Detection of Hidden Terminal Emulation Attacks in Cognitive
Radio-enabled IoT Networks

Moinul Hossain and Jiang Xie
Department of Electrical and Computer Engineering
The University of North Carolina at Charlotte
Email: {mhossai4, Linda.Xie} @uncc.edu

Abstract—Recently, the Internet of Things (IoT) technology
has been drawing increasing attention in that it has a great
potential to positively impact human life in a broad range of
applications. However, the dense deployment of multiple co-
located IoT networks that may follow different wireless protocols
would engender new vulnerabilities. In this paper, we introduce
a novel attack scenario in co-located IoT networks, where a
reactive jammer can emulate the transmission characteristics of
a hidden terminal from another network and can interfere with
its hidden counterparts, namely the hidden terminal emulation
(HTE) attack. As the dense deployment of IoT nodes will
naturally create such hidden terminal scenarios, it provides the
HTE attacker plausible deniability to reactively interfere with its
hidden counterparts; hence, the HTE attacker remains immune
to conventional reactive jamming detection techniques. In this
paper, we capture the behavior of a benign hidden terminal via
a parsimonious Markov model and propose a detection solution
using the goodness-of-fit hypothesis testing. Though there has
been extensive research on jamming detection, our novelty lies
in considering hidden terminals as benign interference sources
and leveraging the existing carrier sensing technique as a natural
and effective way to detect HTE attacks.

I. INTRODUCTION

With the advent of the Internet of Things (IoT), a new path
to infinite possibilities has emerged [1]. However, the rapid and
dense deployment of IoT engenders a new set of challenges;
spectrum scarcity is one of the most important open research
challenges among these. The dense deployment of IoT nodes
in overpopulated unlicensed bands will aggravate interference
issues; hence, less throughput and higher delay may occur.
Cognitive radio (CR) offers an intelligent solution to this
issue, where a CR-enabled IoT device can opportunistically
access licensed channels (i.e., when licensed users are idle)
to avoid interference with other co-located IoT devices in
the unlicensed spectrum. Here, IoT devices utilize the real-
time channel sensing information to help them in finding
spectrum holes (i.e., underutilized licensed channels) and to
avoid interference with licensed users.

Researchers have envisioned the IoT as a ubiquitous tech-
nology, which will intricately integrate devices (or things) that
surround us, and these devices will communicate within them-
selves by forming a closed connected network to intelligently
solve real-life problems. Such a broad vision will require an
enormous amount of IoT deployments at our homes, offices,
transportation systems, health care, and industries. Intuitively,
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Fig. 1: Hidden terminal interference between coexisting IoT networks.

these IoT devices must form distinct independent networks to
manage data within their own network and to provide security
and privacy to the owners. Therefore, separate CR-enabled
IoT networks must independently manage their own spectrum
access and spectrum utilization strategies.

Motivations: The dense deployment of IoT devices may
bring new vulnerabilities where attackers can exploit natural
interference scenarios to corrupt transmissions of particular
victim IoT devices, such as interference from hidden terminal
devices in a different IoT network. Fig. 1 provides an illustra-
tion of this issue, where nodes B2 and B4 are hidden terminals
to nodes Al, A3, and A5, and vice versa. Note that these two
sets of nodes are from two different networks, and under the
given scenario, each of these two sets has no idea about the
transmissions of the other set. Therefore, it is probable that
nodes of these two sets may utilize the same radio channel
(or spectrum hole) and create interference to each other.

The concurrent transmission from hidden nodes acts as a
jamming signal at the corresponding receiver, and it is difficult
to differentiate between a benign node (i.e., hidden terminal)
and denial-of-service (DoS) attacker. Therefore, if an attacker
can impersonate as a hidden terminal to a particular IoT node,
it can capitalize on this scenario to corrupt the transmission
intended for a particular receiver or the transmission generated
from a particular transmitter.

Challenges: As attackers try to attack a particular node, the
straightforward approach of constant jamming in a particular
channel is not ideal for the objective. A better approach is
to attack only when a transmission to the victim is heard,
namely the reactive approach. A naive reactive jammer may
try to attack each time it hears a transmission to the victim
node. Though it is the most damaging strategy against the
victim and provides the highest attack efficiency, it increases
the risk of detection. Therefore, the reactive approach requires
a random approach to trade-off between the attack objective
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(i.e., degrading victim’s throughput) and the risk of exposure.

