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Abstract—Recognizing representative living patterns in population is extremely valuable for urban planning and decision making.

Thanks to the growing popularity of location-based applications and check-ins on social networking sites, Point of Interest (POI) of a

location is quite often available in the trajectory data, which expresses user living semantics. However, adopting trajectory semantics

for living pattern recognition is an open and challenging research problem due to three major technical challenges: effective feature

representation, suitable granularity selection for habit unit, and reliable habit distance measurement. In this paper, we propose a

representation learning based system named habit2vec to represent user trajectory semantics in vector space, which preserves the

original user living habit information. We evaluated our proposed system on a large-scale real-world dataset provided by a popular

social network operator including 123,803 users for 1.5 months in Beijing. The results justify the representation ability of our system in

preserving user habit pattern, and demonstrate the effectiveness of clustering users with similar living patterns.

Index Terms—Representation learning, trajectory mining, pattern recognition, urban computing

Ç

1 INTRODUCTION

WITH the increasing popularity of personal mobile
devices and location-based applications, large-scale

semantic-rich trajectories of individuals are being recorded
and accumulated at a faster rate than ever [1], where Point of
Interest (POI) of a location is often available and associated
with the trajectories [2]. POI information, as the semantics of
location, is a good indicator of the person’s behavior at the
location [3], [4]. Mining underlying patterns in trajectory
semantics through POIs therefore make it possible to recog-
nize typical living patterns in the city. Understanding living
patterns in population is of great importance, as it has the
potential to reveal people’s social and economic status [5], as
well as social capital [6], which provides key insights for city
planners and decision makers. Despite its great significance,
there have been few studies dedicated to living pattern rec-
ognition in population via semantic-rich trajectory data.

Recently, emerging research on trajectories focuses on
mining frequent patterns. For instance, Lee et al. [7] and Yao

et al.[8] propose trajectory clustering methods to cluster
users who share similar geographical routes. However, these
works on trajectory pattern mining are based on the view-
point of physical location transition patterns and therefore,
constrained to only discovering common mobility pattern of
people located in nearby geographical regions. Meanwhile,
there have been advancement focusing on mining trajectory
semantics similarity. Jiang et al. [9] make use of a PCA-based
method to cluster daily patterns of human activities through
travel survey data; Furtado et al. [10] propose a multidimen-
sional similarity measures to compare semantic trajectories.
However, these works typically measure trajectory seman-
tics solely on static POI type labels. Two trajectories with
similar semantics but distinct POI type labels (e.g., super-
markets and shops) will therefore be measured completely
different. As a result, these works often involve manually
grouping POI type labels, which heavily rely on prior knowl-
edge and result in coarse granularity.

In this paper, we seek to recognize typical living patterns
distributed in different geographical locations in population
through the semantics embedded in the trajectories. We
define the similarity of living patterns as engaging in similar
behavior at similar times instead of staying in geographi-
cally neighboring location. For instance, the people in the
city who follow the weekday routine: sleep at night in resi-
dence district, get up at 9 am, go to work in commercial cen-
ter from 10 am to 6 pm, and get back to arrive at home in
the residence district at 8:30 pm, belong to the same living
pattern group, though they may be physically far away.

Nevertheless, recognizing typical living patterns in popu-
lation through POI semantic is challenging. First, there is no
ready method to build user habit representation through the
varied-length and often biased POI records in trajectory data.
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Second, it is difficult to select a suitable POI granularity as
there are usually multiple levels of coarse-grain granularity.
Third, it is also challenging to define accurate metrics to mea-
sure the similarity between user habits to take both semantics
and time scheduling into account. Classical approach fails to
capture the semantic similarity between different POI type as
well as temporal variations of POI type semantics.

To address the above three challenges, we propose a
representation learning-based system to convert trajectories
into living patterns. First, POI type transitions are extracted
from raw trajectory data. To solve the feature representation
problem, they are put in a preprocessing layer, which out-
puts a fixed length representation for each individual’s unbi-
ased living habit. Next, a representation learning inspired
feature extraction layer produces vector representation for
each person’s living habit preserving both semantic and tem-
poral information in the same space. Therefore, recognizing
typical living pattern in population is reduced to a classical
clustering problem through our system. Our contributions
can be summarized as follows:

� To the best of our knowledge, we are the first to rec-
ognize human living patterns in population through
trajectory data along with the outsider semantic
information that breaks through the geographical
constraints.

� We propose a representation learning system named
habit2vec to represent the habit of a person as a vec-
tor, which upgrades the word2vec model according
to special characteristics of trajectories. The system
fits the objective of living pattern recognition and sol-
ves the feature representation problem.

� Through extensive experiments, we evaluate our pro-
posed habit2vec system on a large-scale real-world
dataset that records the trajectory of 123,803 users for
1.5 months. The results justify the ability of our sys-
tem in preserving user habit information, which dis-
covers 13 typical weekday living habits and 12 typical
weekend living habits, coinciding physical meanings.
We show that our proposed system achieves signifi-
cant performance gain over baseline methods.

The rest of the paper is structured as follows. Section 2
reviews related work. Section 3 identifies the problem and
discusses the key challenges. Section 4 proposes the frame-
work of our habit2vec system. We evaluate our proposed sys-
tem in Section 5 and provide concluding remarks in Section 6.

2 RELATED WORK

We summarize the closely related works from three aspects:
trajectory mining, activity pattern modelling and represen-
tation learning.

