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Abstract—Recently, the Internet of Things (IoT) technology
has been drawing increasing attention in that it has a great
potential to positively impact human life in a broad range of
applications. However, the dense deployment of multiple co-
located IoT networks that may follow different wireless protocols
would engender new vulnerabilities. In this paper, we introduce
a novel attack scenario in co-located IoT networks, where a
reactive jammer can emulate the transmission characteristics of
a hidden terminal from another network and can interfere with
its hidden counterparts, namely the hidden terminal emulation
(HTE) attack. As the dense deployment of IoT nodes will
naturally create such hidden terminal scenarios, it provides the
HTE attacker plausible deniability to reactively interfere with its
hidden counterparts; hence, the HTE attacker remains immune
to conventional reactive jamming detection techniques. In this
paper, we capture the behavior of a benign hidden terminal via
a parsimonious Markov model and propose a detection solution
using the goodness-of-fit hypothesis testing. Though there has
been extensive research on jamming detection, our novelty lies
in considering hidden terminals as benign interference sources
and leveraging the existing carrier sensing technique as a natural
and effective way to detect HTE attacks.

I. INTRODUCTION

With the advent of the Internet of Things (IoT), a new path

to infinite possibilities has emerged [1]. However, the rapid and

dense deployment of IoT engenders a new set of challenges;

spectrum scarcity is one of the most important open research

challenges among these. The dense deployment of IoT nodes

in overpopulated unlicensed bands will aggravate interference

issues; hence, less throughput and higher delay may occur.

Cognitive radio (CR) offers an intelligent solution to this

issue, where a CR-enabled IoT device can opportunistically

access licensed channels (i.e., when licensed users are idle)

to avoid interference with other co-located IoT devices in

the unlicensed spectrum. Here, IoT devices utilize the real-

time channel sensing information to help them in finding

spectrum holes (i.e., underutilized licensed channels) and to

avoid interference with licensed users.

Researchers have envisioned the IoT as a ubiquitous tech-

nology, which will intricately integrate devices (or things) that

surround us, and these devices will communicate within them-

selves by forming a closed connected network to intelligently

solve real-life problems. Such a broad vision will require an

enormous amount of IoT deployments at our homes, offices,

transportation systems, health care, and industries. Intuitively,
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Fig. 1: Hidden terminal interference between coexisting IoT networks.

these IoT devices must form distinct independent networks to

manage data within their own network and to provide security

and privacy to the owners. Therefore, separate CR-enabled

IoT networks must independently manage their own spectrum

access and spectrum utilization strategies.

Motivations: The dense deployment of IoT devices may

bring new vulnerabilities where attackers can exploit natural

interference scenarios to corrupt transmissions of particular

victim IoT devices, such as interference from hidden terminal

devices in a different IoT network. Fig. 1 provides an illustra-

tion of this issue, where nodes B2 and B4 are hidden terminals

to nodes A1, A3, and A5, and vice versa. Note that these two

sets of nodes are from two different networks, and under the

given scenario, each of these two sets has no idea about the

transmissions of the other set. Therefore, it is probable that

nodes of these two sets may utilize the same radio channel

(or spectrum hole) and create interference to each other.

The concurrent transmission from hidden nodes acts as a

jamming signal at the corresponding receiver, and it is difficult

to differentiate between a benign node (i.e., hidden terminal)

and denial-of-service (DoS) attacker. Therefore, if an attacker

can impersonate as a hidden terminal to a particular IoT node,

it can capitalize on this scenario to corrupt the transmission

intended for a particular receiver or the transmission generated

from a particular transmitter.

Challenges: As attackers try to attack a particular node, the

straightforward approach of constant jamming in a particular

channel is not ideal for the objective. A better approach is

to attack only when a transmission to the victim is heard,

namely the reactive approach. A naive reactive jammer may

try to attack each time it hears a transmission to the victim

node. Though it is the most damaging strategy against the

victim and provides the highest attack efficiency, it increases

the risk of detection. Therefore, the reactive approach requires

a random approach to trade-off between the attack objective
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(i.e., degrading victim’s throughput) and the risk of exposure.

Nonetheless, the detection of such a random reactive at-

tack requires a different approach. Prior works on detecting

jamming attacks are mostly based on network performance

measurements, such as the packet delivery rate (PDR) and

the received signal strength (RSS). Although these detection

methods are effective, they are inapplicable in the illustrated

scenario where hidden terminals can be falsely categorized as

attackers. Therefore, we require a more intelligent detection

technique to counteract the randomness in attacks.

