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ABSTRACT

Moving objects equipped with location-positioning devices con-

tinuously generate a large amount of spatio-temporal trajectory

data. An interesting finding over a trajectory stream is a group

of objects that are travelling together for a certain period of time.

Existing studies on mining co-moving objects do not consider an

important correlation between co-moving objects, which is the

reoccurrence of the movement pattern. In this study, we define a

problem of finding recurrent pattern of co-moving objects from

streaming trajectories and propose an efficient solution that enables

us to discover recent co-moving object patterns repeated within

a given time period. Experimental results on a real-life trajectory

database show the efficiency of our method.

CCS CONCEPTS

• Theory of computation → Data structures and algorithms for

data management; • Information systems→ Data streammining.
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1 INTRODUCTION

With the prevalence of location-positioning devices, a vast amount

of spatio-temporal data of moving objects is being generated. Sys-

tematically analysing trajectory data of moving objects enables us

to extract a variety of interesting patterns and knowledge that can

lead to many real-life applications such as transportation analysis

and urban computing.
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One interesting finding in trajectory databases is the exploration

of convoys [5] that occur recurrently. Informally, a convoy refers to

a group of spatially close-by objects moving together for a specific

period of time. In essence, a convoy of interest is defined by the

number of objects (τ ) and the time duration of moving together (k),

where τ and k are user-specified parameters.

A number of variations of the convoy have been proposed in

the literature which consider both offline [2, 3, 6, 9, 13] and on-

line [1, 7, 11, 14] trajectory data processing. The definitions and the

techniques to mine patterns of co-moving objects vary depending

on the parameters and scenarios of consideration. However, the

existing literature on mining patterns of co-moving objects treats

each mined pattern independently by ignoring the possible corre-

lations between patterns. Moreover, in many real-life applications

such as military surveillance, urban emergency response systems,

and transport mangement systems, an immediate analysis is re-

quired for incoming trajectory data [14]. For example, a real-time

military surveillance system can detect a co-moving pattern of

suspicious group with frequent occurrences. Transportation appli-

cation can detect abnormal traffic congestions caused by accidents

by distinguishing them from recurring traffic delays.

Motivated by the aforementioned observation, we study a new

problem of querying a Continuous Recurrent Convoy of Interest. In-

formally, a sequence of similar convoys forms a recurrent convoy.

The recurrent convoy of interest varies depending on the recur-

rence parameter ρ, which is defined by the time interval between

two successive convoy occurrences. Mining recurrent convoys in

a streaming case helps us to distinguish the convoys emerging

recently from the ones that occur recurrently.

The significance of a recurrent convoy varies w.r.t. the parame-

ters, such as the number of objects that form the convoy (promi-

nence), the duration of the convoy (timespan), and the time inter-

val of the convoy repetition (recurrence). Values of the parameters

that define the interestingness of the convoy may vary over time

as we accumulate more data. Thus, the exploration of recurrent

convoys of interest is an iterative process as the distribution of the

parameters’ values is not uniform across the whole search space.

Setting appropriate values as a query input gives us a new insightful

explanation about the dataset. Thus, it is crucial to facilitate the

mining effort as the mining task that has a one-off parameter setting

might not achieve the goal of extracting all interesting convoys.

In this paper, given a sliding time window and thresholds for

the prominence, timespan, and recurrence, we study the problem
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of finding recurrent convoys in a sliding window that satisfy the

given thresholds. Our main focus is to propose a general approach

to compute the similarity between convoys and store them in a

structure that facilitates the mining effort.

The main challenges in identifying recurrent convoys in a tra-

jectory database are three-fold. First, The use of common objects

to find the co-moving patterns in most of the related studies is not

suitable to find the correlation between convoys. Second, The num-

ber of occurences of each resulting convoy in a sliding windows

varies w.r.t. the recurrence threshold. Thus, an effective filtering

structure that only retrieves potential candidate convoys is required

to speed up the mining task. Third, Finding convoys of interest

is an iterative process of exploration rather than a task of one-off

parameter settings.

In order to address the above three challenges, we make the

following contributions: (i) we define a problem which considers

timespan, prominence, and recurrence of a convoy all together for

the first time to find recurrent convoys of interest over a trajectory

database; (ii) we propose an indexing structure that organizes clus-

ters in an effective and efficient way to mine recurrent convoys;

and (iii) we conduct an experiment on a real-life dataset to evaluate

the efficiency of our method.

