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ABSTRACT

Moving objects equipped with location-positioning devices con-
tinuously generate a large amount of spatio-temporal trajectory
data. An interesting finding over a trajectory stream is a group
of objects that are travelling together for a certain period of time.
Existing studies on mining co-moving objects do not consider an
important correlation between co-moving objects, which is the
reoccurrence of the movement pattern. In this study, we define a
problem of finding recurrent pattern of co-moving objects from
streaming trajectories and propose an efficient solution that enables
us to discover recent co-moving object patterns repeated within
a given time period. Experimental results on a real-life trajectory
database show the efficiency of our method.
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« Theory of computation — Data structures and algorithms for
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1 INTRODUCTION

With the prevalence of location-positioning devices, a vast amount
of spatio-temporal data of moving objects is being generated. Sys-
tematically analysing trajectory data of moving objects enables us
to extract a variety of interesting patterns and knowledge that can
lead to many real-life applications such as transportation analysis
and urban computing.
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One interesting finding in trajectory databases is the exploration
of convoys [5] that occur recurrently. Informally, a convoy refers to
a group of spatially close-by objects moving together for a specific
period of time. In essence, a convoy of interest is defined by the
number of objects (7) and the time duration of moving together (k),
where 7 and k are user-specified parameters.

A number of variations of the convoy have been proposed in
the literature which consider both offline [2, 3, 6, 9, 13] and on-
line [1, 7, 11, 14] trajectory data processing. The definitions and the
techniques to mine patterns of co-moving objects vary depending
on the parameters and scenarios of consideration. However, the
existing literature on mining patterns of co-moving objects treats
each mined pattern independently by ignoring the possible corre-
lations between patterns. Moreover, in many real-life applications
such as military surveillance, urban emergency response systems,
and transport mangement systems, an immediate analysis is re-
quired for incoming trajectory data [14]. For example, a real-time
military surveillance system can detect a co-moving pattern of
suspicious group with frequent occurrences. Transportation appli-
cation can detect abnormal traffic congestions caused by accidents
by distinguishing them from recurring traffic delays.

Motivated by the aforementioned observation, we study a new
problem of querying a Continuous Recurrent Convoy of Interest. In-
formally, a sequence of similar convoys forms a recurrent convoy.
The recurrent convoy of interest varies depending on the recur-
rence parameter p, which is defined by the time interval between
two successive convoy occurrences. Mining recurrent convoys in
a streaming case helps us to distinguish the convoys emerging
recently from the ones that occur recurrently.

The significance of a recurrent convoy varies w.r.t. the parame-
ters, such as the number of objects that form the convoy (promi-
nence), the duration of the convoy (timespan), and the time inter-
val of the convoy repetition (recurrence). Values of the parameters
that define the interestingness of the convoy may vary over time
as we accumulate more data. Thus, the exploration of recurrent
convoys of interest is an iterative process as the distribution of the
parameters’ values is not uniform across the whole search space.
Setting appropriate values as a query input gives us a new insightful
explanation about the dataset. Thus, it is crucial to facilitate the
mining effort as the mining task that has a one-off parameter setting
might not achieve the goal of extracting all interesting convoys.

In this paper, given a sliding time window and thresholds for
the prominence, timespan, and recurrence, we study the problem
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of finding recurrent convoys in a sliding window that satisfy the
given thresholds. Our main focus is to propose a general approach
to compute the similarity between convoys and store them in a
structure that facilitates the mining effort.

The main challenges in identifying recurrent convoys in a tra-
jectory database are three-fold. First, The use of common objects
to find the co-moving patterns in most of the related studies is not
suitable to find the correlation between convoys. Second, The num-
ber of occurences of each resulting convoy in a sliding windows
varies w.r.t. the recurrence threshold. Thus, an effective filtering
structure that only retrieves potential candidate convoys is required
to speed up the mining task. Third, Finding convoys of interest
is an iterative process of exploration rather than a task of one-off
parameter settings.