Trajectory Pattern Mining. Extensive studies have been
dedicated to detecting the prevailing trajectory patterns in
large scale spatiotemporal data. However, previous works
mostly focus on identifying the popular location sequences
shared by different trajectories and grouping trajectories
based on their physical closeness [7], [11], [12]. Giannotti
et al. [13] designed T-patterns framework to address the prob-
lem of detecting frequent sub-trajectories in spatiotemporal
data. Mamoulis et al. [11] focused on mining frequent

periodic mobility patterns, Zheng et al. [14] investigated the
problem of detecting frequent traveling paths between fixed
locations, and Salidek et al. [15] leveraged principal compo-
nent analysis to extract mobility pattern for long-term loca-
tion prediction. As for trajectory clustering, Lee et al. [7]
proposed a partition-and-group framework to detect popular
common sub-trajectories and group similar trajectories
based on the shared sub-trajectories. [16] exploited principal
component analysis technique to extract latent mobility pat-
terns from raw trajectories and cluster trajectories based on
the latent features. However, this line of research is limited
in measuring the similarity between trajectories based on
their physical closeness, such as distance, overlapping
sub-trajectories and co-occurrences, therefore unable to
understand semantic patterns behind human mobility. More
recently, there have been works on semantic-rich trajectory
mining. Zhang et al. [17] proposed a hidden Markov model
based approach to discover user groups that share similar
mobility patterns taking into consideration mobility seman-
tics. Ying et al. [18], [19] adopted trajectory semantic feature
to assist location prediction. Zhang et al. [20] developed
Splitter system to mine fine-grained sequential patterns in
semantic trajectories. Yuan et al. [21] proposed e a Bayesian
non-parametric model to to discover periodic mobility pat-
terns for social media users by modeling the geographical
and temporal information. However, none of these works
focus on jointly modeling temporal and semantic aspect in
human mobility. Different from them, we investigate a novel
problem of mining living patterns embedded in trajectories.
Instead of building semantic-aware mobility model or min-
ing sequential pattern in semantic trajectory, we design a
methodology that captures the semantic features of living
patterns in a vector space so as to better understand user
social-economic behavior pattern.

Activity Pattern Modelling. Modelling the activity patterns
in individuals’ daily lives is an increasingly important topic
that has been extensively studied in recent years [22]. Some
early works study the nature of activity patterns (routine
behavior), and compare them with grammar in natural lan-
guage processing [23], [24]. Other works focus on mining the
activities behaviours from survey data. Eagle et al. [25] uti-
lized PCA algorithm to extract the features from semantic
annotated trajectories, and then identified clusters of activity
patterns. Farrahi et al. [26] adopted distant N-Gram topic
model to extract user mobile behavioral patterns. Banovic
et al. [27] proposed a decision-theoretic framework to ratio-
nalize the casual relationship in human routine behaviour
logs. Jiang et al. [9] exploited statistical learning techniques to
analyze an activity-based travel survey, where the spatiotem-
poral points are labeled with activities. There are also works
dedicated to understanding user indoor mobility/occupancy
pattern for location prediction [28] and smart home heating
[29]. While these works aimed to identify the key patterns in
individual’s daily activities, they heavily relied on human-
labeled survey data, which is typically not representative and
prevented population scale analysis. In addition, unsuper-
vised methods have also been developed to model individu-
al’s activity patterns. Furletti et al. [10] proposed a method to
infer the activities behind the GPS records. Furtado et al. [30]
developed an unsupervised algorithm to measure similarity
between semantic trajectory data, where the spatiotemporal

CAO ET AL.: HABIT2VEC: TRAJECTORY SEMANTIC EMBEDDING FOR LIVING PATTERN RECOGNITION IN POPULATION 1097

Authorized licensed use limited to: Stanford University. Downloaded on July 21,2020 at 23:27:13 UTC from IEEE Xplore.  Restrictions apply. 



records are associated with POIs, Cao et al. [31] studied user
location revisitation patterns in urban space and Xu et al. [32]
proposed a clustering method to identify popular temporal
modes in population. However, these works fell short of cap-
turing the semantic features of the trajectories, since they did
not properly model the correlation between activities or
POIs. Different from previous works, in this paper we
develop an unsupervised algorithm to model the semantic
similarities between unlabeled semantic-rich trajectories (i.e.,
user POI type transition traces), which shows promising
results in living pattern recognition.

Representation Learning. Representation learning is a cate-
gory of unsupervised learning method that aims to extract
effective and low-dimensional features from the complicated
and high-dimensional data [33]. Various algorithms have
been designed to capture the features in different data sour-
ces. In the area of natural language processing, Mikolov et al.
[34], [35] proposed word2vec, a neural network based repre-
sentation learning model, to extract the features of words’
semantic meaning from their sequential orders. Pennington
et al. [36] designed a representation learning algorithm,
Glove, that captured the semanticmeaning of words based on
their global co-occurrences features. In addition, Perozzi et al.
[37] and Tang et al. [38] introduced the representation learn-
ing techniques into complex networks analysis, and they pro-
posed different algorithms to derive representation for nodes’
structural roles in the network. The representation learning
techniques have also been applied in spatial-temporal data
mining. Yao et al. [8] designed a recurrent neural network to
capture the physical features of trajectories with a continuous
vector, which enabled them to detect trajectories that are simi-
lar in speed and acceleration patterns. Zhang et al. [3] mod-
elled the semantic meaning of spatial-temporal points based
on their co-occurrence with the texts in social media’s check-
ins. Different from previous works, we develop an algorithm
to extract effective semantic representations for individuals’
living patterns from their trajectories, i.e., the transition pat-
terns between location semantics. We demonstrate that our
derived representations facilitate the task of living pattern
recognition on population scale.

3 SYSTEM OVERVIEW

3.1 Motivation and Challenges

In this paper, we aim to cluster population into groups of
similar living habits. We consider living habits as people’s
regular behavior at specific times. As is often the case, a per-
son’s behavior at a time is strongly related to his current
location. Thus, we are motivated to develop a system to
derive the representation of people’s living habits from their
trajectories.

However, different from previous works on trajectory
mining, which aim at clustering people of similar geographi-
cal location transition pattern, we seek to group people who
share similarity in trajectory semantics, i.e., people who go to
similar type of places at similar time. To put it another way,
we aim to group individuals sharing similar daily routine but
not necessarily in nearby places. For this goal, we filter out
other information in trajectory data (e.g., GPS information,
user profile) and select the semantic information, i.e., the
transition series of different types of POIs, as the principal

input. The system outputs clusters of distinct living habits
reflected in the trajectory. Recognizing living patterns and
clustering people based on POI transition series, however, is
challenging for three reasons.