Related work.Many studies [2, 3, 5, 8, 9, 13] on co-moving pattern

mining have been proposed in the literature. Two main parameters

that define a co-moving pattern are: (i) the timespan of a pattern;

and (ii) the number of objects that constitute a pattern. Existing

studies introduced additional constraints on top of those two param-

eters, such as different spatial clustering techniques, local temporal

consecutiveness, and temporal gap. Objects at each timestamp of

a co-moving pattern are contained in a circle with a pre-defined

radius in [3] while the density-based clustering is used in other

work. Timestamps in swarm [9] are not necessarily consecutive.

A local temporal consecutiveness threshold is introduced to allow

a temporal gap in the co-moving pattern [2, 8]. A moving clus-

ter [6] does not often contain the same objects during its timespan.

Thereby, a threshold for the common objects of two consecutive

clusters is used to mine moving clusters. Zheng et al. [13] proposed

a problem of finding gathering patterns where a set of objects called

dedicated members travels for at least a certain period of time.

The streaming case of finding co-moving patterns for a trajec-

tory database has been considered in [1, 7, 11, 14]. However, the

definitions of the co-moving pattern in these work all differ. Thus,

the proposed algorithm only mines particular co-moving patterns.

Moreover, objects are required to record their locations at every

timestamp during the whole database timespan in [11, 14] while we

consider an object to record locations at every timestamp during

its time interval.

None of existing work can be used directly to find recurrent

convoys of interest which is a combination of online and historic

convoy generations.

2 PROBLEM FORMULATION

In this section, we first present the necessary preliminaries and

then give the formal problem definitions.

Given a set of moving objects O = {o1,o2, . . . ,on } in a tra-

jectory database with the time domain T = {t1, t2, . . . , t∞}, a

trajectory of moving object o ∈ O is represented as a finite se-

quence of location samples within the time interval [ti , tj ], i.e.,

o = loci , loci+1, . . . , loc j , where loca is a recorded position of o in a

two-dimensional space at timestamp ta . We assume the trajectory

of the object o is recorded at every timestamp during its lifetime

[ti , tj ]. Trajectories may have varying lengths.

Let C = {Ct1 ,Ct2 , . . . ,Ctm } be the overall set of clusters gener-

ated by applying a chosen clustering algorithm over the trajectory

database. Here, Ct
= {ct1, c

t
2, . . . , c

t
l
} represents the set of clusters

obtained at timestamp t , where ct is a cluster of a non-empty sub-

set of objects in O that satisfies the clustering conditions. Since

we do not require recording the location of each object at every

timestamp throughout the trajectory database timespan, there can

be no cluster associated with some timestamps. The time-based

query sliding windowWI of length I shifts at a time.

The goal of our approach is to find recurrent convoys that satisfy

the thresholds given by the user. Towards this goal, we first give

the definitions of a recurrent convoy by adopting the definition of

the convoy [5].

Definition 1. (Convoy). Given a set of clusters C and thresh-

olds for prominence (τ ) and timespan (k), a convoy д = {cti , cti+1 ,

. . . , ctj } is defined as a sequence of clusters at consecutive times-

tamps that satisfies the following constraints: (i)∀cta ∈ д, ∃Cta ∈ C

such that cta ∈ Cta ; (ii) the number of common objects shared by all

clusters, denoted asд.τ , is no less than τ , i.e.,д.τ = |cti∩cti+1∩ctj | ≥

τ ; and (iii) the time duration of the convoy, denoted as д.k , is no

less than k , e.g., д.k = |tj − ti + 1| ≥ k , where k > 1.

Next, we define the similar convoys w.r.t. the thresholds of in-

terest in Definition 2. Function similar(c1, c2) is to measure the

similarity between two object clusters c1 and c2. There are multiple

similarity metrics available to quantify the similarity between two

object clusters and we assume that the selection of the similar-

ity metric is application dependent. For illustration purpose, we

adopt the Hausdorff distance [10] to compute the similarity be-

tween clusters in convoys, similar to the trajectory pattern mining

work by Zheng et al. [13]. Nonetheless, the problem definition and

our approach could be easily adjusted to other similarity metric.

Definition 2. (Similar convoys). Given the thresholds τ , δ and

k and two convoys дa = {cti , cti+1 , . . . , cti+u−1 } and дb = {ctj , ctj+1 ,

. . . , ctj+v−1 }, convoy дa is similar to convoy дb w.r.t. τ and k iff

(i) MIN(дa .τ , дb .τ ) ≥ τ ; (ii) MIN(дa .k , дb .k) ≥ k ; and (iii) ∃д′a =

{cta , cta+1, . . . , cta+k−1} ⊆ дa , ∃д
′
b
= {ctb , ctb+1, . . . , ctb+k−1} ⊆

дb such that ∀l ∈ [0,k − 1], similar(д′a .c
ta+l , д′

b
.ctb+l ) ≤ δ .

