, A)
w Return C'

v v+ 1; Iv] « i
N[v] < N;Cv] < C; Av] + A

Fig. 11: Constructed adversary A in the proof of Lemma 8.

BOUNDING Pr[Gy]. Each time A makes a forward query Eg (X), if (1) there is
some N € N such that X € 2 = {pad(N,0),...,pad(N,5)}, (2) there is no
prior backward query E~!(K,Y) for answer X’ € 2\{X}, then we immediately
grant the adversary the free queries Fx (X*), for all X’ € Q\{X}. Thus the
adversary makes at most 6(L + p) ideal-cipher queries, but at most p of them
are backward ones. Assume that A4 does not repeat prior queries, and it does
not make redundant ideal-cipher queries: if it gets F(K, X) for answer Y then it
will not later query E~1(Y) to get answer X again, and vice versa. Recall that
this adversary makes all ¢ NEW() queries at the beginning.

Let G be the following variant of game Gy. In G1, the evaluation oracle imple-
ments KD[k]. Specifically, when NEW() initializes user v, it also samples a secret
permutation 7, <—s Perm(n) along with the key K,. On query EvAL(i, N), the
oracle lets X, + pad(N, s) for every s € {0,...,5}, computes Y, < m;(X;), cre-
ates internal entries (prim, K;, Xs, Y, +), and returns KD.Map(Yy,...,Ys). For
each query F(K, X) for answer Y, the game creates an entry (prim, K, X,Y, +).
Likewise, for each query E~1(K,Y) for answer X, the game creates an entry
(prim, K, X, Y, —). So there are at most 6@ prim entries, where @ = L+p+q. We
say that the entries are incompatible if there are different entries (prim, K, X,Y )
and (prim, K, X', Y”, ) of the same key K such that either X = X’ or Y = Y'. If
incompatibility happens then game G returns false, meaning that the adversary
loses the game. Otherwise, the game programs F to be consistent with the prim
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entries, and then processes the verification queries as in game Gg. In particular,
in decrypting AE.D(K 3, Nj], C[j], Alj]), the KDF of AE is still KD[E].

To bound the gap between games G and G, we construct an adversary A* that
tries to distinguish KD[E] and KD[k], as defined in game G‘,fs‘Dt[E] (A*), but it will
be additionally granted the master keys Ki,..., K, when it finishes querying.
Note that Lemma 5 still applies to this key-revealing setting. The goal of A* is to
simulate Gy if it interacts with KD[E], and simulate G if it interacts with KD[k].
To achieve that, it runs A, uses its oracles to answer the queries of the latter of
the same type, and maintains prim entries for the ideal-cipher queries. When A
finishes querying, A* asks to be granted master keys K1, ..., Kg; at this point it
is not allowed to make further queries. Adversary A* now creates prim entries
corresponding to the past evaluation queries. If there are entries (prim, K, XY, -)
and (prim, K, X',Y”, ) of the same key K, but either (1) X = X’ but Y #Y’, or
(2) X # X' but Y =Y, then A* terminates and outputs 0, indicating that it has
been interacting with KD[k]. Otherwise, it will process the verification queries
of A as in game Gy. However, recall that at this point it cannot make further
queries to E/E~!. So during the handling of the verification queries, when it is
supposed to query E(K, X), if there is an entry (prim, K, X,Y,-) then it simply
uses the answer Y without querying E at all. If there is no such entry then it
picks an answer Y <s{0,1}"\S, where S is the set of all strings Y* such that
there is an entry (prim, K, X* Y* ), and creates a new entry (prim, K, X, Y, +).
If there is a verification query that results in a non-_L answer then A* outputs 1,
indicating that it has been interacting with KD[E]. Otherwise it outputs 0.

We now analyze the advantage of A*. Let b be the challenge bit in the game
GfgsDt[E] (A*). Then

Pr[G‘,iisDt[E] (A*) = true | b= 1] = Pr[Gy] .