Nonetheless, the detection of such a random reactive at-
tack requires a different approach. Prior works on detecting
jamming attacks are mostly based on network performance
measurements, such as the packet delivery rate (PDR) and
the received signal strength (RSS). Although these detection
methods are effective, they are inapplicable in the illustrated
scenario where hidden terminals can be falsely categorized as
attackers. Therefore, we require a more intelligent detection
technique to counteract the randomness in attacks.

Contributions: In this paper, we study these challenges and
propose solutions. The novel contributions of this paper are
summarized in the following:

1. We propose a randomized reactive attack model by ex-
ploiting the hidden terminal scenario. In the proposed
model, the attacker poses as a hidden terminal by manip-
ulating its antenna radiation pattern.

2. We propose an intelligent detection method based on
a Markov model to detect the proposed attack despite
the randomness in its behavior. We solve the detection
problem by converting it into a goodness-of-fit test.

Related Work: In [2], the influence of different jamming
strategies on the PDR and RSS of network links is analyzed
and a thresholding algorithm is proposed. In [3], [4], different
network metrics, such as the channel busy ratio and the number
of retransmission attempts are employed. Jamming attacks in
time-critical networks are studied in [5] and numerical results
on the impact of jamming on the network message invalidation
ratio are presented. In [6]-[9], the impact of jamming attacks
on the performance of IEEE 802.11 networks is analyzed.
In CR-enabled networks, DoS attacks are studied in [10]-
[14], where the attacker attacks in the off-sensing interval. In
[15], a mathematical model of an optimal jamming strategy
is proposed, where an attacker can regulate its jamming
probability to trade-off between the reward of jamming and
the penalty of getting detected. One limitation of the model
is that it considers the slotted Aloha protocol, which does not
incorporate the carrier sensing multiple access — an essential
tool in modern wireless networks.

Nonetheless, none of these works considered the presence
of hidden terminals from different networks. As previous
works mostly depend on the network performance, they may
mis-categorize hidden terminals as jammers. Although the
influence of hidden terminal interference is considered in [16],
it did not explain how a reactive jammer can listen to the
transmission of its hidden counterparts. In contrast, we capture
the impact of hidden terminal interference from external
networks, based on the carrier sensing, and we propose how
a reactive jammer can listen to its hidden counterparts.

II. SYSTEM MODEL

We consider a benign IoT network with multiple IoT nodes
that are trying to communicate among themselves in an ad-
hoc mode; we name it the internal network. These benign IoT
nodes are surrounded by other co-located IoT nodes from a
different network; we name the network as external network.
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Fig. 2: The channel access schedule.

Channel Model: We consider the presence of M homoge-
neous channels each with equal bandwidth, and M licensed
or primary users (PUs) using these channels. Here, time is
divided into equal slots and transmissions are packet-based. A
packet starts at the beginning of a slot and ends at the end
of a slot. Each PU randomly selects a channel to access and
alternates between the ON and the OFF states, according to an
ON-OFF model that follows the Poisson packet arrival process
and the exponential packet length process. Let Py, and P,
denote the transition probabilities from the ON to OFF state
and from the OFF to ON state, respectively.

IoT Node Model: We consider that the defending IoT node
has k£ — 1 neighbors (excluding itself), and they use omni-
directional antennas for communications. These k£ nodes have
an available channel list (ACL) m; € {1,2,---, M}, where
1 € k. Each IoT node (both internal and external) is equipped
with one radio for wide-band spectrum sensing [17] and one
radio for control information exchange and data transmission.
We consider that channel conditions are ideal and that a trans-
mission failure is only resulted from one reason: interference
from a hidden terminal. In the following, we use interference
and collision interchangeably.

Channel Access: Each transmission attempt of an IoT node
must be preceded by a sensing interval. As shown in Fig. 2,
IoT nodes employ their wide-band sensing antenna to sense
the current channel before initiating a transmission, and they
continue to sense the channel during the transmission to negate
the collision between PUs and IoT nodes. An IoT node is
allowed to access a channel when it finds the sensing result
is suitable to transmit (e.g., senses that no PU is present).
After sensing the channel available, two IoT nodes exchange
request-to-send/clear-to-send (RTS/CTS) messages to reserve
the channel. IoT nodes initiate a new packet transmission with
the longer fine-sensing and employ the shorter fast-sensing for
each successive frame.