Nowwe are ready to introduce recurrent convoys in Definition 3,

and present the Continuous recurrent convoy query in Definition 4

that takes varying parameters as an input and only considers con-

voys in the sliding window (note, we skip parameter δ in Defini-

tion 4).

Definition 3. (ρ-Recurrent Convoy ). Given a sequence of

convoys pi , j = {дi , . . . ,дj } and a recurrence threshold ρ, pi , j is

a ρ-recurrent convoy iff ∀a ∈ [i, j − 1], two successive convoys

дa and дa+1 are similar and the difference between their starting

timestamps is less than ρ, i.e., |дa .ts − дa+1.ts | ≤ ρ where д.ts
denotes the starting timestamp of convoy д.
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(a) Running example (b) Intersection index (τmin = 3) (c) Convoy Index (τmin = 3)

Figure 1: Index structure

Definition 4. (ContinuousRecurrent Convoy (CRC) query).

Given a trajectory database that is continuously updated and a

current sliding window of length I , the CRC 〈k, τ , ρ〉 query finds a

set of recurrent convoys P, where ∀pi = {дa, . . . ,дb } ∈ P satisfies

the recurrence threshold ρ, ∀дb is within the sliding window, and

∀дj ∈ pi is a valid convoy w.r.t. k and τ .

3 METHODOLOGY

In this section, we first outline the baseline steps to answer the

recurrent convoy query and we then present two enhancements to

further improve the search performance.

Baseline.A general approach to answer the recurrent convoy query

consists of three phases: (i) timestamp clusters generation that gen-

erates clusters using object locations at the current timestamp; (ii)

convoy discovery that either expands existing convoy candidates in

a sliding window based on newly generated clusters or generates

new convoy candidates from newly generated clusters; and (iii)

recurrent convoy discovery that searches for the historical occur-

rences of each convoy in a sliding window that satisfies the given

thresholds.

Timestamp Clusters Generation. Once we receive a set of ob-

jects whose locations are recorded at the current timestamp, we

apply the chosen clustering algorithm on the object set to generate

the object clusters. Clusters that are obtained after the clustering

step may have different sizes. Since τ is user-specified and unknown

a priori, we define a parameter τmin ≤ τ which serves as a lower

bound of τ to enable the query processing. Clusters with at least

τmin objects are indexed using the traditional R-tree [4] structure.

Convoy Discovery.As the clusters in a convoy [5] are consecutive

in time, the incoming clusters at timestamp t are only compared

to the candidate convoys that have the clusters at timestamp t − 1.

We are only interested in a convoy that contains at least τ number

of common objects throughout its timespan. Thus, the incoming

clusters are filtered by the number of objects and only the clusters

that satisfy τ threshold are checked against the candidate convoys.

However, all clusters are passed to the indexing step regardless of

the number of objects inside.

Recurrent Convoy Discovery. Once we find a set of convoys

of interest that fall inside the sliding window, we search for the

previous occurrences of each convoy by checking historical clusters

stored in the index w.r.t. the given thresholds. As we search for

recurrence of each convoy within ρ time period, we load clusters

within the time interval of length ρ at each iteration. Convoys are

created using the same procedure that we described previously

based on the clusters w.r.t. the thresholds. The similarity between

historical convoys and convoys in a sliding window is computed

using the given thresholds. Convoys in a sliding window that are

extended by historic convoys retrieved within the time interval of

length ρ are sent to next iteration to check for another occurrence.

Discussion. The computational overhead of the baseline to gen-

erate convoys is substantially high as the clusters at the current

timestamp need to be checked against all candidate convoys that

end at the previous timestamp. We propose two enhancements with

corresponding index structures over the baseline to accelerate the

recurrent convoy query processing.

Recurrent Convoy over Intersection index (RCI). A cluster

with at least τ objects is not guaranteed to share at least τ objects

with any cluster at the next timestamp. To avoid checking each

cluster against all candidate convoys, we propose an Intersection

index that considers the overlap in terms of objects between clusters

at consecutive timestamps. A cluster node in the idxi stores a set of

clusters at the previous timestamp that share at least τmin common

objects with the cluster (shown in Figure 1b where τmin = 3)

as data embedded in the node. This index has two advantages

over the baseline index that stores clusters independently. First, it

eliminates the extra check of two clusters at consecutive timestamps

in the stage of convoy discovery if they do not share τ common

objects. Second, each retrieved cluster is only checked against the

convoys that endwith the cluster in an embedded set of the previous

timestamp.