Feature Representation. Raw POI transition series in our
daily trajectories are sparse and quite often not uniformly
sampled in passively recorded trajectories. For instance, users
tend to use their phones more frequently during their leisure
time than during working hours. Therefore, there tend to be
more POI records at noon or in the evening. If directly using
the raw data as a feature, the user’s living habit will be repre-
sented in a biasedway.How to select proper features to repre-
sent a user’s daily living habit is therefore hard to manage.

Granularity Selection.A person’s daily habit is reflected by
a trace of POI transitions. However, there are multiple levels
of POI types. High-level types fail to capture meaningful
types of living patterns since they do not properly distin-
guish semantics, while finer-grained types capture semantic
differences much better. How to select a proper granularity
to represent user’s living pattern is challenging.

Distance Metric. Clustering people of similar living habits
requires a distance metric to measure the similarity between
users’ living patterns while a good metric should consider
both semantic and temporal similarity. In terms of semantics,
peoplewith high similarity should go to similar types of loca-
tions every day. In terms of a temporal factor, people with
great similarity should have analogous time scheduling.
How to define an effective distancemetric to combine seman-
tics and temporal factors so as to cluster people who appear
at similar POI types at close times is of great difficulty.

3.2 System Overview

In order to effectively tackle the above three challenges, we
propose a representation learning based system to convert
trajectory into living pattern clusters. First, POI type transi-
tions is extracted from raw trajectory data. To solve the fea-
ture representation problem, the POI type transitions is
then put in a preprocessing layer and the layer outputs a
fixed length representation for each individual’s unbiased
living habit. Next, a feature extraction layer based on repre-
sentation learning produces vector representation for each
person’s living habit, which preserves both semantic and
temporal information in the same space so that similarity
between user habits can be easily determined. Therefore,
the granularity selection and distance measuring challenges
are resolved. Finally, clustering analysis is made on living
habit vectors (along with other user-specified features from
trajectory data) to output a living habit group. The frame-
work of our system is shown in Fig. 1.

4 EMBEDDING SEMANTICS IN TRAJECTORIES

4.1 Preliminary

To better represent semantic differences in people’s living
habits, we first utilize the lowest level POI type representa-
tion. Based on it, we define a habit recordHr as follows.

Definition 1. A habit record Hr records a person’s habit at a
specific timestamp, in the format of ðp; tÞ, where p represents a
POI type, and t represents a specific timestamp, meaning an
individual appears in POI type p at timestamp t.

1098 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 5, MAY 2020

Authorized licensed use limited to: Stanford University. Downloaded on July 21,2020 at 23:27:13 UTC from IEEE Xplore.  Restrictions apply. 



Based on the above definition for habit record, we further
define a person’s raw habit trace, denoted byHtr.

Definition 2. A person’s raw habit trace Htr is a relation con-
taining all habit records left by a specific person in the dataset,
in the format of ðui;Hr1; Hr2; . . . ; HrnÞ, where ui represents
the ID of the individual, Hrj represents the jth habit record of
ui and n represents the total number of habit records of ui in
the dataset.

For different users, the total number of habit records n is
most likely to be different. As mentioned earlier, trajectory
data recorded bymobile devices are often biased in time and
of varying length. Furthermore, POI information are usually
quite sparse in trajectory data. To effectively represent a per-
son’s typical living pattern for later analysis, as well as to fil-
ter out redundant information, we therefore carry out a
preprocessing step on the raw habit traceHtr, which is moti-
vated by the following two observations.

� Individual mobility follows a strong periodicity pat-
tern and is therefore highly predictable, i.e., people
tend to be in similar places at similar time[39].

� Most of us have quite different mobility trajectories
on weekdays and weekends.

In the preprocessing, we compress the irregular raw
habit trace Htr for a person into two fixed-length POI transi-
tion traces: we divide a day into m equal-length time slices
(e.g., 30 minutes) for both weekday and weekend and then
aggregate the person’s raw habit trace Htr on those time sli-
ces, which solves the data sparsity problem. To best repre-
sent the person’s living pattern, we select the most frequent
POI type the person visits in each time slices as his typical
habit during that time slice, and have the following defini-
tion for signature habit traceHs and habit unit hp

j .

Definition 3. Individual’s signature habit trace Hs is a feature
representing a person’s typical POI type he/she visits at a spe-
cific time slice, in the format of ðui; p1; p2; . . . ; pmÞ, where ui

represents the ID of the person, pj is ui’s most likely POI type
to visit during the jth time slice on weekday/weekend and m
represents the total number of time slices.

Definition 4. Habit unit hp
j represents a basic unit in POI type -

time slice two dimensional space, meaning a visit to POI type p
at the jth time slice.

Definition 5. A person’s weekday/weekend signature habit unit
transition Hu is a feature representing a person’s typical POI
type he/she visits at a specific time slice, in the format of ðui;

h
p1
1 ; h

p2
2 ; . . . ; hpm

m Þ, where ui represents the ID of the person, h
pj
j

is ui’s most likely state of habit unit during the jth time slice
on weekday/weekend, and m represents the total number of
time slices.

4.2 Representation Learning on Living Habits

Although we have obtained fixed-length signature habit
traceHe to represent the typical living pattern of each user in
the dataset on both weekdays and weekends, this feature is
not expressive enough for analysis yet. First, it fails to cap-
ture the similarity between different types of POIs such as
Beijing Style and Shanghai Style restaurant, which is a fre-
quent problem under the finest POI labels. Second, a metric
to compare different users’ signature habit trace combining
semantic and temporal factor, is still hard to define. There-
fore, we propose a representation learning method inspired
by word2vec to embed semantics and temporal factors of
users’ signature habit trace in the same space. User habit sim-
ilarity can therefore be easily determined by classical dis-
tance/similaritymetrics.