Contributions: In this paper, we study these challenges and

propose solutions. The novel contributions of this paper are

summarized in the following:

1. We propose a randomized reactive attack model by ex-

ploiting the hidden terminal scenario. In the proposed

model, the attacker poses as a hidden terminal by manip-

ulating its antenna radiation pattern.

2. We propose an intelligent detection method based on

a Markov model to detect the proposed attack despite

the randomness in its behavior. We solve the detection

problem by converting it into a goodness-of-fit test.

Related Work: In [2], the influence of different jamming

strategies on the PDR and RSS of network links is analyzed

and a thresholding algorithm is proposed. In [3], [4], different

network metrics, such as the channel busy ratio and the number

of retransmission attempts are employed. Jamming attacks in

time-critical networks are studied in [5] and numerical results

on the impact of jamming on the network message invalidation

ratio are presented. In [6]–[9], the impact of jamming attacks

on the performance of IEEE 802.11 networks is analyzed.

In CR-enabled networks, DoS attacks are studied in [10]–

[14], where the attacker attacks in the off-sensing interval. In

[15], a mathematical model of an optimal jamming strategy

is proposed, where an attacker can regulate its jamming

probability to trade-off between the reward of jamming and

the penalty of getting detected. One limitation of the model

is that it considers the slotted Aloha protocol, which does not

incorporate the carrier sensing multiple access — an essential

tool in modern wireless networks.

Nonetheless, none of these works considered the presence

of hidden terminals from different networks. As previous

works mostly depend on the network performance, they may

mis-categorize hidden terminals as jammers. Although the

influence of hidden terminal interference is considered in [16],

it did not explain how a reactive jammer can listen to the

transmission of its hidden counterparts. In contrast, we capture

the impact of hidden terminal interference from external

networks, based on the carrier sensing, and we propose how

a reactive jammer can listen to its hidden counterparts.

II. SYSTEM MODEL

We consider a benign IoT network with multiple IoT nodes

that are trying to communicate among themselves in an ad-

hoc mode; we name it the internal network. These benign IoT

nodes are surrounded by other co-located IoT nodes from a

different network; we name the network as external network.
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Fig. 2: The channel access schedule.

Channel Model: We consider the presence of M homoge-

neous channels each with equal bandwidth, and M licensed

or primary users (PUs) using these channels. Here, time is

divided into equal slots and transmissions are packet-based. A

packet starts at the beginning of a slot and ends at the end

of a slot. Each PU randomly selects a channel to access and

alternates between the ON and the OFF states, according to an

ON-OFF model that follows the Poisson packet arrival process

and the exponential packet length process. Let Pλp and Pμp

denote the transition probabilities from the ON to OFF state

and from the OFF to ON state, respectively.

IoT Node Model: We consider that the defending IoT node

has k − 1 neighbors (excluding itself), and they use omni-

directional antennas for communications. These k nodes have

an available channel list (ACL) mi ∈ {1, 2, · · · ,M}, where

i ∈ k. Each IoT node (both internal and external) is equipped

with one radio for wide-band spectrum sensing [17] and one

radio for control information exchange and data transmission.

We consider that channel conditions are ideal and that a trans-

mission failure is only resulted from one reason: interference

from a hidden terminal. In the following, we use interference
and collision interchangeably.

Channel Access: Each transmission attempt of an IoT node

must be preceded by a sensing interval. As shown in Fig. 2,

IoT nodes employ their wide-band sensing antenna to sense

the current channel before initiating a transmission, and they

continue to sense the channel during the transmission to negate

the collision between PUs and IoT nodes. An IoT node is

allowed to access a channel when it finds the sensing result

is suitable to transmit (e.g., senses that no PU is present).

After sensing the channel available, two IoT nodes exchange

request-to-send/clear-to-send (RTS/CTS) messages to reserve

the channel. IoT nodes initiate a new packet transmission with

the longer fine-sensing and employ the shorter fast-sensing for

each successive frame.

During a sensing interval, if an IoT node senses that the

current channel is busy, it pauses the communication attempt

on the current channel, performs a spectrum handoff to a new

channel (from the current ACL) in the next-slot, and resumes

the communication attempt on the new channel.