During a sensing interval, if an IoT node senses that the
current channel is busy, it pauses the communication attempt
on the current channel, performs a spectrum handoff to a new
channel (from the current ACL) in the next-slot, and resumes
the communication attempt on the new channel.

Network Coordination Scheme: Here, we consider that a
common control channel is unavailable and that two IoT
nodes must find a common available channel between them
to initiate a data transmission. Rendezvous technique works as
the process to find a common available channel [18]. However,
the choice of a specific rendezvous scheme does not impact the
performance of our proposed work, as long as attackers have
no prior knowledge of the victim’s channel hopping sequence
for rendezvous. Hence, we assume that [oT nodes have already
successfully performed rendezvous with each other using any
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(a) The real scenario. (b) The emulated scenario.

Fig. 3: The hidden terminal emulation attack.

existing scheme, and they share a time-seeded pseudo-random
channel hopping sequence for future communications.

III. HIDDEN TERMINAL EMULATION ATTACK

A jamming strategy generally regulates how to transmit a
noise signal to create undesired interference at the victim to
thwart normal communications. However, in this case, instead
of noise signals, an attacker transmits its normal signals to
create interference at the victim. The attacker perpetrates the
hidden terminal emulation (HTE) attack in two phases:

Reconnaissance and Emulation Phase: The primary task of
an HTE attacker is to successfully emulate itself as a hidden
terminal to the neighbors of the victim. We consider that
the attacker is capable of directional transmissions, and it
can deduce the geometric location of benign IoT nodes by
using off-the-shelf techniques, such as angle of arrival and
distance to the transmitter [19]. Depending on the objective
of the attacker and its physical limitations, the attacker may
try to pose as a hidden terminal to all neighbors or selected
neighbors of the victim. In Fig. 3(a), the attacker tries to
pose itself as a hidden terminal to nodes A1, A3, and A5; it
limits its transmissions only to nodes A2, A4, and A6 through
directional antennas. The intelligent utilization of directional
transmissions enables the attacker to create a different physical
scenario than the real one, which is represented in Fig. 3(b).

Attack Phase: In this phase, the HTE attacker continues to
sense the operating band through the wide-band sensing and
sniffs the band for RTS and CTS messages addressed to or
from the victim node, respectively. Afterwards, it deliberately
interferes transmissions from nodes A1, A3, and A5, that are
destined to the victim node (i.e., A4). However, the choice
of jamming rate depends on the strategy of the attacker; it
may jam each transmission or randomly choose to jam. In
this paper, we consider that the attacker takes a subtle random
approach where it poses as a legitimate node by continuing
regular communications with its neighbors in its own network,
and it intelligently interferes with the victim’s reception only
when it is idle. Hence, it offers a different detection challenge
in contrast to conventional reactive jamming attacks.

Summary: The HTE attacker utilizes directional transmis-
sion techniques that are widely available for communication
purposes and weaponizes these to perpetrate the attack. A
wide range of distinct attack strategies can be studied from the
proposed generalized attack strategy. In this paper, we focus

on proposing a generalized model to detect such anomalous
behavior from a hidden terminal. In contrast to traditional
reactive jamming detection techniques, we require an approach
that can consider a hidden node as an interference source, does
not mis-categorize benign hidden terminals as attackers, and
can detect anomalous behaviors of hidden terminals.

IV. DETECTION OF THE HIDDEN TERMINAL EMULATION
ATTACK

The proposed detection approach is comprised of two steps:
1) designing a mathematical model to characterize the behavior
of benign hidden terminals; 7¢z) formulating the detection
problem as a goodness-of-fit hypothesis testing problem, to
identify whether a sequence of observed behaviors is likely to
be produced from the established mathematical model.

A. Mathematical Model

The reception behavior of the defending IoT node is con-
sidered as an ON-OFF process: (X (t);t > 0) with state
space {0,1}, where 0 and 1 correspond to the ideal and the
receiving state, respectively. Let A4 denote the IoT node that
is evaluating abnormal interference, hereafter referred to as
the node under test (NUT), and the hidden terminal from the
external network is named as the external node (EX).

Markov States: We define X (¢), E(¢), and Y (¢) as the state
of the NUT, the EX, and the PU in the current channel at time-
slot ¢, respectively. Note that (E(t);¢ > 0) and (Y (¢);t > 0)
are ON-OFF processes with state space {0, 1}, where 0 and 1
correspond to the ideal and the transmitting state, respectively.
The interaction between X (t), E(t), and Y (¢) is captured as
a five-state discrete-time Markov model Z(t).