Representation learning, as a growing interest and empha-
sis on unsupervised learning, aims at transforming compli-
cated, high-dimensional and often redundant real-world
data into low-dimensional datawhile preserving information
embedded in the rawdata [33].

Word2vec [34], takes advantage of a three-layer neuron
network to learn input corpus. It finds a fixed-length low-
dimensional representation (often by the hundred assigned
by users) for each word. Word representations are learnt in
a way such that words sharing common contexts in the cor-
pus are located close to each other in the embedding space,
thus word similarity can be easily determined by cosine
similarity. Experiments show that word2vec is both effec-
tive and efficient in learning word-level semantics.

As in [23], [24], we have discovered a strong similarity
between natural language and signature habit uniter transi-
tionHu.

First, natural language and signature habit unit transition
can both be viewd as time-dependent series. For each word
in the sentence, there can be multiple choices from the dic-
tionary regardless of context. Similarly, there are multiple
choices of habit unit for each element in the signature habit
unit transition.

Second, both natural language and signature habit unit
transition can be approximated by context. In many cases, if
given context, we are able to predict nearby words without
much trouble. Likewise, a human living pattern has some
typical transition modes, which are reflected in POI type
transitionmode in signature habit unit transition.

Third, large scale of data are available for both natural
language and signature habit unit transition to learn their
characteristics.

Lastly, the frequency distribution of habit unit is very sim-
ilar to word frequency distribution in natural language. A
typical distribution of habit unit is shown in Fig. 2 (observed
in our dataset utilized in experiment), which approximately
follows Zipf Law, the governing law in word frequency
distribution [40].

Therefore, we draw an analogy between learning repre-
sentation for signature habit trace and word embedding, as
shown in Table 1. Inspired by the idea of word2vec, we are

Fig. 1. System architecture.
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motivated to propose an algorithm to learn an individual’s
habits from the trajectory, with the name of habit2vec.

4.3 Methodology

The key idea of habit2vec is to embed a user’s current visit to
a POI type target during a time slice (current habit unit h

pj
j )

based on its context. We first acquire embedding vectors for
all habit units. Then, we take mean of all habit units appear-
ing in a user’s signature habit unit transition as this user’s liv-
ing habit embedding vector.

The model requires two user-specified hyper-parameters,
dim and w. We define hyper parameter dim as the expected
length of embedding vectors (same for habit unit embedding
vector and user living habit embedding vector). We define
another hyper parameter window size w so as to define the
context of habit unit appearing in a user’s trace. Here we
make the assumption that habit units the user appears far-
ther than w time slices won’t have direct influence on the
user’s current habit unit state, and exclude them from the
context.

Definition 6. Suppose person ui is of habit hp
j at time slice j,

context Cðhp
j Þ represents all habit units ui visits in nearby time

slices of j. With a user-specified window size w, Cðhp
j Þ contains

habit units person ui visits from time slice ðj� wÞ to ðjþ wÞ
(time slice j excluded). The habit unit state hp

j at the jth time
slice is called target.

Note that we need to pay special attention to the bound-
ary. Instead of treating the habit unit transition as a line,
which neglects the dependency between time slices right
before and after midnight, we treat each user’s habit unit
transition as circle. The context of a boundary target is shown
as an example in Fig. 3. In this case, window size is assigned
3, and the context of habit unit for this user at 11:00 pm not
only includes habit unit at 9:30, 10:00, 10:30 and 11:30 pm,
but also takes into account those ‘very first’ habit units at
midnight and 0:30 am.

By sequentially identifying each habit unit in each user’s
habit unit transitions as a target and sliding the window
across the user’s habit unit transitions to get the target’s con-
text, we get a list of ðtarget; contextÞ training pairs and put

them into a three-layer neural network model Continuous
Bag-of-Words (CBOW) [35] to learn the habit unit embed-
ding vector. All habit unit embedding vectors are initialized
as random dim-dimension vectors. The objective of the neu-
ral network is to adjust and find the optimal weights of neu-
ron and habit unit vectors at the output layer such that the
possibility of target’s appearance is maximized when given
context.

The architecture of the CBOW model is shown in Fig. 4,
where N is the number of habit units in the dataset. Denote
the vector representation of habit unit hp

j as wðhp
j Þ. When

training ðtargeti; contextiÞ, the neural network takes all one-
hot key representations (the way to represent categorical
data where only one label bit is ‘1’ while all other bits are ’0’)
of contexti as input and uses an embedding vector matrix
acquired in previous training steps to transform one-hot key
representation of contexti to vector representation wðlÞ;f
l 2 Cðhp

j Þg, as shown in the input layer of Fig. 4. Then a sec-
ond layer sums up all vector representations of contexti and
get the output vector

FðCðhp
j ÞÞ ¼

X
l2Cðhp

j
Þ wðlÞ;

as shown in the projection layer of Fig. 4. The third layer
transforms vector back into N dimension at the output and
then predicts the possibility of targeti given contexti using
softmax function(shown in the output layer of Fig. 4). More
formally, the posterior probability of targeti given contexti
is calculated as follows:

pðhp
j jCðhp

j ÞÞ ¼ e
wðhp

j
Þ�FðCðhp

j
ÞÞ
=
X

h2H ewðhÞ�FðCðhÞÞ;

whereH is the set of all habit units appearing in the dataset.
Finally, the training objective of habit2vec is to maximize
the average log probability

1

jHj
X

h2H log pðhjCðhÞÞ:

Using an optimization method such as gradient descent, the
weights of the neuron and embedding vector representation
are adjusted accordingly. Techniques such as negative
sampling [34] can help speed up the training process. The
complexity of CBOW training process is log-linear.

Fig. 2. Statistics of habit unit satisfies Zipf law.

TABLE 1
Analogy from Habit Trace to Natural Language

Habit unit (a visit to a POI type during a time slice) �!word
Habit unit transition mode �! grammar rules/fixed
collocation an individual’s signature habit unit transition �!
sentence people’s signature habit unit transitions �! corpus

Fig. 3. Learning context through sliding window.
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After training with a large enough dataset, the weights of
neurons and representation for embedding vectors converge.
We therefore obtain embedding vectors for all habit units.