Network Coordination Scheme: Here, we consider that a

common control channel is unavailable and that two IoT

nodes must find a common available channel between them

to initiate a data transmission. Rendezvous technique works as

the process to find a common available channel [18]. However,

the choice of a specific rendezvous scheme does not impact the

performance of our proposed work, as long as attackers have

no prior knowledge of the victim’s channel hopping sequence

for rendezvous. Hence, we assume that IoT nodes have already

successfully performed rendezvous with each other using any
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Fig. 3: The hidden terminal emulation attack.

existing scheme, and they share a time-seeded pseudo-random

channel hopping sequence for future communications.

III. HIDDEN TERMINAL EMULATION ATTACK

A jamming strategy generally regulates how to transmit a

noise signal to create undesired interference at the victim to

thwart normal communications. However, in this case, instead

of noise signals, an attacker transmits its normal signals to

create interference at the victim. The attacker perpetrates the

hidden terminal emulation (HTE) attack in two phases:

Reconnaissance and Emulation Phase: The primary task of

an HTE attacker is to successfully emulate itself as a hidden

terminal to the neighbors of the victim. We consider that

the attacker is capable of directional transmissions, and it

can deduce the geometric location of benign IoT nodes by

using off-the-shelf techniques, such as angle of arrival and

distance to the transmitter [19]. Depending on the objective

of the attacker and its physical limitations, the attacker may

try to pose as a hidden terminal to all neighbors or selected

neighbors of the victim. In Fig. 3(a), the attacker tries to

pose itself as a hidden terminal to nodes A1, A3, and A5; it

limits its transmissions only to nodes A2, A4, and A6 through

directional antennas. The intelligent utilization of directional

transmissions enables the attacker to create a different physical

scenario than the real one, which is represented in Fig. 3(b).

Attack Phase: In this phase, the HTE attacker continues to

sense the operating band through the wide-band sensing and

sniffs the band for RTS and CTS messages addressed to or

from the victim node, respectively. Afterwards, it deliberately

interferes transmissions from nodes A1, A3, and A5, that are

destined to the victim node (i.e., A4). However, the choice

of jamming rate depends on the strategy of the attacker; it

may jam each transmission or randomly choose to jam. In

this paper, we consider that the attacker takes a subtle random

approach where it poses as a legitimate node by continuing

regular communications with its neighbors in its own network,

and it intelligently interferes with the victim’s reception only

when it is idle. Hence, it offers a different detection challenge

in contrast to conventional reactive jamming attacks.

Summary: The HTE attacker utilizes directional transmis-

sion techniques that are widely available for communication

purposes and weaponizes these to perpetrate the attack. A

wide range of distinct attack strategies can be studied from the

proposed generalized attack strategy. In this paper, we focus

on proposing a generalized model to detect such anomalous

behavior from a hidden terminal. In contrast to traditional

reactive jamming detection techniques, we require an approach

that can consider a hidden node as an interference source, does

not mis-categorize benign hidden terminals as attackers, and

can detect anomalous behaviors of hidden terminals.

IV. DETECTION OF THE HIDDEN TERMINAL EMULATION

ATTACK

The proposed detection approach is comprised of two steps:

i) designing a mathematical model to characterize the behavior

of benign hidden terminals; ii) formulating the detection

problem as a goodness-of-fit hypothesis testing problem, to

identify whether a sequence of observed behaviors is likely to

be produced from the established mathematical model.

A. Mathematical Model
The reception behavior of the defending IoT node is con-

sidered as an ON-OFF process: (X(t); t ≥ 0) with state

space {0, 1}, where 0 and 1 correspond to the ideal and the

receiving state, respectively. Let A4 denote the IoT node that

is evaluating abnormal interference, hereafter referred to as

the node under test (NUT), and the hidden terminal from the

external network is named as the external node (EX).

Markov States: We define X(t), E(t), and Y (t) as the state

of the NUT, the EX, and the PU in the current channel at time-

slot t, respectively. Note that (E(t); t ≥ 0) and (Y (t); t ≥ 0)
are ON-OFF processes with state space {0, 1}, where 0 and 1
correspond to the ideal and the transmitting state, respectively.

The interaction between X(t), E(t), and Y (t) is captured as

a five-state discrete-time Markov model Z(t).
The Markov state Z(t) ≡ {Y (t), X(t), E(t)} denotes the

state of the NUT in its current operating channel at the end

of a time-slot. The brief descriptions of the states are:

0{0, 0, 0}: The current channel is free (i.e., PU is idle), the

NUT is idle (i.e., not receiving), and the EX is either idle or

transmitting on another channel.