On the other hand, we claim that

q(18¢ + 144L + 144p)

Pr(GyE 5 (A*) = false | b= 0] < Pr[G1] + Srin

(10)

Subtracting, we obtain

18¢ + 144L + 144p)

is * q
AdviE ) (A*) > Pr(Go] — Pr[Gy] — ( —

We now justify Equation (10). Note that the difference between Pr[G7] and
Pr[G‘,i‘E}[E] (A*) = false | b = 0] is bounded by the chance that there are distinct
entries (prim, K, X,Y,-) and (prim, K', X' Y’ ") such that K = K', X = X/,
and Y =Y’ because in that case, game G will terminate prematurely due to
incompatibility, but A* still proceeds into handling the verification queries. Due
to symmetry, there are only three cases.

Case 1: The first entry is created by some EVAL(:, N) and the second entry
by EVAL(j, N), with ¢ # j. Since m; and w; are independent, ¥ and Y’ are
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independent, uniformly random strings. Since K; and K; are independent with
m; and 7, the chance that K; = K; and Y =Y” is at most 2=(k+n)  Summing

over at most 6
q 2
<18

pairs of entries created by the ¢ evaluation queries, the chance this case happens
is at most 18¢%/2k+n.

Case 2: The first entry is created by some EVAL(z, N) and the second entry by
querying F(K’, X'). If the evaluation query is made first then given Y, there are
still at least 2" — 6Q > 2"~ ! equally likely choices for Y’, and thus the chance
that K; = K’ and Y’ =Y is at most 2/2%+". Likewise, if the ideal-cipher query
is made first then given Y, there are still at least 2”1 equally likely choices
for Y, and thus the chance that K; = K’ and Y = Y’ is also at most 2/2%+".
Summing this over 36(L + p)g possible pairs, the chance that this case happens
is at most 72(L + p)q/2~+".

Case 3: The first entry is created by some EVAL(i, N) and the second entry by

querying E~Y(K’,Y”). Similar to case 2, the chance that this case happens is at
most 72(L + p)q/2k ™.

Combining all cases leads us to Equation (10). On the other hand, A* is d-
repeating and makes at most ¢ evaluation queries, and 6(L + p) < 2"~* ideal-
cipher queries. From Lemma 5,

1 144(L + p)q + 18¢? N 6a(L + p) + d(6L + 6p + 3q)

dist *
AdVKSD[E] (A7) < on/2 ok+n ok
Hence
1 288(L + p)q + 36¢>  6a(L + p) + d(6L + 6p + 3q)
Pr[Go] — Pr[G4] < /2 Stk + o ,

What remains is to bound Pr[G;].

BoUNDING Pr[G;]. Consider the following balls-into-bins game. For each entry
(prim, K, X, Y, +), view this as throwing a ball to bin Y. Likewise, for each
entry (prim, K, X,Y,—), view this as throwing a ball to bin X. Thus there are
at most 6Q < 2(0-97=1 throws. For each j-th throw, given the result of the prior
throws, the conditional probability that the j-th ball lands into any particular
bin is at most 2'~". From Lemma 10, with probability at least 1 — 2=™/2_ each
bin contains at most a balls.

Consider the following balls-into-bins game. For each query EvVAL(i, N) for
answer Z, we view this as throwing a ball into bin Z[n +1 : n+ k|. Likewise, for
each 6-tuple (prim, K, pad(N,0), Ry, +), ..., (prim, K, pad(N, 1), R5,+) created
by querying E, we view this as throwing a ball into bin Z[n + 1 : n + k], where
Z + KD.Map(Ry, . .., Rs). Thus there are at most < min{2(1-9k=1 L. on}
throws. For each j-th throw, given the result of the prior throws, since KD is
2-unpredictable, the conditional probability that the j-th ball lands into any
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particular bin is at most 2'*. From Lemma 10, with probability at least 1 —
27k/2 > 1 - 271/2 each bin contains at most a balls.