4.4 Clustering Method

After the habit2vec representation learning procedure, we
obtain the vector representations for the living habit of each
user. Since the living habit has been embedded in a single
space, we can use a classical clustering method, such as K-
means and density-based method, to cluster similar living
habits. People who visit similar POI types at similar time sli-
ces will be under the same cluster. Apart from the POI type
transition information we use in the habit2vec process, there
is usually other trajectory information from the raw dataset,
such as GPS information and a user profile. Through user-
specified features and a distance/similarity metric, poten-
tially we can get finer living habit clusters with constraints,
such as “find clusters of people who have similar POI tran-
sition patterns and travel similar distance from home to
work”.

5 EXPERIMENTS

Now, based on a large-scale real world spatial-temporal
dataset, we implement our proposed habit2vec system to
detect human living habits and further cluster them into dif-
ferent groups. We show that habit2vec is capable of captur-
ing semantics in user trajectory, recognizing meaningful
living patterns in population, and significantly improve per-
formance over baseline methods.

5.1 Data Description

Our dataset is collected by Tencent, one of the largest social
network service providers in China. Its service covers the
majority of Chinese citizens with over 0.89 billion monthly
active users. Thanks to the wide coverage, users recorded by
our dataset can be seen as a good representative of Chinese
citizens. We select the data to focus on the largest metropolis

Beijing, which is ideal for studying metropolis-level living
habits of human beings.

The obtained spatial-temporal dataset is recorded when-
ever the users make requests on localization service in differ-
ent platforms of the same service provider, such as location
sharing, location check-ins, location-based social network,
etc. GPS information at the timestamp is therefore recorded
by localization modules. As the localization is achieved
through both GPS and network-based approaches, the
obtained location information is of fine-grained spatial gran-
ularity. In addition to GPS data, POI information, such as the
name of a restaurant, or a specific address, is often recorded
at the same time, thus adding semantics to spatial temporal
information. Tencent provides a POI dictionary, which maps
each POI to POI types of three levels. The number of POI
types of the three level is 17, 189 and 405, respectively. For the
first-level POI type, the categorization is coarse and covers
major categories such as life service, company, real estate, etc,
while the second and third-level POI type are much more
fine-grained (e.g., distinguish different kinds of restaurants).
Some examples of Tencent POI dictionary are listed in Table 2.
One key issue with this provided POI dictionary, however, is
that many POI categorization are not independent, even for
the first level. For instance, office building belongs to the first-
level POI type ‘real estate’, but is closely related to first-level
POI type ‘company’, thus leads to difficulty in living pattern
recognition. As we will show later, our proposed habit2vec
addresses this challenge with good results.

In the experiment, we implement our system on 123,803
randomly sampled users in Beijing, whose records range
from September 17, 2016 to October 31, 2016. All user infor-
mation in the dataset have been anonymized for privacy
concerns. A detailed description of the dataset is summa-
rized in Table 3.

5.2 Data Preprocessing, Habit2vec and Clustering

Based on the POI information from the raw dataset, we use
the third-level POI dictionary to convert POI transitions into
finest POI type transitions. Then we discretize a day into 48
equal-length time slices (30 minutes every time slice) and
aggregate the POI type transitions into a weekday and a
weekend day. The parameter is set as 48 as it provides finest

Fig. 4. Architecture of CBOW neural network.

TABLE 2
Example of Tencent POI Dictionary

First-level POI Restaurant, company, real estate, service, entertainment, school, commercial, infrastructure
Second-level POI Chinese restaurant, factory, residence, office building, post office, university, bank, shop, transportation
Third-level POI Beijing restaurant, factory, villa, office building, industrial park, post office, university, bank, supermarket, market, airport

TABLE 3
Data Summary

Coverage Beijing

Record duration Sep 17-Oct 31, 2016
Number of users 123,803
Number of unique POIs on weekdays 63,966
Number of unique POIs on weekends 61,827
Number of first-level POI type 17
Number of second-level POI type 189
Number of third-level POI type 405
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granularity and explainability without suffering from data
sparsity. We mark time slices missing POI information as
“missing” type in the dataset. In the acquired POI type tran-
sition trace, 5.2 percent of the time slices in the aggregated
weekday and 8.1 percent of the time slices in the aggregated
weekend day is markedmissing.

As people follow very different living patterns on week-
day and weekend, which in turn affects the POI transitions
and the context of each habit unit, we separately adopt hab-
it2vec representation learning on weekday and weekend
data. After obtaining the vector representation for each habit
unit, we take themean of all habit units of a user as the vector
representation for his/her living habit, and then adopt K-
means clustering algorithm (with cosine similarity metric)
separately on weekday and weekend trace to find groups of
similar living habits on weekday/weekend. Following prac-
tices in word2vec[34], [35], We set the representation vector
length dim as 80, and the window size w as 3 (1.5 hours). As
revealed by previous works, a larger dim enables a better
preservation of original word semantics, yet the gain is lim-
ited when dim is sufficiently large. For window size w, if the
value is too small, correlation between habit units will not be
properly captured; on the other hand, a too large window
size will lead to over estimation of correlation. In the experi-
ment, we carefully tuned these parameters so that optimal
performance is achieved in measuring habit unit similarity
and identifying living patterns. Finally, we choose the opti-
mal number of cluster K through elbow method [8]. By
increasing K from 2 to 30, and calculating the sum of error
fromuser samples to the cluster center, we chooseK at elbow
pointwhere the sumof error does not drop significantly com-
pared to other points as the number of clusters. In this way,
we determine the number of habit clusters for a weekday as
13 and the number of habit clusters for a weekend as 12.