The Markov state Z(t) = {Y (), X(t), E(t)} denotes the
state of the NUT in its current operating channel at the end
of a time-slot. The brief descriptions of the states are:
0{0,0,0}: The current channel is free (i.e., PU is idle), the
NUT is idle (i.e., not receiving), and the EX is either idle or
transmitting on another channel.
1{0,0,1}: The current channel is free, the NUT is idle, and
the EX is transmitting.
2{0,1,0}: The current channel is free, the NUT is receiving,
and the EX is either idle or transmitting on another channel.
3{0,1,1}: The current channel is free, the NUT is receiving,
and the EX is transmitting. This represents the collision.
4{1, X, X'}: The current channel is busy (i.e., PU is active).

The state transition diagram of the proposed Markov model
is shown in Fig. 4, which depicts the interaction between
the PU, the NUT, and the EX. Transitions between non-
neighboring states are presented by dashed arrows.

Transition Probabilities: We consider that each neighbor of
the NUT has a packet arrival rate A\ that is destined for
the NUT and \;, = (k — 1)\. We capture the effect of
hidden terminals by the parameter k, € {0,---,k — 1},
which represents the number of internal nodes that are hidden
terminals to the EX. In addition, we define the parameter
a = kp/(k — 1) as the fraction of internal IoT nodes that are
hidden to the EX. We assume that each IoT node broadcasts
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Fig. 4: The proposed Markov model.

its identity periodically, and IoT nodes sniff the wireless
medium to discover the presence of IoT nodes within their
surroundings. In Fig. 3, though A1, A3, and A5 cannot listen
to the transmission of the node HTE (or EX), A2, A4, and A6
can listen to its transmission. Hence, each node maintains a
list of external nodes that are hidden to them (by exchanging
information within internal IoT nodes), and it helps them to
deduce the value of «. Table I summarizes the notations used
in the proposed Markov model.

TABLE I: Notations used in the Markov model
[ Symbol | Definition |

Py, Pr{a PU packet arrival in a slot}

Py, Pr{a PU packet ending in a slot}

Py, Pr{an internal packet arrival in a slot for the NUT}
P Pr{an internal packet ending in a slot}

Py, . Pr{an external packet arrival in a slot}

P,.. Pr{an external packet ending in a slot}

To derive steady-state probabilities, we first deduce the
single-step transition probabilities. We use F;; to denote
Pr(Z(t+1) = j|Z(t) = 1), i.e., the probability of transitioning
to state j at the next slot from the current state . We capture
the feature of the random channel-hopping process in our
model, where an IoT node can start a new transmission only
when there is a channel available. In the following discussion,
we use the terms states in the proposed Markov model and
the status of the NUT in a time-slot interchangeably.
Transitions from the idle state (i.e., Z(¢) = 0):

M—2
Po= Y Ty(1—Py)(1— Py, )(1— Pl
b=0

(D
+Iar—1(1 = Py,)(1 = Px,,, ) (1 = Pa,)s
M—2
Por =Y _ T(1 = Py,)(1 = Py,,)Pe
P (2)
+1Iar—1(1 = Py,)(1 = Px,,, ) Pr..s
M—2
P =Y Ty(1—Py,)Py,, (1 — Ply)
P (3)
+1Iar—1(1 = Py,) P, (1 = Pa.,),
M-—2
Pos =Y Ty(1— Py,)Py,, Phy
P 4)
+Iar—1(1 = Py,) P, Prea s
M-—1
Pou =Y TPy, )
b=0

where II;, = the steady-state probability that exactly b channels
are busy by PUs, P%, = (1—pex)Px., Plyatens Pex = the steady-
state probability that the EX is active, and P, ., = 1/(M —b).
Transitions from the EX active state (i.e., Z(t) = 1):

M—2
Py = Z (1 — Py, )(1 = Py,,) 6
2 (6)
+ar—1(1 = P, )(1 = P, ) Prcs
P :l_[]\1,1(1—}D)\p)(l_PMem)7 (7)
M—2
Pip =Y IL(1—Py,)P,, 3
2 ®)
+ a1 (1 = Px,)Px, Prea s
M-1
P14 — Z pr)\p. (9)
b=0