We claim that for each j < ¢, the probability that the verification query
(I[4], Nj], C[j], Alj]) makes game G return true is at most

11 8a+ 7a? na  48¢(L+p+q)
ST [|C[]|n+|A[H](27+T)

This claim will be justified later. Summing over ¢ verification queries, and ac-
counting for the 2/2"/2 probability due to the two balls-into-bins games,

(11)

2 11q (8a + Ta?)q N nalL N 48¢(L +p+q)L

PriGi < oo + 5 F ok ok ontk

Hence
3 11q | 288(L +p)q +36¢° +48¢(L +p+q)L
mu-auth
Adv AEE (‘A) S on/2 on on+k
+(8a + 7a® 4 3d)q + (na + 6a + 6d)L + 6(a + d)p
9k

Below, we will prove Equation (11).

HANDLING EACH VERIFICATION QUERY. Fix j* < ¢, and let (i, N,C,A) be
the j*-th verification query. Let T' be the IV in C and let M be the random
variable for the decrypted message CTR[E].D(Kou, N, C, A), where K, || Kout
is the random variable for the session key of user ¢ for nonce N. The message
M is determined from C' if we know all pairs (X, E(Kout, X)) for every string
X € 1{0,1}"~1. Consider the following cases.

Case 1: There is no entry (prim, K;, X, -, -) with X € {pad(N,0),...,pad(N,5)}.
Assume that all prim entries are compatible; otherwise the adversary simply loses
the game. Let V' < xor(H (Kn, M, A), N). Processing this verification query will
return true only if E(Kou, V) = T. After programming F, given all prim entries
and K, since KD is 2-unpredictable, there are at least 2¢~1 equally choices
for the Koyt Assume that Ko # K;, which happens with probability at least
1-2/2F >1—2/2".

Suppose that there is no entry (prim, Kou, V, -, ). Note that V' starts with 0.
Given all prim entries, (N, C, A, K;, Kin, Kout) and all pairs (X, E(Kout, X)) for
every X € 1{0,1}"~, (i) one can determine V, but (ii) there are at least 2"~! —
6Q > 22 equally likely choices for E(Koyu, V), and thus the chance that T =
E(Kou, V) is at most 4/2™.

Suppose that there is an entry (prim, Koy, V,T",+), with 77 £ T. Then after
programming F, the chance that T = F(Kou, V) is 0.

We now bound the chance that there is an entry (prim, Kou, V, T, ). Clearly
this entry, if exists, is not created by EVAL(Z, ) queries since Ko # K;. First
consider the case that either (1) A # ¢, or (2) M # e, or (3) H is c-regular.
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After programming FE, given all prim entries, (N,C, A, K;, Kou) and all pairs
(X, E(Kout, X)) for every X € 1{0,1}"71, (i) one can uniquely determine M,
but (ii) since KD is 2-unpredictable, for any string K, the conditional probability
that K;, = K is at most 217", Hence, for any entry (prim, K, X, -,-) that is not
created by EVAL(i, -) queries, due to the (possibly weak) c-regularity of H and
the 2-regularity of xor, the chance that K, = K and V = X is at most

2 2-¢-E[Cl,+|A]l,]  8c-E[|C|, +|Al]

2k : 2n71 2k+n

. . . 48Qc-E||C|n+|Aln
Summing over 6@ entries (prim, K, X, -, -), we obtain a bound Qe £|+|,€ 4l ] .

Next we consider the case that both A and M are the empty string, and H is
weakly c-regular. Note that one can check if M = ¢ without knowing the key
Kout, by comparing |C| with n. Now since H is weakly regular, H (K , M, A) =
0", and thus V' = xor(0™, N). From the balls-into-bins assumption above, there
are at most 2a entries (prim, K, V,T,-), and the chance that one such K is Koy
is at most 2a/2".

Summing up, for this case, the chance that the verification query (i, N, C, A)
makes game (G1 return true is at most

6  48Qc-E[|C|, + |A],] N 2a

on on+k 2k

Case 2: There is an entry (prim, K;,Z,-,—) for Z € 2 = {pad(N,0),...
pad(NV, 5)}. Regardless of how the adversary chooses (i, V), there are at most 6a
entries (prim,-, V)., —) with V' € (2. Since the key K; is sampled independent of
the (prim,-,-,-, —) entries, this case happens with probability at most S—Z.