5.3 Results Analysis

5.3.1 Habit Unit Embedding

One main objective to adopt habit2vec is to measure the
semantic similarity between POI types under the variation of
time. We first take a specific POI type as an example to check
the effect of habit2vec in distinguishing semantic difference.
For instance, first-levl POI type restaurant is subdivisioned
into different styles as a Beijing style restaurant, Hunan (a
Chinese province) style restaurant, Pizza, etc. We measure
the cosine similarity (value between �1 and 1 where the
greater the value, the closer is the relationship between the
two features) betweeen a Beijing style restaurant and a
Hunan style restaurant at 12 noon. The similarity is 0.86,
which implies a great similarity. On the other hand, the simi-
larity between a Beijing style restaurant and Pizza (both are
restaurants, but they have customerswith different purposes,
where Pizza is fast food while a Beijing style restaurant is

much more formal) at 12 noon is 0.34 while the similarity
between a Beijing style restaurant and a factory (they have no
relationship) at 12 noon is�0.45.Habit2vec alsomeasures tem-
poral difference. The similarity between a residence at 1 am
and a residence at 11:30 pm (both late night) on a weekday is
0.79, while the similarity between a residence at 1 am (late
night) and 8 am (morning rush hour) on a weekday is 0.22.

We further test habit unit vectors on a global scale. We
select 5 representative major POI types from the first-level
and second-level POI dictionary: residence, university, com-
mercial, restaurant and entertainment and check their similar-
ity at different time slices on weekday. For top-level POI type
such as restaurant and entertainment (which includes low-
level POI types as cinema, club, etc.), we take the mean of all
their subdivision POI types at the same time slice as its repre-
sentation. The cosine similarity between the five POI types at
3 am, 10 am and 8 pm is shown in Table 4. Each non-diagonal
cell in the table has three components, referring to the similar-
ity between the two POI type at 3 am, 10 am and 8 pm. For
instance, the element at the second row third column
(�0.08,0.29,�0.25) means the similarity between residence
and commercial district is �0.08 at 3 am, 0.29 at 10 am and
�0.25 at 8 pm. FromTable 4,we observe that the result of hab-
it2vec is in accordance with our expectation. The five major
POI types have quite clear semantic difference, which is
reflected in the fact that most elements in the table are much
less than 1.

On the other hand, habit2vec has the ability to distinguish
semantic variations of POI type at different time. For
instance, the similarity between restaurant and entertain-
ment is 0.29 at 3 am,�0.1 at 10 am while 0.51 at 8 pm. This is
consistent with our intuition: being in restaurant could sim-
ply mean filling the stomach, hanging in out with friends or
doing a job (chef) while being in entertainment zone is
closely related to entertaining with friends. If a person goes
to a restaurant at night, he/she is likely to meet with friend
and therefore similar in the purpose of going to entertain-
ment zones. If a person appears in a restaurant 10 am in the
morning, either because he/she is hungry or the person
works in the restaurant, which is quite different from being
in entertainment zones. The semantic difference of POIs at
different times, is therefore successfully embedded in our
habit2vec approach.

5.3.2 Label User Habit Clusters

We further check the performance of user habit vectors
obtained from habit2vec. We implement K-means clustering
method separately on weekday and weekend user living
habit representation and obtain 13 weekday habit clusters
(weekday living patterns) and 12 weekend habit clusters
(weekend living patterns). Then, we determine the seman-
tics, or the label of each habit cluster based on 2 criteria.

TABLE 4
Similarity Between 5 Major POI Types at 3 am, 10 am, and 8 pm on Weekday
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� The statistics of POI types in the cluster;
� The living habit closest to the cluster center.
For instance, we determine the label of weekday cluster #2

and cluster #5 through the following way. We first make a
statistics of the POI type in cluster #2 and #5. We find that
POI type commercial building accounts for 36.7 percent,
while residence accounts for 52.8 percent of all POI types
appearing in cluster #2. In the meantime, POI type commer-
cial building accounts for 25.3 percent, while residence
accounts for 45.3 percent of all POI types appearing in cluster
#5. As we are not able to tell the difference between seman-
tics of the two clusters, we move on using the cluster center
temporal information. We find out that the living habit of
user whose habit vector is closest to the vector of the cluster
#2 center stays in residence at night and goes to commercial
building in the day (Fig. 5a), while user closest to cluster #5 is
on the contrary (Fig. 5c). Thus, we label them differently.
This example shows that habit2vec clustering is good atmea-
suring difference in time scheduling.

In this way, we label semantics of all weekday and week-
end cluster. The semantics, possible identity as well as the
population proportion of the 13 weekday living habit clus-
ters are summarized in Table 5 while the semantics and the
population proportion of the 12 weekend living habit clus-
ters are summarized in Table 6. The cluster results show that
habit2vec not only captures distinctions in users’ visits to dif-
ferent POI types, but also distinguishes schedule difference.

Note that we are using cluster center to represent typical
living habit in the city, which turn out to be simple enough to
be represented by one or two POI types. However, not all
users in the a living habit cluster are similar to cluster center
in terms of POI type labels. For instance, in weekday habit
cluster #1, we observe people who spend most of their day

time at auto repair, auto service, local market, pharmacies,
etc. (different from habit center POI type “shops”), but they
don’t show up in other habit clusters. They belong to cluster
#1 as the semantics of working in these POI types during the
day are much more similar to working in shops than work-
ing elsewhere (other habit clusters). In addition, users in a
living habit cluster generally have variations from cluster

Fig. 5. Four weekday and four weekend living patterns detected by habit2vec.

TABLE 5
Semantics, Possible Identity and Population Proportion

of 13 Weekday Living Habit Clusters

ID Semantics Possible Identity %

#1 stay in residence at night, stay in
shops for the day

shop owner, shop
assistant

5.7%

#2 stay in residence at night, stay in
commercial building for the day

white collar 7.1%

#3 stay in hospital the whole day doctor, nurse, patient 1.0%

#4 stay in industrial zone whole day engineer, laborer 4.1%

#5 stay in commercial building at
night, in residence for the day

white collar 7.3%

#6 stay in residence the whole day retired, freelance 28.0%

#7 POI type missing - 5.9%

#8 stay in residence most of the day,
go to commercial buildings briefly

senior white collar 4.7%

#9 stay in university the whole day college student 9.8%

#10 stay in residence most of the day,
go to shops briefly in the day

retired, freelance 14.1%

#11 irregular life, skip from one POI
type to another

people leading
irregular life

2.0%

#12 stay in suburb residence most of
the day, go to market in the day

local business owner 2.9%

#13 stay in residence at night, go to
schools in the day

teacher, student 7.4%
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center, e.g., different users may go to different type of restau-
rant at different time slices. Despite the variations, their gen-
eral living habit fit the pattern defined by cluster center.
Therefore, habit2vec is capable of capturing fine-grained
semantic similarity dynamically in user habit without prior
knowledge, compared with previous works which directly
consider static POI type labels (often involve manually
grouping POI labels).