Transitions from the NUT’s receiving state (i.e., Z(t) = 2):
M—2

Py = (1= Py,)Pu,, (1 - P)
b=0

(10)
+ Hﬂffl(]' - PAp)PI»"in(]' - P>\ez)7
M-—2
Py = (1 — Py )Py, (1 — pea)Pr,. Plroie
21 ; b 5o ) Puin (1= pea) Prey Praten (1
+ ar—1(1 = Pr,) Pus Prcas
M—-2
Py = T(1—Py)(1— P, )(1—-P.
22 l; b( o) ( i ) col) (12)
+1y—1(1 = Py, )(1 = Py, )(1 — P, ),
M—-2
Po3 = (1 — Px,)(1 — Py, )P’
23 ; b( ) ( in ) Peol 13)
+1v—1(1 = Py,)(1 = Py, JaPs.,,
M-1
Pau=Y TP, (14)
b=0
where P8, = (1 — pez)aPx,, Pbosen, and a = ki, /(k — 1).
Transitions from the collision state (i.e., Z(t) = 3):
M-—-2
Pso = I, (1 — P, 1— P,
30 ; b( o) ( Nin) (15)
+ -1 (1 = Py,) Pucss
P3y =TIy -1 (1 = Py, )(1 = Py,,), (16)
M-—-2
P3y = Z Iy (1 — Px,)Px,,, (17)
b=0
M-—1
Py =Y ILP,,. (18)
b=0
Transitions from the channel busy state (i.e., Z(t) = 4):
M-—2
Po=> IL(1—P,)1—-P )1—-P.
20 bgo v( o) ( in ) ( ol ) (19)

+ 11 (1 = P, )(1 = Py, ) Prree + 1 Py,
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M—-1

P41 = Z Hb(l — P)\p)(l - PAin)Pcbol
b=0

(20)
+am—1(1 = Py,)pea(l = Py, )s
M—2
Py = Z Hb(lfpkp)P)\in(lfpcbd) @D
b=0
+ a1 (1 = Py, )P, Prree,
M—2
Py3 = Z (1 — PM)P/\inPfol
o F (22)
+ a1 (1 — PAP)PAin(l — pex)Pxr..s
M—1
Py = Z I, Py, + (1 — Py,), 23)
b=0

where Pff'ee = pEJ«‘RUe:c + (1 - pem)(l - PAez) and Pcbol = (1 -
pea) Prw Praten-

Note that all transition probabilities except the ones from
the channel busy state (i.e., Z(t) = 4) are conditioned on
the fact that at least one channel is available. Therefore, we
must transform (1)-(18) and P;; < P,;;/(1 — IIas), where
i€4{0,1,2,3} and j € {0,1,2,3,4}.

B. Goodness-of-Fit Test

The NUT monitors activities on all channels and collects
transmission patterns of all wireless nodes in its surroundings
over a time window of d = w/t equal-length slots, where w
is the observation time length and t is the length of a time-
slot. To test whether or not the NUT is experiencing HTE
attacks, we collect the sequence of observations of the NUT’s
status zg = {Z(t)}&1], called a sample path of the discrete
time Markov chain that is either generated by a benign hidden
terminal or by an HTE attacker. Now, let us denote transition
probability matrices that characterize a benign hidden terminal
as P? and that is generated from the observations as P. Thus,
a goodness-of-fit hypothesis testing problem can be formed:

Ho:P=P° H;:P+£P°% (24)

We use the chi-square test to verify the observed sequence.
Let us define the number of transitions from state ¢ to state
jof zq as Ny = Y0 1¢.,—i -, —j}> Where z; denotes the
t-th element of the sequence zq4 and 4, j € {0,1,2,3,4}. Now,
the counts N; = Z?:o N;; = Zle 1;.,—:}, and according
to [20], IV;; are asymptotically Gaussian distributed. Now, the
chi-square test statistic:

4 4 0 2
2 (Nij — Py Ni)
D D A (25)
i=0 j=0 Pile

It is reasonable to assume the initial-state probability distri-
bution is similar to the steady-state probabilities of the states.
However, as [5] indicated, the initial distribution has an effect
on the detection threshold, which decreases to 0 in d as 1/d.
Hence, it is insignificant when d is large.

Summary: The detection model captures the interference
pattern an IoT node experiences under the influence of benign
hidden terminals and flags the HTE attack when observations

deviate from the established model. The proposed Markov
model accumulates all required information into five states,
and the chi-square test verifies how well the observed sequence
fits the established benign behavior model. Our proposed de-
tection technique requires only the carrier sensing information
that is readily available for channel access purposes.