1{0, 0, 1}: The current channel is free, the NUT is idle, and

the EX is transmitting.

2{0, 1, 0}: The current channel is free, the NUT is receiving,

and the EX is either idle or transmitting on another channel.

3{0, 1, 1}: The current channel is free, the NUT is receiving,

and the EX is transmitting. This represents the collision.

4{1, X,X}: The current channel is busy (i.e., PU is active).

The state transition diagram of the proposed Markov model

is shown in Fig. 4, which depicts the interaction between

the PU, the NUT, and the EX. Transitions between non-

neighboring states are presented by dashed arrows.

Transition Probabilities: We consider that each neighbor of

the NUT has a packet arrival rate λ that is destined for

the NUT and λin = (k − 1)λ. We capture the effect of

hidden terminals by the parameter kh ∈ {0, · · · , k − 1},

which represents the number of internal nodes that are hidden

terminals to the EX. In addition, we define the parameter

α ≡ kh/(k − 1) as the fraction of internal IoT nodes that are

hidden to the EX. We assume that each IoT node broadcasts
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Fig. 4: The proposed Markov model.

its identity periodically, and IoT nodes sniff the wireless

medium to discover the presence of IoT nodes within their

surroundings. In Fig. 3, though A1, A3, and A5 cannot listen

to the transmission of the node HTE (or EX), A2, A4, and A6
can listen to its transmission. Hence, each node maintains a

list of external nodes that are hidden to them (by exchanging

information within internal IoT nodes), and it helps them to

deduce the value of α. Table I summarizes the notations used

in the proposed Markov model.

TABLE I: Notations used in the Markov model

Symbol Definition
Pλp Pr{a PU packet arrival in a slot}
Pμp Pr{a PU packet ending in a slot}
Pλin

Pr{an internal packet arrival in a slot for the NUT}
Pμin Pr{an internal packet ending in a slot}
Pλex Pr{an external packet arrival in a slot}
Pμex Pr{an external packet ending in a slot}

To derive steady-state probabilities, we first deduce the

single-step transition probabilities. We use Pij to denote

Pr(Z(t+1) = j|Z(t) = i), i.e., the probability of transitioning

to state j at the next slot from the current state i. We capture

the feature of the random channel-hopping process in our

model, where an IoT node can start a new transmission only

when there is a channel available. In the following discussion,

we use the terms states in the proposed Markov model and

the status of the NUT in a time-slot interchangeably.

Transitions from the idle state (i.e., Z(t) = 0):

P00 =

M−2∑

b=0

Πb(1− Pλp)(1− Pλin)(1− P b
col)

+ ΠM−1(1− Pλp)(1− Pλin)(1− Pλex),

(1)

P01 =

M−2∑

b=0

Πb(1− Pλp)(1− Pλin)P
b
col

+ΠM−1(1− Pλp)(1− Pλin)Pλex ,

(2)

P02 =

M−2∑

b=0

Πb(1− Pλp)Pλin(1− P b
col)

+ ΠM−1(1− Pλp)Pλin(1− Pλex),

(3)

P03 =

M−2∑

b=0

Πb(1− Pλp)PλinP
b
col

+ΠM−1(1− Pλp)PλinPλex ,

(4)

P04 =

M−1∑

b=0

ΠbPλp , (5)

where Πb = the steady-state probability that exactly b channels

are busy by PUs, P b
col = (1−ρex)PλexP

b
match, ρex = the steady-

state probability that the EX is active, and P b
match = 1/(M−b).

Transitions from the EX active state (i.e., Z(t) = 1):

P10 =

M−2∑

b=0

Πb(1− Pλp)(1− Pλin)

+ ΠM−1(1− Pλp)(1− Pλin)Pμex ,

(6)

P11 =ΠM−1(1− Pλp)(1− Pμex), (7)

P12 =

M−2∑

b=0

Πb(1− Pλp)Pλin

+ΠM−1(1− Pλp)PλinPμex ,

(8)

P14 =

M−1∑

b=0

ΠbPλp . (9)

Transitions from the NUT’s receiving state (i.e., Z(t) = 2):

P20 =

M−2∑

b=0

Πb(1− Pλp)Pμin(1− P b
col)

+ ΠM−1(1− Pλp)Pμin(1− Pλex),

(10)

P21 =

M−2∑

b=0

Πb(1− Pλp)Pμin(1− ρex)PλexP
b
match

+ΠM−1(1− Pλp)PμinPλex ,

(11)

P22 =

M−2∑

b=0

Πb(1− Pλp)(1− Pμin)(1− P b
col)

+ ΠM−1(1− Pλp)(1− Pμin)(1− αPλex),

(12)

P23 =

M−2∑

b=0

Πb(1− Pλp)(1− Pμin)P
b
col

+ΠM−1(1− Pλp)(1− Pμin)αPλex ,

(13)

P24 =

M−1∑

b=0

ΠbPλp , (14)

where P b
col = (1− ρex)αPλexP

b
match and α = kh/(k − 1).