It is worth mentioning, however, due to lack of informa-
tion and the unsupervised nature of habit2vec, some recog-
nized living patterns may represent people of different
identities. For instance, weekday habit cluster #3 represents
people who stay in hospital the whole day, and they could
be doctors, nurses or patients. Also, habit2vec is not able to
distinguish fine-grained location semantics in some cases,
e.g., dormitories and lecture halls in universities, since they
have the same POI label ‘university’. Nevertheless, we argue
that habit2vec, as many other successful data mining techni-
ques, nicely completes ‘search and filter’, ‘read and extract’
and ‘schematize’, and helps establish reasonable hypotheses
in the sensemaking process [41] with minimal manual effort.
To further support or disconfirm hypotheses generated by
habit2vec on user identities, more information and domain
knowledge is needed.

5.3.3 Spatial Analysis on User Habit Cluster

We visualize the spatial distribution of four interesting habit
clusters for weekday (Fig. 6), and four habit clusters for
weekend (Fig. 7) at midnight (2 am) and in the morning
(10:30 am). We further evaluate the clustering performance
of habit2vec, and obtain the following featured clusters.

� Weekday cluster #2 represents people who stay in
residence at night and stay in commercial building
for the day. The spatial distribution of the cluster at
midnight spreads across the city. While in the morn-
ing working hours, users of this cluster aggregates in
commercial center as CBD and Zhongguancun.

� Weekday cluster #3 represents people who stay in
hospital for the entire day. The spatial distribution of

the cluster at midnight looks almost the same as the
cluster in the morning, and the distribution resem-
bles the distribution of Beijing’s hospitals.

� Weekday cluster #5 represents people staying in com-
mercial building at night and going back to residence
in the day. The spatial distribution of the cluster is the
opposite of Weekday cluster #2, despite this group
concentrates more in suburban commercial center as
Huoyin.

� Weekday cluster #9 represents people staying in uni-
versity for the entire day. The spatial distribution of

TABLE 6
Semantics and Population Proportion of

12 Weekend Living Habit Clusters

ID Semantics %

#1 stay in residence the whole day 34.0%

#2 stay in university the whole day 7.1%

#3 stay in residence at night, go shopping in the day 6.2%

#4 stay in residence at night, go to gym in the day 1.8%

#5 stay in university most of the day, go shopping briefly
in the day

6.8%

#6 stay in residence at night, go to scenic spot in the day 3.9%

#7 stay in residence at night, go to university, shops in the day 8.8%

#8 stay in industrial zone the whole day 3.2%

#9 stay in residence most of the day, go shopping in the evening 8.5%

#10 POI type missing 7.8%

#11 stay in residence most of the day, stay in entertainment zones
in the evening

7.3%

#12 stay in residence at night, go shopping and gym in the day 4.6%

Fig. 6. Spatial distribution of four weekday living habit user clusters at
midnight and in morning working hours.
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the cluster is the same as university distribution in
Beijing.

� Weekend cluster #1 represents people staying in resi-
dence for the entire day. This habit group covers the
whole city.

� Weekend cluster #2 represents people staying in uni-
versity for the entire day. The spatial distribution of
the cluster is quite similar to weekday cluster #9.

� Weekend cluster #6 represents people staying in resi-
dence at night who go to scenic spot in the day. The

spatial distribution of the cluster in the day high-
lights the scenic spots in suburb Beijing.

� Weekend cluster #11 represents people staying in
residence in the day and going out to entertainment
district at night. The spatial distribution of the clus-
ter is similar to the spatial distribution of Beijing’s
entertainment district.

From the above analysis, we come to the conclusion that
the spatial distribution of habit clusters is in conformity
with the habit labels we assigned previously.

5.3.4 Visualization of Habit Cluster Structure

We also visualize the low-dimensional structure of weekday
and weekend habit clusters. We adopt the widely used high-
dimensional data visualization technique, t-SNE[42], to proj-
ect user habit vector obtained from habit2vec on 3D space.
Figs. 8a and 8b show the distribution of weekday user habit
vector and weekend user habit vector respectively, where
each point in the 3D space represents the weekday/weekend
living habit of a user and points with the same color stand
for users of the same detected living pattern. As demon-
strated by Fig. 8, users of the sameweekday/weekend living
pattern aggregate while users of different living patterns are
disperse. Therefore, each habit cluster can be represented by
its centroid, which proves the effectiveness of habit2vec in
representing user living habit and finding distinct living
patterns in population.

5.3.5 Relationship between Weekday and Weekend

We further evaluate the performance of habit2vec by studying
the relationship between weekday and weekend user habit
clusters. As mentioned earlier, we notice the difference
between weekday and weekend POI transition mode and
therefore separately train weekday and weekend habit unit
vectors. We notice that there is a strong correlation between
weekday cluster #9 (university whole day) and weekend
cluster #2 (university whole day) and cluster #5 (university
+briefly shopping in the day), where 64 percent of people
in weekday cluster #9 appears in weekend cluster #2 while
15 percent of people in weekday cluster #9 appears in week-
end cluster #5. There is also a correlation between weekday
cluster #6 and weekend cluster #1 (both means staying in
residence for the whole day), where 63 percent of people in
cluster #6 end up in weekend cluster #1. On the other hand,
there is no simple one-one or one-two matching between
other weekday and weekend habit clusters, indicating that
other groups havemore flexibility in living style. The result of

Fig. 7. Spatial distribution of four weekend living habit user clusters at
midnight and in the morning.