In order to address the above three challenges, we make the

following contributions: (i) we define a problem which considers
timespan, prominence, and recurrence of a convoy all together for
the first time to find recurrent convoys of interest over a trajectory
database; (ii) we propose an indexing structure that organizes clus-
ters in an effective and efficient way to mine recurrent convoys;
and (iii) we conduct an experiment on a real-life dataset to evaluate
the efficiency of our method.
Related work. Many studies [2, 3, 5, 8, 9, 13] on co-moving pattern
mining have been proposed in the literature. Two main parameters
that define a co-moving pattern are: (i) the timespan of a pattern;
and (ii) the number of objects that constitute a pattern. Existing
studies introduced additional constraints on top of those two param-
eters, such as different spatial clustering techniques, local temporal
consecutiveness, and temporal gap. Objects at each timestamp of
a co-moving pattern are contained in a circle with a pre-defined
radius in [3] while the density-based clustering is used in other
work. Timestamps in swarm [9] are not necessarily consecutive.
A local temporal consecutiveness threshold is introduced to allow
a temporal gap in the co-moving pattern [2, 8]. A moving clus-
ter [6] does not often contain the same objects during its timespan.
Thereby, a threshold for the common objects of two consecutive
clusters is used to mine moving clusters. Zheng et al. [13] proposed
a problem of finding gathering patterns where a set of objects called
dedicated members travels for at least a certain period of time.

The streaming case of finding co-moving patterns for a trajec-
tory database has been considered in [1, 7, 11, 14]. However, the
definitions of the co-moving pattern in these work all differ. Thus,
the proposed algorithm only mines particular co-moving patterns.
Moreover, objects are required to record their locations at every
timestamp during the whole database timespan in [11, 14] while we
consider an object to record locations at every timestamp during
its time interval.

None of existing work can be used directly to find recurrent
convoys of interest which is a combination of online and historic
convoy generations.

2 PROBLEM FORMULATION

In this section, we first present the necessary preliminaries and
then give the formal problem definitions.

Given a set of moving objects O = {01,02,...,0,} in a tra-
jectory database with the time domain 7 = {t1,t2,...,tx}, a
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trajectory of moving object o € O is represented as a finite se-
quence of location samples within the time interval [t;, ¢;], i.e.,
o = locj, locit1, . . ., locj, where loc, is a recorded position of 0 in a
two-dimensional space at timestamp t,. We assume the trajectory
of the object o is recorded at every timestamp during its lifetime
[ti, tj]. Trajectories may have varying lengths.

Let C = {C",C%,...,C'm} be the overall set of clusters gener-
ated by applying a chosen clustering algorithm over the trajectory
database. Here, C! = {c{, cé, o clt} represents the set of clusters
obtained at timestamp ¢, where ¢’ is a cluster of a non-empty sub-
set of objects in O that satisfies the clustering conditions. Since
we do not require recording the location of each object at every
timestamp throughout the trajectory database timespan, there can
be no cluster associated with some timestamps. The time-based
query sliding window Wy of length I shifts at a time.

The goal of our approach is to find recurrent convoys that satisfy
the thresholds given by the user. Towards this goal, we first give
the definitions of a recurrent convoy by adopting the definition of
the convoy [5].

DEFINITION 1. (Convoy). Given a set of clusters C and thresh-
olds for prominence (r) and timespan (k), a convoy g = {c’i, cli+1,
..,c7} is defined as a sequence of clusters at consecutive times-
tamps that satisfies the following constraints: (i) Vcfe € g, 3C%e € C
such that cfe € C?a; (ii) the number of common objects shared by all
clusters, denoted as g.7,isnoless than z,ie., g.7 = |cti Nelivineti | >
7; and (iii) the time duration of the convoy, denoted as g.k, is no
less than k, e.g., g.k = [tj — t; + 1| > k, where k > 1.

Next, we define the similar convoys w.r.t. the thresholds of in-
terest in Definition 2. Function SIMILAR(c1, ¢2) is to measure the
similarity between two object clusters ¢; and cz. There are multiple
similarity metrics available to quantify the similarity between two
object clusters and we assume that the selection of the similar-
ity metric is application dependent. For illustration purpose, we
adopt the Hausdorff distance [10] to compute the similarity be-
tween clusters in convoys, similar to the trajectory pattern mining
work by Zheng et al. [13]. Nonetheless, the problem definition and
our approach could be easily adjusted to other similarity metric.

DEFINITION 2. (Similar convoys). Given the thresholds T, 5 and

k and two convoys g, = {c'i,cti+1, ..., ctivu-1} and g, = {c¥, cli+1,
.., cl+e=1}, convoy g, is similar to convoy g, wrt. T and k iff
(i) MIN(gq.7, gp.7) = 7; (ii) MIN(gq.k, gp.k) > k; and (iii) 3g, =
{ctﬂ,cta“, B .,cta+k—1} C ga, Hg[’] — {Ctb’ctb+1, B .,ctb”"l} c

gp, such that V1 € [0,k — 1], stmiLAR(g!, .cta*!, gl’J.ct””) <.

Now we are ready to introduce recurrent convoys in Definition 3,
and present the Continuous recurrent convoy query in Definition 4
that takes varying parameters as an input and only considers con-
voys in the sliding window (note, we skip parameter § in Defini-
tion 4).