Transitions from the collision state (i.e., Z(t) = 3):

P30 =

M−2∑

b=0

Πb(1− Pλp)(1− Pλin)

+ ΠM−1(1− Pλp)Pμex ,

(15)

P31 =ΠM−1(1− Pλp)(1− Pμex), (16)

P32 =

M−2∑

b=0

Πb(1− Pλp)Pλin , (17)

P34 =

M−1∑

b=0

ΠbPλp . (18)

Transitions from the channel busy state (i.e., Z(t) = 4):

P40 =

M−2∑

b=0

Πb(1− Pλp)(1− Pλin)(1− P b
col)

+ ΠM−1(1− Pλp)(1− Pλin)Pfree +ΠMPμp ,

(19)

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on July 22,2020 at 07:15:57 UTC from IEEE Xplore.  Restrictions apply. 



P41 =

M−1∑

b=0

Πb(1− Pλp)(1− Pλin)P
b
col

+ΠM−1(1− Pλp)ρex(1− Pμex),

(20)

P42 =

M−2∑

b=0

Πb(1− Pλp)Pλin(1− P b
col)

+ ΠM−1(1− Pλp)PλinPfree,

(21)

P43 =

M−2∑

b=0

Πb(1− Pλp)PλinP
b
col

+ΠM−1(1− Pλp)Pλin(1− ρex)Pλex ,

(22)

P44 =

M−1∑

b=0

ΠbPλp +ΠM (1− Pμp), (23)

where Pfree = ρexPμex + (1 − ρex)(1 − Pλex) and P b
col = (1 −

ρex)PλexP
b
match.

Note that all transition probabilities except the ones from

the channel busy state (i.e., Z(t) = 4) are conditioned on

the fact that at least one channel is available. Therefore, we

must transform (1)-(18) and Pij ← Pij/(1 − ΠM ), where

i ∈ {0, 1, 2, 3} and j ∈ {0, 1, 2, 3, 4}.

B. Goodness-of-Fit Test

The NUT monitors activities on all channels and collects

transmission patterns of all wireless nodes in its surroundings

over a time window of d = w/t equal-length slots, where w
is the observation time length and t is the length of a time-

slot. To test whether or not the NUT is experiencing HTE

attacks, we collect the sequence of observations of the NUT’s

status zd ≡ {Z(t)}d+1
t=1 , called a sample path of the discrete

time Markov chain that is either generated by a benign hidden

terminal or by an HTE attacker. Now, let us denote transition

probability matrices that characterize a benign hidden terminal

as P0 and that is generated from the observations as P. Thus,

a goodness-of-fit hypothesis testing problem can be formed:

H0 : P = P0, H1 : P �= P0. (24)

We use the chi-square test to verify the observed sequence.

Let us define the number of transitions from state i to state

j of zd as Nij =
∑d

t=1 1{zt=i,zt+1=j}, where zt denotes the

t-th element of the sequence zd and i, j ∈ {0, 1, 2, 3, 4}. Now,

the counts Ni ≡
∑4

j=0 Ni,j =
∑d

t=1 1{zt=i}, and according

to [20], Nij are asymptotically Gaussian distributed. Now, the

chi-square test statistic:

χ2 =

4∑

i=0

4∑

j=0

(Ni,j −P0
ijNi)

2

P0
ijNi

. (25)

It is reasonable to assume the initial-state probability distri-

bution is similar to the steady-state probabilities of the states.

However, as [5] indicated, the initial distribution has an effect

on the detection threshold, which decreases to 0 in d as 1/d.

Hence, it is insignificant when d is large.

Summary: The detection model captures the interference

pattern an IoT node experiences under the influence of benign

hidden terminals and flags the HTE attack when observations

deviate from the established model. The proposed Markov

model accumulates all required information into five states,

and the chi-square test verifies how well the observed sequence

fits the established benign behavior model. Our proposed de-

tection technique requires only the carrier sensing information

that is readily available for channel access purposes.