Case 3: Entries (prim, K;, pad(N,0),-,+),..., (prim, K;, pad(N,5),-, +) exist.
Note that those entries are not created by queries EVAL(4, ), because the ad-
versary is not allowed to query EVAL(4, N) and then output a verification query
(i, N,C, A). Except for entries created by EVAL(i,-), the key K; is independent
of the remaining entries. Since KD is 2-unpredictable, assume that Ko, # K;,
which happens with probability at least 1 — 29 2% >1- 22% . We consider the
following sub-cases.

Case 3.1: There is no entry (prim, Ko, Z,T,-), where Z is a string starting
with 0. Assume that the entries are compatible; otherwise the adversary simply
loses the game. After programming FE, given all entries, (K;, Kin, Kout), and
all pairs (X, F(Kou, X)) for every X € 1{0,1}"!, (i) one can determine M
from C, and then compute V <« xor(H(Ki,, M, A),N), but (ii) either there
is an entry (prim, Kou, V, T, ) with TV # T, meaning E(Kou,V) = T' # T,
or there is no entry (prim, Kou,V,-,+), meaning that there are still at least
2n=1 —6Q > 2" 2 equally likely choices for E(Kout, V), and therefore the chance
that F(Kou,V) = T is at most 4/2™. Hence in this case the chance that the
verification query above can make G answer true is at most 4/2".

Case 3.2: There is an entry (prim, Kou, Z,7T,+) where Z is a string start-
ing with 0. Now, the entry (prim, Kou, Z,T,+), if exists, does not come from
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EvaL(i,-) queries, since K; # Kot as mentioned above. Note that due to the
balls-into-bins assumption above, there are at most a? septets (prim, J,-, T, +),
(prim, K, pad(N’,0), Ro,+), ..., (prim, pad(N’,5), R5,+) such that (i) J is the
k-bit suffix of KD.Map(Ry, ..., Rs), and (ii) those entries are not from the eval-
uation queries of user i. For each such septet, the chance that K = K; is 27%.
Hence this case happens with probability at most a?/2¥.

Case 3.3: There is an entry (prim, Kout, Z, T, —), where Z € 0{0,1}"~L. Assume
that Z ¢ 2 = {pad(N,0),...,pad(NV,5)}. This happens with probability at
least 1 — 6a2/2F, since due to the balls-into-bins assumption above, there are
at most 6a? septets of entries (prim,J, Z’, T, —), (prim, K, pad(N,0), Ry, +), .. .,
(prim, K, pad(N,5), R5,+) such that J is the k-bit suffix of KD.Map(Ry, ..., Rs)
and Z' € (2.

If incompatibility does not happen then either (prim, K;, pad(N,0),-,+),...,
(prim, K;, pad(N, 5),-,+) all belong to the ideal-cipher queries, or they all are
created by queries EVAL(j,-) for some j # i. Consider all septets T of entries
(prim, K, pad(N,0), Ry, +), - - ., (prim, K, pad(N,5), Rs, +), (prim, J,U, T, —), in
which J' || J + KD.Map(Ry, ..., Rs5), such that (1) either the first six entries
belong to the ideal-cipher queries, or they are created by queries EVAL(j,-),
with j # i, and (2) J # K and (3) U € 0{0,1}"~'\{pad(N,0),...,pad(N,5)}.
For such a septet T, denote K = MKey(T), J = OKey(T), J' = IKey(T)
and U = Input(7), and let Msg(7,C) be the message obtained by decrypt-
ing CTR[E].D(OKey(T), C). This query (i, N,C, A) makes game G; return true
only if incompatibility does not happen, and there is a septet 7 such that
xor(H (IKey(T), Msg(T,C), A), N) = Input(7) and K; = MKey(T).