Recurrent Convoy over Convoy index (RCC). The two com-

mon scenarios of convoys are converge and diverge. As shown in

Figure 1a, objects in clusters c1 and c2 converge into cluster c3
from t1 to t2 while objects in cluster c3 diverge into two clusters

from t2 to t3. Based on this observation, we propose a Convoy index

which groups incoming clusters into a set of distinctive convoys

with each cluster assigned to only one convoy. We compute the

number of consecutive appearances of each object in a cluster for

a sequence of clusters that belongs to the same convoy. The in-

dex convoys are generated w.r.t. the parameter τmin . During the

historical convoy search, the Convoy index retrieves clusters that

satisfy the time interval and the number of common objects. A

sequence of retrieved clusters with the same convoy identifier is

merged without performing actual intersections between clusters.

4 EXPERIMENTS

In this section, we evaluate the performance of our proposed algo-

rithms via experiments using a real dataset.

4.1 Experimental Settings

All algorithms are implemented in JAVA. Experiments were ran on

a 24 core Intel Xeon E5-2630 2.3 GHz using 256GB RAM, and 1TB

6G SAS 7.2K rpm SFF (2.5-inch) SC Midline disk drives running Red

Hat Enterprise Linux Server release 7.5. We test the following meth-

ods to answer Continuous recurrent convoy queries on a real-life
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Figure 2: Effect of Varying Parameters on T-drive Dataset

dataset: (1) CMC: Coherent Moving Cluster algorithm [5] on top of

the R-tree index, (2) RCI: recurrent convoy algorithm based on the

Intersection index, and (3) RCC: recurrent convoy algorithm based

on the Convoy index. Note CMC refers to the baseline approach and

RCI and RCC refer to the two enhancements proposed in Section 3.

Datasets. Experimentswere conducted using the T-drive dataset[12].

The T-drive dataset contains the raw trajectory information of

10,357 taxis in Beijing, China collected for a week in Feb 2008.

Each trajectory in the dataset is a sequence of GPS locations with

the corresponding timestamps. We obtained 455,891 clusters with

2,048,088 points by running DBSCAN with the parameter settings

ofm = 4, ϵ = 100m over the dataset. τmin was set to 4.

Parameter Description Values

τ # of objects 4, 5, 6, 7

k Timespan 2 4, 6, 8

ρ Recurrence(hr) 1, 2, 4, 12 , 24

Table 1: Experimental parameters

Evaluation andParameterization.We compare the performance

of the baseline and two enhancements by varying the query input

parameters as shown in Table 1, where the values in bold represent

the default values.

4.2 E�ciency Study

We compare the impacts of each parameter by running 100 queries

and report the average query execution time and the average num-

ber of intersections between convoy candidates.

Effect of τ . The effect of the parameter that controls the number of

objects in a convoy on the query performance is presented in Figure

2a. As we search for larger convoys by increasing the threshold τ ,

the overall query execution time decreases due to the distribution of

objects in the clusters. Both RCI and RCC perform up to three times

faster than the baseline. The performance gap between RCI and

RCC shows a small margin as shown in Figure 2b. RCC computes up

to one order of magnitude fewer intersections than RCI. However,

there is no substantial difference in the query performance which

is likely due to the distribution of the convoy sizes and lengths.

Effect of k . The effect of the parameter that controls the duration

of the convoys on the query performance is presented in Figure

2c. As we increase the threshold k for the convoy, the number of

historic convoys that satisfy the threshold declines, resulting in

a smaller number of clusters to be retrieved from the index. RCI

and RCC perform up to five times faster than the baseline when

varying timespan thresholds. The margin between RCI and RCC

increases with the increase of k leading to fewer intersections as

shown in Figure 2d. Longer convoys have a higher chance of using

information in theConvoy index instead of performing intersections.

This confirms that the convoy index works better for searching

convoys that last for longer timespans.

Effect of ρ. The effect of the parameter that controls the recurrence

of the convoys on the query performance is presented in Figure 2e.

As we increase the threshold ρ, the number of clusters that fall in

the time interval of search raises, leading to longer times to gener-

ate convoys based on retrieved clusters. The number of historical

convoys that satisfy the thresholds also increases leading to longer

query execution time. RCC performs up to four times faster than

the baseline for varying settings of ρ threshold. The increase in

the number of historical clusters leads to more intersections to be

performed for historic convoy generation as shown in Figure 2f.
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