DEFINITION 3. (p-Recurrent Convoy ). Given a sequence of
convoys p; j = {gi,...,g;j} and a recurrence threshold p, p; ; is
a p-recurrent convoy iff Va € [i,j — 1], two successive convoys
ga and gg+1 are similar and the difference between their starting
timestamps is less than p, ie., |gg.ts — ga+1-ts| < p where g.tg
denotes the starting timestamp of convoy g.
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Figure 1: Index structure

DEFINITION 4. (Continuous Recurrent Convoy (CRC) query).
Given a trajectory database that is continuously updated and a
current sliding window of length I, the CRC(k, 7, p) query finds a
set of recurrent convoys P, where Vp; = {gq, ....gp} € P satisfies
the recurrence threshold p, Yg;, is within the sliding window, and
Vgj € pi is a valid convoy w.r.t. k and 7.

3 METHODOLOGY

In this section, we first outline the baseline steps to answer the
recurrent convoy query and we then present two enhancements to
further improve the search performance.

Baseline. A general approach to answer the recurrent convoy query
consists of three phases: (i) timestamp clusters generation that gen-
erates clusters using object locations at the current timestamp; (ii)
convoy discovery that either expands existing convoy candidates in
a sliding window based on newly generated clusters or generates
new convoy candidates from newly generated clusters; and (iii)
recurrent convoy discovery that searches for the historical occur-
rences of each convoy in a sliding window that satisfies the given
thresholds.

Timestamp Clusters Generation. Once we receive a set of ob-
jects whose locations are recorded at the current timestamp, we
apply the chosen clustering algorithm on the object set to generate
the object clusters. Clusters that are obtained after the clustering
step may have different sizes. Since 7 is user-specified and unknown
a priori, we define a parameter 7,,;, < 7 which serves as a lower
bound of 7 to enable the query processing. Clusters with at least
Tmin Objects are indexed using the traditional R-tree [4] structure.
Convoy Discovery. As the clusters in a convoy [5] are consecutive
in time, the incoming clusters at timestamp ¢ are only compared
to the candidate convoys that have the clusters at timestamp ¢ — 1.
We are only interested in a convoy that contains at least 7 number
of common objects throughout its timespan. Thus, the incoming
clusters are filtered by the number of objects and only the clusters
that satisfy 7 threshold are checked against the candidate convoys.
However, all clusters are passed to the indexing step regardless of
the number of objects inside.

Recurrent Convoy Discovery. Once we find a set of convoys
of interest that fall inside the sliding window, we search for the
previous occurrences of each convoy by checking historical clusters
stored in the index w.r.t. the given thresholds. As we search for
recurrence of each convoy within p time period, we load clusters
within the time interval of length p at each iteration. Convoys are
created using the same procedure that we described previously
based on the clusters w.r.t. the thresholds. The similarity between
historical convoys and convoys in a sliding window is computed
using the given thresholds. Convoys in a sliding window that are

extended by historic convoys retrieved within the time interval of
length p are sent to next iteration to check for another occurrence.
Discussion. The computational overhead of the baseline to gen-
erate convoys is substantially high as the clusters at the current
timestamp need to be checked against all candidate convoys that
end at the previous timestamp. We propose two enhancements with
corresponding index structures over the baseline to accelerate the
recurrent convoy query processing.

Recurrent Convoy over Intersection index (RCI). A cluster
with at least 7 objects is not guaranteed to share at least 7 objects
with any cluster at the next timestamp. To avoid checking each
cluster against all candidate convoys, we propose an Intersection
index that considers the overlap in terms of objects between clusters
at consecutive timestamps. A cluster node in the idxi stores a set of
clusters at the previous timestamp that share at least 7,;,;, common
objects with the cluster (shown in Figure 1b where 7in = 3)
as data embedded in the node. This index has two advantages
over the baseline index that stores clusters independently. First, it
eliminates the extra check of two clusters at consecutive timestamps
in the stage of convoy discovery if they do not share 7 common
objects. Second, each retrieved cluster is only checked against the
convoys that end with the cluster in an embedded set of the previous
timestamp.

Recurrent Convoy over Convoy index (RCC). The two com-
mon scenarios of convoys are converge and diverge. As shown in
Figure 1a, objects in clusters ¢; and ¢z converge into cluster c3
from #; to t; while objects in cluster c3 diverge into two clusters
from t; to t3. Based on this observation, we propose a Convoy index
which groups incoming clusters into a set of distinctive convoys
with each cluster assigned to only one convoy. We compute the
number of consecutive appearances of each object in a cluster for
a sequence of clusters that belongs to the same convoy. The in-
dex convoys are generated w.r.t. the parameter 7;,,;,. During the
historical convoy search, the Convoy index retrieves clusters that
satisfy the time interval and the number of common objects. A
sequence of retrieved clusters with the same convoy identifier is
merged without performing actual intersections between clusters.