V. PERFORMANCE ANALYSIS

In this section, we present numerical and simulation results

to evaluate the performance of our proposed work. Here, we

consider that all IoT nodes physically reside within close

proximity of each other and share the same ACL at a given

time. The simulation parameters are listed in Table II.

TABLE II: Simulation Parameters

Parameter Value
Simulation time 100 seconds
SU sensing range 50
The number of channels (or PUs) 10
PU traffic rate (in pkts/sec) λp = 50; μp = 100
Bandwidth 2 Mbps
The size of (RTS+CTS) 160 + 112 bits (802.11b/g)
Fast and fine sensing duration 1 ms (802.22) and 2 ms
IoT traffic rate (in pkts/sec) λ = 20, 30, 40, 50, 60;

μ = 100
SU packet size 1024 bytes
Hidden terminal factor, α 5/7

The objective of the NUT, that is receiving, is to determine

if the observed interference maintains the pattern set by the

mathematical model. In contrast, the attacker tries to maintain

a stable packet rate to avoid suspicious behaviors and attacks in

its inactive periods by reactively initiating a new transmission.

A. Hidden Terminal Emulation Attack

This subsection shows the impact of the proposed HTE

attack on the network performance of the NUT.

Impact of λin on the HTE Attack: A higher rate of incoming

traffic (i.e., λin) to the NUT increases the opportunity for the

attacker to interfere with the NUT’s reception. As the attacker

tries to interfere each time it is inactive and the victim is

receiving, in Fig. 5(a), we can observe that the effect of the

attack increases with the increase in incoming traffic rate.

Impact of λex on the HTE Attack: Note that the attacker can

only interfere if it is inactive during the transmission of its

hidden counterparts; otherwise, it must continue and finish its

packet transmission. As the traffic rate of the EX increases,

the time it stays in active state increases (i.e., ρex). Hence,

the room for interference decreases. Therefore, to increase the

impact of the attack, the attacker must decrease its packet

arrival rate. In Fig. 5(b), we can observe that under no attack

(i.e., when EX is benign), the EX’s traffic has an insignificant

effect on the throughput of the NUT. However, under attack,

it illustrates sensitivity to the change.

B. Attack Detection

The proposed model can effectively distinguish the activity

of an attacker through carrier sensing and detect the interfer-

ence created by HTE attackers. This subsection analyzes the

performance of the proposed detection model.
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Fig. 5: The impact of different parameters on NUT’s throughput.
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Fig. 6: The HTE attack detection.

ROC Curve: To illustrate the effectiveness of our proposed

model, we compare it with the naive jamming detection

approach. As other literature has proposed, we consider the

PDR and BER as the primary metrics of jamming detection

in the naive approach. In addition, we point out that, to the best

of our knowledge, there is not yet a detection method for the

proposed attack to compare with. Our effort is to compare the

ability of attack activity detection, that is, jamming detection,

with the naive method and the random method.

Fig. 6(a) illustrates the receiver operating characteristic

(ROC) curve that represents the efficiency of detection by

plotting the true positive rate (i.e., the probability of detection)

versus the false positive rate (i.e., the probability of false

alarm). Comparing these three ROC curves, we find that the

proposed detection strategy results in a larger area under the

curve (AUC). Thus, it achieves significantly more reliable

detection results. Conversely, the naive method has a much

smaller AUC. Hence, it is inferior to the proposed method.

Impact of Observation Window Size on the Detection: The

observation window size plays an instrumental role on the

effectiveness of HTE attack detection. Fig. 6(b) represents the

ROC curves with respect to d = 200, 1000, 5000, 10000. We

can observe that the detection performance decreases as d
decreases; with d = 200, it performs very close to the random

detection approach. As different window sizes offer different

performance, a proper choice of d depends upon the cost and

time-criticalness of the application.

VI. CONCLUSION

In this paper, we proposed a vulnerability that the dense IoT

deployment will likely bring, i.e., interference from hidden

terminals of external IoT networks, and we illustrated how

a reactive jammer can exploit this vulnerability to stifle the

operation of the network. To the best of our knowledge,

this is the first work that foresees this vulnerability of IoT

deployment, studies it, and proposes a detection technique

based on carrier sensing. We captured the effect of external

hidden terminals through a Markov model and detected the

aberrant behaviors of reactive jamming attacks. The numerical

and simulation results showed the superior performance of our

proposed detection model as compared to the naive jamming

detection approach.
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