V. PERFORMANCE ANALYSIS

In this section, we present numerical and simulation results
to evaluate the performance of our proposed work. Here, we
consider that all IoT nodes physically reside within close
proximity of each other and share the same ACL at a given
time. The simulation parameters are listed in Table II.

TABLE II: Simulation Parameters
Value |

Simulation time 100 seconds

SU sensing range 50

The number of channels (or PUs) | 10

PU traffic rate (in pkts/sec) Ap = 50; pp = 100
Bandwidth 2 Mbps

The size of (RTS+CTS) 160 + 112 bits (802.11b/g)
Fast and fine sensing duration 1 ms (802.22) and 2 ms
IoT traffic rate (in pkts/sec) A = 20, 30, 40, 50, 60;

[ Parameter [

1 = 100
SU packet size 1024 bytes
Hidden terminal factor, o 5/7

The objective of the NUT, that is receiving, is to determine
if the observed interference maintains the pattern set by the
mathematical model. In contrast, the attacker tries to maintain
a stable packet rate to avoid suspicious behaviors and attacks in
its inactive periods by reactively initiating a new transmission.

A. Hidden Terminal Emulation Attack

This subsection shows the impact of the proposed HTE
attack on the network performance of the NUT.

Impact of )\;,, on the HTE Attack: A higher rate of incoming
traffic (i.e., \;;,) to the NUT increases the opportunity for the
attacker to interfere with the NUT’s reception. As the attacker
tries to interfere each time it is inactive and the victim is
receiving, in Fig. 5(a), we can observe that the effect of the
attack increases with the increase in incoming traffic rate.

Impact of \.. on the HTE Attack: Note that the attacker can
only interfere if it is inactive during the transmission of its
hidden counterparts; otherwise, it must continue and finish its
packet transmission. As the traffic rate of the EX increases,
the time it stays in active state increases (i.e., pe;). Hence,
the room for interference decreases. Therefore, to increase the
impact of the attack, the attacker must decrease its packet
arrival rate. In Fig. 5(b), we can observe that under no attack
(i.e., when EX is benign), the EX’s traffic has an insignificant
effect on the throughput of the NUT. However, under attack,
it illustrates sensitivity to the change.

B. Attack Detection

The proposed model can effectively distinguish the activity
of an attacker through carrier sensing and detect the interfer-
ence created by HTE attackers. This subsection analyzes the
performance of the proposed detection model.
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ROC Curve: To illustrate the effectiveness of our proposed
model, we compare it with the naive jamming detection
approach. As other literature has proposed, we consider the
PDR and BER as the primary metrics of jamming detection
in the naive approach. In addition, we point out that, to the best
of our knowledge, there is not yet a detection method for the
proposed attack to compare with. Our effort is to compare the
ability of attack activity detection, that is, jamming detection,
with the naive method and the random method.

Fig. 6(a) illustrates the receiver operating characteristic
(ROC) curve that represents the efficiency of detection by
plotting the true positive rate (i.e., the probability of detection)
versus the false positive rate (i.e., the probability of false
alarm). Comparing these three ROC curves, we find that the
proposed detection strategy results in a larger area under the
curve (AUC). Thus, it achieves significantly more reliable
detection results. Conversely, the naive method has a much
smaller AUC. Hence, it is inferior to the proposed method.

Impact of Observation Window Size on the Detection: The
observation window size plays an instrumental role on the
effectiveness of HTE attack detection. Fig. 6(b) represents the
ROC curves with respect to d = 200, 1000, 5000, 10000. We
can observe that the detection performance decreases as d
decreases; with d = 200, it performs very close to the random
detection approach. As different window sizes offer different
performance, a proper choice of d depends upon the cost and
time-criticalness of the application.

VI. CONCLUSION

In this paper, we proposed a vulnerability that the dense IoT
deployment will likely bring, i.e., interference from hidden

terminals of external IoT networks, and we illustrated how
a reactive jammer can exploit this vulnerability to stifle the
operation of the network. To the best of our knowledge,
this is the first work that foresees this vulnerability of IoT
deployment, studies it, and proposes a detection technique
based on carrier sensing. We captured the effect of external
hidden terminals through a Markov model and detected the
aberrant behaviors of reactive jamming attacks. The numerical
and simulation results showed the superior performance of our
proposed detection model as compared to the naive jamming
detection approach.
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