4 EXPERIMENTS

In this section, we evaluate the performance of our proposed algo-
rithms via experiments using a real dataset.

4.1 Experimental Settings

All algorithms are implemented in JAVA. Experiments were ran on
a 24 core Intel Xeon E5-2630 2.3 GHz using 256GB RAM, and 1TB
6G SAS 7.2K rpm SFF (2.5-inch) SC Midline disk drives running Red
Hat Enterprise Linux Server release 7.5. We test the following meth-
ods to answer Continuous recurrent convoy queries on a real-life



SIGSPATIAL ’19, November 5-8, 2019, Chicago, IL, USA

ME. Yadamjav et al.

4 7 5 8 4 8
10 10 10 o] 10 e 10 10
_ . . RCl m . RClm | 107
=} [=]
£ . g10 B X RCC gwo _RCC & i £
210 B0 010 S a3 P
£ @10 £ 210 € @
= @ = 14 102 2105
< e, < ® £ 10 10
B Eq0 2 =T . . 2 €
3102 5 310° b F—t == | 3 510
£ ® g & ®_ g , £10 =
u 10 w 10 f -— ! w 108
10’ 102 102 10° 10° 102
4 5 6 7 4 5 6 7 2 4 6 8 2 4 6 8 12 4 12 24
T T k k p (hr)
(a) (b) (c) (d) (e) )

Figure 2: Effect of Varying

dataset: (1) CMC: Coherent Moving Cluster algorithm [5] on top of
the R-tree index, (2) RCI: recurrent convoy algorithm based on the
Intersection index, and (3) RCC: recurrent convoy algorithm based
on the Convoy index. Note CMC refers to the baseline approach and
RCI and RCC refer to the two enhancements proposed in Section 3.

Datasets. Experiments were conducted using the T-drive dataset[12].

The T-drive dataset contains the raw trajectory information of
10,357 taxis in Beijing, China collected for a week in Feb 2008.
Each trajectory in the dataset is a sequence of GPS locations with
the corresponding timestamps. We obtained 455,891 clusters with
2,048,088 points by running DBSCAN with the parameter settings
of m = 4, e = 100m over the dataset. 7,,,;, was set to 4.

Parameter | Description Values
T # of objects 4,5,6,7
k Timespan 24,6,8
p Recurrence(hr) | 1,2, 4,12, 24

Table 1: Experimental parameters

Evaluation and Parameterization. We compare the performance
of the baseline and two enhancements by varying the query input
parameters as shown in Table 1, where the values in bold represent
the default values.

4.2 Efficiency Study

We compare the impacts of each parameter by running 100 queries
and report the average query execution time and the average num-
ber of intersections between convoy candidates.

Effect of 7. The effect of the parameter that controls the number of
objects in a convoy on the query performance is presented in Figure
2a. As we search for larger convoys by increasing the threshold ,
the overall query execution time decreases due to the distribution of
objects in the clusters. Both RCI and RCC perform up to three times
faster than the baseline. The performance gap between RCI and
RCC shows a small margin as shown in Figure 2b. RCC computes up
to one order of magnitude fewer intersections than RCI. However,
there is no substantial difference in the query performance which
is likely due to the distribution of the convoy sizes and lengths.
Effect of k. The effect of the parameter that controls the duration
of the convoys on the query performance is presented in Figure
2c. As we increase the threshold k for the convoy, the number of
historic convoys that satisfy the threshold declines, resulting in
a smaller number of clusters to be retrieved from the index. RCI
and RCC perform up to five times faster than the baseline when
varying timespan thresholds. The margin between RCI and RCC
increases with the increase of k leading to fewer intersections as
shown in Figure 2d. Longer convoys have a higher chance of using

Parameters on T-drive Dataset

information in the Convoy index instead of performing intersections.
This confirms that the convoy index works better for searching
convoys that last for longer timespans.

Effect of p. The effect of the parameter that controls the recurrence
of the convoys on the query performance is presented in Figure 2e.
As we increase the threshold p, the number of clusters that fall in
the time interval of search raises, leading to longer times to gener-
ate convoys based on retrieved clusters. The number of historical
convoys that satisfy the thresholds also increases leading to longer
query execution time. RCC performs up to four times faster than
the baseline for varying settings of p threshold. The increase in
the number of historical clusters leads to more intersections to be
performed for historic convoy generation as shown in Figure 2f.
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