Fig. 8. Visualization of 3D structure of weekday and weekend habit
clusters.
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weekday and weekend living pattern clusters is shown in
Table 7. Each element in the table refers to the percentage of
people in a weekday habit cluster who belongs to a weekend
habit cluster. For instance, element 0.1 percent in the third
row third column in the table means that 0.1 percent people
in weekday cluster #6 belongs to weekday cluster #2. In sum-
mary, the results of weekday-weekend habit cluster relation-
ship lives up to our expectation and highlights the complex
composition of users’ weekday andweekend living patterns.

5.3.6 Evaluation via Ground Truth

Finally, we evaluate the living patterns recognized through
habit2vec via ground truth data.

First, we randomly select 200 users from our dataset and
ask 20 volunteers (8 female and 12 male) to label the most
likely living patterns of those users by viewing their week-
day signature habit unit transition (the 48-length POI type
series, whose components represent the most likely POI type
the user visits during a specific 30-minute time slice onweek-
days). Of the 200 users, 189 users’ identities labelled by vol-
unteers match the results recognized through habit2vec,
with an accuracy of 94.5 percent. This result further verifies
that habit2vec is capable of recognizing meaningful living
patterns.

Then, we compare the performance of habit2vec over
baseline algorithms. To the best of our knowledge, there is
one existingwork [25] aiming at approaching a similar living
pattern recognition problem, which proposes a PCA-based
method to extract behavior patterns for 100 people with 5
location semantics (‘work’, ‘home’, ‘no signal’, ‘else’ and
‘off’). However, the method requires constructing a user-
feature matrix, which is of high space complexity. In fact,
running themethod on our dataset is far beyond the capacity
of normal machine’s memory. We therefore leverage the
following two baseline methods as comparison instead:

Histogram. For each user, we count the frequency the user
visits each type of POI in his/her signature habit trace, and
form user POI type visit histogram feature to represent his/
her habit. Then we perform K-means clustering on this his-
togram feature. We set the clustering number k as 13 to be
the same as the number of weekday living patterns recog-
nized by habit2vec.

LDA. Latent Dirchlet Allocation (LDA) [43] is a classical
unsupervised method in natural language processing to
extract semantic features for documents, which has been
recently widely adopted in spatial temporal data mining
and user profiling [2], [26]. We first use LDA on user POI
transition trace, extract latent feature of each user and per-
form K-means clustering on the latent feature. We set the
clustering number k as 13 to be the same as the number of

weekday living patterns recognized by habit2vec, and set
the number of latent feature as 12, which has been carefully
tuned to obtain optimal performance.

As there are no available data on real user living pattern
categorization, we adopt user self-reported occupation as
ground truth so as to approximate his/her weekday living
pattern. We acquired self-reported occupations of 127 ano-
nymized users recorded in our dataset from Tencent, with 7
different types of occupation. We randomly selected users of
different characteristics so as to ensure that the ground truth
data is representative to the greatest extent possible. The dis-
tribution of different types of occupations of the ground
truth is demonstrated in Fig. 9a.

We use normalized mutual information (NMI), a popular
performance analysis metric in clustering analysis [44], to
measure the performance of weekday living pattern recog-
nition. The range of NMI is between 0 and 1, and a greater
NMI value indicates a better match between identified liv-
ing patterns and the ground truth user occupation types,
e.g., if NMI reaches 1, it means that users within each identi-
fied living pattern cluster has the same type of occupation,
and that all users with the same type of occupation fall into
the same living pattern cluster. Denote Yk as the set of users
with living pattern k, Zj as the set of users whose occupa-
tion type is j, and M as the total number of users, NMI is
defined as follows:

IðY; ZÞ ¼
X

k

X

j

jYk \ Zjj
M

log
MjYk \ Zjj
jYkj \ jZjj ;

Hð�Þ ¼ �
X

Xi2�

Xi

M
log

Xi

M
;

NMIðY;ZÞ ¼ 2� IðY; ZÞ
HðY Þ þHðZÞ ;

TABLE 7
Relationship between Weekday and Weekend

Living Habit Clusters

weekend
#1 #2 #5 #9

weekday

#2 31.2% 1.0% 0.5% 10.2%
#6 62.6% 0.1% 0.3% 7.3%
#8 28.9% 0.2% 1.1% 6.7%
#9 4.2% 64.2% 14.8% 1.2%

Fig. 9. Performance comparison of habit2vec over baseline methods.
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where IðY; ZÞ is mutual information between identified pat-
terns and ground truth occupation categories while Hð�Þ is
the entropy.

We illustrate the performance of random assignment, his-
togram feature baseline, LDA feature baseline and habit2vec
in Fig. 9. We observe that habit2vec outperforms histogram
and LDA feature by a largemargin,with 100 and 47.4 percent
performance gain, respectively, which indicates that habit2-
vec can identify user living patternmuch better than baseline
approaches. We attribute this performance gain to the fact
that habit2vec can capture the temporal and semantic corre-
lation between different type of POIs. Note that in the current
evaluation process, we use the plug-in estimator for proba-
bility distribution estimation when calculating entropy,
whichmay subject to bias and errors given the size of ground
truth data. We anticipate more evaluation work on habit2vec
when better ground truth data becomes available.

6 CONCLUSIONS

In this paper, we used semantic information embedded in tra-
jectories to identify typical living patterns in a population.We
proposed a representation learning method called habit2vec
to mine the users’ signature living habit to embed semantics
and time in the same space. We evaluated the effectiveness of
our proposed system based on a real-world dataset with
123,803 users, and successfully discovered 13 and 12 mean-
ingful weekday and weekedn living patterns respectively.
The experiment showed that habit2vec is capable of preserv-
ing both semantics and time information in users’ living habit.
In the future, we plan to predict the career and social-eco-
nomic status based on living habits recognized by our
system.
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