Now consider the following game G that is equivalent of G7, but adds

some extra bookkeeping. In the first phase, we let bad <« false, and then run

—NEW,EvAL,E,E~!
/R as usual. After the adversary finishes querying and outputs its

verification queries, let (i, N,C, A) be the j*-th verification query. Excluding
the prim entries created by EVAL(Z, -) queries, we check for compatibility of the
remaining entries. If incompatibility happens we terminate the game and re-
turn false. Otherwise, among septets 7 such that MKey(7) = K;, we check if
xor(H (IKey(T),Msg(T,C), A), N) = Input(T), and if this happens, we set bad
to true. Note that here OKey(7) # MKey(7) = K;, and thus the additional
calls to E(OKey(T),-) to compute Msg(T,C) will not create further incompat-
ibility with the prim entries created by EVAL(:, ) queries. In the second phase,
we check the compatibility of all entries, program F, and proceed to handle the
verification queries.

Note that in this case, the verification query (i, N,C, A) makes game G
return 1 only if game G5 sets bad. Thus it suffices to prove that

1 E[|C]y + |Aln
Pr[stetsbad]gfn+m [ 2|k |Aln)
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ANALYZING GAME (5. Let game G3 be identical to game Go, but in G3, we
drop the second phase. Then

Pr[G35 sets bad] = Pr[G5 sets bad]

since the part we drop does not modify bad. Consider the following game G4
that is identical to game G, except the following. In game Gg3, recall that we
check xor(H (IKey(T),Msg(T,C), A), N) = Input(T) for only septets T such that
MKey(7) = K;. In G4, we instead check xor(H (IKey(T),Msg(T,C), A),N) =
Input(7) for all septets, and then among septets T of affirmative answers, we set
bad if there is some T such that MKey(7) = K;. The two games are equivalent,
and thus
Pr[G4 sets bad] = Pr[G3 sets bad]

Let Bad be the event that in game G4, the adversary can find na(|C|, + |A|n)
or more septets of affirmative answers. Note that the septets and their checking
are independent of the key K. Hence it suffices to prove that Pr[Bad] < 1/2".
The difficulty here is that the adversary can adaptively make (i, N,C, A) after
seeing the queries and answers. This creates an issue in using the regularity of H
in checking xor(H (IKey(7"), Msg(T,C), A), N) = Input(T), since (C, A, N) might
depend on IKey(T). However, we claim that for any fized choice (i*, N*, C*, A*),

PrBad N ((i, N, C, A) = (i*, N*,C*, A*))] < 2!~ (3nt+2n) (12)

where ¢ = |C*|,, + |A*|,, > 2. By union bound, the chance that Bad happens is
at most

) L) o
Z Z 21—(371@—}-270 < 222n€+Qn . 21—(3n€+2n) _ Z % < 2% )
(=2 (* N*,C*,A") =2 =2

|C" [n+] A" 0=t

To justify Equation (12), fix such a value (i*, N*,C*, A*). Consider the follow-
— /! -1
ing game G5. Initially, we let bad < false, and run ANEW’E\ WEET as usual.

After the adversary finishes querying, we ignore its verification queries. Exclud-
ing prim entries created by EVAL(i, ) queries, we check for compatibility of the
remaining entries. If incompatibility happens, we terminate the game and re-
turn false. Otherwise, consider all septets T of (prim, K, pad(N*,0), Ry, +), ...,
(prim, K, pad(N*,5), Re,+), (prim, J, U, T*, —), with J'||J < KD.Map(Ry, ..., Rs)
such that (1) either the first six entries belong to the ideal-cipher queries, or
they are created by queries EVAL(j,-), with j # 4, and (2) J # K and (3)
U € 0{0,1}" \{pad(N*,0),...,pad(N*,5)}. Check

xor(H (IKey(T), Msg(T,C*), A*), N*) = Input(T)

for all such septets T, and if there are naf or more septets of affirmative answers
then we set bad to true. Then

Pr[Bad N ((i, N,C, A) = (i*, N*,C*, A*))] < Pr[G5 sets bad] .
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Consider the following game Gg. It is identical to game G5, but we grant the
adversary the keys K, for every j # i*, at the beginning. This should only help
the adversary. Then

Pr[G5 sets bad] < Pr[Gg sets bad] .

Consider the following game G7. It is identical to game Gg but here we lazily
implement 7; for every j # ¢*, and also lazily implement E. That is, initially ;
is undefined on all inputs. Only when we need to compute 7;(X) do we sample
the output from a proper distribution. Likely, initially E(,-) is undefined on all
inputs. Only when we need to compute E(K,X) or E~}(K,Y) do we sample
the outputs from proper distributions. Moreover, we eagerly do the compatibility
checking and programming F. That is, each time the adversary makes an ideal-
cipher query we immediately do the compatibility checking and terminate the
game if incompatibility is detected. Likewise, each time the adversary makes a
query to EVAL(j,) with j # ¢*, we immediately do the compatibility checking,
terminate the game if incompatibility is detected, and program FE otherwise.
Since G7 is simply a different implementation of Gg,

Pr[G; sets bad] = Pr[Gg sets bad] .

Next, in game G, for any j # i*, querying EVAL(j, N') either causes premature
termination without setting bad, or effectively calls R, < E(Kj,pad(N’,s))
for every s € {0,...,5}, and returns KD.Map(Ry,..., Rs5). Since the adver-
sary knows the keys K, without loss of generality, assume that the adversary
makes no evaluation query EVAL(j,-) for any j # i*, and makes at most 6Q
ideal-cipher queries: whenever it is supposed to query EVAL(j, N'), it will query
E(Kj,pad(N’,s)) for every s € {0,...,5} instead. (If those queries are redundant
then the adversary can reuse the past answers without querying E.) Now, we
say that an entry (prim, J,U,T*, —) is bad if it belongs to an affirmative septet.
Consider the following game Gg. It is essentially the same as game Gz, but we set
bad if there are at least nf bad entries. Note that each entry (prim, J,U,T*, —)
can belong to at most a septets, due to the balls-into-bins assumption above.
Hence
Pr[G; sets bad] < Pr[Gjs sets bad] .

Game Gy is essentially the same as game Gg, but at the beginning, we grant the
adversary free queries E(K,pad(N*,0)),..., E(K,pad(N*,5)), for every K €
{0,1}*, and then grant it free queries E(K, X) for every K € {0,1}* and X €
1{0,1}"~ . (However, if some query F(K, X) repeats a prior query then we will
not grant this query.) Note that our free queries may prohibit the adversary
from making some backward queries as those now become redundant. However,
the entries (prim, K,U,-, —) corresponding to those backward queries are not
bad, because those U’s will belong to 1{0,1}"~* U {pad(N*,0),...,pad(N*,5)}.
Hence
Pr[Gs sets bad] < Pr[Gy sets bad] .

What is left is to analyze the chance that game Gy sets bad.
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ANALYZING GAME Gjg. Consider the following balls-into-bins game. For each 6-
tuple of queries E(K,pad(N*,0)),..., E(K,pad(N*,5)) with answer Ry, ..., R
respectively, we view them as throwing a ball into bin Z[n + 1 : n + k|, where
Z <+ KD.Map(Ry,...,Rs). So totally we throw 2 balls. Since KD[E] is 2-
unpredictable, for the j-th throw, given the result of prior throws, the condi-
tional probability that the j-th ball lands in any particular bin is at most 217%.
Assume that each bin contains at most [k¢/2] < nf balls, which happens with
probability at least 1 — 2~ G2k > 1 _9=G2)n 5ecording to Lemma 11. Now,
partition the septets according to their backward queries. Each partition con-
tains at most nf septets, due to the balls-into-bins assumption above. Since there
are at most p backward queries, there are at most p partitions.

Now, for each entry (prim, J,U,T*, —), for it to be bad, at least one of the n¢
septets in its partition must be an affirmative one. Given all prior prim entries,
the random variable U has at least 2! — 6Q — 6 > 2"~2 equally likely values,
and thus the conditional probability that this entry is bad is at most nf/2"~2.
Hence the chance that there are n¢ bad entries is at most

D nl N\ p™ s onl \"t _ (nl/64)""  (nf/64)" 1
< < < <
<n€> (2”*2) = (nf)! (2”*2> - (nO)! T (nl/e)™* — 16™
1
oG+

<

where the second equality is based on the hypothesis that p < 2778, the third
inequality is due to the fact that m! > (m/e)™ for any integer m > 1, and the
last inequality is due to the fact that £ > 2. Summing up,

Pr[Gy sets bad] < 21~ (G2

This concludes the proof.

M Proof of Theorem 6

From Proposition 1, we can construct d-repeating adversaries A; and As such
that
2q

AdVRET(A) < Adv%:PE”"(Al) + Adv%j;th (Ag) + o

Moreover, any query of A; or As is also a query of A. In particular, 4; makes
at most ¢ encryption queries of total L blocks, and at most B blocks per (user,
nonce) pair, and p ideal-cipher queries. Likewise, A5 makes at most ¢ encryp-
tion/verification queries of total L blocks, and encryption queries of B blocks
per (user, nonce) pair, and p-ideal cipher queries. Let AE* = KtE[KD[k], AE].

PRIVACY ANALYSIS. We first bound the privacy advantage of A;. From Lemma 6,

u-priv u-priv 2 48(L + p)q + 36(]2
AdvZZ T (A1) < Adviie " (Ar) + on/z ok+n

AE,E
2a(L +p) +2d(L + p+ 3q)
+ oF .
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Now, since ¢ < L/2 (as each query consist of at least two blocks, one from
associated data, another from plaintext/ciphertext), the bound above can be
simplified as

2 33L%+24Lp (2a+5d)L + (2a + 2d)p

Advie T (Ar) < AdVTEP () + o+ 2k

AE,E

AUTHENTICITY ANALYSIS. We next bound the authenticity advantage of As.
From Lemma 9, we can construct an adversary As such that

5 11g = 336(L +p)g + 72¢°

on/2 27 on+k
48¢(L+p+q)L  (8a+7a?+9d)q+ (na+ 8a + 8d)L + 8(a + d)p

+ 2n+k + 2k

AdVRE 5 (As) < AdVRESR (A3) +

Moreover, any query of A3 is also a query of As. In particular, A3 makes at most
q encryption/verification queries of total L blocks, and encryption queries of B
blocks per (user, nonce) pair, and p-ideal cipher queries. Again, since ¢ < L/2,
the bound above can be simplified as

5 (186 + 72¢)I2 + (168 + 48¢) Lp
2n/2 2n+k:
11g  (12a + 4a® 4+ 13d + na)L + 8(a + d)p

+ 5t o

AdVRE S (A2) < AdvREs™ (As) +

COMBINING PRIVACY AND AUTHENTICITY. From the analysis above, on the one
hand,

7 13
Advmy- mrae(A) < AdV:E*p”V(Al) mu auth(A3) + 199

AE,E 2n/2 on
(14a + 4a® + 18d + na)L +10(a +d)p
+ oF
(219 + 72¢) L2 + (192 + 48¢)Lp
+ 2n+k

On the other hand, using Proposition 2, we can construct an adversary A such
that

Adv;‘\“;*P"V(Al) + Advie: agh(Ag) < BAdviE R 5 (A),

where the key-generation algorithm KeyGen is given in Fig. 7. Adversary A
makes at most ¢ encryption/verification queries of total L blocks, and encryption
queries of B blocks per user, and p-ideal cipher queries. Hence

us u- i 7 13q
ADVIETI(A) < 8 AVRE RSn (A) + 57y +
N (14a + 4a? + 18d + na)L + 10(a + d)p

2k
(219 + 72¢) L2 + (192 + 48¢) Lp
+ 2n+k
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Finally, using Theorem 4 with g = 4 if H is ¢-regular, or Theorem 5 with =4
if H is weakly c-regular

1 (4a +d)p+ (2d+ a)L
<
— 9n/2 2k

(12¢ + 28)L? + 16¢cLp ~ (16¢ + 8.5)LB
+ 2n+k + on

mu-mrae T
AdVAE,KeyGen,E(A)

and note that ¢ < LB/4,

10 (17a + 4a® + 24d + na)L + (22a + 13d)p

AdVEETE(4) < S =
(48¢+30)LB (303 + 108¢)L? + (192 + 96¢)Lp
+ on + 2n+k :

This concludes the proof.
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